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Abstract 

Let k be a nonzero, commutative ring with 1, and let R be a k-algebra with a countably-infinite 
ordered free k-basis B = {pn: n~>0}. We characterize and analyze those bases from which one 
can construct a k-algebra of 'formal B-series' of the form f =  ~ c , p , ,  with cn Ek, showing 
inter alia that many classical polynomial bases fail to have this property. @ 1998 Elsevier 
Science B.V. All rights reserved 

1. Introduction 

Let k be a nonzero, commutative ring with 1, and let R be a k-algebra with a 

countably-infinite ordered free k-basis B = {Pn: n>~0}. Define a family of  coefficients 

{i,~ }B by 

PiPj = ~-~ Pn. (1) 
n>lO 

It is clear that, for all i,j>~O, 

# { n :  (i,nj.}B • 0 }  

is finite. I f  it is also the case that, for all n >t O, 
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is finite, we say that B is finitary. Every finitary k-basis B of R gives rise to a k-algebra 
of 'formal B-series' 

f = ~ c, pn, c, Ek, (2) 
n>~O 

the product of two such series being given by the formula 

i>~O \j>~O ] n>~O i,j>~O I t, j JB 

We regard f ,  as given by (2), as a kind of abstract generating function of the 
k-sequence {cn} relative to the k-basis {p~}. 

This paper is organized as follows. In Section 2 we establish necessary and suf- 
ficient conditions for a given basis to be finitary (Theorem 1). It follows that if k 
is a field and R is the polynomial ring k[xl . . . . .  x,], then any k-basis consisting of 
homogeneous polynomials is finitary. In particular, the bases consisting of "standard 
monomials" ([1,5]) fall into this category. Theorem 1 also furnishes a recipe for con- 
structing a number of finitary k-bases of the polynomial ring R = k[x]. On the other 
hand, it enables us to show that many classical families of polynomials, including 
Abel polynomials, exponential polynomials, and all families of orthogonal polynomi- 
als, fail to be finitary. It is thus understandable that none of these polynomial families 
has ever been employed in combinatorics as a basis for generating functions (cf. [8, 
p. 370]). We also show (Theorem 2) that the only finitary Appell families {A,} of 
polynomials over a field k of characteristic zero are given by A, = c(x - u)', where 
c, uEk .  

In Section 3 we give a rigorous account of the k-algebra of formal B-series de- 
fined by (2) and (3) by showing that this k-algebra is the completion of R with 
respect to a certain linear topology naturally associated to the basis B (Theorem 3). 
Any basis B = { p , :  n~>0} of R, finitary or not, induces a sequence (Vj)j~0 of free 

k-submodules of R, where ~ : =  Zr>/j kP r, with R = V0 > Vi > " "  > Vj > Vj+I > "-" and 
[']j>_-0 Vj={0}. Taken as a neighborhood basis of zero, (Vj)j>_,0 induces a topology 
on R. The multiplication of R is uniformly continuous with respect to this topology 
precisely when B is finitary. When k is a field and R is the polynomial ring k[x], it is 
in fact the case that every Hausdorff linear topology on R comes from some finitary 
basis. In such a case we show (Corollary 3) that there is a fairly restricted family o~ of 
finitary k-bases of k[x] having the property that for every finitary k-basis {p,}, there 
exists at least one basis {f ,}  in ,~ such that the associated {p,}-series and {fn}-series 
are isomorphic. In particular, if k is algebraically closed, {f ,}  may be chosen so that 
deg f ,  = n  and f~lf~+l for all n. We conclude Section 3 with a brief account of formal 
Dirichlet series. 

In Section 4 we develop tools for a detailed analysis of the structure of finitary bases 
of a polynomial ring R = k[x]. A nondecreasing function a : rR ---+ N is called a bound 
of the basis B if, for all quadruples (n ,m, i , j )  with O<~m~n and max{i,j} >a(n) ,  we 
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have rcm(pipj)= 0. Such a bound clearly exists if and only if B is finitary. For finitary 
B the order 2 of B is defined by 2(n)= min{a(n): a is a bound of B}. If P, lP,+I 
for all n, then tr(n)= n. In Theorem 5 we give an explicit equational criterion for a 
function a to be a bound of B, showing in particular that tr(n)>~n. This enables us 
to prove that if k is an integral domain, then the function tr(n)--n + 1 cannot be the 
order of any finitary basis of k[x]. We leave unresolved the larger question of whether 
any linear function other than the identity function can serve as the order of a finitary 
basis, as well as the interesting, if less well defined, problem of furnishing the order 
function with a salient combinatorial interpretation. 

2. Finitary k-bases 

In what follows B = { p n }  is a free k-basis of R, with {i~j}8 defined by (1). For 
9 E R, let rc,(,q) E k be the p,-component of 9. In particular, 

n 

Lemma 1. For all n, m ~>0, the following are equivalent: 
(i) {i,nj}B=O for all i>~O and all j>~m. 

(ii) 7rn(fpj)=O for all f ER and all j>~m. 

Proof. Setting f = pi in (ii) yields (i). Given (i), let f = ~ i  cipi, with C i E k. Then 

7~n(fPJ)~7~n (~i =ECi~n(PiPj)=Oi 

for allj~>m. [] 

Lemma 2. For all n>~0, the followin9 are equivalent: 

(i) #{( i , j ) :  {i,nj}s#0} isfinite. 

( n } ~- 0 for all i ~ O and all j >~m. (ii) There exists an m( = m(n)) such that i,j B 

Proof. That (i) implies (ii) is obvious. That (ii) implies (i) follows from the symmetry 
property 

( n }  = { n }  

i , j  t~ i , j  8" [] 

Our first theorem states two useful characterizations of finitary k-bases. We note first 
that any basis B = {Pn} induces a sequence (Vj)j~o of free k-submodules of R and a 
sequence (lj)j>_-o of ideals of R, where 

Vj := ~ kpr (4) 
r~j 
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and 

b : = Z e p r  • 
r~ j  

(5) 

Clearly, 

R =  v0>v~ > . . .  > vj > ~+~ > - - . ,  (6) 

with 

V) = {0} ,  (7)  
j~>0 

and 

g ~ _ l o ~ I  1 ~ . . .  ~ b ~ b + l  ~ . . . ,  (8) 

with Ij being the ideal generated by Vs. 

Theorem 1. The following are equivalent: 
(i) B is finitary. 

(ii) There exists a function a : N ~ ~ such that I~(t) C Vt for all t E N. 
(iii) There exists a descending chain Jo>~Jl >~ . . .  >~Jr>~Jr+l >1 . "  o f  ideals of  R, and 

functions ~, fl : ~ ~ ~, such that J~(t) ~ Vtt and V#(t) c Jt for all t E ~. 

Proof. (i)=~(ii). Since {pn} is finitary, for each n E N there exists a jn such that 
n { i j } s = 0  for all i~>0 and all j>>.j,. For each t E N ,  set a(t)=max{j~:O<<.n<t}. 

n Then, for all n<t, {i.j}B=0 for all i>~0 and all j>>.a(t). Thus, for all n<t, it follows 
from Lemma 1 that n~(fpj)=O for all f E R  and all j>>.a(t). Hence, f p j E  Vt for all 
f E R and all j ~> a(t), i.e., I~(o C_ Vt. 

(ii)=~(iii). Set Jr = I t  for all rE  ~, and let ~ = a = f l .  Since V~(O C_I,(t) C_ VtC_It, we 
have Ja(t) ~ Vtt and V#(t) ___ Jt for all t E [~. 

n (iii)=~(i). From (iii) we shall show that, for each n E ~, {id}B = 0  for all i~>0 and 
all j>>.fl(a(n + 1)), from which it follows by Lemma 2 that B is finitary. 

We have from (iii) that V#(~n+1))C_J~(.+1)C_ V~+I for all n E [~. Since Iij<~(n+l)) 
is the ideal generated by the set V¢(~(n+l)), we have It~(~(.+l))_CJ~(n+l) and hence 
It~(~(.+l)) C V~+I for all n E ~. Thus, fpj  E V.+I for all f E R and all j >>.fl(a(n +1) ) ,  

?/ 
and so zt .( fpj)=O for all f E R  and all j>~fl(a(n+ 1)). By Lemma 1, { i , j}e=0 for 
all i~>0 and all j>~fl(a(n + 1)), as claimed. [] 

The following corollary of Theorem 1 enables us to construct a number of finitary 
k-bases of the polynomial ring R = k[x]. 
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Corollary 1.1. Assume R =k[x], where x is an &determinate over k. Assume pn & 
monic of degree n for all n >10. Assume there ex&ts a function kt : N ~ ~ such that 

p(t)>~t for all t>.O, (9) 

Pu(t)lP, for all t>~O and all n>~#(t). (10) 

Then the basis B is finitary. 

Proof. By Theorem 1, part (ii), it suffices to show that Iit(t) C V t for all t~>0. By 
(10), we have l~(t)=k[x]p~(t), and so for each i~>0 there exists an f,.Ek[x] such 
that pu(t)+i=fipu(t). Clearly, j~ is monic of degree i for each i~>0. Hence {f,}i~>0 
is a k-basis of k[x]. Given any fPu(t)Elu(t), with fEk[x] ,  write f =  ~i>~oCifi, with 
¢i E k. Then fPu(t) = ~i>~o cifiPP(t) ~- ~i>~O cipta(t)+i, whence [U(t) C V~(t) C Vt, since 
#(t)>~t. [] 

In particular, any family {p~} such that deg(pn)=n,  the coefficient of x n in p,  
is a unit of k, and p,[Pn+l for all n>~0 is a finitary k-basis of k[x], the simplest 
case of this being the obviously finitary k-basis {pn =xn}. If k contains the field of 
rational numbers, then {Pn =x~:=x(x + 1) ' . . (x  + n - 1)}, {p, :xn-:=x(x - 1) . . .  
( x -  n + 1)}, and {p~ = (~):=xn-/n!} are finitary k-bases of k[x]. Generating functions 

C x of the form ~ '  ~ (n)' and q-generalizations thereof, have in fact been employed in the 
combinatorial analysis of covers [4]. Another noteworthy consequence of the above 
corollary is that any finite set of polynomials having mutually distinct degrees and 
whose leading coefficients are units of k, can be extended to a finitary k-basis of 
k[x]. 

There exist finitary bases not satisfying the property mentioned in the above corollary. 
For example, the sequence {p, } where Po = 1, p2"+1 = x(x 2 +x+ 1 )2m for all m >/0 and 
p2" = (x2+ 1)(x 2 + x  + 1) 2"-2 for all m/> 1 is clearly a free k-basis of the polynomial 
ring k[x]. It is easy to verify that I,+3 C_ V~ for all n~>0. Hence {pn} is finitary. Here, 
in fact, for each n >~ 1, Pn+l fails to be divisible by p,. 

A second corollary of Theorem 1 states a simple necessary condition for {p,} C R = 
k[x] to be finitary. 

Corollary 1.2. Assume R=k[x], where x is an indeterminate over k. Let {pn} be a 
free k-basis of  k[x], with (It)t>.o the associated chain of ideals defined by (5). Let dt 
be the minimum of the degrees of nonzero elements of  It. I f  {p~} is finitary, then 
limt --. go dt = ~ .  

Proof. Let 6t be the minimum of the degrees of nonzero elements of Vt. Clearly 
6t <<.¢3t+1 for all t E I~l. For {Pn} finitary there exists by Theorem 1 a function a:  ~ ~ 
such that I,(t) C Vt for all t E N. Hence d,(t) >>. 6t. It suffices to show that the sequence 
{fit} is not bounded above. 
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For each t let Wt = ~o<,i<~tkpi and Rt = )-~o<~i<,tkx i. Given a positive integer m 
there exists a positive integer s(m) such that Rra _C g/s(m)-l. Since {Pn} is a free 
k-basis, Ws(m)-I n Vs(m)=0. Therefore, ~Ss(m)>m. [] 

If k is a field, it follows from Corollary 1.2 that no family of polynomials satisfying 
deg pi = i for all i t> 0 and 

Pn+ l = (an + xbn ) pn - cn pn-- l for all n~> 1, (11) 

with an, bn, cn in k, is finitary since gcd{pt, pt+l} = 1, and so dt = 0  for all t E ~. In 
particular, no family of orthogonal polynomials [2, p. 773] can be finitary. 

The Abel polynomials {qn}, defined by qo = 1 and qn =x(x + n) n-I for n~> 1, with 
dt : 1 for all t/> I, also fail to be finitary. 

As for the exponential polynomials {en}, (here k is the field C of complex numbers) 
defined by 

n 

en = en(x) = ~ S(n, k)x k, (12) 
k=0 

with S(n, k) the Stirling number of the second kind [7, p. 42], it may be shown that 

en(x)  = e  (13) 
n~>0 

Let at denote the monic generator of It. Suppose that r is a root in C of #t for 
some t~>l. Setting x = r  in (13), we have en( r )=0  for all n>~t, whence e r(e'~-j) is a 
polynomial in z. But e r(ez-l) --- 1 for the infinitely many z=2nmi,  m E ~-. Thus (13) is 
the constant polynomial 1, and so in fact en( r )=0  for all n~>l. Since el(x)--x,  we 
have r = 0. Hence #t is a power of x for all t/> 1. That at = x  for all t~> 1 follows 
from the fact that S(n, 0) = 0 and S(n, 1 ) = 1 for all n i> 1. So the family of exponential 
polynomials also fails to be finitary. 

For k of characteristic zero, a family {An} in k[x] is called an Appell family 
[7, p. 59] if A0 is a nonzero constant and DxAn=nAn-1 for all n~>l. It is easy 
to show that {An} is Appell if and only if there exists a sequence (an)n~>0 in k with 
a0 # 0 and 

An = ~-~ ( k )  an_kxA for all n~>0. (14) 
k=0 

The following theorem characterizes finitary k-bases within the class of Appell fami- 
lies. 

Theorem 2. Assume k is a fieM of  characteristic O. An Appell family {A,} c k[x] is 
finitary i f  and only i f  there exist u, c E k with c ~ 0 such that An = c(x - u) n for all 
n~O. 
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Proof. Assume An is a finitary Appell family. Let It be the associated chain of ideals 
and let Ot denote the monic generator of It. From Corollary 1.2 it follows that for some 
positive integer m we have deg gm/> 1. Fix such an integer m. Let f be an irreducible 
factor of gin. Write Aj = fs(J)Bj with Bj relatively prime to f .  Note that s ( j )  ~> 1 for 

all j >~m. Since char k = 0 the equation 

s ( j  + 1) fs(J+l)- l (Dxf)Bj+! + fs(j+l)(DxBj+l) =DxAj+I = ( j  + 1)Aj 

= ( j  + 1)fs(J)Bj 

forces s ( j  + 1 ) =  s ( j )  + 1 for all j >~ m. 
Let g,, = f l  e(1)''" f~(r) with e(i)>/1 and fi monic, irreducible for 1 ~ i ~ r .  Then the 

above argument allows us to write 

Aj = f l  0 )+j-re.. .  fe(r)+J-mHj 

with Hj relatively prime to 9,,, for all j >/m. Letting di be the degree of f ,  for 1 <~ i ~< r, 
we get 

0~< deg H i =  deg H , , -  ( j -  m)(dl + . . .  + d r -  1) 

for all j ~ r n .  This equation can be valid for all j>~m only if dl + " .  + dr = 1, i.e., 
r - -  1 = d l .  Hence we have A j = ( x  - u)e+j-mHj, where e = e ( 1 ) > 0 ,  for all j>.m.  

Let # denote a positive integer such that I t` C_ Vm. Clearly # >~ m. Let n denote the 
greatest integer such that It` C_ Vn. Then, we must have m ~< n <~ #. If # > n then, there 
exists an h E It`\V,+l. Clearly h =aA~ + ~  for some 0 ~ a  E k and ~h E/I,+1. Observe that 
both h,~k are divisible by (x - u) "+l-m+e. This is absurd since An is not divisible by 
( x -  u) n+l-'+e. Consequently, n = kt, i.e., I u = V~. Now we can find al,a2 E k such that 
(x - u)A,  = alAt` + a2At`+l. Dividing by the common factor (x - u) e+t`-m we obtain 

(X -- u)Ht` = alHt` + a2(x -- u)Ht`+l. 

Since (x - u) and H u are coprime, al =0 ,  i.e., Hu=azHt`+l. The Appell condition 
DxA~+I =(/1 + 1)At` leads to the equation 

(e + # + 1 - m)Ht`+l + (x -- u ) (DxHt`+l)=(#  + 1 ) H  u =a2(# + 1)H,+I. 

Once again the coprimality of (x - u) and Ht`+t allows us to deduce DxHt,+l = O. 

Since chark =0 ,  Ht`+l must be a constant. Thus At,+l----c(x- u) e+t`+l-" with c E k. 
Since A,+I is a nonzero polynomial of degree # + 1, we have e = m and c ~ 0. Using 
integration and the fact that ( x - u )  divides Aj for all j /> p +  1 we see that Aj = c (x - -u )  j 

for all j ~> p + 1. Differentiation yields Aj = c(x - u) j for all 0 ~<j ~< it. [] 

3. Completions 

In this section we identify the formal series ring associated to a finitary basis B as 
the completion of R with respect to a linear topology associated to B. Our reference 
for the basics of topological rings and their completions is [3]. 



184 S.B. Mulay, C.G. Waoner/Discrete Mathematics 190 (1998) 177-189 

In the following we assume B =  {p,} to be finitary and fix a descending chain 
J := {Jr} of ideals of R, with J0 =R,  satisfying (iii) of Theorem 1, i.e., there are 

functions ~, fl : t~ ~ t~, such that Jot(t) ~ Vtt and Vt~(t ) C_ .It for all t E ~. Since ['1 Vt = 0, 
we have ~.It  = 0 and hence the linear topology on R corresponding to the filtration J is 
a Hausdorff topology. Let S denote the completion of R with respect to this topology. 

Let {J~}i~ be a sequence of elements of R. If there exists a map v : ~ ~ ~ such 
that J ~ + l -  ft'EJm for all i>>.v(m) and all m E ~  then, { f )  is a cauchy-sequence. 
Moreover, if J} E J,, for all i>>.n then, {J;} is a null-sequence. Two cauchy-sequences 

{fi} and {9i} are equivalent if {J; - 9i} is a null-sequence. Our k-algebra S can be 
thought of as the set of equivalence classes of  cauchy-sequences with componentwise 
addition and multiplication. 

Let Wt = Eo<~i<~t kpi and let rrt(f) denote the pt-component of f .  By a standard- 
sequence we mean a sequence {9i} of elements of R satisfying 

(i) 9t E Wt for all t~>0, and 
(ii) 9t+l - 9t E Vt+l for all t~>0. 

It follows from the condition (ii) that 9j - 9i E Vt+l for all j>i>>.t. In particular, {9i} 
is a Cauchy-sequence. If {9i} and {hi} are standard sequences then so is their sum 
{9i + hi}. A sequence {9t} is standard if and only if there exists a sequence {ci} of 
elements of k such that 9t = ~'~O<~i<~t ciPi for all t~>0. 

Lemma 3. Every Cauchy sequence {fi} is equivalent to a unique standard 
sequence. 

Proof. Suppose two standard-sequences {9i} and {hi} are equivalent, i.e., 9 i -  hi EJm 
for all i>~v(m) and all m~>0. Then 9 i - h i  E gm for all i>~v(ct(m)) and all m~>0. Writing 

9t -- ht = (fir - hr ) - (gr -- fit) -1- ( hr - hi) ,  where r = max{t + 1, v( ct( t + 1 ))}, we observe 
that the three paranthetical terms on the right are in Vt+l. Hence 9t - ht E Vt+l. Since 
9t, ht E Wt we must have 9 t - h t  E WtN Vt+l -----0, i.e., gt = h t  for all t~>0. This establishes 
uniqueness. To prove the existence consider a cauchy sequence {J]}. Replacing {J}} 

by a suitable subsequence, if necessary, we may assume that fi+l - f i  E V,-+I for all 
i~>0. Then, we have ~zi(ft)=rti(fi) for O<<.i<<.t. Define {gt} inductively by setting 

g0 = rc0(f0)P0 and 9i+l =9i + g i + l ( f i + l ) P i + l  for all i~>0. Clearly, {gt} is a standard- 
sequence equivalent to {J~}. [] 

Theorem 3. The k-algebra o f  formal B-series is k-isomorphic to S. 

Proof. Map a formal B-series f := ~-~aiPi to the equivalence class of the standard- 
sequence {ft} where ft=)-~o<~i<<taiPi for all t~>0. By the above lemma this map is 
one-one, onto. The map is clearly k-linear. Let 9 : =  ~"~bipi be formal B-series and 
say fg  := ~ ciPi .  Consider the associated standard-sequences {fi}, {9i}, and {(fg)i}. 
Since B is finitary, for every m~>0 there is an integer z(m) such that 7~t(figi)=Ct 
for all i>>.z(m) and O<~t<~m - 1, i.e., (fg)i - ~ 9 i E  V~ for all i>>.T(m). Thus our map 
preserves the multiplication. [] 
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Corollary 3. Assume R = k[x] where k is a fieM and x is an indeterminate over k. 
Given a finitary k-basis {qn} of R there exists a finitary k-basis {f,} of R and a 
subsequence {fo(n)} satisfying the following three conditions: 

(i) f ,  is monic of  degree n for all n>>.O. 
(ii) #(0)=0, #(n)>jn, f.(,,)lf.(,,+~), and fu(n+l)/fu(n) is irreducible (in R) for all 

n>~O. 
(iii) The algebra of  formal {qn}-series is k-isomorphic to the algebra of  formal 

{f~}-series. 

Proof. Let {In} be the sequence of ideals associated with the basis {qn}. Let J := {Jn} 
be a (strictly) descending chain of ideals of R such that Jo =R, Ji/Ji+l is a nonzero 
simple R-module for all i>~ 0, and for each n >/0 we have In = Jr for some r >/0. Since 
{qn} is assumed to be finitary J satisfies the requirement (iii) of Theorem 1. Let 
at denote the monic generator of Jt for all t>~0. Then, 90=1, t<deggt~<deggt+~ 
and gtlgt+l for all t>~0. Also, the quotient at+l/at is irreducible for all t>~0. Define 
#(t) := deg 9t and let fn : =  xn-V(t)ot where t is uniquely determined by #(t) >~ n < #(t + 
1). Clearly {fn} satisfies the conditions (i) and (ii) above. Consequently, Corollary 1.1 
implies that {f ,}  is finitary. To establish (iii), apply Theorem 3 to the pairs {fn},j .  
and {qn},J. [] 

When R=k[x], with x an indeterminate over k, and {Pn =xn}, Theorem 3 yields a 
standard construction of the algebra klx ] of formal power series over k. (See [6] for 
an elegant elementary alternative to this construction.) This theorem also yields the 
following construction of formal Dirichlet series. Let S be any set of real numbers 
that is not bounded above, and let A be the R-algebra R s, with all operations taken 
pointwise. For all n E P and all s E S, let fn(s) := n -s. Since J~j~ = J~j, the subalgebra R 
of A generated by B := {fn: n/> 1 } consists of all finite linear combinations of elements 
of B. It is straight-forward to show that B is linearly independent, and hence a free 
R-basis of R. Also, B is finitary since, clearly, 

(n)  (l if/  n 
i,j 0 otherwise. 

By Theorem 3, series of the form ~ cnfn are well-defined, and for all sequences (ai) 
and (b j) in R, 

(i~>~laifi)(j~>~lbjfj)=n~>~l(ij~=naibj)fn" 

4. Bounds and equations 

Throughout the remaining we assume R = k[x] where x is an indeterminate over the 
ring k. Let B := {Pn} be a free k-basis of R. A nondecreasing function a : N  ~ [~ is 
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called a bound of B if for all quadruples (n, m, i , j)  with 0 ~<m ~<n and max{/,j} > a(n), 

we have g m ( P i P j )  = O. Using the notation of Theorem 1, a is a bound if and only if 
Ia(~)+l _C V~+j for all n. Obviously, such a bound exists if  and only i fB  is finitary. For a 

finitary B we define the order of B to be the least bound 2 of B, i.e. 2(n) :=  min{a(n)} 

where the minimum is taken over all bounds a of  B. I f  a is a bound of B, then 
necessarily a(n)>~n for all n (this is a corollary of  the following lemma). 

Lemma 4. Let {Pn} be a free k-basis of  R and let T : ~ ~ ~ be a function. Then 
the following are equivalent. 

(i) nn(PiPj) = 0 for all ( i , j)  such that max{/,j} > T(n). 
(ii) n~(x a Pi  ) = 0 for all (d, i) such that d >~ 0 and i > T(n). 

Proof. Obvious. [] 

It follows from the above lemma that whether a k-free basis B of R is finitary 

or not is completely determined by the matrix of  the (k-linear) 'multiplication by x '  
map with respect to the basis B. Below we make this notion more explicit and obtain 

an equational criterion for specific bounds. We begin with some observations about 

matrices. 

Let ~ = ~ U {oo} and (r,s)E ~ × ~. Let ~(r,s;  k) denote the set of  r × s matrices 
with entries in k such that each row contains only finitely many non-zero entries. By 

a k-matrix we mean an element of  ~(r , s ; k )  for some ( r , s )E  ~ × ~. By a square 
k-matrix we mean an element of  M(r,r;k)  for some r E  ~. Note that i fA  E M(r,s;k) 
and D E  ~ ( s , t ; k )  then the product AD is well-defined and is in ~(r , t ;k ) .  Clearly, a 

submatrix of  a k-matrix is itself a k-matrix. 

Consider a 3 × 3 block-matrix 

' A l l  A12 AI3 

A = A21 A22 A23 , 

LA3J A32 A33 

where each A~ is a k-matrix and the diagonal blocks Aii  are square k-matrices. Then 

A itself is a square k-matrix. For a non-negative integer d we write A a as a 3 × 3 
,(a) is the same as that of the A(/. block-matrix with blocks A~ a) where the size of each A 0 

Lemma 5. Assume d to be a positive integer and A~])= 0 for 0 <<. r <<.d. Then we have 

A(a+~) ,-~ ~a(a-o 
31 Z.~ J"11 ' (A32A22 A21 

1 <<.i<~d 

Proof. Under the assumption A~])=0 for O<<.r<~d- 1 it is easy to establish (by in- 
duction) 

= .:122:1211111 , 
l <~i <~r 
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A(d+l) A A(d) Now our assertion follows for O<~r<~d. Using A31 = 0  =A~at ) we get "~3t =-'~32za21 • 
by substitution. [] 

Theorem 4. For m E ~ the following statements E(m) and F(m) are equivalent. 
E(m):  A~al) =O for O<~d<~m + 1. 
F(m) " A31 = 0 and A32Ag2A21 = 0 for 0 <~d <~m - 1. 

Proof. The proof is by induction on m. Clearly E(0) is equivalent to F(0). Henceforth 
assume 1 ~<r and E(i) is equivalent to F(i) for O<~i<~r- 1. Note that if E(r) holds 
then, a priori, E ( r -  1 ) holds and hence by the induction hypothesis F ( r -  1 ) also holds. 
Likewise, F(r) implies both F ( r -  1 ), E ( r -  1 ). Now E ( r -  1 ) and F ( r -  1 ) together, in 

~ ( r+ l )  A ~ r - - l ~  view of the Lemma 5, yield ,,131 =,a32~22 ,,a21. Thus E(r),  F(r) are equivalent. [] 

Corollary 4. Suppose A22 E ~ ( s  + 1,s + 1; k) for some s E ~. Then the following are 
equivalent: 

(i) A~al)=O for d>~O. 
(ii) A31 = 0 and A32Aaz2A21 = 0 for 0 <.d <.s. 

Proof. I f  A32Ad2A21~-O for O<~d<~s then, the Cayley-Hamilton theorem implies 
A32Aa22A21 = 0  for all d~>0. Now the asserted equivalence follows from the above 
theorem. [] 

If A := [a~j] E ~(r,r; k) and if m <r ,  n < r  are non-negative integers then, we define 
A(m,n) to be the submatrix [a~j] where m<i and j<~n. 

Let B ~-{Pn} be an ordered free k-basis of R as before. We will think of B as 
a column, Pi being its ith row. For ( i , j )E  ~ x ~ let uij :=Z~j(xpi). By M(x,B) we 
denote the square k-matrix [uij]. Then xdB =M(x,B)dB for d >~0. 

Lemma 6. Let M :=M(x,B) and let a: ~ ~ ~ be a non-decreasing function. Then 
the following are equivalent: 

(i) a is a bound of B. 
(ii) Md(a(n),n)=Ofor (n ,d)E N x ~. 

(iii) ~r(n)>~n for n E ~ ,  M(a(n),n)----O for n E ~  and Md(a(n),n)=O for all 
(n ,d )EN x N with a(n)>~n + 1. 

Proof. In view of Lemma 4 (i) holds if and only i f  ~j(xdpi)~-0 for all (d, n, i,j) with 
O<~d,O<~n,O<~j<~n and a(n)<i. The equivalence of (i) and (ii) is now a matter of 
unwinding the definitions. 

Observe that since M ° is the identity matrix, M°(a(n),n)=0 implies a(n)>>,n. If 
a (n ) - -n  then, M can be expressed as a 2 × 2 block matrix such that the diag- 
onal blocks are square and the bottom-left-block is M(a(n),n I. Moreover, assum- 
ing M(a(n) ,n)=0 it follows that all powers of M are block-upper-triangular, i.e., 
Md(ff(n),n) =Md(n,n)=0 for all d~>0. Thus (ii) and (iii) are equivalent. [] 



188 S.B. Mulay.  C.G. Wagner1  Discrete Mathematics 190 (1998) 177-189

Let M :=M(x,B)  as above. Fix a a : N --) N and an no N such that a(n)>n + 1.
Write M as a 3 x 3 block-matrix [M&a, n)] in such a way that A43l(a,n) =M(a(n),n)
and the diagonal blocks Mii(c,n) are square matrices. Then, using the notation of
Lemma 5, we have Md(a(n),n) =Mst(a,n) cd). Note that &(a,n)  is a (a(n) - n) x
(a(n) - n) matrix. By Corollory 4, Md(a(n),n) =0 for all d 30 if and only if

M@(n),  n) = 0,
M32(a,n)M22(a,n)dn/i2,(a,n)=0 for O,<d<a(n) - n - 1.

Combining (*) with Lemma 6 we get the following.

(*)

Theorem 5. Under the assumptions of Lemma 6 the following are equivalent:
(i) a is a bound of B.

(ii) a(n)>n  for n E N, and the condition (*) holds for all n such that
a(n + 1.

Proof. Straightforward. 0

We proceed to extract the set of equations satisfied by the rth row of M. Define

S,(a):={iENli+2<a(i)+l<r}.

For an i E S,(a) define

p(r, i, a) := [z+] where i + 1 <j < a(i).

Observe that p(r,i,a)  appears as a row of &(a,i)  for each i in S,(a). So, the equiv-
alence in Theorem 5 can be reformulated as: a is a bound of B if and only if the
equations

{

ue = 0 whenever r > a(i),

L(a) : p(r,i,a)M22(a,i)dM21(a,i)=0  for all iES,(a)

and O<d<a(i)-i-  1

are satisfied for all r E N. For i E S,(a) the matrices M&a, i) and &l(a, i) involve
only the rows prior to the rth row. Hence L,(a) is a system of homogeneous linear
equations in the entries of the rth row. Further, observe that the entries Urj with j > r
are not involved in L,(a).

If u,+ = 0 for all i with r > a(i) then, p(r, i, a) = 0 for all i with r > a(a(i)). It follows
that L,(a) is equivalent to

(

ue = 0 whenever Y > a(i),

L:(a): p(r,i,a)M22(a,i)dA421(a,i)=0 for all iES,*(a)

and O<d,<a(i)  - i - 1,

where S,*(a):={iENli+2<a(i)+  l,<r<a(a(i))}.
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Examples .  1. Suppose a ( n )  = n for all n C ~ .  In this case S t ( a )  is empty  for all r and 

Lr(a) reduces to: uri = 0  for all i<r .  Thus the identi ty funct ion is a bound  (and hence 

the order) o f  B i f  and only  i f  M ( x , B )  is upper-tr iangular.  

2. Assume a ( n )  = n + 1 for all n E ~d. It is easy to verify that L * ( a )  reduces to 

Uri=O for a l l i ~ < r - 2 ,  

Ur(r_l)U(r_l)(r_2) ~ 0 

for all r >t 2. Assuming  cr to be a b o u n d  o f  B we get u20 = u21 ul0 = 0. I f  k is an integral 

domain  then, we must  have either uzl = 0 or ul0 = 0. I f  u21 = 0 then, the funct ion 

~(n)  = [ 1 i f  n - 1, 

t n + 1 otherwise 

is a bound  of  B. I f  ulo = 0 then, 

fl(n) --  [ 0 i f  n = 0, 

( n + 1 otherwise 

is a bound  o f  B. Thus ~r can not  be  the order of  any finitary basis o f  k[x] in case k is 

an integral domain.  
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