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Abstract

Let k be a nonzero, commutative ring with 1, and let R be a k-algebra with a countably-infinite
ordered free k-basis B={p,: n>0}. We characterize and analyze those bases from which one
can construct a k-algebra of ‘formal B-series’ of the form f = Zc,, s, With ¢, € k, showing
inter alia that many classical polynomial bases fail to have this property. © 1998 Elsevier
Science B.V. All rights reserved

1. Introduction

Let £ be a nonzero, commutative ring with 1, and let R be a k-algebra with a
countably-infinite ordered free k-basis B={p,: n=0}. Define a family of coefficients

{,‘,nj}B by
n
Pin=Z{. } Pn- ¢))
n>0 l’j B

It is clear that, for all i, >0,

#{": {z;nj}B ﬂ}

is finite. If it is also the case that, for all n>0,
n
#{(i,j)I { . } 750}
L,jJg
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is finite, we say that B is finitary. Every finitary k-basis B of R gives rise to a k-algebra
of ‘formal B-series’

f=2 caPn cnEk, (2)

nz0

the product of two such series being given by the formula

(Za,-p,.) Sop| =% Z{i”.}Baib,- Pn- 3)

iz0 j20 nz0 \ij=0 *"~

We regard f, as given by (2), as a kind of abstract generating function of the
k-sequence {c,} relative to the k-basis {p,}.

This paper is organized as follows. In Section 2 we establish necessary and suf-
ficient conditions for a given basis to be finitary (Theorem 1). It follows that if k
is a field and R is the polynomial ring k[xi,...,x,], then any k-basis consisting of
homogeneous polynomials is finitary. In particular, the bases consisting of “standard
monomials” ([1,5]) fall into this category. Theorem 1 also furnishes a recipe for con-
structing a number of finitary k-bases of the polynomial ring R=k[x]. On the other
hand, it enables us to show that many classical families of polynomials, including
Abel polynomials, exponential polynomials, and all families of orthogonal polynomi-
als, fail to be finitary. It is thus understandable that none of these polynomial families
has ever been employed in combinatorics as a basis for generating functions (cf. [8,
p. 370]). We also show (Theorem 2) that the only finitary Appell families {4,} of
polynomials over a field k& of characteristic zero are given by 4, =c(x — u)", where
cuck.

In Section 3 we give a rigorous account of the k-algebra of formal B-series de-
fined by (2) and (3) by showing that this k-algebra is the completion of R with
respect to a certain linear topology naturally associated to the basis B (Theorem 3).
Any basis B={p,: n>0} of R, finitary or not, induces a sequence (V});»o of free
k-submodules of R, where V;:= Zrzj kp,, with R=W>WN>--->¥V>V;y1 > and
N 20 V;={0}. Taken as a neighborhood basis of zero, (¥;);>¢ induces a topology
on R. The multiplication of R is uniformly continuous with respect to this topology
precisely when B is finitary. When & is a field and R is the polynomial ring k[x], it is
in fact the case that every Hausdorff linear topology on R comes from some finitary
basis. In such a case we show (Corollary 3) that there is a fairly restricted family & of
finitary k-bases of k[x] having the property that for every finitary k-basis {p,}, there
exists at least one basis {f,} in & such that the associated { p, }-series and { f, }-series
are isomorphic. In particular, if k is algebraically closed, {f,} may be chosen so that
deg f,=n and f,|f,+1 for all n. We conclude Section 3 with a brief account of formal
Dirichlet series.

In Section 4 we develop tools for a detailed analysis of the structure of finitary bases
of a polynomial ring R =k[x]. A nondecreasing function o: N — N is called a bound
of the basis B if, for all quadruples (n,m,i,j) with 0<m<n and max{i,j} >a(n), we
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have m,(p;p;)=0. Such a bound clearly exists if and only if B is finitary. For finitary
B the order /i of B is defined by i(n)= min{g(n): ¢ is a bound of B}. If p,|pn1
for all n, then o(n)=n. In Theorem 5 we give an explicit equational criterion for a
function ¢ to be a bound of B, showing in particular that o(n)>n. This enables us
to prove that if k is an integral domain, then the function o(n)=n + 1 cannot be the
order of any finitary basis of k[x]. We leave unresolved the larger question of whether
any linear function other than the identity function can serve as the order of a finitary
basis, as well as the interesting, if less well defined, problem of furnishing the order
function with a salient combinatorial interpretation.

2. Finitary k-bases

In what follows B={p,} is a free k-basis of R, with {”;}5 defined by (1). For
gE€R, let m,(g) €k be the p,-component of g. In particular,

nn(Pin): {lnj} .
»J Jp

Lemma 1. For all n,m20, the following are equivalent:
(i) {if'j}3=0for all i20 and all j=m.
(i1) m.(fp;)=0 for all f€R and all j=m.

Proof. Setting f = p; in (ii) yields (i). Given (i), let f = ), ¢; pi, with ¢; €k. Then

T(fpj) =Tn (ZG‘P:‘P;’) =3 cimy(pip;)=0
forall j2zm. O

Lemma 2. For all n=0, the following are equivalent:
(i) # {(i, DAY ;éo} is finite.
(i) There exists an m(=m(n)) such that { [} =0 for all i>0 and all j>m.
- B
Proof. That (i) implies (ii) is obvious. That (ii) implies (i) follows from the symmetry
property

{;j}f{i,nj}g' .

Our first theorem states two useful characterizations of finitary k-bases. We note first
that any basis B={p,} induces a sequence (¥});»o of free k-submodules of R and a
sequence ([;);»o of ideals of R, where

Vii=3 kp, 4)

rzj
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and
I;:=3" Rp,. (5)
r>j
Clearly,
R=W>N>->V>Vi>--, (6)
with
N ¥ ={0}, (7
j=0
and
R=bhzhz --2LizL,=z- -, (8)

with I; being the ideal generated by ;.

Theorem 1. The following are equivalent:
(i) B is finitary.
(ii) There exists a function 6 :N — N such that I, CV; for all t€N.
(iii) There exists a descending chain Jo=J,2 --- 2J,2J,41 = - - of ideals of R, and
Junctions o, f:N— N, such that Jy,) CV; and Vg CJ; for all teN.

Proof. (i)=>(ii). Since {p,} is finitary, for each n€ N there exists a j, such that
{i,"j}3=0 for all {0 and all j>j, For each t€N, set o(t)= max{j,: 0<n<t}.
Then, for all n<z, { 1”, 18 =0 for all i 20 and all j>o(¢). Thus, for all n<¢, it follows
from Lemma 1 that m,(fp;)=0 for all f €R and all j>a(¢). Hence, fp; € ¥ for all
f€ERand all j2a(t), ie, L) C V.

(i1)=(iii). Set J, =1, for all € N, and let a=06=f. Since V) Clyy SV C1;, we
have Jyy C ¥ and V) CJ; for all €N,

(iii)=>(i). From (iii) we shall show that, for each n€ N, {:j }g=0 for all i>0 and
all j=f(o(n + 1)), from which it follows by Lemma 2 that B is finitary.

We have from (iti) that Vb(a(n+l)) CJun+1) € Viri for all neN. Since Iﬁ(fx(n—f—l))
is the ideal generated by the set Vpyni1)), We have Igamery) SJunst1y) and hence
Igant1y) C Voy1 for all neN. Thus, fp;€V,4y for all f€R and all j=p(a(n + 1)),
and so 7,(fp;)=0 for all f€R and all j=p(a(n+ 1)). By Lemma 1, {ij’j}Bzo for
all >0 and all j=B(a(n + 1)), as claimed. [J

The following corollary of Theorem 1 enables us to construct a number of finitary
k-bases of the polynomial ring R = k[x].
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Corollary 1.1. Assume R=k[x], where x is an indeterminate over k. Assume p, is
monic of degree n for all n>0. Assume there exists a function p:N — N such that

wt)=t for all t=0, (9)
Puny|pn for all 120 and all n= p(t). (10)
Then the basis B is finitary.

Proof. By Theorem 1, part (ii), it suffices to show that 7,y C ¥ for all 1>0. By
(10), we have I, =k[x]pu.), and so for each i>0 there exists an f; €k[x] such
that py)+i = fi puy- Clearly, f; is monic of degree i for each i>0. Hence {fi}ixo
is a k-basis of kfx]. Given any fp.) € Iy, With f € kix], write f = Z,.ZO ¢ifi, with
ci€k. Then fpuay= Y ;50 CifiPuty = Xizo CiPuoy+i» Whence lup C ¥y C Vi, since
wH)=ze. O

In particular, any family {p,} such that deg(p,)=n, the coefficient of x" in p,
is a unit of k, and p,|p,s1 for all n=0 is a finitary k-basis of k[x], the simplest
case of this being the obviously finitary k-basis { p, =x"}. If k contains the field of
rational numbers, then {p,=x":=x(x + 1)---(x + n — D}, {pa=x2:=x(x — 1)---
(x—n+1)}, and { p, = (}) :=x%/n!} are finitary k-bases of k[x]. Generating functions
of the form ) ¢, (fl), and g-generalizations thereof, have in fact been employed in the
combinatorial analysis of covers [4]. Another noteworthy consequence of the above
corollary is that any finite set of polynomials having mutually distinct degrees and
whose leading coefficients are units of k, can be extended to a finitary k-basis of
k[x].

There exist finitary bases not satisfying the property mentioned in the above corollary.
For example, the sequence { p,} where po= 1, pami1 =x(x>+x+1)*" for all m>0 and
Pam=(* + 1)(x2 +x+1)"""2 for all m>1 is clearly a free k-basis of the polynomial
ring k[x]. It is easy to verify that I,.3 C ¥, for all n>0. Hence {p,} is finitary. Here,
in fact, for each n=1, p,, fails to be divisible by p,.

A second corollary of Theorem 1 states a simple necessary condition for {p,} CR=
k[x] to be finitary.

Corollary 1.2. Assume R=k[x], where x is an indeterminate over k. Let {p,} be a
free k-basis of k[x], with (I;);»q the associated chain of ideals defined by (5). Let d,
be the minimum of the degrees of nonzero elements of I,. If {p.} is finitary, then
limt — o0 d' = CX.

Proof. Let 6, be the minimum of the degrees of nonzero elements of V. Clearly
8; <644 for all t € N. For { p,} finitary there exists by Theorem 1 a function 6: N — N
such that I, C ¥, for all t € N. Hence dy(> ;. It suffices to show that the sequence
{8:} is not bounded above.
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For each ¢ let W, =}, <i< kpi and R, = Zosis,kxﬂ Given a positive integer m
there exists a positive integer s(m) such that R, C Wym)—i. Since {p,} is a free
k-basis, Wym)—1 N Vym)=0. Therefore, dsm)>m. O

If k is a field, it follows from Corollary 1.2 that no family of polynomials satisfying
deg p;=i for all ;>0 and

Pn+1 = (a@y +xby) py — Cppn—1 for all n>1, (11)

with a,, by, ¢, in k, is finitary since ged{p,, pr+1} =1, and so d, =0 for all teN. In
particular, no family of orthogonal polynomials [2, p. 773] can be finitary.

The Abel polynomials {g,}, defined by go =1 and g, =x(x +n)"~! for n>1, with
d,=1 for all t>1, also fail to be finitary.

As for the exponential polynomials {e,}, (here k is the field C of complex numbers)
defined by

n
en=en(x)= Y S(n,k)x*, (12)
k=0
with S(n, k) the Stirling number of the second kind [7, p. 42], it may be shown that

2" x(ef—1)
Ze,,(x)-n—'=e . (13)

nz0

Let g, denote the monic generator of /,. Suppose that » is a root in C of g, for
some ¢>1. Setting x=r in (13), we have e,(r)=0 for all n>¢, whence ¢ ¢~V is a
polynomial in z. But ¢~ =1 for the infinitely many z =2nm;, m € Z. Thus (13) is
the constant polynomial 1, and so in fact e,(r)=0 for all n=1. Since e)(x)=x, we
have r=0. Hence g, is a power of x for all £>1. That g,=x for all =1 follows
from the fact that S(n,0)=0 and S(n,1)=1 for all n>>1. So the family of exponential
polynomials also fails to be finitary.

For k of characteristic zero, a family {4,} in k[x] is called an Appell family
(7, p. 59] if Ay is a nonzero constant and D,A,=nd,_; for all n=1. It is easy
to show that {4,} is Appell if and only if there exists a sequence (a,),»0 in k& with
ap 75 0 and

k=0 k

=3 (”) ap_ix*  for all n3>0. (14)

The following theorem characterizes finitary k-bases within the class of Appell fami-
lies.

Theorem 2. Assume k is a field of characteristic 0. An Appell family {4,} C k[x] is
finitary if and only if there exist u,c €k with c#0 such that A, =c(x — u)" for all
nz=0.
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Proof. Assume A, is a finitary Appell family. Let /; be the associated chain of ideals
and let g, denote the monic generator of J;. From Corollary 1.2 it follows that for some
positive integer m we have deg g, = 1. Fix such an integer m. Let f be an irreducible
factor of g,. Write 4, = f*/)B; with B; relatively prime to f. Note that s(j)>1 for
all j=m. Since char k =0 the equation

sG 4+ DD YD, By + fUTIDiBi ) =Dedjy = (j+ 1)4;
= (j+ 1) VB
forces s(j + 1)=s(j) + 1 for all j>m.

Let gy, =ff“) o /27 with e(i)=1 and f; monic, irreducible for 1 <i<r. Then the
above argument allows us to write

(1)+j— i—
Ajzf]e J m“.fre(r)+1 mHj

with H; relatively prime to g, for all j>m. Letting d; be the degree of f; for 1 <i<r,
we get

0< deg H;= deg Hp — (j —m)di +--- +d, = 1)

for all j=m. This equation can be valid for all jzm only if d, +--- +d, =1, ie,
r=1=d;. Hence we have 4, =(x — u)**/~™H,, where e =e(1)>0, for all j>m.

Let p denote a positive integer such that I, C ¥,. Clearly u=m. Let n denote the
greatest integer such that I, C V. Then, we must have m<n< . If u>n then, there
exists an h € [,\V,4i. Clearly h=ad,+y for some 0#a €k and € ¥,;. Observe that
both A,y are divisible by (x — u)"*!~"*¢. This is absurd since 4, is not divisible by
(x —u)*t1=m+¢_Consequently, n =y, i.., I,=V,. Now we can find a;,a; € k such that
(x —u)d, =a14, + ar4,4,. Dividing by the common factor (x — u)**#~™ we obtain

x—wyH,=a\H, + ay(x —u)H, 4.

Since (x — u) and H, are coprime, a; =0, i.e., H,=ayH,,,. The Appell condition
D41 =(p+ 1)4, leads to the equation

(e+p+1-—mHyp +(x =)Dy Hys)=(u+ DHy=ay(u+ 1) Hyy.

Once again the coprimality of (x — u) and H,,, allows us to deduce D.H,. =0.
Since chark =0, H,,; must be a constant. Thus 4, =c(x — u)****'~™ with cek.
Since 4,41 is a nonzero polynomial of degree u + 1, we have e=m and ¢ #0. Using
integration and the fact that (x—u) divides 4; for all j>pu+1 we see that 4; = c(x—u)’
for all j>u + 1. Differentiation yields 4; =c(x — u)/ for all 0<j<pu. O

3. Completions

In this section we identify the formal series ring associated to a finitary basis B as
the completion of R with respect to a linear topology associated to B. Our reference
for the basics of topological rings and their completions is [3].
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In the following we assume B={p,} to be finitary and fix a descending chain
J:={J;} of ideals of R, with Jy=R, satisfying (iii) of Theorem 1, i.e., there are
functions «,f: N — N, such that J,,) C ¥, and V) CJ, for all 1€ N. Since N¥=0,
we have [J; =0 and hence the linear topology on R corresponding to the filtration J is
a Hausdorff topology. Let S denote the completion of R with respect to this topology.

Let {fi}ien be a sequence of elements of R. If there exists a map v:N — N such
that fiy1 — fi€Jm for all i>v(m) and all meN then, {f;} is a cauchy-sequence.
Moreover, if f; € J,, for all i>n then, { f;} is a null-sequence. Two cauchy-sequences
{fi} and {g;} are equivalent if {f; — g;} is a null-sequence. Our k-algebra S can be
thought of as the set of equivalence classes of cauchy-sequences with componentwise
addition and multiplication.

Let W, =3 ;< kp; and let m,(f) denote the p,-component of f. By a standard-
sequence we mean a sequence {g;} of elements of R satisfying

(i) g, € W, for all t=0, and

(ii) gr+1 — g1 € ¥4y for all £20.

It follows from the condition (ii) that g; — g; € ¥4 for all j>i>t. In particular, {g,}
is a Cauchy-sequence. If {g;} and {h;} are standard sequences then so is their sum
{g: + h:}. A sequence {g,} is standard if and only if there exists a sequence {c;} of
elements of k such that g, =3 ;. cip; for all £>0.

Lemma 3. Every Cauchy sequence {f;} is equivalent to a unique standard
Sequence.

Proof. Suppose two standard-sequences {g;} and {4;} are equivalent, i.e., g; — h; € J,,
for all i >v(m) and all m>0. Then g;,—h; € ¥, for all i > v(a(m)) and all m > 0. Writing
9: —h=(g, — ) —(gr — g:) + (h, — b;), where r =max{t+ 1, v(a(z + 1))}, we observe
that the three paranthetical terms on the right are in ¥,,,. Hence g, — h; € ¥,;,. Since
g1, b € W, we must have g,—h, € W, ¥, =0, i.e., g, =k, for all £>0. This establishes
uniqueness. To prove the existence consider a cauchy sequence { f;}. Replacing { f;}
by a suitable subsequence, if necessary, we may assume that f;,, — f; € ¥, for all
i20. Then, we have m;(f;)=m(f;) for 0<i<t Define {g,} inductively by setting
go=mo( fo)po and gis1 =g; + @i 1(fiv1) piy1 for all i>0. Clearly, {g,} is a standard-
sequence equivalent to {f;}. O

Theorem 3. The k-algebra of formal B-series is k-isomorphic to S.

Proof. Map a formal B-series f:=> a;p; to the equivalence class of the standard-
sequence {f;} where f; =) o, aip; for all £>0. By the above lemma this map is
one—one, onto. The map is clearly 4-linear. Let g:=3 . b; p; be formal B-series and
say fg:=)_ cipi. Consider the associated standard-sequences {f;}, {g:}, and {(fg):}.
Since B is finitary, for every m>0 there is an integer t(m) such that m,( fig;)=c,
for all iZt(m) and 0<t<m — 1, i.e,, (fg)i — figi € Vn for all i >1(m). Thus our map
preserves the multiplication. [J
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Corollary 3. Assume R=k[x] where k is a field and x is an indeterminate over k.
Given a finitary k-basis {q,} of R there exists a finitary k-basis {fn} of R and a
subsequence { fum)} satisfying the following three conditions:.
(1) f» is monic of degree n for all n=0.
(i) w(0)=0, u(n)=n, fum|fun+1y and fumivy/ fum is irreducible (in R) for all
n=0.
(iii) The algebra of formal {q,}-series is k-isomorphic to the algebra of formal

{ fn}-series.

Proof. Let {I,} be the sequence of ideals associated with the basis {g,}. Let J := {J,}
be a (strictly) descending chain of ideals of R such that Jy =R, J;/J;41 is a nonzero
simple R-module for all i >0, and for each n>0 we have [, =J, for some r>0. Since
{gn} is assumed to be finitary J satisfies the requirement (iii) of Theorem 1. Let
g. denote the monic generator of J; for all £>0. Then, go=1, t<degyg, <degy,;
and g|g,+1 for all z20. Also, the quotient g,../g, is irreducible for all ¢>0. Define
u(t):=degg, and let f,:=x""*"g, where ¢ is uniquely determined by u(z)>=n<u(t+
1). Clearly { f,} satisfies the conditions (i) and (ii) above. Consequently, Corollary 1.1
implies that { f,} is finitary. To establish (iii), apply Theorem 3 to the pairs { f,}.J.
and {g,},J. O

When R = k[x], with x an indeterminate over &, and { p, =x"}, Theorem 3 yields a
standard construction of the algebra k[x] of formal power series over k. (See [6] for
an elegant elementary alternative to this construction.) This theorem also yields the
following construction of formal Dirichlet series. Let S be any set of real numbers
that is not bounded above, and let 4 be the R-algebra RS, with all operations taken
pointwise. For all n€ P and all s€ S, let f,(s):=n"". Since f;f; = f, the subalgebra R
of 4 generated by B:={ f,: n=1} consists of all finite linear combinations of elements
of B. 1t is straight-forward to show that B is linearly independent, and hence a free
R-basis of R. Also, B is finitary since, clearly,

n 1 ifij=n,
i,j ~ ] 0 otherwise.

By Theorem 3, series of the form 3 ¢, f, are well-defined, and for all sequences (a;)
and (b)) in R,

(i; a,-ﬁ) (1; bjfj) =n§l (Ugn a,-bj> fu

4. Bounds and equations

Throughout the remaining we assume R = k[x] where x is an indeterminate over the
ring k. Let B:={p,} be a free k-basis of R. A nondecreasing function ¢:N — N is
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called a bound of B if for all quadruples (r,m,i,j) with 0 <m<n and max{i, j} >a(n),
we have m,(p;p;)=0. Using the notation of Theorem 1, ¢ is a bound if and only if
Is(ny+1 € Vpsy for all n. Obviously, such a bound exists if and only if B is finitary. For a
finitary B we define the order of B to be the least bound A of B, i.e. A(n):=min{o(n)}
where the minimum is taken over all bounds ¢ of B. If ¢ is a bound of B, then
necessarily a(n)=n for all »n (this is a corollary of the following lemma).

Lemma 4. Let {p,} be a free k-basis of R and let T:N — N be a function. Then
the following are equivalent.

(i) m(pip;)=0 for all (i,j) such that max{i,j}>T(n).

(ii) m.(x? p;)=0 for all (d,i) such that d 20 and i>T(n).

Proof. Obvious. J

It follows from the above lemma that whether a k-free basis B of R is finitary
or not is completely determined by the matrix of the (k-linear) ‘multiplication by x’
map with respect to the basis B. Below we make this notion more explicit and obtain
an equational criterion for specific bounds. We begin with some observations about
matrices.

Let N=NU {0} and (r,s) € N x N. Let M(r,s; k) denote the set of » x s matrices
with entries in & such that each row contains only finitely many non-zero entries. By
a k-matrix we mean an element of M(r,s; k) for some (r,s) €N x N. By a square
k-matrix we mean an element of M(#,7; k) for some r € N. Note that if 4 € M(r,s; k)
and D € M(s,t; k) then the product AD is well-defined and is in M(r,#; k). Clearly, a
submatrix of a k-matrix is itself a k-matrix.

Consider a 3 x 3 block-matrix

Ay A A
A= { Ay Axn Axn|,
Ay Az Az

where each A4; is a k-matrix and the diagonal blocks 4;; are square k-matrices. Then
A itself is a square k-matrix. For a non-negative integer d we write 4% as a 3 x 3
block-matrix with blocks Af.]‘.” where the size of each Af-f) is the same as that of the 4.

Lemma 5. Assume d to be a positive integer and Ag'l) =0 for 0<r<d. Then we have

A= T (Andly ) A4S,

1<i<d
Proof. Under the assumption A&?:O for 0<r<d — 1 it is easy to establish (by in-
duction)

(r) _ i—1 (r—i)
A2r1 = E Alzz A21A1r1 Y,
r

[EES
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for 0<r<d. Using 43 =0=A(3‘? we get A(;{H) =A32Af,_‘?. Now our assertion follows
by substitution. [

Theorem 4. For me N the following statements E(m) and F(m) are equivalent.
E(m): 42 =0 for 0<d<m+ 1.
F(m): A3 =0 and A3A3,42, =0 for 0<d<m — 1.

Proof. The proof is by induction on m. Clearly E(0) is equivalent to F(0). Henceforth
assume 1 <r and E(i) is equivalent to F(i) for 0<<i<r — 1. Note that if E(r) holds
then, a priori, E(r— 1) holds and hence by the induction hypothesis F'(r—1) also holds.
Likewise, F(r) implies both F(r—1), E(r—1). Now E(r—1) and F(r — 1) together, in
view of the Lemma 5, yield A(3'1+1) =A32A;2‘1A21. Thus E(r), F(r) are equivalent. O

Corollary 4. Suppose A € M(s+ 1,5+ 1; k) for some s € N. Then the following are
equivalent:

() 4% =0 for d>0.

(11) A31 =0 and A32Ag2A21 =0 for 0<d <s.

Proof. If A32A‘212A21 =0 for 0<d<s then, the Cayley—Hamilton theorem implies
A32A‘2’2A21 =0 for all d>0. Now the asserted equivalence follows from the above
theorem. [

If 4:=[a;] € M(r,r;k) and if m<r, n<r are non-negative integers then, we define
A(m,n) to be the submatrix [a;] where m<i and j<n.

Let B={p,} be an ordered free k-basis of R as before. We will think of B as
a column, p; being its ith row. For (i,j)€N x N let u; :=mn;(xp;). By M(x,B) we
denote the square k-matrix [u;]. Then x/B=M(x,B)?B for d >0.

Lemma 6. Let M :=M(x,B) and let 6:N—N be a non-decreasing function. Then
the following are equivalent:
(i) o is a bound of B.
(ii) M?{a(n),n) =0 for (n,d)€N x N.
(ii) o(n)=n for neN, M{a(n),n)=0 for neN and M%{a(n),n)=0 for all
(n,d)eN x N with a(n)=zn+ 1.

Proof. In view of Lemma 4 (i) holds if and only if n;(x? p;) =0 for all (d,n,i,j) with
0<d,0<n,0<j<n and o(n)<i. The equivalence of (i) and (ii) is now a matter of
unwinding the definitions.

Observe that since M? is the identity matrix, M%(a(n),n) =0 implies o(n)=n. If
o(n)=n then, M can be expressed as a 2 x 2 block matrix such that the diag-
onal blocks are square and the bottom-left-block is M{a(n),n). Moreover, assum-
ing M{o(n),n) =0 it follows that all powers of M are block-upper-triangular, i.e.,
M?(a(n),n) =M%(n,n) =0 for all d>0. Thus (ii) and (iii) are equivalent. O
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Let M:=M(x,B) as above. Fix aa:N — N and an n €N such that a(n)=n + 1.
Write M as a 3 x 3 block-matrix [M;(a, n)] in such away that Msi(c,n) =M (a(n),n)
and the diagonal blocks M;(o,n) are square matrices. Then, using the notation of
Lemma 5, we have M%(a(n),n) = M3 (a,n)®. Note that May(o,n) is a (a(n) —n) x
(a(n) — n) matrix. By Corollory 4, M?({a(n),n) =0 for dl d >0 if and only if

M{a(n),n)=0,

Msy(0,n)Mpa(0,n) My (0,n)=0 for 0<d<a(n)—n-—1. )

Combining (x) with Lemma 6 we get the following.

Theorem 5. Under the assumptions of Lemma 6 the following are equivalent:

(i) aiis a bound of B.

(ii) a(n)=n for n €N, and the condition () holds for all n such that
o(n)zn+ 1.

Proof. Straightforward. O

We proceed to extract the set of equations satisfied by the rth row of M. Define
S (o):={ieN|i+2<a(i)+ 1<r}.
For an i € S,(g) define
p(r,i, a) =[u,] wherei+ 1<j<a(i).

Observethat p(r,i,6) appears as arow of M;;(a,i) for eachi in S,(a). So, the equiv-
alence in Theorem 5 can be reformulated as: a is a bound of B if and only if the
equations

u; =0 whenever r > a(i),
L(a): { P(ri,0)Ma(0,i) My (0,i)=0 for al i€S(o)
and0<d<o(i)—i—-1
are satisfied for all » eN. For i € S,(¢) the matrices M;;(a, i) and Mz (0, i) involve
only the rows prior to the rth row. Hence L,(a) is a system of homogeneous linear
equationsin the entries of the rth row. Further, observe that the entries u,; with j > r
are not involved in L,(¢).
If u; =0 for al i withr > a(i) then, p(r, i, a) = 0 for al i with r > a(a(i)). It follows
that L,(a) isequivalent to
u; =0 whenever r > a(i),
L:(a): { p(r,i,0)Ma(0,i)° My (0,i)=0 for al i€ S¥(o)
and0<d<o(i)~i—1,

where §¥(0):={i e N|i + 2<a(i) +1 <r<o(a(i))}.
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Examples. 1. Suppose a(n)=n for all n€ N. In this case S,(0) is empty for all » and
L,(0) reduces to: u,; =0 for all i <r. Thus the identity function is a bound (and hence
the order) of B if and only if M(x,B) is upper-triangular.

2. Assume a(n)=n+ 1 for all n€ N. It is easy to verify that L(s) reduces to

u; =0 forallig<r—2,
Ur(r— 1) U(r—1)r—2) =0

for all » >2. Assuming ¢ to be a bound of B we get upy = uz1110 =0. If k is an integral
domain then, we must have either u;; =0 or u;g =0. If u; =0 then, the function

1 ifn=1,

a(n)= )
n+1 otherwise

is a bound of B. If u;o =0 then,

0 if n=0,

n+ 1 otherwise

p(n)=

is a bound of B. Thus ¢ can not be the order of any finitary basis of k[x] in case & is
an integral domain.
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