Polynomials over $G F(q, x)$ with Integral-valued Differences

For my father, Carl T. Wagner, in the year of his sixty-fifth birthday

By
Carl G. Wagner

1. Introduction. Let D be an integral domain with quotient field K and $\operatorname{let} f(t) \in K[t]$. For each $m \in D^{*}$ let

$$
\Delta_{m} f(t)=\frac{f(t+m)-f(t)}{m},
$$

and for each sequence $m_{1}, m_{2}, \ldots, m_{r}$ of nonzero elements of D, let the r th difference $\Delta_{m_{1}, m_{2}, \ldots, m_{s}} f(t)$ be defined inductively by

$$
\Delta_{m_{1}, m_{2}, \ldots, m_{r}} f(t)=\Delta_{m_{r}}\left(\Delta_{m_{1}, m_{2}, \ldots, m_{r-1}} f(t)\right) .
$$

Let $I_{0}(D)=\{f(t) \in K[t]: f(d) \in D$ for all $d \in D\}$ and for each $r \geqq 1$ let $I_{r}(D)=$ $=\left\{j(t) \in K[t]: \Delta_{m_{1}, \ldots, m_{r}} f(t) \in I_{0}(D)\right.$ for every sequence m_{1}, \ldots, m_{r} of nonzero elements of $D\}$. Finally, let $\bar{I}_{r}(D)=I_{0}(D) \cap I_{1}(D) \cap \cdots \cap I_{r}(D)$. It is clear that $D[t] \subseteq \bar{I}_{r}(D)$ for each $r \geqq 0$, and that in many cases this inclusion will be strict.

The $\bar{I}_{r}(D)$ are of interest both as D-modules and as subrings of $K[t]$. In the first case one wishes to know, for example, whether $\bar{I}_{r}(D)$ is free over D; in the second, questions about unique factorization and about the ideal structure of $\bar{I}_{r}(D)$ are natural. In this paper we shall investigate the D-modules $\bar{I}_{r}(D)$, where $D=G F[q, x]$, the ring of polynomials over the finite field $G F^{\prime}(q)$. Carlitz [5] has proved (by constructing an explicit basis) that $I_{0}(G F[q, x])$ is free over $G F[q, x]$ and since $G F[q, x]$ is a p.i.d., it follows immediately [8, p. 27, Th. 5.1] that each of the submodules $\bar{I}_{r}(G F[q, x])$ is free over $G F[q, x]$. Our purpose here is to construct explicit bases for these modules. The bases constructed may be used to prove that none of the rings $\bar{I}_{r}(G F[q, x])$ is a u.f.d.

We conclude this section with a brief survey of past work in this area. That $I_{0}(Z)$ is free over Z with basis $\left.\binom{t}{n}\right)_{n \gtrsim 0}$ is a classical result. In 1919 Polya [10] and Ostrowski [9] investigated the module $I_{0}(D)$, where D is the ring of integers of an algebraic number field; and Cahen [3] has recently studied this module when D is any Dedekind domain. $\bar{I}_{1}(Z)$ has been treated by de Bruijn [6] and Hall [7], and the present author [13] has investigated the submodule of $\bar{I}_{1}(G F[q, x])$ consisting of linear polynomials. Carlitz [4] has studied the modules $\bar{I}_{r}(Z)$, constructing explicit bases, and Barsky [2] has generalized some of Carlitz's results to number fields, using as a tool Amice's interpolation series for local rings [1].
2. Preliminaries. Let $G F[q, x]$ denote the ring of polynomials over the finite field $G F(q)$ of characteristic p, and let $G F(q, x)$ denote the quotient field of $G F[q, x]$. A polynomial $f(t)$ over $G F(q, x)$ is called integral-valued if $f(m) \in G F[q, x]$ for all $m \in G F[q, x]$. The set of all integral-valued polynomials is denoted, as was indicated in section 1 , by $I_{0}(G F[q, x])$.

In [5] Carlitz constructed an ordered basis $\left(C_{n}(t)\right)_{n \geqq 0}$ for the $G F[q, x]$-module $I_{0}(G F[q, x])$ as follows. Let $\psi_{0}(t)=t$ and for $n \geqq 1$ let

$$
\psi_{n}(t)=\prod(t-m), \quad m \in G F[q, x], \quad \operatorname{deg} m<n
$$

Then [5]

$$
\psi_{n}(t)=\sum_{i=0}^{n}(-1)^{n-i}\left[\begin{array}{l}
n \tag{2.1}\\
i
\end{array}\right] t^{q^{i}}
$$

where

$$
\left[\begin{array}{l}
n \\
i
\end{array}\right]=\frac{f_{n}}{f_{i} l_{n-i}^{q^{i}}}
$$

and

$$
\begin{array}{ll}
\left.f_{n}=\langle n\rangle\langle n-1\rangle q \cdots\langle 1\rangle\right\rangle^{n-1}, & f_{0}=1, \\
l_{n}=\langle n\rangle\langle n-1\rangle \cdots\langle 1\rangle, & l_{0}=1, \tag{2.2}\\
\langle r\rangle=x^{q^{r}}-x . &
\end{array}
$$

We remark that f_{n} is the product of all monic polynomials in $G F[q, x]$ of degree n, and that l_{n} is the l.c.m. of all polynomials in $G F[q, x]$ of degree n [5].

Now set $G_{0}(t)=1$ and if $n \geqq 1$ and $n=n_{0}+n_{1} q+\cdots+n_{s} q^{s}$ is the q-adic expansion of n, let

$$
G_{n}(t)=\prod_{i=0}^{s} \psi_{i}^{n_{i}}(t)
$$

The polynomial $G_{n}(t)$ has degree n, and serves as an analogue over $G F[q, x]$ of the factorial polynomial $t(t-1) \ldots(t-n+1)$ over Z.

To complete the construction of $C_{n}(t)$ one requires a polynomial analogue of $n!$. Set $g_{0}=1$ and for $1 \leqq n=n_{0}+n_{1} q+\cdots+n_{s} q^{s}$ as above, let

$$
g_{n}=\prod_{i=1}^{s} f_{i}^{n_{i}},
$$

where f_{i} is defined by (2.2). The polynomial g_{n} is the desired analogue of $n!$, and the polynomials $C_{n}(t)=G_{n}(t) / g_{n}$ furnish an ordered basis for $I_{0}(G F[q, x])$ over $G F[q, x]$ [5, Th. 9$]$. We list below some essential properties of the above polynomials.

Theorem 2.1. $G_{n}(t+u)=\sum_{k=0}^{n}\binom{n}{k} G_{k}(t) G_{n-k}(u)$.
Proof. [5, (2.3)].
Theorem 2.2. $C_{n}(t+u)=\sum_{k=0}^{n}\binom{n}{k} C_{k}(t) C_{n-k}(u)$.
Proof. Use Theorem 2.1 and [11, Prop. 1].

Theorem 2.3. For all $n \geqq 1$

$$
\frac{g_{n-1}}{g_{n}}=\frac{1}{l_{e(n)}}
$$

where $e(n)=\max \left\{k: q^{k} \mid n\right\}$, and l_{n} is defined by (2.2).
Proof. [11, Prop. 4].

Theorem 2.4. Let $H_{0}(t)=1$ and for $n \geqq 1$ let

$$
\begin{equation*}
H_{n}(t)=\frac{G_{n+1}(t)}{t g_{n}} \tag{2.3}
\end{equation*}
$$

Then $\left(H_{n}(t)\right)$ is also an ordered basis of the $G F[q, x]-m o d u l e I_{0}(G F[q, x])$.
Proof. [12, Lemma 3.1]. Remark. The polynomial $H_{n-1}(t)$ bears the same relationship to $C_{n}(t)$ as the polynomial $\binom{t-1}{n-1}$ does to $\binom{t}{n}$ (see [4]).

We may now proceed to construct a basis for $\bar{I}_{1}(G F[q, x])$.
3. A Basis for $\bar{I}_{1}(G F[q, x])$. Let $f(t) \in I_{0}(G F[q, x])$ have degree n. By [5, Th. 9], we may write

$$
\begin{equation*}
f(t)=\sum_{j=0}^{n} a_{j} C_{j}(t) \tag{3.1}
\end{equation*}
$$

where the a_{j} are uniquely determined elements of $G F[q, x]$. The following theorem gives necessary and sufficient conditions for $f(t)$ to belong to $\bar{I}_{1}(G F[q, x])$.

Theorem 3.1. Let $f(t) \in I_{0}(G F[q, x])$ be as in (3.1). Then $f(t) \in \bar{I}_{1}(G F[q, x])$ if and only if, for all $j \geqq 1, l_{e^{*}(j)} \mid a_{j}$, where $e^{*}(j)=\max \{e(i): 1 \leqq i \leqq j\}, e(i)=\max \left\{k: q^{k} \mid i\right\}$, and l_{r} is defined by (2.2).

Remark. $e^{*}(j)=[\log j / \log q]$.
Proof. Let $m \in G F[q, x]-\{0\}$. Then by (3.1) and Theorem 2.2,

$$
\begin{aligned}
f(t+m) & =\sum_{i=0}^{n} a_{i} \sum_{k=0}^{i}\binom{i}{k} C_{k}(t) C_{i-k}(m)= \\
& =\sum_{k=0}^{n} C_{k}(t) \sum_{i=k}^{n}\binom{i}{k} a_{i} C_{i-k}(m)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f(t+m)-f(t) & =\sum_{k=0}^{n-1} C_{k}(t) \sum_{i=k+1}^{n}\binom{i}{k} a_{i} C_{i-k}(m)= \\
& =\sum_{k=0}^{n-1} C_{k}(t) \sum_{i=1}^{n-k}\binom{i+k}{k} a_{i+k} C_{i}(m)
\end{aligned}
$$

and so by (2.3), Theorem 2.3, and the fact that $C_{i}(m)=G_{i}(m) / g_{i}$,

$$
\begin{align*}
\Delta_{m} f(t) & =\frac{f(t+m)-f(t)}{m}= \tag{3.2}\\
& =\sum_{k=0}^{n-1} C_{k}(t) \sum_{i=1}^{n-k}\binom{i+k}{k} \frac{a_{i+k}}{l_{e(t)}} H_{i-1}(m) .
\end{align*}
$$

Since the $C_{k}(t)$ are a basis over $G F[q, x]$ of $I_{0}(G F[q, x])$, it follows that $\Delta_{m} f(t)$ is integral-valued for all nonzero m if and only if

$$
\begin{equation*}
\sum_{i=1}^{n-k}\binom{i+k}{k} \frac{a_{i+k}}{l_{e(i)}} H_{i-1}(m) \in G F[q, x] \tag{3.3}
\end{equation*}
$$

for all nonzero m, i.e., if and only if

$$
\sum_{i=1}^{n-k}\binom{i+k}{k} \frac{a_{i+k}}{l_{e(i)}} H_{i-1}(t)
$$

is integral-valued. By Theorem 2.4, this is equivalent to the condition

$$
\binom{i+k}{k} \frac{a_{i+k}}{l_{\boldsymbol{e}(i)}} \in G F[q, x]
$$

for all i, k such that $0 \leqq k \leqq n-1$ and $1 \leqq i \leqq n-k$. Hence, $f(t) \in \bar{I}_{1}(G F[q, x])$ if and only if

$$
\begin{equation*}
\binom{j}{i} \frac{a_{j}}{l_{e(i)}} \in G F[q, x] \tag{3.4}
\end{equation*}
$$

for all i, j such that $1 \leqq i \leqq j \leqq n$. Now if $r \leqq s$, then $l_{r} \mid l_{s}[5,(1.4)]$, and so the condition $l_{e^{*}(j)} \mid a_{j}$ is sufficient for (3.4). To see that it is also necessary, write $j=j_{0}+j_{1} q+\cdots+j_{s} q^{s}$, where $0 \leqq j_{i}<q$ and $j_{s} \neq 0$. Clearly $e^{*}(j)=s$, and if (3.4) holds, it holds in particular for $i=j_{s} q^{s}$. But by a well known congruence for binomial coefficients, we have

$$
\binom{j}{j_{s} q^{s}} \equiv\binom{j_{0}}{0}\binom{j_{1}}{0} \cdots\binom{j_{s}}{j_{s}} \equiv 1(\bmod p)
$$

and so $l_{e\left(j_{s} q^{*}\right)}=l_{s}=l_{e^{*}(j)}$ divides a_{j} in $G F[q, x]$.
It follows from the preceding theorem that the sequence

$$
\begin{equation*}
\left(1, l_{e^{*}(1)} \frac{G_{1}(t)}{g_{1}}, \ldots, l_{e^{*}(j)} \frac{G_{j}(t)}{g_{i}}, \ldots\right) \tag{3.3}
\end{equation*}
$$

furnishes a basis for $\bar{I}_{1}(G F[q, x])$ over $G F[q, x]$. (Compare [6, Theorem 1].) Note that when $j=q^{n}$

$$
l_{e}^{*}\left(j, \frac{G_{j}(t)}{g_{j}}=l_{n} \frac{\psi_{n}(t)}{f_{n}}\right.
$$

Thus the above theorem contains as a special case the author's earlier characterization [13, Th. 3.2] of the submodule of $\bar{I}_{1}(G F[q, x])$ consisting of linear polynomials (i.e., polynomials in which each exponent of t is a power of q).

It should be noted that the module $I_{1}(G F[q, x])$ is not free over $G F[q, x]$, for the fact that a polynomial $f(t)$ over $G F(q, x)$ belongs to $I_{1}(G F[q, x])$ places no constraint on the constant term of $f(t)$. Consequently, $I_{1}(G F[q, x])$ contains as a submodule an isomorphic copy of $G F(q, x)$ and since $G F(q, x)$ is not free over $G F[q, x]$, the same is true of $I_{1}(G F[q, x])$. Similarly, none of the modules $I_{r}(G F[q, x])$ is free over $G F[q, x]$.
4. Higher Differences. Let $f(t)$ be given by (3.1) and denote the polynomial of (3.3) by $a_{k}(m)$. Then (3.2) may be written

$$
\Delta_{m} f(t)=\sum_{k=0}^{n-1} a_{k}(m) C_{k}(t)
$$

and we may repeat the procedure of Section 3 to derive the formula

$$
\Delta_{m_{1} m_{2}} f(t)=\sum_{k=0}^{n-2} C_{k}(t) \sum_{\substack{i_{1}+i_{2} \leq \leq-k \\ i_{1}, i_{2}>0}} \frac{\left(i_{1}+i_{2}+k\right)!}{i_{1}!i_{2}!k!} \frac{a_{i_{1}+i_{2}+k}}{l_{e\left(i_{1}\right)} l_{e\left(i_{2}\right)}} H_{i_{1}-1}\left(m_{1}\right) H_{i_{2}-1}\left(m_{2}\right)
$$

It follows again from the fact that $\left(C_{k}(t)\right)$ and $\left(H_{k}(t)\right)$ are bases of $I_{0}(G F[q, x])$ that $f(t) \in I_{2}(G F[q, x])$ if and only if, for all $j \geqq 2$

$$
\frac{a_{j}}{l_{e\left(i_{1}\right)} l_{e\left(i_{2}\right)}} \in G F[q, x]
$$

whenever $i_{1}, i_{2}>0, i_{1}+i_{2} \leqq j$, and the multinomial coefficient $j!/ i_{1}!i_{2}!\left(j-i_{1}-i_{2}\right)!$ is prime to p, the characteristic of $G F(q)$. In the general case we have the following theorem.

Theorem 4.1, Let $f(t)$ be given by (3.1). Then $f(t) \in I_{r}(G F[q, x])$ if and only if, for all $j \geqq r$

$$
\frac{a_{j}}{l_{e\left(i_{1}\right)} l_{e\left(i_{2}\right)} \ldots l_{e\left(i_{r}\right)}} \in G F[q, x]
$$

whenever $i_{1}, i_{2}, \ldots, i_{r}>0, i_{1}+i_{2}+\cdots+i_{r} \leqq j$, and the multinomial coefficient $j!/ i_{1}!i_{2}!\cdots i_{r}!\left(j-i_{1}-i_{2}-\cdots-i_{r}\right)$! is prime to p.

If $1 \leqq j<r$, let $L_{j}^{(r)}=1$, and for $1 \leqq r \leqq j$, let

$$
\begin{align*}
& L_{j}^{(r)}=\text { l.c.m. }\left\{l_{e\left(i_{1}\right)} \ldots l_{e\left(i_{r}\right)}: i_{1}, \ldots, i_{r}>0, i_{1}+\cdots+i_{r} \leqq j\right. \tag{4.1}\\
& \left.\quad \text { and } j!/ i_{1}!\ldots i_{r}!\left(j-i_{1}-\cdots-i_{r}\right)!\text { is prime to } p\right\} .
\end{align*}
$$

Then if, for all $j, r \geqq 1$, we set

$$
\begin{equation*}
\bar{L}_{j}^{(r)}=\text { I.c.m. }\left\{L_{j}^{(s)}: 1 \leqq s \leqq r\right\} \tag{4.2}
\end{equation*}
$$

it is clear from Theorem 4.1 that the sequence

$$
\begin{equation*}
\left(1, L_{1}^{(r)} \frac{G_{1}(t)}{g_{1}}, \ldots, L_{j}^{(r)} \frac{G_{j}(t)}{g_{j}}, \ldots\right) \tag{4.3}
\end{equation*}
$$

furnishes a basis for $\bar{I}_{r}(G F[q, x)]$ over $G F[q, x]$. This should be compared with [4, Theorem 4].

We recall that in Section 3 we were able to conclude that $L_{j}^{(1)}=l_{e^{*}(j)}$ by appealing to a well known congruence $(\bmod p)$ for binomial coefficients. Analogous congruences for multinomial coefficients do not appear to contribute to a significant simplification of formulas (4.1) and (4.2).
5. Factorization in the Rings $\bar{I}_{r}(G F[q, x])$. It is easy to see that the ring $I_{0}(G F[q, x])$ of integral-valued polynomials over $G F(q, x)$ is not a u.f.d., for the sequence $C_{n}(t)$ of Carlitz polynomials (which furnishes a basis for the module $I_{0}(G F[q, x])$) has the properties (a) $C_{n}(t)=t^{n}$ if $0 \leqq n<q$ and (b) $C_{q}(t)=\left(t^{q}-t\right) / x^{q}-x[5, p .486 / 87]$. Hence $C_{q}(t)$ is irreducible, since by (a) all polynomials of degree less that q belonging to $I_{0}(G F[q, x])$ have integral coefficients. Thus the equation

$$
\prod_{\lambda \in G F(q)}(x-\lambda) C_{q}(t)=\prod_{\lambda \in G F(q)}(t-\lambda)
$$

shows that unique factorization fails in this ring. More generally, we have the following theorem.

Theorem 5.1. For each $r \geqq 1$, unique factorization fails in the ring $\bar{I}_{r}(G F[q, x])$.
Proof. It clearly suffices to exhibit a polynomial $F(t)$ which belongs to each of the rings $\bar{I}_{r}(G F[q, x])$ and (when written as a linear combination of powers of t) has at least one non-integral coefficient. For this will imply [by (4.3)] that for each $r \geqq 1$ there exists a smallest $j>1$ such that $\mathcal{L}_{j}^{(r)} G_{j}(t) / g_{j}$ (when written as a linear combination of powers of t) has at least one non-integral coefficient. Hence $L_{i}^{(r)} G_{j}(t) / g_{j}$ will be irreducible in $\bar{I}_{r}(G F[q, x])$, and we may argue as in the preceding paragraph. Thus we consider the polynomial

$$
F(t)=l_{2} C_{q^{2}}(t)=l_{2} \frac{\psi_{2}(t)}{f_{2}}=\frac{\psi_{2}(t)}{\left(x^{2}-x\right)^{q-1}}
$$

By (2.1) and (2.2), the leading coefficient of $F(t)$ is non-integral. By [5, Theorem 9], $F(t) \in I_{0}(G F[q, x])$ and by our Theorem 3.1, $F(t) \in \bar{I}_{1}(G F[q, x])$. Since $F(t)$ is linear by (2.1),

$$
\Delta_{m_{1}} F(t)=\frac{F\left(m_{1}\right)}{m_{1}}
$$

and so $\Delta_{m_{1}, \ldots, m_{r}} F(t)=0$ for all $r \geqq 2$ and $F(t) \in \bar{I}_{r}(G F[q, x])$ for all $r \geqq 1$, but $F(t) \notin D[t](D=G F[q, x])$.

References

[1] Y. Amice, Interpolation p-adique. Bull. Soc. Math. France 92, 117-180 (1964).
[2] D. Barsky, Fonctions k-Lipschitziennes sur un anneau local et polynômes à valeurs entières. Bull. Soc. Math. France 101, 397-411 (1973).
[3] P. J. Cahen, Polynômes à valeurs entières. Canad. J. Math. 24, 747-754 (1972).
[4] L. Carlitz, A note on integral-valued polynomials. Indag. Math. 21, 294-299 (1959).
[5] L. Carlitz, A set of polynomials. Duke Math. J. 6, 486-504 (1940).
[6] N. G. de Bruidn, Some classes of integer-valued functions. Indag. Math. 17, 363-367 (1955).
[7] R. R. HaLl, On pseudo-polynomials. Mathematika 18, 71-77 (1971).
[8] P. Hilton and U. Stammbach, A Course in Homological Algebra. New York 1971.
[9] A. Ostrowski, Uber ganzwertige Polynome in algebraischen Zahlkörpern. J. Reine Angew. Math. 149, 117-124 (1919).
[10] G. Polya, Utber ganzwertige Polynome in algebraischen Zahlkörpern. J. Reine Angew. Math. 149, $97-116$ (1919).
[11] C. G. Wagner, Interpolation series in local fields of prime characteristic. Duke Math. J. 39, 203-210 (1972).
[12] C. G. Wagner, Differentiability in local fields of prime characteristic. Duke Math. J. 41, 285-290 (1974).
[13] C. G. Wagner, Linear pseudo-polynomials over $G F[q, x]$. Arch. Math. 25, 385-390 (1974).
Eingegangen am 17.5. 1975
Anschrift des Autors:
C. G. Wagner

Mathematics Department
University of Tennessee
Knoxville, Tennessee 37916
U.S.A.

