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Polynomials over GF (g, x) with Integral-valued Differences

For my father, CARL T. WAGNER, in the year of his sixty-fifth birthday
By

CarL G. WAGNER

1. Introduetion. Let D be an integral domain with quotient field K and let f (f) € K {t].
For each m e D* let
t — (¢
Ay =1CF™ — 10
m
and for each sequence my, ma, ..., my of nonzero elements of D, let the rth difference
Ay ino.....m, | (&) be defined inductively by

Avm,mz,...,mrf(t) = Am,-(Aml,mg,..., m,qf(t)) .

Let Io(D)={f(t)cK[t]:{(d)eD forallde D} and for each r=1 let I,(D)=
= {f({) e K[t]: Ay,,... m. [(t) € Io(D) for every sequence my, ..., m, of nonzero ele-
ments of D}. Finally, let I, (D)= Io(D)NL(D)n--NI,(D). It is clear that
D[t]C I,(D) for each r = 0, and that in many cases this inclusion will be strict.

The I,(D) are of interest both as D-modules and as subrings of K[¢]. In the first
case one wishes to know, for example, whether I,(D) is free over D; in the second,
questions about unique factorization and about the ideal structure of I,(D) are
natural. In this paper we shall investigate the D-modules I, (D), where D = GF[g, =],
the ring of polynomials over the finite field GF (g). Carlitz [5] has proved (by con-
structing an explicit basis) that Io(GF[g, «]) is free over GF [q, =] and since GF [g, ]
is a p.id., it follows immediately [8, p. 27, Th. 5.1] that each of the submodules
I, (GF (¢, z]) is free over GF[g, z]. Our purpose here is to construct explicit bases for
these modules. The bases constructed may be used to prove that none of the rings
I.(GF[q, z]) is a u.fd.

We conclude this section with a brief survey of past work in this area. That 1¢(Z)
is free over Z with basis ((}))n0 is a classical result. In 1919 Polya [10] and Ostrowski
[9] investigated the module Io(D), where D is the ring of integers of an algebraic
number field ; and Cahen [3] has recently studied this module when D is any Dedekind
domain. [1(Z) has been treated by de Bruijn [6] and Hall [7], and the present author
[13] has investigated the submodule of I;(GF g, «]) consisting of linear polynomials.
Qarlitz [4] has studied the modules 7,(Z), constructing explicit bases, and Barsky [2]
has generalized some of Carlitz’s results to number fields, using as a tool Amice’s
interpolation series for local rings [1].
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2. Preliminaries. Let GF[g, ] denote the ring of polynomials over the finite field
GF(q) of characteristic p, and let GF (g, #) denote the quotient field of GF[g, z]. A
polynomial f(f) over GF(g,z) is called tntegral-valued if f(m)eGF[q, x] for all
m € GF [g, z]. The set of all integral-valued polynomials is denoted, as was indicated
in section 1, by Io(GF[g, ]).

In [5] Carlitz constructed an ordered basis (Cn(t)),zo for the GF[g, z]-module
1y(GF g, «]) as follows. Let wo(t) = and for n =1 let

ya(f) =] [(t —m), meGF[q,x], degm<n.

Then [5]
(2.1) Yalt) = > (— 1»~° l:b] t,
i=0
where
n| _ fa
H CRIE,
and

fa=<nyln — DO (T, fo=1,
2.2) In=<myln— 1y (1,  l=1,

rd=al —z.
We remark that f, is the product of all monic polynomials in GF[g, z] of degree =,
and that I, is the lL.c.m. of all polynomials in GF[q, x] of degree n [5].

Nowset Go(t)=1 and if » = 1 and n=n¢+ n1g + - + n5¢° is the ¢g-adic ex-
pansion of z, let

Gt =11w 0.

The polynomial G, (t) has degree n, and serves as an analogue over GF[q, z] of the
factorial polynomial £(t —1)... ¢ —n-+1) over Z.

To complete the construction of Cy(t) one requires a polynomial analogue of »!.
Set go =1 and for 1 < n = ny 4+ n1¢ + - + ns;¢5 as above, let

S
gﬂ =H,’;“ 3
=1

where f; is defined by (2.2). The polynomial g, is the desired analogue of !, and the
polynomials Cp (t) = Gy (t)/gn furnish an ordered basis for Io(GF (g, z]) over GF g, «]
{5, Th. 9]. We list below some essential properties of the above polynomials.

Theorem 2.1. G (t + u) = f (Z) G (t) Gis (1) -
f=
Proof. [5, (2.3)]. ’

Theorem 2.2. Cy(f + u) = i (Z) Cr(t) Co—p (%) .
¥=0

Proof. Use Theorem 2.1 and [11, Prop. 1].
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Theorem 2.3. Forall n =1

gn-1 _ 1
Gn le (n)
where e(n) = max{k: ¢ |n}, and l, is defined by (2.2).

Proof. [11, Prop. 4].

Theorem 2.4, Let Ho(t) =1 and for n = 1 let

Grs1(t)
t9n

Then (Hyn(t)) vs also an ordered basis of the GF g, x]-module Io(GF g, x]).

(2.3) Halt) =

Proof. {12, Lemma 3.1]. Remark. The polynomial H,_;(¢) bears the same rela-
— t
tionship to Uy (f) as the polynomial ( ‘ i) does to( ) (see [4]).
n— n
We may now proceed to construct a basis for I1 (GF[g, z]).

3. A Basis for I, (GF (g, 2]). Let f(t) € Io(GF (g, z]) have degree n. By [5, Th. 9],
we may write

B 0= 3a00
2

where the a; are uniquely determined elements of GF[g, «]. The following theorem
gives necessary and sufficient conditions for f(t) to belong to I1(GF[q, ]).

Theorem 3.1. Let f(t) € Io(GF [g, z]) be as in (3.1). Then f(t) € I(GF[q, x]) if and
only if, for all § = 1, 1,45 | @5, where e* (j) =max {e(i): 1 i <j}e(l) = max {k: g¥|¢},
and 1, 1is defined by (2.2).

Remark. e*(j) = [logj/logg].
Proof. Let m e GF[gq, ] — {0}. Then by (3.1) and Theorem 2.2,

é () Ct) Com(m) =
- 2 t)Z( )azC',_k(m

k=0

fit+m)=

g I[M3

Hence,

fE+m)—f@) = ZCk(t)z ( )%C'i—k(m)==

k=0 i= Ia+1
=S 00 z( ! ’“) ausx Ci(m)
k=0 i=1
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and so by (2.3), Theorem 2.3, and the fact that C;(m) = G;(m)/g;,

62)  dwfe =110 _

m

n— n—=k/fs .
- Zlo,c(t) S TR ar gy

Since the Cy(t) are a basis over GF[g, x] of I(GF[q, x]), it follows that A, f () is
integral-valued for all nonzero m if and only if

~klr
8.3y = nz ik i H;1(m) € GF[q,x]
i=1 k le(i)

for all nonzero m, i.e., if and only if
nE(i4+ B\ a;
Z ( + ) i+k Hia )
S\ ke
is integral-valued. By Theorem 2.4, this is equivalent to the condition

v+ k\ app
e GFlg,z
( k )lem 2.7

for all ¢, k such that 0 <k <n—1and 1 <¢ <n—k. Hence, f(t) e I;(GF[q, z]) if
and only if

(3.4) (’) % ¢ GFlgq]

(2 le @)

for all ¢, jsuch that 1 <7 <j<n. Nowifr <s, then l,l I [5,(1.4)], and so the condition
l,« ) |a; is sufficient for (3.4). To see that it is also necessary, write j = jo-+ j1g -+ + jsq5
where 0 <j;<< ¢ and §5 0. Clearly e*(j) = s, and if (3.4) holds, it holds in particular
for i =7js¢%. But by a well known congruence for binomial coefficients, we have

RO

and so le(isq‘)= ls = les(:;) divides a; in GF [q, x].
It follows from the preceding theorem that the sequence

Gat G5t
(3.3) (1,16,(1) 1(t) ,...,z,,,(,.)_’Q,...)

furnishes a basis for I1(GF[q, x]) over GF[g, z]. (Compare [6, Theorem 1].) Note
that when j = ¢#

=1y .
g fn
Thus the above theorem contains as a special case the author’s earlier characterization

[18, Th. 8.2] of the submodule of I;1(GF[g, ]) consisting of linear polynomials (i.e.,
polynomials in which each exponent of ¢ is a power of g¢).

le *Q
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It should be noted that the module I1(GF g, z]) is not free over GF[q, z], for the
fact that a polynomial f(t) over GF (g, x) belongs to I1(GF [g, x]) places no constraint
on the constant term of f(t). Consequently, I:1(GF[g, ]) contains as a submodule an
isomorphic copy of GF (g, x) and since GF (¢, x) is not free over GF g, z], the same
is true of I; (GF [g, «]). Similarly, none of the modules I, (GF [g, x]) is free over GF g, x].

4. Higher Differences. Let f(¢) be given by (3.1) and denote the polynomial of (3.3)
by ax(m). Then (3.2} may be written

n-1
Anft) = > ax(m) Cr(t)
¥=0
and we may repeat the procedure of Section 3 to derive the formula

nz2 1+ i+ k) a g,
Apme =3 Cey 5 L - V Bitiork g () Hey g (ma).
F=0  htise—t 1lilk! boiny Leiny
21,%2>0 »
It follows again from the fact that (Cx (¢)) and (H(t)) are bases of Io(GF[g, «]) that
f(t) € Is(GF [q, z]) if and only if, for all j =2

€ GFlq,x]

Ze(ix) le(iz)
whenever i3, i2>0, i1 442 =4, and the multinomial coefficient 7!/¢; 14! (f — 1y —¢3)!

is prime to p, the characteristic of GF (g). In the general case we have the following
theorem.

Theorem 4.1. Let f(t) be given by (3.1). Then {(t) € I,(GF[q, z]) if and only if, for
all j =7

% € GFig, x]

le(il) le(iz) e le(ir) ’

whenever i1, %3, ...,%r >0, %1+ ta4 - + 4, < j, and the multinomial coefficient
JUialigl e il (f — 61 — ta — -+ — 2,)! is prime to p.

Tigj<n, letLjﬂ:l, and for 1 <r <7, let

(4.1) LST) = l.c.m. {le(h) P le(ir) : il seasy 7:7 > 0 5 7:1 + e + ir é ?-,
and jlfir!.. 4! (f — 91— -+ — 4y)! is prime to p}.
Then if, for all j, r =1, we set
4.2) Lg-") = l.ec.m. {Lgf‘) IS0y,
it is clear from Theorem 4.1 that the sequence
43) (1,L<;>§1_@, I8 )
91 97

farnishes a basis for I,(GF[q, %)] over GF[q, x]. This should be compared with
[4, Theorem 4].

32*
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We recall that in Section 3 we were able to conclude that L") = I.;, by appealing
to a well known congruence (mod p) for binomial coefficients. Analogous congruences
for multinomial coefficients do not appear to contribute to a significant simplification
of formulas (4.1) and (4.2).

5. Factorization in the Rings I, (GF [g, ]). It is easy to see that the ring Io(GF[q, 2])
of integral-valued polynomials over GF (g, z) is not a u.f.d., for the sequence C, (t)
of Carlitz polynomials (which furnishes a basis for the module Io(GF[q, z])) has the
properties (a) Cp(t) =17 if 0 =< n << g and (b) Cy(f) = (14 — £)/2? — 2 [5, p. 486/87].
Hence Cy(¢) is irreducible, since by (a) all polynomials of degree less that ¢ belonging
to Io(GF{g, z]) have integral coefficients. Thus the equation

[[e=20Ct)=TT@—2
AeGF(q) AeGF ()
shows that unigue factorization fails in this ring. More generally, we have the follow-
ing theorem.

Theorem 5.1. For each r = 1, unique factorization fails in the ring I, (GF [q, z)).

Proof. It clearly suffices to exhibit a polynomial F (f) which belongs to each of the
. rings I,(GF[g, z]) and (when written as a linear combination of powers of ) has at
least one non-integral coefficient. For this will imply [by (4.3)] that for each r =1
there exists a smallest j > 1 such that L{” G; ()/g; (when written as a linear combina-
tion of powers of 1) has at least one non-integral coefficient. Hence L{" G;(¢)/g; will
be irreducible in I,(GF[g, z]), and we may argue as in the preceding paragraph.
Thus we consider the polynomial

— I 10
F(t) = lz qu (t) = l2 fz = (xz — x)q—l .

By (2.1) and (2.2), the leading coefficient of F'(¢) is non-integral. By [5, Theorem 9],
F(t) e Io(GF [q, ]) and by our Theorem 3.1, F (¢) € I;(GF [q, z]). Since F(f) is linear
by (2.1),

F (ml)
my

and so 4, . 5 F@) =0 for all »r =2 and F(t)e I,(GF[q, «]) for all r=1, but
F() ¢ D[t] (D = GF[g, z]).

Am; F t) =

2
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