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A L L O C A T I O N ,  L E H R E R  M O D E L S ,  AND T H E  

C O N S E N S U S  OF P R O B A B I L I q ? I E S  

1. ALLOCATION PROBLEMS 

Rational choice often involves the assignment of values to numerical decision 

variables. In some cases the most appropriate values of these variables are ob- 
vious and one can move with dispatch to apply an appropriate optimization 

algorithm and identify an optimal choice or set of choices. In general, how- 
ever, the determination of such values is a difficult task. Typically, individuals 
are required to make subjective estimates of probabilities and utilities or other 
predictions of future outcomes. The experience and sophistication required 

to quantify the relevant aspects of a decision problem thus often call for the 
expertise of more than one individual. But the strategy of decision-making by 

groups raises a further problem: What is to be done if the experts disagree? 

Suppose that a group of n experts, labeled 1, 2 . . . . .  n, is seeking numeri- 
cal values of a sequence of k decision variables, x l, x~ . . . . .  x k . The outcome 
of the group's deliberation is an n x k matrix A = (ate), where aij is the value 
assigned by expert i to variable xj. lntersubjective agreement on all of these 
values is reflected in a matrix with identical rows. Failing such agreement, and 
given the necessity of specifying a single value for each variable, how should 
the opinions registered in A be aggregated? Numerous possibilities from the 
realm of statistics (arithmetic and geometric means; medians; maxima, 
minima, and various combinations thereof) come to mind and have, indeed, 
frequently been employed in practice. Justifications for the choice of a 
particular method for aggregating group opinion have tended, however, to be 

piecemeal and anecdotal, relying heavily on tradition or simplicity of 
calcu!ation. 1 Our aim in this paper is to begin, in a modest way, to rectify 
this situation by presenting an axiomatic characterization of weighted arith- 
metic averaging as a method of combining group opinion for a special class 
of decision problems called allocation problems. Our main result (Theorem 
4) may be specialized to provide both a formal foundation for Keith Lehrer's 
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iterated weighting model of rational group decision-making [7], [8], [13], 

as well as an axiomatic characterization of the method of producing a con- 

sensual probability distribution by arithmetic averaging. 

Suppose that a group of experts is seeking numerical values of a sequence 

of k decision variables, x l ,  �9 . .  ,xk.  We shall call such a decision problem an 

a l l o c a t i o n  p r o b l e m  if the values of these variables are constrained by the re- 

quirements(I) xj~>0, ] =  1 . . . . .  k and (2) xl  + . . . + x k  =s ,  for some 

fixed s > 0. Examples of allocation problems abound, and include such 

familiar problems as (1) assigning probabilities to a sequence of k pairwise 

exclusive, exhaustive propositions (s = 1) and (2) allocating a fixed sum of 

money or other resource, s, among k projects. 

We shall suppose that the constraints which define an allocation problem 

apply both to the individual opinions registered in the aforementioned matrix 

A (so that all entries of A are nonnegative, and each of its rows sums to s) and 

to the final set of  values assigned to the xj. Furthermore, we require that a 

method for aggregating group opinion be applicable to every possible con- 
figuration of opinions. Let ~e" (n, k; s) denote the set of  all n x k matrices A 

with nonnegative entries and all row sums equal to s, and let 5~r s) denote 

the set of all vectors a = (a~ . . . . .  ak) with nonnegative entries and a~ + 

. . .  + ak = s. Allowing for the widest possible initial range of aggregation 

methods, we make the following definition: 

DEFINITION 1. An allocation aggregation method (AAM) is a function F: 

J ' ( n ,  k; s) ~ 5~r s), for fixed positive integers n and k and fixed s > 0. 

The familiar arithmetic mean yields an AAM by the rule: F ( A )  = (al, �9 �9 �9 

ak), where a~ is the arithmetic mean, (alj + .. �9 + a n i ) [ n ,  of the entries in the 

]-th column of A. This method gives, in some sense, equal weight to the 

opinions of all individuals in the decision-making group. More generally, any 

set of weights wl . . . . .  wn, nonnegative and summing to 1, yields an AAM by 
the rule: F ( A ) = ( a l  . . . . .  a k ) ,  where aj is the weighted arithmetic mean, 

w l a l i  + �9 �9 �9 + Wnani, of the entries in the ]-th column ofA.  When individuals 
differ in expertise, a weighted arithmetic mean with unequal weights may be 
an appropriate way to reflect such differences. In the next section we pre- 
sent, among other results, a characterization of the set of AAMs based on 

weighted arithmetic averaging, thus providing criteria for employing such 
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aggregation methods. Proofs of the theorems stated in the next sections ap- 

pear in a technical appendix at the end of the paper. 

2. AAMs BASED ON WEIGHTED MEANS 

Consider an AAM F constructed as above from a sequence of weights wl, 
. . . .  wn. For each matrix A E ~e'(n, k; s) let Aj denote the]-th column of A, 
and let F(A)  = (al, �9 �9 �9 ,ak). It is easy to check that F has the following 
properties: 

(1) IA (Irrelevance o f  Alternatives): For all A, B E Jze'(n, k; s) A i = 
B j ~ a j  =bj .  

(2) Z (Zero Unanimity): For all A E ~ ( n ,  k; s), if Aj consists en- 
tirely of zeros, then aj = 0. 

(3) LN (Label Neutrality): If o is a permutation on the set {1 . . . . .  

k}, for all A , B E s S ( n , k ; s ) ,  if Bi=Aa~i) for ] =  1 . . . . .  

k, then bj = aoo~. 

(4) SLN (Strong Label Neutrality): For  all A, B E ~ ( n ,  k; s) Aj, = 

Bj2 =":~ ajl = bj2 . 

Property Z states a very weak unanimity condition: if all individuals assign 

x i the value zero, F does the same. Properties IA, LN, and SLN are invariance 

conditions of varying strength. IA specifies that if values assigned by indi- 

viduals to xj are unchanged, changes in the values assigned by these indi- 

viduals to variables other than xj do not change the final value assigned to xj 

by F. LN specifies that a variable be given no special consideration by F in 

virtue of its particular label-a relabeling of variables results, under F, in the 
same relabeling of the f'mal values assigned to those variables. As noted below, 
SLN is equivalent to the conjunction of LN and 1A. 

THEOREM 1. An A A M  satisfies SLN i f  and only i f  it satisfies IA and LN. 

Note that when k = 2, IA holds trivially. When k ~> 3, however, IA is a 
property of some consequence. Indeed, when supplemented by the weak 
property Z. it implies SLN. 
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THEOREM 2. f f  k >>- 3, an A A M  F: ~r k; s) ~ ~r s) satisfies SLN  i f  it 
satisfies 1A and Z. 

It is of interest at this point to note an important consequence of the 

property SLN: If F satisfies SLN, then the value assigned by F to each vari- 
able xj is a function exclusively of the values assigned by individuals to xj, 
and independent of j. More formally, let [0, s] denote the closed interval of 

real numbers between 0 and s, and let [0, s] n = {(tl . . . . .  tn): ti E [0, s] }. 
(Note that the columns of a matrix A E J ' ( n ,  k; s) correspond in a natural 

way to members of [0, s] n .) 

THEOREM 3. Let  F : a t ( n , k ; s ) - ~  zC'(k;s) satisfy SLN. Then there exists 

a function H: [0, s] n ~ [0,s] such that for  all A =(aij)EJaC'(n,k;s) ,  

F(A ) = (ax . . . . .  ak), where aj = H(at j  . . . . .  anj). 

We may now characterize, for the case k/> 3, those AAMs based on 

weighted arithmetic averaging. 

THEOREM 4. f f  k>~3, an A A M  F: s f  (n ,k;s) -+ aC'(k;s) satisfies IA and 
Z i f  and only i f  there exists a sequence o f  weights wl . . . . .  wn, non-negative 
and summing to one, such that for all A = (a i j )E~g ' (n ,k;s ) ,  F (A )  = (al, 

� 9  ak), where a i = wla l i  + . . .  + wnani, J = 1 , . . . ,  k. 

We emphasize that the foregoing theorem holds only when there are at 
least three decision variables (k t> 3). When k = 2, since IA holds trivially, it is 
easy to see that the conjunction of IA and Z need not imply SLN. The most 
we seem to be able to accomplish in this case is a characterization of AAMs 
satisfying SLN and Z. As noted below, such restrictions nevertheless admit a 

wide variety of nonlinear amalgamation methods. 

THEOREM 5. An A A M  F: jaC'(n, 2;s) ~ ~r s) satisfies S L N  and Z i f  and 
only i f  there is a function h: [-- s/2, s/2] n ~ [-- s/2, s/2] , where 

(1) h i s o d d ( h ( - - e q  . . . . .  - -~n)  = - - h ( ~ l , . . .  ,etn)), 

and 

(2) h(s/2 . . . . .  s/2) = s/2, 
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such that for a l i a  = (aij) E ~ ( n ,  2; s), F(A ) = (al, a2 ), where aj = h(alj -- 

s/2 . . . .  ,anj --s/2)  + s/2, /  = 1,2. 

In particular h (and hence, H) may be any weighted arithmetic mean. 

However, nonlinear functions such as h(a 1 . . . .  , a n ) = [ ( a ~ + . . . +  
a3)/n] 1/3 also serve here to define AAMs satisfying SLN and Z 2 . When k = 2, 

short of actually positing linearity, there seems to be no obvious way to 

isolate the AAMs based on arithmetic averaging. 
Let us summarize our results thus far. In the case of an allocation problem 

involving at least three variables, Theorem 4 tells us that an AAM satisfying 
Z and IA (equivalently, Z and SLN) must be based on weighted arithmetic 
averaging. When there are only two variables, however, Z and SLN allow an 
AAM to be based on a class of odd multivariable functions which properly in- 
cludes the class of weighted arithmetic means (Theorem 5). These results 
offer substantial guidance in the choice of an AAM, given a prior decision to 
employ an amalgamation method satisfying Z and IA (respectivley, Z and 
SLN). How reasonable is it to require that amalgamation satisfy these 

properties? 
Consider first property Z, which, as noted earlier, is a very weak unanimity 

conditon. Unless one has reason to believe that the decision-makers are syste- 

matically biased in their evaluation of one or more variables, it is surely 
reasonable to respect their unanimity in assigning a variable the value zero. 

Moreover, if the output of an AAM is regarded simply as a summary of group 
opinion, unanimity will of necessity be respected. As for IA, it is easy to 

prove the following analogue of Theorem 3: 

THEOREM 6. Let  F: ~e'(n, k; s) ~ J "  (k; s) satisfy IA. Then for a l l~= 1, 

. . . ,  k, there exist functions/-/i: [0, s] n -+ [0, s] such that for aliA = (air) E 
~e" (n, k; s), F(A)  = (al . . . . .  ak), where aj = Hj (alj . . . .  , anj) 

Thus if F satisfies IA, the value assigned by F to each variable xy is a func- 
tion (possibly dependent on/)  exclusively of the values assigned by individuals 
to xj. Given the values assigned by individuals to xi, values assigned by indi- 
viduals to alternative variables are, in short, irrelevant. Indeed, if k i> 3 and IA 
is supplemented by Z, the above functions ~ are identical (Theorems 2 and 
3) and equal to some weighted arithmetic mean (Theorem 4). 
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Despite its somewhat formidable name 3 , IA is a rather weak condition. It 

postulates the irrelevance of the values of certain variables in a context where 
there are built-in constraints on certain sums of these variables. Because of 

these allocation constraints, issues have, in a sense, already been sorted out 

among variables evaluated in a matrix A. The value assigned by an individual 
to xj is a function of s and the values he assigns to variables other than x i. 

Thus, in assigning a final value to xj an AAM satisfying IA 'ignores' the values 

assigned by individuals to variables other than x~ in a limited sense. 

Indeed, we would argue that the burden of justification lies with those 

who propose not to adopt IA in choosing an AAM. It is easy, of course, to 

construct AAMs for which IA fails. For example the 'benefit-of-the-doubt 

AAM', which identifies the maximum values assigned by individuals to each 

variable and normalizes these so that the resulting sum is s, dearly violates 

IA 4 . This method can be attacked for giving too much weight to the opinion 

of a single individual, just as it can be defended for its (unidirectional) sensi- 

tivity to the perceptions of a single individual. As Steven Strasnick [ 11 ] has 
forcefully argued, however, such exchanges are not a fruitful way of evalu- 

ating a method of amalgamating opinion. No informed choice of  an AAM can 

be made in the absence of an axiomatic characterization of that AAM, or of 

some natural class of methods of which it is a member. 

While Theorem 4 specifies necessary and sufficient conditions for the use 

of weighted arithmetic averaging to construct AAMs, it furnishes no guidance 

in the choice of weights. Weights should be expected to reflect the relative 

expertise of  the individuals to which they are assigned, but such an obser- 

vation barely escapes being a tautology. It is doubtful that appropriate 
methods of determining weights will be discovered by a priori analysis. De- 

cisionmaking groups will have to experiment with different sorts of scoring 
rules and compare the outcomes of employing these rules. Computer simu- 

lation may prove to be a useful tool in this enterprise, and statistical decision 
theory may provide theoretical guidance, but the problem of determining 
weights is, at the core, an empirical one. 
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3. APPLICATIONS 

3.1. Lehrer Models 

Keith Lehrer [7], [8] has proposed the following normative model of 
rational group decisionmaking: A group of n individuals is attempting to de- 
termine consensual values of k numerical decision variables. Their initial 
opinions are registered in an n x k matrix A = (aij), where aij is the value 
assigned by individual i to variable j. Failing consensus in A, the individuals 

attempt to find a consensual set of weights, nonnegative and summing to one, 
with which to average the entries in the columns of A. The result is an n • n 

matrix WI = (wis), where wij is the weight which individual i deems it most 
appropriate to assign to individual j. Failing consensus in W1, the group seeks 

a consensual set of second order weights with which to average the entries of 

the columns of W1. Opinions as to the most appropriate values of these 
second order weights are registered in a matrix Ir In theory, this process 

might be iterated indefinitely. Significantly, the prospect of an int'mite regress 

need not doom this model to failure, for under some weak conditions of 
respect among individuals, the group will converge to consensus regarding the 

first order weights [12], [13]. 

Using Theorem 4, we may identify a set of decisionmaking conditions 
from which Lehrer's model may be derived. They are: 

(i) The original decision problem is an allocation problem involving 
at least three variables. 

(II) There are at least three individuals. 

(III) Failing consensus, the values assigned by these decision-makers to 
the initial variables are to be amalgamated by a method satisfy- 
ing Z and IA. 

(iv) These same decision-makers are responsible for determining the 

values of any auxiliary decision variables required as a conse- 
quence of satisfying condition (III), and, failing consensus, 

their opinions regarding the most appropriate values of such 
auxiliary variables are to be amalgamated by a method satisfy- 
ing Z and IA. 
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The derivation of Lehrer's model from these four principles is straight- 

forward. By (I), (III), and Theorem 4, opinions registered in A, failing con- 
sensus, must be amalgamated by weighted averaging with weights nonnegative 

and summing to one. Determination of these weights is therefore an allo- 

cation problem which, by (II), involves at least three first order auxiliary 

weight variables. By (IV), the evaluation of these variables is to be carried 
out, failing consensus, by amalgamating individual opinions on the matter by 
a method satisfying Z and IA. Hence, by Theorem 4, the group must seek a 

set of consensual second order weights, nonnegative and summing to one, 
with which to average opinions regarding the first order weights. Determin- 
ation of these weights poses a further allocation problem involving at least 
three second order auxiliary decision variables. Thus by (IV) and Theorem 4, 
failing consensus on this issue, the group must seek consensual third order 
weights with which to average their opinions regarding values of the second 
order weights. Each time consensus fails the above conditions dictate the in- 
troduction of higher order auxiliary variables. Condition (IV) is essentially a 
'looping' instruction. As stated, it specifies no limit on the number of higher 
order weight matrices constructed by the group, but as a practical matter, it 
might be supplemented by an instruction to stop the process when an accept- 
able approximation of consensus emerges, or when no such approximation 
has emerged at some predetermined level. 

3.2. The Consensus of  Probabilities 

As noted in w 1, the assignment of probabilities to a sequence of pairwise 

exclusive, exhaustive propositions is an allocation problem, with s = 1. 
Specializations of the theorems of w thus yield interesting results on the 

amalgamation of probability distributions of a set of individuals. In particular, 
if there are at least three propositions, and if an AAM assigns a probability to 

each proposition purely as a function of the probabilities assigned to that 

proposition by individuals, and respects their agreement in assigning a pro- 
position the probability zero, then the AAM is based on weighted arithmetic 
averaging s . Stone [10] has called such probability amalgamation methods 

opinion pools. We conclude this section with a theorem which removes the 
f'miteness restriction on the set of alternatives. We thus switch to a measure- 
theoretic point of view and consider the amalgamation of a sequence of 
probability measures on a I'txed, possibly infmite, a-algebra of events. 
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Let X be a nonempty set and S e a o-algebra on X. Let g ( Y )  denote the 
set of  probability measures on ~ and let ~ ( Y )  n = {(Pl . . . . .  Pn) where 

Pi @~(~9~), i = 1, . . . ,  n}. A probability amalgamation method (PAM) is a 
function F : ~  (.9~) ~ ~ g ( Y ) .  Clearly each sequence of weights, wl . . . .  , 

Wn, nonnegative and summing to one, gives rise to a PAM by the rule: F (p l ,  

. . . .  Pn) = P ,  where, for all A E Y ,  p(A)  = w l p l ( A )  + . . .  + WnP~(A). Such 

PAMs have the property of  determining the measure of  each event purely as a 

function of  the individual measures ascribed to that event, and independently 

of  the label of  that event. Indeed, with a single exception, i f  a PAM satisfies 

this property, then it must be based on weighted arithmetic averaging. In view 

of  Theorem 5 we would of course not expect such a result to hold for 'small '  

o-algebras such as g A  = {~, A ,  X-A,  X},  where A is a proper nonempty  sub- 

set of  X. Let us call a nontrivial o-algebra on X tertiary if it is not  equal to 

any Y A .  It is easy to see that  Y is tertiary if and only if it contains at least 

three nonempty pairwise disjoint events. 6 A modification of the proof  of  

Theorem 4 yields a proof  of  the following theorem: 

THEOREM 7. Let  g be a tertiary o-algebra on X and let F: ~ ( y ) n  

g ( Y )  be a PAM for  which there exists a function H: [0, 1] n ~ [0, 1] such 

that F (P l . . . .  , P n ) = P, where for  all A @ ~ ,  p(A ) = H ( p l ( A ) , . . . ,  p n (A ) ). 
Then H is weighted arithmetic mean. 7 

We remark in conclusion that for the trivial a-algebra ~ = {~, X } every 
PAM is based on weighted arithmetic averaging, since Y admits only one 

probability measure. As for the o-algebras g A  = {~, A ,  X-A,  X}, it is easy to 
prove a result complementary to that of  Theorem 7, where the function H 
must belong to the class described in Theorem 5. 

4. T E C H N I C A L  A P P E N D I X  

THEOREM 1. An A A M  satisfies S L N  i f  and only i f  it satisfies 1A and LN. 

Proof. It is clear that SLN implies IA and LN. Suppose that F satisfies IA 
and LN and let A,  B E 5~(n,  k; s) be such that  Ajt = B j .  Denote by B '  the 

matrix resulting from the interchange of  columns 1"1 and f2 o rB.  Then Ajl = 
B'- and so ai~ = b'. ~1, j~ by IA. But by LN, b h = bj2. Hence ajl = bj2 , as required. 
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THEOREM 2. I f  k >~ 3, an A A M  F: ~e ' (n ,k ;s ) -~  ~r s) satisfies S L N  i f  it 

satisfies 1A and Z. 

Proof. Let A , B E J a C ' ( n , k ; s )  be such that Aj, =Bj2,  and l e t , [ a i  . . . .  , 

an ] T denote the elements in co lumn/ t  of  A (identically, in column]~ of  B). 
Now choose an index ]3 different from both ]t  and 1"2 and define matr icesA'  
and B '  as follows: Column ]t of  A '  is [at . . . . .  a n ] r ;  co lumn/ '3  of  A'  is 
[s - a t  . . . .  , s - an] r ;  and all other columns of  A '  consist entirely of  zeros. 
Column ]2 of  B'  is [at . . . . .  an]T;  column ]3 of  B'  is [s -- a t , . . . ,  s - - a n ] r ;  

and all other columns of  B '  consist entirely of  zeros. By Z, F assigns the value 
zero to all variables corresponding to zero columns. Furthermore, the values 

assigned by F to all variables must sum to s for every matrix. Hence a}, = 

' b'. -- b'. But by IA, aj3 = b'. = ' s --aj3 and j3 = s J3" J3 ' aj, aiz , and bj~ = b'.~. Hence 
as~ = bi2, as required. 

THEOREM 3. Le t  F: ~e" (n, k; s) -+ J (k; s) satisfy SLN. Then there exists 

a function H : [0,s] n -+ [0,s]  such that for  all A = (aij ) E J "  (n, k; s), F(A ) = 

(al . . . . .  ah), where aj = H(al j  . . . . .  a , j ) , /  = 1 . . . . .  k. 

Proof. Let (al  . . . . .  an) E [0, s] n . I_etA be a matrix whose first column is 
[al  . . . . .  an] T, whose second column is [ s -  a l  . . . . .  s -  an] T, and whose 

remaining columns, if any, consist entirely of  zeros. Set H(at  . . . . .  a . )  = a t ,  

the value assigned by F to Xl. It follows immediately by the invariance 

property SLN that  H has the desired property. 

THEOREM 4. I f  k >i 3, an A A M  F: ~e'(n,  k; s) -+ jae'(k; s) satisfies IA and Z 

i f  and only i f  there exists a sequence o f  weights wl ,  � 9  wn, nonnegative 

and summing to 1, such for  all A = (aij) E ~r k; s), F ( A )  = (al . . . . .  ak), 

where a i = wla l j  + �9 �9 �9 + Wnanj. 

Proof. It is easy to check that  an AAM based on weighted arithmetic aver- 
aging satisfies IA and Z. Suppose, conversely, that F satisfies IA and Z. By 
Theorem 2, F satisfies SLN, and hence by Theorem 3 there exists a function 
H :  [0, s] n -* [0, s] such that for all A = (aij) E ~ ( n ,  k; s), F (A)  = (al . . . . .  

a~), where a~ = H ( a l j  . . . . .  a n j ) , / =  1 , . . . ,  k. Thus we need only show that 

H is a weighted arithmetic mean. Let (oq . . . . .  an)  and ~1 . . . . .  /3n) be 
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members of  [0, s] n such that (a I + / ~ 1 , . . . ,  an +/3n) is also a member of  

[0, s] n, and def'me matrices A and B E J ' ( n , k ; s )  as follows: The first 

column of  A is [al . . . . .  an]T;  the second column of  A is [/31, �9 . .  ,/3n]T;t he 

third column of  A is Is -- at  --/3a . . . . .  s -- a,, --/3n]T; and all other columns 

of  A, if any, consist entirely o f  zeros. The first column of  B is [al +/31 . . . . .  

a n +/3n]W; the third column of  B is [s -~ aa --/31 . . . . .  s - -  an --/3n]T; and all 

other columns of  B consist entirely of  zeros. 

By property Z, H ( 0 , . . . ,  0) = 0. Thus, considering the action of  H on the 

columns of  A and B, we see that H ( a a ,  . . . , an )  + H( f l l  . . . . .  /3n) + H ( s  - -  

tx I -- (3a, . . , , s - - a  n -- /3n)= S, and H ( a l  "~- /31, . . . , an  "~- ~n) + H(s  --ol l  - -  

/~1 . . . .  , s -- an --/3n) = s. Hence H satisfies the multivariable Cauchy 

equation H ( a  I + ~1, . � 9  an +/30)  = H ( a a ,  . . . ,  an )  + H( f l l  . . . . .  /3n), where 
ai,/3i, ai + ~i E [0, s], i = 1 . . . .  , n. It follows as a corollary to a well known 
theorem on functional equations 8 that there exists a set of  real weights 

wl, � 9  wn such that H(aI ,  . . . ,  a , )  : w l a l  + . . .  + w ~ a n  for all (al . . . . .  

an) E [0, s] n . It is trivial to show that these weights are nonnegative and sum 

to one. 

THEOREM 5. A n AAM F :  5r (n, 2; s ) ~ 5~d (2; s) satisfies S L N  and Z i f  and  

on l y  i f  there  is a f u n c t i o n  h : [-- s /2 ,  s/2] n ~ [ _  s /2 ,  s/2] , where  

(1) h i s o d d ( h ( - a x  . . . .  , - - a n ) = - h ( a l , . . . , a n ) ) ,  and  

(2) h (s/2,  . . . , s /2 )  = s /2 ,  

such tha t  f o r  all A = ( a i j ) E s C ' ( n ,  2 ; s )  F ( A ) = ( a t , a 2 ) ,  where a j =  

h(a l  - s / 2 , .  . . , a n j - s / 2 )  + s / 2 , j =  1 , 2 .  

Proo f .  It is easy to see that functions h satisfying (1) and (2)yield AAMs 

satisfying SLN and Z. Conversely, by Theorem 3 it follows from SLN that 

there exists a function H :  [0, s] n -+ [0, s] such that for aliA = (aij) E s ~ ( n ,  

2; s), F ( A  ) = (al ,  a2 ), where a i = H ( a l j  . . . . .  an j ) ,  j = 1 , 2 .  By  Z ,  

O) /-/(o . . . . .  o)  = o. 

By considering the action of  F on a matrix A whose first column is [al . . . . .  
an] T and whose second column is [s -- a l ,  �9 �9 �9 s -- an] T, we see that 

(ii) H ( a l  . . . . .  a n ) + H ( s - - a l  . . . . .  s - - o ~ ) = s .  
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It is easy to check (See Aczdl, Kannappen and Ng [2] ) that a function H 
satisfies (i) and 0i) if and only if H ( a l , . . .  ,an) = h(at --s/2 . . . . .  an -- 

s/2) + s/2, where h satisfies conditions (1) and (2) specified in the present 
theorem. 

THEOREM 7. Let g be a tertiary o-algebra on X and let F: ~ (  g ) n  

~ ( Y ) be a PAM for which there exists a function H: [0, 1] n ~ [0, 1] such 

that F(p I . . . . .  Pn) = P, where for all A E ~ , p ( A )  = H(pl  (A) . . . . .  Pn(A)). 
Then H is a weighted arithmetic mean. 

Proof. We show that H satisfies the multivariable Cauchy equation 

n ( a l  + (31 . . . . .  an + (3n) = n (a l ,  . . . ,  an) + n(fll . . . . .  (3n), where ai, (3i, 
at + t31 E [0, 1], i = 1 , . . . ,  n, from which it follows, as in the proof of  

Theorem 4, that H is a weighted arithmetic mean. Let A1, A2, and Aa be a 

sequence of  nonempty pairwise disjoint events in Y ,  and choose a sequence 

x l ,  x2, xa of  elements o f X  wittl xk E A k ,  k = 1, 2, 3. Given numbers ai,/3i C 

[0, 1] with a t +33iE [0, 1], i =  1 . . . . .  n, define a sequence of  probability 

measures (Pi), i = 1  . . . . .  n, on Y by p i ( A ) = a i I 1 ( A ) + ( 3 i I 2 ( A ) + ( 1 - -  

ai--(3i)Ia(A), where, for k = 1, 2, 3, Ik(A ) = 1 if xk E A  and I k (A)= 0 if 

xk $ A .  Then pi(A1)=o~i, pi(A2)=33i and p/(A~ UA2)=ai+33i ,  i=  
1 , . . . , n .  

Suppose that F ( P l , . . .  , P n ) = P ,  where for all A E 5 e, p ( A ) = H ( p t ( A ) ,  
. . . .  pn(A)). Since p is a probability measure p(Ax U A 2 )  = p ( A 1 )  +p(A2),  

and so H(al+(3  1 . . . .  , a n + ( 3 n ) = H ( a a , . . . , a , ) + H ( ( 3 t  . . . .  ,33n), as 
required. 

University o f  Tennessee 

NOTES 

This work was conceived in part while the author was a Fellow at the Center for 
Advanced Study in the Behavioral Sciences, supported by grants from the National 
Science Foundation (BNS 76-22943 A 02), the Andrew W. Mellon Foundation, and the 
University of Tennessee. 
i By way of contrast, the aggregation of individual orderings or utilities into consensual 
orderings, has been the subject of extensive axiomatic analysis by social choice theorists. 
See [1], [4], [6],and [11]. 
2 This example is due to Acz61, Kannappan, and Ng [2]. 
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3 Our condition IA plays a role similar to that of Arrow's classical 'independence of 
irrelevant alternatives', but  there are substantial differences in the structure and strength 
of the two conditions. Arrow's condition is binary, requiring the consensual ordering of 
any two alternatives to depend only on the individual orderings of these alternatives or, 
in recent formulations, on the utilities assigned to just these alternatives. 
4 Other averaging functions, such as geometric and harmonic means, and medians, also 
fail in general, without subsequent normalization, to yield consensual values of the 
variables which sum to s. And normalization violates IA. See Acz61 and Wagner [3].  
s An example of an aggregation method violating these conditons is the 'parimutuel 
method'  of Eisenberg and Gale [5] .  It should be noted that these authors have character- 
ized parimutuel consensus as 'somewhat 'pathological." 
6 Equivalently, S ~ is tertiary if and only if it contains at least two non-empty disjoint 
events whose union is a proper subset of X. 
7 For economy of exposition we have postulated the existence of the function H among 
the hypotheses of Theorem 7. Alternatively, we might have postulated an invariance 
condition analogous to SLN. 

The present theorem is related to some interesting recent results of McConway [9],  
which deal with the class of amalgamation methods for the class of a//a-algebras on a set 
X. McConway exhibits necessary and sufficient conditions for the amalgamation method 
of each class to be based on the same weighted arithmetic mean. As McConway points 
out, to the extent that  different o-algebras represent different assessment situations, em- 
ploying the same weights in all of these situations may be undesirable. Our Theorem 7, 
which deals with a fixed o-algebra, is a localized version of McConway's theorem which 
escapes the aforementioned difficulty. 

It should be noted that when the probability measures in question come from a class 
of natural conjugate distributions, there may be good reasons for employing an amalga- 
marion method not based on arithmetic averaging. See Winkler [ 14]. 
8 See Acz61, Kannappan, and Ng [2] or McConway [9] for a proof of this corollary, 
based on the classical single variable theorem. 
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