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1.    Probability Mass Functions 

●  If Ω is a finite or denumerably infinite set 

of possible states of the world, a function     

p: Ω→[0,1]  is a probability mass function 

(pmf ) if  

                  Σ ω ϵ Ω p(ω) = 1 . 

● When Ω is finite, such functions can also 

represent (normalized) allocations of a fixed 

sum of money, or other quantifiable 

resource, among various enterprises, for 

example, a cost or benefit sharing 

arrangement among participants in a 

cooperative game. 

Every pmf  p on Ω induces a (discrete) 

probability measure (pm) (which, abusing 

notation, we also denote by p) on  2
Ω
, 

defined for every subset  A  of  Ω, by 

             p(A):= Σ ω ϵ A p(ω). 



2.   Pooling Operators 

 The Probability Pooling Problem: 

 What is a reasonable way to aggregate the 

possibly differing  pmfs (resp., pms) p1,…,pn  

of  n individuals into a single pmf (resp, pm)  

p ?  We’ll treat the case of pmfs. 

●  If  P = the set of all pmfs on Ω and n >1, 

a  pooling operator  is any function 

                     T : Pn
 → P .  

In specifying  Pn
  as the domain of  T , we 

are implicitly adopting as a pooling axiom 

the universal domain condition (UD). Each 

n-tuple (p1,…,pn) ϵ Pn
 is called a profile (of 

individual probability assessments). UD 

demands that T produce a pmf                       

p := T(p1,…,pn) for every logically possible 

profile (p1,…,pn).  



● The justification of additional axiomatic 

restrictions on T depends on the intended 

interpretation of  p: = T(p1,…,pn).  Is p 

conceived of as …. 

(i)  a rough summary of the current pmfs 

p1,…,pn  of n individuals ? 

(ii) a compromise adopted by these 

individuals in order to complete an exercise 

in group decision making ? 

(iii) a “rational” consensus to which all 

individuals have freely revised their initial 

pmfs after extensive discussion ? 

(iv) the pmf of a decision maker external to 

the group (who may or may not have 

assessed his own prior before consulting 

the group) upon being apprised of the pmfs 

p1,…,pn  of  n  “experts” ? 



(v) the revision of the pmf pi of a particular 

individual  i  in the group, upon being 

apprised of the pmfs of the remaining  n – 1 

individuals in the group, each of whom he  

considers to be his epistemic peer (much 

discussed recently for n =2) ? 

 

Put the issue of interpretation aside, and 

consider a natural, and familiar, pooling 

operator, the weighted arithmetic mean 

(2.1)   p: = T(p1,…,pn) = w1p1+∙∙∙+wnpn , 

where the weights wi are nonnegative, and 

sum to 1. Formula (2.1) is interpreted 

pointwise, as asserting for all ω ϵ Ω  that 

(2.2)       p(ω) = w1p1(ω)+∙∙∙+wnpn(ω). 

 

 

 



3. The Charms of Arithmetic Pooling  

Note that 

(3.1)   Σ ω ϵ Ω [w1p1(ω)+∙∙∙+wnpn(ω)] = 1, 

 with no need to normalize the summands. 

● Other pooling functions based, say on the 

geometric mean, the harmonic mean, the 

root-mean-square, etc. lack this property. 

● Are weighted arithmetic means unique in 

this respect?  Yes.  [J. Aczél & C.Wagner 

(1980), A characterization of weighted 

arithmetic means, SIAM J. on Algebraic and 

Discrete Methods 1, 259-260]. 

● The solution of Cauchy’s functional 

equation  f(x + y) = f(x) + f(y)  on the 

restricted domain 0 ≤ x, y, x+y ≤ 1 lies at 

the core of the proof of this result, and the 

proofs of many subsequent theorems on 

probability pooling.  



4.  A Characterization of Weighted 

Arithmetic Pooling  

(K. Lehrer & C. Wagner (1981), Rational 

Consensus in Science and Society, Reidel)  

Consider the following axiomatic restrictions 

on a pooling operator  T : Pn
 → P : 

State-wise Pooling (SP). For each ω ϵ Ω , 

there exists a function  fω : [0,1]
n
 →[0,1] 

such that, for all ω ϵ Ω,  

 p(ω) : = T(p1,…,pn)(ω) = fω(p1(ω),…,pn(ω)). 

(Since p ϵ P, we must have  Σω ϵ Ω p(ω) =1.) 

Zero Preservation (ZP).  For all ω ϵ Ω, if  

p1(ω) = ∙∙∙ = pn(ω) = 0, then  T(p1,…,pn)(ω) 

= 0. 

Remark 1.  In the presence of SP, ZP 

reduces to the assertion that  fω(0,…,0) = 0 

for all ω ϵ Ω.   



Remark 2.  SP alone allows for different 

pooling methods for different states of the 

world. But, as we’ll see, ZP forces such 

pooling to be uniform across all ω ϵ Ω. 

 

Theorem 4.1.  If |Ω| ≥ 3, a pooling operator 

T : Pn
 → P  satisfies SP and ZP if and only 

if there exists a sequence   w1,…,wn  of 

nonnegative numbers, summing to 1, such 

that, for all ω ϵ Ω, 

   T(p1,…,pn)(ω) = w1p1(ω)+∙∙∙+wn pn(ω). 

 

Proof.  Sufficiency : obvious. 

Necessity :  Denote by  X, Y, etc. elements 

of  [0,1]
n
,  and by  c  the n-dimensional 

vector (c,…,c). 

 



Let ω1, ω2, and ω3 denote arbitrary distinct 

elements of Ω.  

Suppose that  0 ≤ X, Y, X+Y ≤ 1.  

        Define P = (p1,…,pn) ϵ Pn
  by 

(4.1)   (p1(ω1), …, pn(ω1)) = X, 

(4.2)   (p1(ω2), …, pn(ω2)) = Y, 

(4.3)   (p1(ω3), …, pn(ω3)) = 1 –X – Y, and 

(4.4)   (p1(ω), …, pn(ω)) = 0  otherwise. 

 

 By SP and ZP, (4.1) – (4.4) imply 

(4.5)   fω1(X) + fω2(Y) + fω3(1- X- Y) = 1. 

 

 

 

 

 



Now define Q = (q1,…,qn) ϵ Pn
  by 

(4.6)   (q1(ω1), …, qn(ω1)) = 0, 

(4.7)   (q1(ω2), …, qn(ω2)) = X + Y, 

(4.8)   (q1(ω3), …, qn(ω3)) = 1 –X – Y, and 

(4.9)   (q1(ω), …, qn(ω)) = 0  otherwise. 

 

 By SP and ZP, (4.6) – (4.9) yield 

(4.10)     fω2(X+Y) + fω3(1 – X – Y ) = 1. 

Recalling (4.5) that 

              fω1(X) + fω2(Y) + fω3(1- X- Y) = 1,  

we get 

(4.11)     fω2(X+Y) = fω1(X) + fω2(Y) 

Setting Y = 0 in (4.11) yields fω1(X)= fω2(X) 

for all X ϵ [0,1]
n
. But since ω1 and ω2 were 

arbitrary, the functions  fω are identically 

equal to some function  f: [0,1]
n
→[0,1]. 



So, for 0 ≤ X,Y, X+Y ≤ 1, (4.11) becomes 

(4.12)        f(X+Y) = f(X) + f(Y), 

which is Cauchy’s equation for vectors, but 

on a restricted domain. 

● From  f  we extract  n  scalar functions      

f
<i>

 : [0,1]→[0,1],  i = 1,…,n,  by 

(4.13)    f
<i>

(x) := f(0,…,0,x,0,…,0),   

where  x  denotes the i
th
 coordinate. 

● From the obvious extension of (4.12)      

to n summands, we get 

(4.14)  f(x1,…,xn) = f
<1>

(x1) +∙∙∙+f
<n>

(xn), 

and,  if  0 ≤ x, y, x+y ≤ 1,  then 

(4.15)    f
<i>

(x + y)  =  f
<i>

(x)  +  f
<i>

(y). 

It is crucial to be able to extend  f
<i>

 to a 

nonnegative function on the domain [0,∞) 

so that (4.15) continues to hold for all         

x, y ≥ 0…. 



See (J. Aczél & C. Wagner, C.R. Math. 

Rep. Acad. Sci. Canada, 3 (1981), 139-

142) for details of this extension.  

● Since the additivity of f
<i>

 also extends to 

finitely many summands, it follows 

immediately (with φ denoting f
<i>

 for the 

sake of simplicity) that 

(4.16)       φ (mx) = m φ(x),  m = 1,2,… 

●   If  x = (k/m)t, then  mx = kt , and so   

mφ(x) = φ(mx) = φ(kt) = kφ(t), whence 

(4.17)      φ[(k/m)t] = (k/m)φ(t). 

●  Suppose that φ(1) = w.  Setting t = 1 

above shows that  

(4.18)   φ(r) = wr for every rational  r >0.  

Also, φ(x + y) = φ(x) + φ(y)  =>  φ(0) = 0, so 

(4.18) holds for all rational  r ≥ 0.  

 



●    Since  φ(y) ≥ 0 for all y ≥ 0, 

         φ(x + y) = φ(x) + φ(y) ≥ φ(x)  

i.e., φ is weakly increasing, with, as noted 

above, φ(r) = wr , for all rational r ≥ 0. 

● For each x ≥ 0, let (rj) and (Rj) be, 

respectively, increasing and decreasing 

rational sequences converging to x. Then 

(4.19)    wrj = φ(rj) ≤ φ(x) ≤ φ(Rj) = wRj , 

and so  

(4.20)     φ(x) = wx  for all x ≥0. 

●  From (4.20), with  φ = f
<i>

,   i = 1,…,n, 

along with  f(x1,…,xn) = f
<1>

(x1) +∙∙∙+f
<n>

(xn),                 

it follows that there exist nonnegative 

weights w1,…,wn  such that, for all                                  

X = (x1,…,xn) ϵ [0,1]
n
, 

(4.21)    f(x1,…,xn) = w1x1 +∙∙∙+ wnxn.   

Set xi = pi(ω) , where (p1,…,pn) ϵ Pn
. Then  



(4.22)     p(ω) : = T(p1,…,pn)(ω) =    

f(p1(ω),…,pn(ω)) = w1p1(ω) + ∙∙∙ + wnpn(ω), 

and since  Σω ϵ Ω p(ω) = 1,   

(4.23)         w1 + ∙∙∙ + wn = 1.     □    

 

● See also the beautiful paper of Kevin 

McConway,  

Marginalization and linear opinion pools,    

J. Amer. Stat. Assoc. 76 (1981) 410-414, 

conceptualized in terms of the pooling of all 

profiles of probability measures defined on 

every possible sigma algebra A on Ω. In 

this context, McConway shows that the 

commutativity of the family { TA } with 

marginalization (restriction to a sub-sigma 

algebra) is equivalent to postulating “event-

wise pooling.” 

 



5.  Pooling Under SP Alone   

                                                                       

Theorem 5.1. (Aczél, Ng, & Wagner, 1984) 

Suppose that |Ω| ≥ 3 and T: Pn
→ P 

satisfies  SP, so that for each ω ϵ Ω, there 

exists a function fω : [0,1]
n
→[0,1] such that  

p(ω): = T(p1,…,pn)(ω)  = fω(p1(ω),…,pn(ω)).  

●  If Ω is finite, then, for all ω ϵ Ω, either  

(i)    p(ω) =   Σ i wi pi(ω)    

   with all wi ≥ 0 and w1 +∙∙∙+ wn =1,  or 

(ii)    p(ω) = Σ i wi pi(ω) + [1-Σ i wi]q(ω), 

where all wi ϵ [-1,1],  Σ i wi < 1, and             

q is a pmf on Ω. 

●  If Ω is denumerably infinite, then either (i) 

above holds, or (ii) holds, but with all wi ≥ 0. 

Details of proof in ….. 



J. Aczél, C.T. Ng, and C. Wagner, 

Aggregation theorems for allocation 

problems, SIAM J. on Algebraic and 

Discrete Methods 5 (1984), 1-8.  

 

●  Example with negative weights ( |Ω| = m) 

w1 = ∙∙∙ = wn-1 = 0, wn = -1/(m-1), and       

q(ω) = 1/m  for all ω ϵ Ω, which yields 

    p(ω) =  [-1/(m-1)] pn(ω) +  1/(m-1) 

 

       Exercise.  Show that all weights wi are  
       nonnegative (though they need not  
       sum to 1) if and only if, for all ω ϵ Ω,   
       and all X and Y in [0,1]

n
, 

 
                    X ≥ Y   =>   fω(X) ≥ fω(Y) 
 
       (Weak Dominance) 
 



6.  SP is stringent 

SP looks innocuous at first glance, but it is 

really quite stringent, restricting pooling to 

weighted arithmetic averaging, with the 

same weights for each state, or to an affine 

version thereof. (More on the problems with 

such pooling in tutorial 1.2) 

  

More strikingly, if probability values are 

restricted (as they always are in practice) to 

a finite subset of [0,1],  SP alone rules out 

any reasonable pooling methods. 

See: Shattuck & Wagner, An impossibility 

theorem for allocation aggregation,            

J. Philos. Logic, published online               

24 June 2014)  

Details….. 



● Let  V denote  the of set of values that 

may be assigned as probabilities. Suppose 

that V satisfies the closure conditions 

(6.1)    0 ϵ V, 

(6.2)    x ϵ V  => 1 - x  ϵ  V ,  and  

(6.3)    x, y ϵ V  &  x + y ≤ 1  => x + y ϵ V. 

 

● The subsets V of [0,1] satisfying the 

preceding conditions fall into just two 

radically distinct categories: 

Theorem 6.1  

A subset V of [0,1] satisfying (6.1) – (6.3) is 

either dense in [0,1], or finite. In particular, 

every discrete subset of [0,1] satisfying 

these closure conditions must be finite. 

 



● A pooling operator  T: PV
 n
 → PV  is 

dictatorial if there exists d ϵ {1,…,n} such 

that, for all (p1,…,pn) ϵ PV
 n
, T(p1,…,pn) = pd. 

T is imposed  if there exists q ϵ PV such 

that, for all (p1,…,pn) ϵ PV
 n
,  T(p1,…,pn) = q. 

 

Theorem 6.2 

Suppose that  Ω is finite and  |Ω|  ≥ 3. Let    

PV := { pmfs p on Ω : p(ω) ϵ V for all ω ϵ Ω}. 

A pooling operator  T: PV
 n
 → PV  satisfies 

SP if and only if it is dictatorial, or imposed. 

If T satisfies ZP as well, T must be 

dictatorial. 

● When V = {0,1}, this yields a corollary of 

Franz Dietrich on judgment aggregation. 

(Judgment aggregation: (im)possibility 

theorems, J. Economic Theory 126 (2006), 

286-298.  


