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7.  Arithmetic Pooling Does Not 

Commute with Conditioning 

Suppose that individuals have assessed 

priors  p1,…,pn  over Ω. They then jointly 

come to know that the true state of the 

world belongs to the subset  E of Ω. Should 

they (i) first update their priors by 

conditioning on E, and then pool the 

posteriors p1(∙ |E),…,pn(∙ |E),  or (ii) first 

pool the priors to p = T(p1,…,pn), and then 

update p to p(∙ |E) ?  

Let us say that T  commutes with 

conditioning (CC) if, for all subsets E of Ω 

and all (p1,…pn) ϵ Pn
  such that pi(E) > 0,     

i = 1,…,n,  we have T(p1,…pn)(E) > 0, and 

(7.1)  T(p1(∙ |E),…pn(∙ |E) = T(p1,…pn)(∙ |E). 

●  Pooling by weighted arithmetic averaging 

fails to satisfy  CC. 



8. Geometric (a.k.a. logarithmic) Pooling 

●  Recall:  P = { p: p is a pmf on Ω} , and 

Pn
 = {(p1,…,pn): each pi ϵ  P. Let 

(8.1)   Pn+
 := {(p1,…,pn) ϵ Pn

 : there exists        

ω ϵ Ω such that pi(ω) > 0, i = 1,…,n}. 

●  Here, pooling operators  T: Pn+
→ P.  

●  Let  w(1),…,w(n)   be a sequence of 

nonnegative weights that sum to 1. If 

{(p1,…,pn) ϵ Pn+
, let 

(8.2)    G(p1,…,pn)(ω): = Πi pi(ω)
w(i)

  (0
0
:=1) 

By the generalized arithmetic-geometric 

mean inequality 

(8.3)    Πi pi(ω)
w(i)

  ≤ (usually, <) Σi w(i)pi(ω), 

and since, as previously noted, 

(8.4)    Σ ω ϵ Ω  [ Σi w(i)pi(ω)] = 1,   we have 

(8.5)    Σ ω ϵ Ω  [ Πi pi(ω)
w(i)

 ]  ≤ (usually, <) 1 



Also, since  (p1,…,pn) ϵ Pn+
, 

(8.6)     Σ ω ϵ Ω  [ Πi pi(ω)
w(i)

 ]  > 0.  

So  

(8.7)    T(p1,…,pn)(ω): = 

         Πi pi(ω)
w(i)

 /  Σ ω ϵ Ω  [ Πi pi(ω)
w(i)

 ]   

defines a pooling operator T: Pn+
→ P.  

Theorem 8.1.  T, as defined by (8.7), 

commutes with conditioning. Moreover, T is 

externally Bayesian (commutes with Jeffrey 

conditioning, parameterized in terms of 

Bayes factors.) 

See:  C. Wagner, Jeffrey conditioning and 

external Bayesianity, Logic Journal of the 

IGPAL (2009). 

Of course, T, as defined by (8.7), does not 

satisfy  SP. But it does satisfy… 

 



Normalized State-wise Pooling (NSP):     

For each ω ϵ Ω, there exists a map                   

gω: [0,1]
n 
→ [0,1] such that, for all          

(p1,…,pn) ϵ Pn+
, 

(8.8)   0 < Σ ω ϵ Ω  gω(p1(ω),…,pn(ω)) < ∞, 

and   

(8.9)   T(p1,…,pn)(ω) = 

 gω(p1(ω),…,pn(ω) / Σ ω ϵ Ω gω(p1(ω),…,pn(ω) 

 

●  NSP is flexible enough to accommodate 

externally Bayesian pooling, but it is not a 

panacea.     

                 

 

 

 



9.  Independence Preservation 

●  As usual, subsets E and F of  Ω  are 

independent with respect to p                    

(p-independent) if  p(E ∩ F) = p(E)p(F). 

● In what follows,  ∆:= {p: p is a positive 

pmf, i.e., p(ω) > 0  for all ω ϵ Ω}, and a 

probability pooling operator is a map                  

T: ∆
n
→∆. 

A number of individuals have asserted that 

any acceptable probability pooling method 

T should satisfy 

 

Universal Independence Preservation 

(UIP): For all (p1,…,pn) ϵ ∆
n
, and for all 

events E and F in Ω, if E and F are             

pi-independent for i = 1,…,n, then E and F 

are T(p1,…,pn)- independent. 



● If |Ω| ≤ 3, every pooling operator satisfies 

UIP trivially, since subsets E and F of Ω are 

not independent for p ϵ ∆ unless one of E or 

F is equal to the empty set, or to Ω. 

● If |Ω| = 4, NSP admits of a rich variety of 

independence-preserving pooling 

operators. 

Theorem 9.1. Suppose that |Ω| = 4, and 

T:∆
n
→∆ is of the form 

            T(p1,…,pn)(ω) = 

 gω(p1(ω),…,pn(ω) / Σ ω ϵ Ω gω(p1(ω),…,pn(ω) 

with at least one of the functions gω being 

Lebesgue measurable. Then T satisfies UIP 

if and only if there exist real constants 

a(1),…,a(n)  and b(1),…,b(n)  such that , for 

all (p1,…,pn) ϵ ∆
n
 and all ω ϵ Ω, each gω = g,    

where   g(p1(ω),…,pn(ω) =  

   Π1≤ i ≤ n [pi(ω)]
b(i)

 exp{a(i)pi(ω)[1- pi(ω)]}. 



The formula   g(p1(ω),…,pn(ω) =  

   Π1≤ i ≤ n [pi(ω)]
b(i)

 exp{a(i)pi(ω)[1- pi(ω)]}  

yields 

(i) a dictatorship of individual  d  when all 

a(i) = 0, and b(d) = 1 and b(i)= 0 otherwise. 

(ii) geometric pooling when all a(i) = 0, and 

b(i) = wi, as above. 

(iii) imposed pooling when all a(i) = 0 and all 

b(i) = 0, whence T(p1,…,pn) = the uniform 

distribution on Ω for all (p1,…,pn) ϵ ∆
n
.  

1. S. Abou-Zaid, Functional equations and 

related measurements, M.Phil. thesis, U. of 

Waterloo 1984.  

2. C. Sundberg & C. Wagner, A functional 

equation arising in multi-agent statistical 

decision theory, Aeq.Math. 32(1987), 32-37 



Theorem 9.2. When |Ω| ≥ 5, a pooling 

operator T:∆
n
→∆  satisfies NSP and UIP if 

and only if it is dictatorial. 

See:  C. Genest & C. Wagner, Further 

evidence against independence 

preservation in expert judgment synthesis, 

Aeq. Math. 32 (1987), 74-86. 

● Far from causing despair, this theorem 

should be taken as a reductio ad absurdum  

of condition UIP, which demands 

preservation of every single case of 

common independence, whether 

epistemically significant or not ! 

 

But there are lots of cases of purely 

fortuitous independence…. 

 



Example:  I consider a die to be fair, and 

so, for me, E = {2,4,6} = “die comes up 

even” and F = {3,6} = “die comes up a 

multiple of three” are independent. The 

same is true for you if your  p(1) = p(5) = 

p(6) = 1/6, your  p(2)=p(4)=1/12, and your 

p(3) = 1/3. This common independence is 

completely fortuitous. (It can’t involve 

considerations of physical independence, 

since the two events depend on the same 

toss of a die.) So why should it be 

preserved by pooling ? 

But there are cases of mutually agreed 

upon independence worth preserving under 

pooling, based, for example, on agreed 

upon physical independence (often of 

random variables), or some other prior 

theoretical commitment. This is best 

understood by considering 



10. Partition Independence 

●  Recall:  If events E and F are 

independent, so are E and F
c
, E

c
 and F, 

and E
c
 and F

c
. Indeed, if any of these pairs 

of events are independent, so are all the 

others. So the fundamental notion of 

independence is that of partition 

independence, where countable partitions                   

E = { Ej }  and  F = { Fk } are                        

p-independent  if p(Ej∩Fk) = p(Ej) p(Fk),                    

for all j and k in the relevant index sets. 

The sets Ej (resp.,Fk) are called the blocks 

of E (resp., F). 

● The notion of partition independence can 

be extended to more than two partitions in 

the obvious way. (What is commonly called 

the “total independence” of events  A1,…,An  

is equivalent to the independence of the n 

2-block partitions {A1,A1
c
},…,{An,An

c
}. ) 



● Independence of finitely many random 

variables defined on Ω reduces to the 

independence of the partitions of Ω induced 

by these random variables. 

Example:  If  X: Ω →onto U = { uj } and        

Y:Ω→onto V = { vk } are discrete random 

variables, then X and Y are  p-independent 

if and only if  p( X=uj  &  Y=vk ) =                     

p(X=uj )p(Y=vk) for all j and k.  But this 

amounts to  p-independence of partitions             

{ Ej } and { Fk }, where Ej = {ω ϵ Ω: X(ω) = uj}  

and  Fk = {ω ϵ Ω: Y(ω) = vk} . 

 

 

 

 

 



11.  How to Preserve Partition 

Independence in a Principled Way 

 

Assumptions (not as general as possible): 

 

●   Ω = a countable set of possible states of 

the world 

 

●   2
Ω
 = the set of all subsets of Ω. 

 

●   p1,…,pn  are positive pmfs on Ω (or their 

induced pms on 2
Ω
, depending on context). 

 

●  Countable partitions E = { Ej  } and                         

F = { Fk } of Ω  are pi – independent,            

i = 1,…,n.    

       



A recipe for pooling  p1,…,pn   to a 

probability measure  q  on 2
Ω
  such that 

partitions  E  and F are  q – independent : 

(i)  Let  p: = w1p1 +∙∙∙+ wnpn (or the result of 

any other way of pooling of p1,…,pn ). 

(ii)  The family E x F: = { Ej ∩ Fk }  is a 

partition of Ω (each Ej ∩ Fk is nonempty, 

since pi(Ej∩Fk) = pi(Ej) pi(Fk) > 0)              

(iii) For all A ϵ 2
Ω
, set 

(11.1)   q(A) = Σ j, k p(Ej)p(Fk) p(A|Ej ∩ Fk), 

where  Ej ∩ Fk  ϵ  E x F.   

Theorem 11.1. The partitions E and F are  

q – independent.   

Proof.   q(Ej ∩ Fk) = p(Ej)p(Fk). But  then 

q(Ej) = p(Ej) and q(Fk) = p(Fk). 

Note.  q comes from p by Jeffrey 

conditioning  on the partition E x F. 



●  Among all  r  satisfying  r(Ej ∩ Fk) = 

p(Ej)p(Fk), and therefore preserving the 

independence of E and F, q is closest 

(uniquely so) to p for both the Kullback-

Leibler divergence 

(11.2)  KL(r,p):= Σω r(ω) ln [r(ω)/ p(ω)] 

and the Hellinger metric 

(11.3)   H(r,p):= Σω [ r(ω)
1/2

 – p(ω)
1/2

]
2
 . 

 

Moral:  Insisting on Universal Domain more 

or less forces one to pool in accord with SP 

or NSP. Both of the latter are radically anti-

holistic. Abandoning UD (which frees us 

from SP and NSP) allows one the flexibility 

to preserve epistemically significant 

agreement on independence under pooling 

in a principled way. 


