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Given a capacity c and a probability measure p on a finite set, there is a natural 
way to combine c and p to produce a measure. For fixed c, these measures are 
probability measures for all p precisely when c is monotone, and dominate e for 
all p precisely when c is 2-monotone. 
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1. I N T R O D U C T I O N  

A capacity on a finite set X i s  a mapping c: 2 x ~  [0, 1] such that c ( ~ ) = 0  
and c(X) -- I. A capacity c is monotone if A ~ B ~ c(A ) <~ c(B), superadditive 
if A c ~ B - - ~ c ( A u B ) > / c ( A ) + c ( B ) ,  and r-monotone if, 
sequence A1 ..... A r of subsets of X, 

C(Alu  "" uAr)>~ ~ ( -1 ) l ' l - l  c ( , ~ i A i )  
l c  { i,. . . ,r } 

for every 

(1.1) 

Two-monotonici ty is also called convexity, a term justified in Shapley/7) 
A capacity that is r-monotone for all r~>2 is called a belief function, a 
term due to Shafer, (6) or an infinitely monotone capacity, a term due to 
Choquet. (2) 

A probability measure q is said to dominate a capacity c on J( if 
q(A) ~ c(A) for all A ~ X. There may of course be no such dominating 
probabilities, even if c is superadditive (see Papamarcou  and Fine(5)). 
Shapley (7) has proved, however, that 2-monotonicity of c is sufficient 
(though not necessary) for the set of probability measures dominating e to 
be nonempty. 
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A useful tool for studying a capacity c is its M6bius transform m, 
defined for all E ~ X by 

re(E)= ~ (-I) 'E-"' c(H) (1.2) 
H ~ E  

Clearly, m: 2 x --* R, m(~5) = 0, and for all A ~ X, 

m(E)= ~ ~ ( - - I )  le-/-/l c(H) 
E c A  E ~ A  H ~ E  

= E c(H) ( - t )  " 
H c A  H ~ E c A  

= 2 c(H) ~ ( - 1 )  ~ IA HI =c(A)  
H ~ A  i = 0  

In particular, 

(1.3) 

m(E) = c(X) = 1 (1.4) 
E ~ X  

From the M6bius transform of any capacity we can construct a 
measure q as follows. Take any "weight function" 2: X x  2 x ~  [0, 1] such 
that (i) x r E=> 2(x, E ) =  0, and (ii) Y.x 2(x, E ) =  1 for all nonempty E c X, 
and, for all A c X, let 

q(A)-= ~ ~ 2(x,E) m(E) (1.5) 
x ~ A  E c X  

We call such a set function q a smear of re. Clearly q(~5)--O, q(X)= 1, and 
A ~ B = ~ => q(A u B) = q(A) + q(B). Hence q is a probability measure if 
and only if q is nonnegative. 

Chateauneuf and Jaffray (1) have proved that if e is a capacity, then 
every smear of its M6bius transform m is a probability measure if and only 
if 

m ( { x } ) +  ~ min{m(E),0}>~0 f o r a l l x ~ X  (1.6) 

E ~  

Note that monotonicity of e is necessary (though not sufficient) for (1.6). 
There is of course no guarantee that such smears of m will dominate c. 
However, using the fact that a capacity is infinitely monotone if and only 
if its M6bius transform is nonnegative, it is easy to prove that if c is a 
capacity, then every smear of m is a probability measure that dominates e 
if and only if c is infinitely monotone (see Dempster, (3) Shafer, (6) and 
Chateauneuf and Jaffray (1)). 

Our aim here is to prove analogous results for the restricted class of 
probability-based smears. Specifically, suppose that p is a probability 



Monotone and 2-Monolone Capacities 161 

measure on X such that p ( E ) > 0  for all non-empty EcX,  and define 
2:Xx2X~[O, 1] by 2 ( x , ~ ) = 0  and 2(x,E)=p(xlE) when Er 
(Here, and subsequently, we omit curly brackets from our notation for a 
singleton set if no confusion arises thereby.) With this p-based weight 
function, (1.5) takes the nice form 

q(A)= ~, m(E) p(AIE) (1.7) 
E ~ X  
E # ~  

We call q (generically) a probability smear of m and (specifically) the 
p-smear of m. We shall prove that if c is a capacity, then every probability 
smear of its M6bius transform is a probability measure if and only if c is 
monotone, and that all probability smears of m dominate c if and only if 
c is 2-monotone. 

2. P R E L I M I N A R I E S  

In this section we establish several lemmata used in the proofs of our 
main results. 

L e m m a  1. 
then 

If A is a finite set, p is a measure on A, and r 2 A ~ R, 

p(C)r ~ p(a) ~ r (2.1) 
C ~ A  a ~ A  C ~ A  
C # ~ZS a ~ C 

Proof 
then interchange summation. 

Replace p(C) by Za~C p(a) on the left-hand side of (2.1), and 

L e m m a  2. If S is a finite set and r ~: 2 s ~  R, then 

C c S  C c S  E c C  F c S - C  

Proof The right-hand side of (2.2) is clearly equal to 

C ~ S  C / \ C ~ G c S  

= r r  
G ~ S  E ~ G  

= ~, O(G)~)(G) 
G ~ S  

= r  
C ~ S  

y' ( _ l ) l G  cl 
E c C ~ G  

(2.2) 

ZJ 

N60,5  I-I  1 
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Proof 
equal  to 

L e m m a  3. If u > 0 and p, >~ 0 for all i e I n ]  : = { 1,..., n }, then 

( - 1 )  I'1 u + ~  pi >/0 (2.3) 
1 c  [ h i  i t  1 

If x > O ,  ~ e - x '  dt=x -1, and so the left-hand side of (2.3) is 

f~ (i=~[n3 (-l)lll e XiElP")e-~' dt 

 o(5 ) = I ~  ( - e - p ' t )  e ut d t  

1 n] i E l  

= ~ .  ( 1 - e  P'~) e-"~dt>~O [] 
"13 i 

L e m m a  4. A capaci ty  c on X is 2 -mono tone  if and only if its M6bius  
t ransform m satisfies 

m(E) >10 for all a, b ~ X and all A c X 
{a,b} ~E=A such that  a, b 6 A 

Proof See Cha teauneuf  and Jaffray. (~) 

3. M A I N  R E S U L T S  

In this section c denotes a capaci ty  on the finite set X, and m its 
M6bius  t ransform,  as defined by (1.2). A probabi l i ty  smear  of m is a 
mapp ing  q defined by (1.7), where p is a probabi l i ty  measure  on X such 
that  p(E) > 0 for all E c X. 

Theorem 1. If  c is a capacity,  then every probabi l i ty  smear  q of m is 
a probabi l i ty  measure  if and only if c is monotone .  

Proof Sufficiency. As remarked  in Section 1, it suffices to show that  
q(a)>~O for all a~X. By (1.7) and (1.2), 

q(a)= ~ m(E) p(aLE)=p(a) ~ rn(E) 
E=x E=x p(E) 
E~Q~ aEE  

1 =p(a) ~ p(E) ~ ( -  1)lE n l c ( H )  
E ~ X  H ~ E  
a ~ E  

1 
= p ( a )  ~ c(H) ~ ( - 1 )  w-/-/I- 

H ~ X  E ~ H w a  p(E) 
1 

= p ( a )  ~ (c(Hwa)-c(H)) ~ ( - 1 )  IE- (n'~ ~)1 - - -  
H~x-a E=t~,~a p(E) 
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which is nonnegative by monotonicity of c, and by Lemma 3, with 
u = p(Hw a) and pg = p(x~), where X -  (Hw a) = {xl,..., x,}. 

Necessity. If c is not monotone,  there exists a set A ~ X, with [A[ ~> 2, 
and aEA such that c (A) -c (A-a)<O,  and so by (1.3), 

m(E)-  ~, m ( E ) =  ~ r e ( E ) < 0  (3.1) 
E ~ A  E ~ A - - a  E t A  

a ~ E  

We show that there exists a probability measure p such that q(a)<O, 
where q is the p-smear of m. First note that for any probability measure p, 
if q is the p-smear of m, we have from (1.7) that 

q ( a ) =  ~ m(E)p(alE)+ ~ m(E)p(alE) (3.2) 
E ~ A  E ~ X  
E ~  E r d a  

Suppose first that A = X. Writing q in (3.2) as q~ and setting p = p~, 
where pc(x) = e/([XJ - 1) for all x r a, and p~(a) = 1 - e, it is easy to check 
that 

lim q~(a)= ~ m(E) (3,3) 
c ~ O  E ~ A  

a ~ E  

Since the right-hand side of (3.3) is negative by (3.1), there exists an e > 0  
such that qc(a) < O. 

If A is a proper subset of X, again write q in (3.2) as q~ and set p = p~, 
where now pc(a)=g,, pe(x )=~2 for all x e A - a ,  and p,(x)= 
( 1 - p ~ ( A ) ) / I X - A [  for all x s X - A .  It is again easy to check that (3.3) 
holds in this case, and so q~(a)< 0 for some e > 0. [] 

Theorem 2. If c is a capacity, then every probability smear q of m is 
a probabili ty measure that dominates c if and only if c is 2-monotone. 

Proof Sufficiency. It suffices to show that q(A) >~ c(A) for every non- 
empty subset A of X. By (1.7) and (1.2), with A := X--A, 

q ( A ) =  ~ ~ m(CwD) p(CfCwD) 
C c A  D ~ A  
C ~  

E E E E 
C ~ A  D ~ A  H ~ D  G ~ C  
C r  

( - -1 )  jc-GI c(G• H) p (C[ C u D) 

(3.4) 
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On the other hand, by (1.2) and (1.3), 

E E ~. ( - 1 )  Lo Hi E 
C ~ A  D ~ A  H = D  G ~ C  
C ~ Z  

( - 1 )  Ic-a' c(G) p(CI C to D) 

= E 
C ~ A  
C v ~  

m(C) p(C] C) = c(A) 

and (3.4) and (3.5) yield 

(3,5) 

q(A)-c(A)= E E E ( - 1 )  ID-m E ( - 1 )  Ic Gi 
C c A  D c X  H c D  G ~ C  
C ~  

x (c(G w H) -- c(G)) p(CIC to D) 

= ~, E ~ ( - I )  I c - G i ( c ( a u H ) - c ( G ) )  
C ~ A  H ~ A  G c C  
C ~  

x ~ ( - 1 )  ID-HI 
H ~ D ~ A  

E E (_l)lKI 
H ~ A  K ~ A - - H  

p(C) 
p(C) + p(D) 

E E (-1) ~ ~ 
C c A  G c C  
Cv~ ~ 

p(C) 
x (c(G to H) - c(G)) (3.6) 

p(C) + p(H) + p(K) 

Applying Lemma 1 to the last line of (3.6) yields 

q(A)-c(A)= ~ ~, ( - 1 )  IKI ~ p(a) 
H ~ A  K = A  H a e A  

x E F G c c  (- - I )  kC-m (c(GwH)-c(G))  (3.7) 
C=A p(C) + p(H) + p(K) 
a ~ C  

The part of (3.7) beginning with the fourth summation sign is clearly equal 
to 

{ E (--1) I(C~a)-GL(c(GuH)-e(G))} 
C ~ A - - a  G ~ C ~ a  

x {p(Cua)+p(H)+p(K)}  l 

which by Lemma 2, with S = A - a ,  r equal to the first bracketed 
expression above, and qs(C) = {p(C• a) + p(H) + p(K)} -1, is equal to 



Monotone and 2-Monotone Capacities 165 

{ ~ ~ ( - 1 )  I(E~") m(c(GuH)-c(G))} 
C ~ A  a E C G c E w a  

F c  ( A  - -  a )  - -  C 

C c A  E C G ~ E  
a c C  a t e  

(3.8) 

The first bracketed expression in the preceding line is, by an interchange of 
summations, equal to 

G c C  G ~ E ~ C  
a E G  

+ z E  z 
G ~ C - - a  G c E ~ C  a 

(--1) I~ el+~ I ( c ( G w H ) - c ( G ) )  

= c ( C w H ) - e ( C ) - c ( ( C - a ) u H ) + c ( C - a )  

:= ~(a, c, H) (3.9) 

From (3.7), (3.8), (3.9), the fact that p(FwC)+p(H)+p(K)= 
p(Cw H) +p(Fw K), and the substitution G = F u  K, we have 

q(A)-c(A)= ~ ~ p(a) ~ a(a,C,H) fl(C,H) (3.10) 
H ~ A  a E A  C c A  

a ~ C  

where 

fl(c, H)=  ~ (-1)J~ (3.11) 
G=X-(C~H) p(Cu H)+ p(G) 

Since C(~ H =  ~ ,  the convexity of c ensures that e(a, C, H)/>O. That 
fl(C, H)/> 0 follows from Lemma 3. Hence q(A) -- c(A) >~ O, as asserted. 

Necessity. If c is not 2-monotone, then by Lemma 4 there exist a set 
A c X and a, b 6 A such that 

rn(E) < 0 (3.12) 
{ a , b } c E = A  
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If a = b, then c ( A ) -  c ( A -  a ) <  0, and we argue as in the proof of necessity 
in Theorem 1. So suppose that arab.  We show that there exists a 
probability measure p such that q(A - a) < c(A - a), where q is the p-smear 
of m. First note that for any probability measure p, if q is the p-smear of 
m, then from (1.7), (1.3), and the fact that p ( A - a l E ) =  1 when E t A - a ,  
it follows that 

q(A - a) - c(A - a) = m(E)  p (A  - a l E)  
E ~ X  

E c C  A a 

re(E) p ( A - a [ E )  
E ~ A  
a E E  

+ ~ m ( E )  p ( A - a [ E )  (3.13) 
E = X  

E ~ A  

Suppose first that A = X. Writing q--q~ in (3.13) and setting p = p~, 
where p~(a) = p~(b) = (1 - e)/2 and p~(x) = e/([XI - 2) for all x ~ X -  {a, b }, 
it is easy to check that 

1 lim q~(A - a) - c(A - a) = ~ ~ m(E)  (3.14) 
c . ~ O  { a , b } ~ E ~ A  

Since the right-hand side of (3.14) is negative by (3.12), there exists an e > 0 
such that q~(A - a) < c(A - a). 

If A is a proper subset of X, write q = q~ in (3.13) and set p = Pc, where 
p ~ ( a ) = p ~ ( b ) = g ,  p~(x )=e  2 for all x ~ A - { a ,  b},  and p ~ ( x ) = ( 1 - p ~ ( A ) ) /  
I X - A [  for all x e X - A .  Again, it is easy to check that (3.14) holds, so 
that q~(A - a) < c(A - a) for some e > 0. 

4. REMARKS 

Note that, given a 2-monotone capacity c with M6bius transform m, 
the formula 

q (A)=  ~ m(E)  p ( A I E )  (4.1) 
E c X  

might, by Theorem 2, function as a rule for updating the prior probability 
p in the light of new evidence that bounds the possible revisions of p below 
by c. This proposal is examined in detail in the case where c is infinitely 
monotone in Wagner, (8) where a formal criterion for applying (4.1) is 
presented when e arises from a multivalued mapping from some prob- 
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ability space to X, as in Dempster .  (3) We note  also that  if c is infinitely 
m o n o t o n e  (whence m is nonnegat ive,  by an earlier r emark )  and d~ 
{ E c X : m ( E ) > O }  is a par t i t ion of X, then q ( E ) = m ( E )  for all Eedo  and 
(4.1) becomes 

q(A)= ~ q(E)p(AtE) (4.2) 
Eed" 

the wel l -known condi t ional izat ion rule of  Jeffrey, (4) whereby the poster ior  
probabi l i ty  measure  q is specified first on members  of the part i t ion 8,  and 
then extended by (4.2) to a rb i t ra ry  subsets A. 

We remark  in conclusion that  the "Shapley value" q* of a 2 -mono tone  
capaci ty  c (which allocates benefits to coopera t ing  part ies in the convex 
game c - - see  Shapley(7)), defined for all a e X by 

q * ( a ) =  1 
E 

tXl !  A~_x 
a ~ A  

( I A I -  1)! I X - A I !  ( c ( A ) - c ( A - a ) )  (4.3) 

is simply the p - smear  of  the M6bius  t ransform m of c, where p is the 
uniform probabi l i ty  measure  on X. We leave the p roof  as an interesting 
combina tor ia l  exercise. 
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