Characterizations of Monotone and 2-Monotone Capacities

Carl Sundberg ${ }^{1}$ and Carl Wagner ${ }^{1}$

Received November 22, 1990

Given a capacity c and a probability measure p on a finite set, there is a natural way to combine c and p to produce a measure. For fixed c, these measures are probability measures for all p precisely when c is monotone, and dominate c for all p precisely when c is 2 -monotone.

KEY WORDS: Capacity; lower probability; conditionalization; belief function.

1. INTRODUCTION

A capacity on a finite set X is a mapping $c: 2^{X} \rightarrow[0,1]$ such that $c(\varnothing)=0$ and $c(X)=1$. A capacity c is monotone if $A \subset B \Rightarrow c(A) \leqslant c(B)$, superadditive if $A \cap B=\varnothing \Rightarrow c(A \cup B) \geqslant c(A)+c(B)$, and r-monotone if, for every sequence A_{1}, \ldots, A_{r} of subsets of X,

$$
\begin{equation*}
C\left(A_{1} \cup \cdots \cup A_{r}\right) \geqslant \sum_{\substack{I \subset\{1, \ldots, r\} \\ I \neq \varnothing}}(-1)^{|I|-1} c\left(\bigcap_{i \in I} A_{i}\right) \tag{1.1}
\end{equation*}
$$

Two-monotonicity is also called convexity, a term justified in Shapley. ${ }^{(7)}$ A capacity that is r-monotone for all $r \geqslant 2$ is called a belief function, a term due to Shafer, ${ }^{(6)}$ or an infinitely monotone capacity, a term due to Choquet. ${ }^{(2)}$

A probability measure q is said to dominate a capacity c on X if $q(A) \geqslant c(A)$ for all $A \subset X$. There may of course be no such dominating probabilities, even if c is superadditive (see Papamarcou and Fine ${ }^{(5)}$). Shapley ${ }^{(7)}$ has proved, however, that 2-monotonicity of c is sufficient (though not necessary) for the set of probability measures dominating c to be nonempty.

[^0]A useful tool for studying a capacity c is its Möbius transform m, defined for all $E \subset X$ by

$$
\begin{equation*}
m(E)=\sum_{H \subset E}(-1)^{|E-H|} c(H) \tag{1.2}
\end{equation*}
$$

Clearly, $m: 2^{X} \rightarrow \mathbf{R}, m(\varnothing)=0$, and for all $A \subset X$,

$$
\begin{align*}
\sum_{E \in A} m(E) & =\sum_{E \in A} \sum_{H \in E}(-1)^{|E-H|} c(H) \\
& =\sum_{H \subset A} c(H) \sum_{H \in E \subset A}(-1)^{|E-H|} \\
& =\sum_{H \in A} c(H) \sum_{i=0}^{|A-H|}(-1)^{i}\binom{|A-H|}{i}=c(A) \tag{1.3}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\sum_{E \subset X} m(E)=c(X)=1 \tag{1.4}
\end{equation*}
$$

From the Möbius transform of any capacity we can construct a measure q as follows. Take any "weight function" $\lambda: X \times 2^{X} \rightarrow[0,1]$ such that (i) $x \notin E \Rightarrow \lambda(x, E)=0$, and (ii) $\Sigma_{x} \lambda(x, E)=1$ for all nonempty $E \subset X$, and, for all $A \subset X$, let

$$
\begin{equation*}
q(A)=\sum_{x \in A} \sum_{E \subset X} \lambda(x, E) m(E) \tag{1.5}
\end{equation*}
$$

We call such a set function q a smear of m. Clearly $q(\varnothing)=0, q(X)=1$, and $A \cap B=\varnothing \Rightarrow q(A \cup B)=q(A)+q(B)$. Hence q is a probability measure if and only if q is nonnegative.

Chateauneuf and Jaffray ${ }^{(1)}$ have proved that if c is a capacity, then every smear of its Möbius transform m is a probability measure if and only if

$$
\begin{equation*}
m(\{x\})+\sum_{\substack{E \in\{x\} \\ E \neq\{x\}}} \min \{m(E), 0\} \geqslant 0 \quad \text { for all } x \in X \tag{1.6}
\end{equation*}
$$

Note that monotonicity of c is necessary (though not sufficient) for (1.6). There is of course no guarantee that such smears of m will dominate c. However, using the fact that a capacity is infinitely monotone if and only if its Möbius transform is nonnegative, it is easy to prove that if c is a capacity, then every smear of m is a probability measure that dominates c if and only if c is infinitely monotone (see Dempster, ${ }^{(3)}$ Shafer, ${ }^{(6)}$ and Chateauneuf and Jaffray ${ }^{(1)}$).

Our aim here is to prove analogous results for the restricted class of probability-based smears. Specifically, suppose that p is a probability
measure on X such that $p(E)>0$ for all non-empty $E \subset X$, and define $\lambda: X \times 2^{X} \rightarrow[0,1]$ by $\lambda(x, \varnothing)=0$ and $\lambda(x, E)=p(x \mid E)$ when $E \neq \varnothing$. (Here, and subsequently, we omit curly brackets from our notation for a singleton set if no confusion arises thereby.) With this p-based weight function, (1.5) takes the nice form

$$
\begin{equation*}
q(A)=\sum_{\substack{E \in X \\ E \neq \varnothing}} m(E) p(A \mid E) \tag{1.7}
\end{equation*}
$$

We call q (generically) a probability smear of m and (specifically) the p-smear of m. We shall prove that if c is a capacity, then every probability smear of its Möbius transform is a probability measure if and only if c is monotone, and that all probability smears of m dominate c if and only if c is 2-monotone.

2. PRELIMINARIES

In this section we establish several lemmata used in the proofs of our main results.

Lemma 1. If A is a finite set, p is a measure on A, and $\phi: 2^{A} \rightarrow \mathbf{R}$, then

$$
\begin{equation*}
\sum_{\substack{C \subset A \\ C \neq \varnothing}} p(C) \phi(C)=\sum_{a \in A} p(a) \sum_{\substack{C \subset A \\ a \in C}} \phi(C) \tag{2.1}
\end{equation*}
$$

Proof. Replace $p(C)$ by $\sum_{a \in c} p(a)$ on the left-hand side of (2.1), and then interchange summation.

Lemma 2. If S is a finite set and $\phi, \psi: 2^{S} \rightarrow \mathbf{R}$, then

$$
\begin{equation*}
\sum_{C \subset S} \phi(C) \psi(C)=\sum_{C \subset S}\left(\sum_{E \subset C} \phi(E)\right)\left(\sum_{F \subset S-C}(-1)^{|F|} \psi(F \cup C)\right) \tag{2.2}
\end{equation*}
$$

Proof. The right-hand side of (2.2) is clearly equal to

$$
\begin{aligned}
\sum_{C \subset S} & \left(\sum_{E \subset C} \phi(E)\right)\left(\sum_{C \subset G \subset S}(-1)^{|G-C|} \psi(G)\right) \\
& =\sum_{G \subset S} \psi(G) \sum_{E \subset G} \phi(E) \sum_{E \subset C \subset G}(-1)^{|G-C|} \\
& =\sum_{G \subset S} \psi(G) \phi(G) \\
& =\sum_{C \subset S} \phi(C) \psi(C)
\end{aligned}
$$

Lemma 3. If $u>0$ and $p_{i} \geqslant 0$ for all $i \in[n]:=\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{I \subset[n]}(-1)^{|I|}\left(u+\sum_{i \in I} p_{i}\right)^{-1} \geqslant 0 \tag{2.3}
\end{equation*}
$$

Proof. If $x>0, \int_{0}^{\infty} e^{-x t} d t=x^{-1}$, and so the left-hand side of (2.3) is equal to

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\sum_{I \in[n]}(-1)^{|I|} e^{-\sum_{i \in I} \mathrm{p}_{i} t}\right) e^{-u t} d t \\
& \quad=\int_{0}^{\infty}\left(\sum_{I \in[n]} \prod_{i \in I}\left(-e^{-p_{i} t}\right)\right) e^{-u t} d t \\
& \quad=\int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(1-e^{-p_{i} t}\right)\right) e^{-u t} d t \geqslant 0
\end{aligned}
$$

Lemma 4. A capacity c on X is 2 -monotone if and only if its Möbius transform m satisfies

$$
\sum_{\{a, b\} \in E \subset A} m(E) \geqslant 0 \quad \begin{array}{ll}
\text { for all } a, b \in X \text { and all } A \subset X \\
\text { such that } a, b \in A
\end{array}
$$

Proof. See Chateauneuf and Jaffray. ${ }^{(1)}$

3. MAIN RESULTS

In this section c denotes a capacity on the finite set X, and m its Möbius transform, as defined by (1.2). A probability smear of m is a mapping q defined by (1.7), where p is a probability measure on X such that $p(E)>0$ for all $E \subset X$.

Theorem 1. If c is a capacity, then every probability smear q of m is a probability measure if and only if c is monotone.

Proof. Sufficiency. As remarked in Section 1, it suffices to show that $q(a) \geqslant 0$ for all $a \in X$. By (1.7) and (1.2),

$$
\begin{aligned}
q(a) & =\sum_{\substack{E \subset X \\
E \neq \varnothing}} m(E) p(a \mid E)=p(a) \sum_{\substack{E \subset X \\
a \in E}} \frac{m(E)}{p(E)} \\
& =p(a) \sum_{\substack{E \subset X \\
a \in E}} \frac{1}{p(E)} \sum_{H \subset E}(-1)^{|E-H|} c(H) \\
& =p(a) \sum_{H \subset X} c(H) \sum_{E \supset H \cup a}(-1)^{|E-H|} \frac{1}{p(E)} \\
& =p(a) \sum_{H \subset X-a}(c(H \cup a)-c(H)) \sum_{E \supset H \cup a}(-1)^{|E-(H \cup a)|} \frac{1}{p(E)}
\end{aligned}
$$

which is nonnegative by monotonicity of c, and by Lemma 3, with $u=p(H \cup a)$ and $p_{i}=p\left(x_{i}\right)$, where $X-(H \cup a)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Necessity. If c is not monotone, there exists a set $A \subset X$, with $|A| \geqslant 2$, and $a \in A$ such that $c(A)-c(A-a)<0$, and so by (1.3),

$$
\begin{equation*}
\sum_{E \subset A} m(E)-\sum_{E \subset A-a} m(E)=\sum_{\substack{E \in A \\ \alpha \in E}} m(E)<0 \tag{3.1}
\end{equation*}
$$

We show that there exists a probability measure p such that $q(a)<0$, where q is the p-smear of m. First note that for any probability measure p, if q is the p-smear of m, we have from (1.7) that

$$
\begin{equation*}
q(a)=\sum_{\substack{E \in A \\ E \neq \varnothing}} m(E) p(a \mid E)+\sum_{\substack{E \subset X \\ E \notin A}} m(E) p(a \mid E) \tag{3.2}
\end{equation*}
$$

Suppose first that $A=X$. Writing q in (3.2) as q_{ε} and setting $p=p_{\varepsilon}$, where $p_{\varepsilon}(x)=\varepsilon /(|X|-1)$ for all $x \neq a$, and $p_{\varepsilon}(a)=1-\varepsilon$, it is easy to check that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} q_{\varepsilon}(a)=\sum_{\substack{E \in A \\ a \in E}} m(E) \tag{3.3}
\end{equation*}
$$

Since the right-hand side of (3.3) is negative by (3.1), there exists an $\varepsilon>0$ such that $q_{e}(a)<0$.

If A is a proper subset of X, again write q in (3.2) as q_{ε} and set $p=p_{\varepsilon}$, where now $p_{\varepsilon}(a)=\varepsilon, \quad p_{\varepsilon}(x)=\varepsilon^{2}$ for all $x \in A-a$, and $p_{\varepsilon}(x)=$ $\left(1-p_{\varepsilon}(A)\right) /|X-A|$ for all $x \in X-A$. It is again easy to check that (3.3) holds in this case, and so $q_{i}(a)<0$ for some $\varepsilon>0$.

Theorem 2. If c is a capacity, then every probability smear q of m is a probability measure that dominates c if and only if c is 2 -monotone.

Proof. Sufficiency. It suffices to show that $q(A) \geqslant c(A)$ for every nonempty subset A of X. By (1.7) and (1.2), with $\bar{A}:=X-A$,

$$
\begin{align*}
q(A) & =\sum_{\substack{C \subset A \\
C \neq \varnothing}} \sum_{D \subset \bar{A}} m(C \cup D) p(C \mid C \cup D) \\
& =\sum_{\substack{C \subset A \\
C \neq \varnothing}} \sum_{D \subset \bar{A}} \sum_{H \subset D}(-1)^{|D-H|} \sum_{G \subset C}(-1)^{|C-G|} c(G \cup H) p(C \mid C \cup D) \tag{3.4}
\end{align*}
$$

On the other hand, by (1.2) and (1.3),

$$
\begin{align*}
& \sum_{\substack{C=A \\
C \neq \varnothing}} \sum_{D \subset \bar{A}} \sum_{H=D}(-1)^{|D-H|} \sum_{G \in C}(-1)^{|C-G|} c(G) p(C \mid C \cup D) \\
& \quad=\sum_{\substack{C \subset A \\
C \neq \varnothing}} m(C) p(C \mid C)=c(A) \tag{3.5}
\end{align*}
$$

and (3.4) and (3.5) yield

$$
\begin{align*}
q(A)-c(A)= & \sum_{\substack{C \subset=A \\
C \neq \varnothing}} \sum_{D \in \bar{A}} \sum_{H \subset D}(-1)^{|D-H|} \sum_{G \subset C}(-1)^{|C-G|} \\
& \times(c(G \cup H)-c(G)) p(C \mid C \cup D) \\
= & \sum_{\substack{C \subset A \\
C \neq \varnothing}} \sum_{H \subset \bar{A}} \sum_{G \subset C}(-1)^{|C-G|}(c(G \cup H)-c(G)) \\
& \times \sum_{H \subset D \subset \bar{A}}(-1)^{|D-H|} \frac{p(C)}{p(C)+p(D)} \\
= & \sum_{H \subset \bar{A}} \sum_{K \subset \bar{A}-H}(-1)^{|K|} \sum_{\substack{C \subset A \\
C \neq \varnothing}} \sum_{G \subset C}(-1)^{|C-G|} \\
& \times(c(G \cup H)-c(G)) \frac{p(C)}{p(C)+p(H)+p(K)} \tag{3.6}
\end{align*}
$$

Applying Lemma 1 to the last line of (3.6) yields

$$
\begin{align*}
q(A)-c(A)= & \sum_{H \subset A} \sum_{K \subset A-H}(-1)^{|K|} \sum_{a \in A} p(a) \\
& \times \sum_{\substack{C \subset A \\
a \in C}} \frac{\sum_{G \subset C}(-1)^{|C-G|}(c(G \cup H)-c(G))}{p(C)+p(H)+p(K)} \tag{3.7}
\end{align*}
$$

The part of (3.7) beginning with the fourth summation sign is clearly equal to

$$
\begin{aligned}
& \sum_{C \subset A-a}\left\{\sum_{G \subset C \cup a}(-1)^{|(C \cup a)-G|}(c(G \cup H)-c(G))\right\} \\
& \quad \times\{p(C \cup a)+p(H)+p(K)\}^{-1}
\end{aligned}
$$

which by Lemma 2 , with $S=A-a, \phi(C)$ equal to the first bracketed expression above, and $\psi(C)=\{p(C \cup a)+p(H)+p(K)\}^{-1}$, is equal to

$$
\begin{align*}
\sum_{C \subset A-a} & \left\{\sum_{E \subset C} \sum_{G \subset E \cup a}(-1)^{|(E \cup a)-G|}(c(G \cup H)-c(G))\right\} \\
& \times\left\{\sum_{F \subset(A-a)-C}(-1)^{|F|}(p(F \cup C \cup a)+p(H)+p(K))^{-1}\right\} \\
= & \sum_{\substack{C \subset A \\
a \in C}}\left\{\sum_{\substack{E \subset C \\
a \in E}} \sum_{G \subset E}(-1)^{|E-G|}(c(G \cup H)-c(G))\right\} \\
& \times\left\{\sum_{F \subset A-C}(-1)^{|F|}(p(F \cup C)+p(H)+p(K))^{-1}\right\} \tag{3.8}
\end{align*}
$$

The first bracketed expression in the preceding line is, by an interchange of summations, equal to

$$
\begin{align*}
\sum_{\substack{G \subset C \\
a \in G}} & {\left[\sum_{G \subset E \subset C}(-1)^{|E-G|}\right](c(G \cup H)-c(G)) } \\
& +\sum_{G \subset C-a}\left[\sum_{G \subset E \subset C-a}(-1)^{|E-G|+1}\right](c(G \cup H)-c(G)) \\
& =c(C \cup H)-c(C)-c((C-a) \cup H)+c(C-a) \\
& :=\alpha(a, C, H) \tag{3.9}
\end{align*}
$$

From (3.7), (3.8), (3.9), the fact that $p(F \cup C)+p(H)+p(K)=$ $p(C \cup H)+p(F \cup K)$, and the substitution $G=F \cup K$, we have

$$
\begin{equation*}
q(A)-c(A)=\sum_{H \subset \bar{A}} \sum_{a \in A} p(a) \sum_{\substack{C \subset A \\ a \in C}} \alpha(a, C, H) \beta(C, H) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta(C, H)=\sum_{G \subset X-(C \cup H)} \frac{(-1)^{|G|}}{p(C \cup H)+p(G)} \tag{3.11}
\end{equation*}
$$

Since $C \cap H=\varnothing$, the convexity of c ensures that $\alpha(a, C, H) \geqslant 0$. That $\beta(C, H) \geqslant 0$ follows from Lemma 3. Hence $q(A)-c(A) \geqslant 0$, as asserted.

Necessity. If c is not 2-monotone, then by Lemma 4 there exist a set $A \subset X$ and $a, b \in A$ such that

$$
\begin{equation*}
\sum_{\{a, b\} \subset E \subset A} m(E)<0 \tag{3.12}
\end{equation*}
$$

If $a=b$, then $c(A)-c(A-a)<0$, and we argue as in the proof of necessity in Theorem 1. So suppose that $a \neq b$. We show that there exists a probability measure p such that $q(A-a)<c(A-a)$, where q is the p-smear of m. First note that for any probability measure p, if q is the p-smear of m, then from (1.7), (1.3), and the fact that $p(A-a \mid E)=1$ when $E \subset A-a$, it follows that

$$
\begin{align*}
q(A-a)-c(A-a)= & \sum_{\substack{E \subset X \\
E \notin A-a}} m(E) p(A-a \mid E) \\
= & \sum_{\substack{E \subset A \\
a \in E}} m(E) p(A-a \mid E) \\
& +\sum_{\substack{E \subset X \\
E \notin A}} m(E) p(A-a \mid E) \tag{3.13}
\end{align*}
$$

Suppose first that $A=X$. Writing $q=q_{\varepsilon}$ in (3.13) and setting $p=p_{\varepsilon}$, where $p_{\varepsilon}(a)=p_{\varepsilon}(b)=(1-\varepsilon) / 2$ and $p_{\varepsilon}(x)=\varepsilon /(|X|-2)$ for all $x \in X-\{a, b\}$, it is easy to check that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} q_{\varepsilon}(A-a)-c(A-a)=\frac{1}{2} \sum_{\{a, b\} \in E \subset A} m(E) \tag{3.14}
\end{equation*}
$$

Since the right-hand side of (3.14) is negative by (3.12), there exists an $\varepsilon>0$ such that $q_{\varepsilon}(A-a)<c(A-a)$.

If A is a proper subset of X, write $q=q_{\varepsilon}$ in (3.13) and set $p=p_{\varepsilon}$, where $p_{\varepsilon}(a)=p_{\varepsilon}(b)=\varepsilon, p_{\varepsilon}(x)=\varepsilon^{2}$ for all $x \in A-\{a, b\}$, and $p_{\varepsilon}(x)=\left(1-p_{\varepsilon}(A)\right) /$ $|X-A|$ for all $x \in X-A$. Again, it is easy to check that (3.14) holds, so that $q_{\varepsilon}(A-a)<c(A-a)$ for some $\varepsilon>0$.

4. REMARKS

Note that, given a 2 -monotone capacity c with Möbius transform m, the formula

$$
\begin{equation*}
q(A)=\sum_{\substack{E \subset X \\ E \neq \varnothing}} m(E) p(A \mid E) \tag{4.1}
\end{equation*}
$$

might, by Theorem 2 , function as a rule for updating the prior probability p in the light of new evidence that bounds the possible revisions of p below by c. This proposal is examined in detail in the case where c is infinitely monotone in Wagner, ${ }^{(8)}$ where a formal criterion for applying (4.1) is presented when c arises from a multivalued mapping from some prob-
ability space to X, as in Dempster. ${ }^{(3)}$ We note also that if c is infinitely monotone (whence m is nonnegative, by an earlier remark) and $\mathscr{E}=$ $\{E \subset X: m(E)>0\}$ is a partition of X, then $q(E)=m(E)$ for all $E \in \mathscr{E}$ and (4.1) becomes

$$
\begin{equation*}
q(A)=\sum_{E \in \mathscr{E}} q(E) p(A \mid E) \tag{4.2}
\end{equation*}
$$

the well-known conditionalization rule of Jeffrey, ${ }^{(4)}$ whereby the posterior probability measure q is specified first on members of the partition \mathscr{E}, and then extended by (4.2) to arbitrary subsets A.

We remark in conclusion that the "Shapley value" q * of a 2-monotone capacity c (which allocates benefits to cooperating parties in the convex game c-see Shapley ${ }^{(7)}$), defined for all $a \in X$ by

$$
\begin{equation*}
q^{*}(a)=\frac{1}{|X|!} \sum_{\substack{A \in X \\ a \in A}}(|A|-1)!|X-A|!(c(A)-c(A-a)) \tag{4.3}
\end{equation*}
$$

is simply the p-smear of the Möbius transform m of c, where p is the uniform probability measure on X. We leave the proof as an interesting combinatorial exercise.

ACKNOWLEDGMENTS

Carl Wagner's research was supported in part by grants from The University of Tennessee and the National Science Foundation (DIR8921269).

REFERENCES

1. Chateauneuf, A., and Jaffray, J. (1989). Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17, 263-283.
2. Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier 5, 131-295.
3. Dempster, A. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325-339.
4. Jeffrey, R. (1983). The Logic of Decision, 2nd ed. University of Chicago Press, Chicago.
5. Papamarcou, A., and Fine, T. (1986). A note on undominated lower probabilities. Ann. Prob. 14, 710-723.
6. Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton.
7. Shapley, L. (1971). Cores of convex games. Int. J. Game Theor. 1, 11-26.
8. Wagner, C. (1992). Generalized probability kinematics. Erkenntnis (to appear).

[^0]: ${ }^{1}$ Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996.

