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Characterizations of Monotone and
2-Monotone Capacities

Carl Sundberg’ and Carl Wagner'
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Given a capacity ¢ and a probability measure p on a finite set, there is a natural
way to combine ¢ and p to produce a measure. For fixed ¢, these measures are
probability measures for all p precisely when ¢ is monotone, and dominate ¢ for
all p precisely when ¢ is 2-monotone.
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1. INTRODUCTION

A capacity on a finite set X is a mapping c: 2% — [0, 1] such that ¢(ZF) =0
and ¢(X)=1. A capacity c is monotone if A = B=>c(A4)< c(B), superadditive
if AnB=g=c(AuB)=c(A)+c(B), and r-monotone if, for every
sequence A,,.., A, of subsets of X,

Cd,u---ud)> Y (—1)'”—1c(m A,) (1.1)

iel

Two-monotonicity is also called convexity, a term justified in Shapley.”
A capacity that is r-monotone for all r =2 is called a belief function, a
term due to Shafer,® or an infinitely monotone capacity, a term due to
Choquet.®

A probability measure ¢ is said to dominate a capacity ¢ on X if
g(A) = c(A4) for all 4= X. There may of course be no such dominating
probabilities, even if ¢ is superadditive (see Papamarcou and Fine!).
Shapley'”) has proved, however, that 2-monotonicity of ¢ is sufficient
(though not necessary) for the set of probability measures dominating ¢ to
be nonempty.
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A useful tool for studying a capacity ¢ is its Mébius transform m,
defined for all E< X by

mE)=Y (=1)F " (H) (12)

Hc E

Clearly, m: 2¥ - R, m() =0, and for all 4 X,

Y mE)=Y Y (—1)FHc(H)

=) cH) ) (=DEA
HcA HocEcA
|4 —H| _
= z c(H) Z (—l)i(|A iH|>=c(A) (1.3)
Hc 4 i=0

In particular,
Y, m(E)=c(X)=1 (1.4)

EcX

From the Mobius transform of any capacity we can construct a
measure g as follows. Take any “weight function” 1: X x 2¥ — [0, 1] such
that (i) x¢ E=A(x, E)=0, and (ii) >_, A(x, E)=1 for all nonempty Ec X,
and, for all A<= X, let

qAy=3 Y. Mx, E)ym(E) (L.3)

xeAd EcX

We call such a set function ¢ a smear of m. Clearly ¢(&)=0, g(X)=1, and
AnB= @ =q(Au B)=q(A)+q(B). Hence g is a probability measure if
and only if ¢ is nonnegative.

Chateauneuf and Jaffray") have proved that if ¢ is a capacity, then
every smear of its Mobius transform m is a probability measure if and only
if

m({x})+ Y min{m(E),0}>0 forallxeX (1.6)
K
Note that monotonicity of ¢ is necessary (though not sufficient) for (1.6).
There is of course no guarantee that such smears of m will dominate c.
However, using the fact that a capacity is infinitely monotone if and only
if its Mobius transform is nonnegative, it is easy to prove that if ¢ is a
capacity, then every smear of m is a probability measure that dominates ¢
if and only if ¢ is infinitely monotone (see Dempster,”®’ Shafer,® and
Chateauneuf and Jaffray").

Our aim here is to prove analogous results for the restricted class of

probability-based smears. Specifically, suppose that p is a probability
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measure on X such that p(£)>0 for all non-empty £F< X, and define
A Xx2¥-[0,1] by Ax, F)=0 and A(x, E)=p(x|E) when E# .
(Here, and subsequently, we omit curly brackets from our notation for a
singleton set if no confusion arises thereby.) With this p-based weight
function, (1.5) takes the nice form
()= m(E)p(4|E) (L7)

EFcocXx

Ex
We call ¢ (generically) a probability smear of m and (specifically) the
p-smear of m. We shall prove that if ¢ is a capacity, then every probability
smear of its Mobius transform is a probability measure if and only if ¢ is
monotone, and that all probability smears of m dominate ¢ if and only if
¢ is 2-monotone.

2. PRELIMINARIES

In this section we establish several lemmata used in the proofs of our
main results.

Lemma 1. If A is a finite set, p is a measure on A4, and ¢: 2% - R,
then

2 pO)H(C)= ) pla) 3, 4(C) (2.1)
Caed ac A Cc A
C#* & asC

Proof. Replace p(C) by 3, ¢ p(a) on the left-hand side of (2.1), and
then interchange summation. 0

Lemma 2. If S is a finite set and ¢, ¥: 25 > R, then
T HCO)H(C)= Y ( 5 ¢<E)>( T (=) yF C)> (2.2)
=S Cc=8S EcC Fec8S~C

Proof. The right-hand side of (2.2) is clearly equal to

> (x ¢<E))( 3 (~1)'G%(G>)

Cae§S \EaC Ce=Ge S

Y owG) Y HE) Y (=ped

G S EcG EcCcd

> ¥(G)$(G)

G S

Y 4(C)Y(C) O

CeS

I

Il

860/571-11
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Lemma 3. If u>0and p,>0for all ie [n] := {1,..,n}, then

L0 (urs p,->—1>0 23)

I=[n] iel

Proof. 1f x>0, [¥ e di=x"", and so the left-hand side of (2.3) is

equal to
J ( Y (- )|1|ez,-elp,z>e—uz d
I1<=[n)
= f ( Y 11 (—e‘”“))e“’ dt
0 Nycpn]iel

:Jw<n (1—e”"’)>e““’dt>0 O
0 \j=t

Lemma 4. A capacity ¢ on X is 2-monotone if and only if its Mobius
transform m satisfies

y m(E)>0  foralla,be Xandall 4= X
{a,b}cEc4 such thata, be A

Proof. See Chateauneuf and Jaffray.")

3. MAIN RESULTS

In this section ¢ denotes a capacity on the finite set X, and m its
Mobius transform, as defined by (1.2). A probability smear of m is a
mapping ¢ defined by (1.7), where p is a probability measure on X such
that p(E)>0 for all Ec X.

Theorem 1. 1If ¢ is a capacity, then every probability smear g of m is
a probability measure if and only if ¢ is monotone.

Proof. Sufficiency. As remarked in Section 1, it suffices to show that
g(a) =0 for all ae X. By (1.7) and (1.2),

m(E)
g(a)= ng m(E) p(a| E) = p(a) ng (E)
E# aec E
=p(@) T s ¥~ e
Et:X Hc E
acE e 1
SCRRUINC

=pla) Y (c(Hua)—c(H) 3 (_1)15—(Hua)|;1_

HcocX—a EocHua (E)



Monotene and 2-Monotone Capacities 163

which is nonnegative by monotonicity of ¢, and by Lemma 3, with
u=p(Hua) and p,= p(x,), where X — (Hu a) = {x,,.., X, }.

Necessity. If ¢ is not monotone, there exists a set 4 X, with [4] =2,
and g€ A4 such that ¢(4)—c(4 —a) <0, and so by (1.3),

Y, mE)— 3 mE)=} m(E)<0 (3.1)

We show that there exists a probability measure p such that g{a) <0,
where g is the p-smear of m. First note that for any probability measure p,
if ¢ is the p-smear of m, we have from (1.7) that

gla)= Y, m(E)pla|lE)+ } m(E)p(a|E) (32)
by Fes

Suppose first that 4 = X. Writing ¢ in (3.2) as ¢, and setting p=p,,
where p.(x)=¢/(|X] —1) for all x+#a, and p,(a)=1—¢, it is easy to check
that

lim g,(a)= Y. m(E) (3.3)
g0 EcA
acE
Since the right-hand side of (3.3) is negative by (3.1), there exists an ¢ >0
such that ¢,(a) <0.

If A is a proper subset of X, again write ¢ in (3.2) as ¢, and set p = p,,
where now p.a)=¢ pJx)=¢> for all xed—a and p,(x)=
(1—p,(A4))/|X—A] for all xe X— 4. It is again easy to check that (3.3)
holds in this case, and so g,(a) <0 for some &> 0. O

Theorem 2. 1If ¢ is a capacity, then every probability smear g of m is
a probability measure that dominates ¢ if and only if ¢ is 2-monotone.

Proof.  Sufficiency. It suffices to show that g{4) > ¢(A4) for every non-
empty subset 4 of X. By (1.7) and (1.2), with 4 := X—A4,

g(d)= > Y m(CuD)p(C|CuD)

CcAd DcAd
C#

=2 X X (=P ¥ (=) (GUH) p(C|CUD)
gi% Dcd HeD Ga=C

(3.4)
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On the other hand, by (1.2) and (1.3),

Y X X (=PI (1) (G) p(CICu D)

CcAd Dcd HcD G=C
C#
= ), m(C)p(CIC)=c(4)
=

and (3.4) and (3.5) yield

gA)—cd)=Y Y Y (=LA ¥ (—1)c-C

g;% Dcd HeD GeC
x (c(Gu H)—c(G)) p(C|Cu D)
=Y Y Y (=D (c(GuH)-c(G))

CcAd Hod G=C

C#J
—1)IP—Hl p(C)
R T e R Ta Faey T
= Z_ Z (_1)IKI Z z (_1)|CfGI
Hcd KcA—H CC;% GeC
p(C)
NAGH) =) e ) + (K

Applying Lemma 1 to the last line of (3.6) yields
gd)—c(4)= 3 Y (=D Y pa)

o5 Zoec (CD N AGU )~ d(G)
=) P(C)+ p(H) + p(K)

(3.5)

(3.6)

(3.7)

The part of (3.7) beginning with the fourth summation sign is clearly equal

to

5y {2 (—U“M‘G‘(c(GuH)—c(G))}

CacAd—a “\GcCua

x {p(Cua)+ p(H)+ p(K)} '

which by Lemma 2, with S=4—a, ¢(C) equal to the first bracketed
expression above, and ¥(C) = {p(Cua)+ p(H)+ p(K)} ', is equal to
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Y { Yoy (—IWEU”m(dGLJH)—CU}D}

CcAd—a \EcC GoEua

x{ T~ (p(Fucua)+p(H)+p(K))1}

Fc{d—-a)y—-C

=y {Z Y (*1)'5’0‘(0(GUH)——C(G))}

CecAd \EcC GcE
aeC acE

x{ y <~1)‘”(p(Fuc)+p(H)+p(K>)*} (38)

FocA-C

The first bracketed expression in the preceding line is, by an interchange of
summations, equal to

» [ » (~1>*E‘G'](c(GuH)—c(G))

GoC LG E=C
acG

oy [ » <~1>'EG'“}(c<GuH>-c(G))
GecC—a LGocEcC—a

=c(CUH)—c(C)—c((C—a)UH)+c(C—a)

1= a(a, C, H) (39)

From (3.7), (3.8), (3.9), the fact that p(FUC)+ p(H)+ p(K)=
p(Cu H) +p(Fu K), and the substitution G = Fu K, we have

q(A)—c(4)= 3 % pla) Y ala C H)B(C H) (3.10)

where

__1)IGi
BC H)= ¥ (=1

3.11
ool PCUE T (G) (3.11)

Since Cn H=(J, the convexity of ¢ ensures that a(a, C, H)>0. That
B(C, H) =0 follows from Lemma 3. Hence g(A4)—c(A) >0, as asserted.

Necessity. If ¢ is not 2-monotone, then by Lemma 4 there exist a set
Ac X and a, b€ A such that

S m(E)<0 (3.12)

{a,b}cEcA
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If a=b, then c(4) —c(4—a) <0, and we argue as in the proof of necessity
in Theorem 1. So suppose that a#b. We show that there exists a
probability measure p such that g(4 — a) < c(4 — a), where ¢ is the p-smear
of m. First note that for any probability measure p, if g is the p-smear of
m, then from (1.7), (1.3), and the fact that p(4 —a|E)=1 when Ec 4 —aq,
it follows that

gAd—a)—c(d—a)= ) m(E)p(4A—alE)
Ee i a

= Y m(E)p(4—alE)

+ 5 m(E)p(A—al|E) (3.13)
EcX
Ed¢ Ad
Suppose first that 4 = X. Writing ¢ =g, in (3.13) and setting p = p,,

where p,(a)=p,(b)=(1—¢)/2 and p,(x)=¢/(|X] —2) for all xe X — {a, b},
it is easy to check that

lim g,(4A—a)—c(A—a)=5 Y m(E) (3.14)
&0 {a,b}cEcA
Since the right-hand side of (3.14) is negative by (3.12), there exists an ¢ >0
such that ¢,(4 —a) < c(4 —a).

If A is a proper subset of X, write ¢ =g, in (3.13) and set p = p,, where
p.a)=p.(b)=¢, p,(x)=¢for all xe A~ {a, b}, and p,(x)=(1 - p.(4))/
| X — A| for all xe X— A. Again, it is easy to check that (3.14) holds, so
that ¢g,(A4 —a) < c(4 —a) for some &> 0.

4. REMARKS

Note that, given a 2-monotone capacity ¢ with Mobius transform m,
the formula

g(4)= 3 m(E) p(4|E) (4.1)

EcX

Ex
might, by Theorem 2, function as a rule for updating the prior probability
p in the light of new evidence that bounds the possible revisions of p below
by c¢. This proposal is examined in detail in the case where ¢ is infinitely
monotone in Wagner,® where a formal criterion for applying (4.1) is
presented when ¢ arises from a multivalued mapping from some prob-
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ability space to X, as in Dempster.””’ We note also that if ¢ is infinitely
monotone (whence m is nonnegative, by an earlier remark) and &=
{Ec X:m(E)>0} is a partition of X, then ¢q(E)=m(E) for all Ec€¢ and
(4.1) becomes

q(4)= Y 9(E) p(4|E) (4.2)

Eeé&

the well-known conditionalization rule of Jeffrey,®’ whereby the posterior
probability measure ¢q is specified first on members of the partition &, and
then extended by (4.2) to arbitrary subsets 4.

We remark in conclusion that the “Shapley value” ¢* of a 2-monotone
capacity ¢ (which allocates benefits to cooperating parties in the convex
game c¢—see Shapley!”’), defined for all ae X by

T T (Al DX - AR el ~eld—a)  (@43)

ac A

g*(a)=

is simply the p-smear of the Mobius transform m of ¢, where p is the
uniform probability measure on X. We leave the proof as an interesting
combinatorial exercise.
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