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Let |S|=n. The numbers m(n k)={(S,..... S$):US, =S and. Vie['. k]
1Jig: S;#SY have been studied oreviously by Hearne and Wagner. The przsent paper
*-aats three arrays, m(n, k), m(n, k). and m(n, k). which extend m(n, k) in th: sensc ‘hat
vey o pLk)Y=mlp, - plk)=rilp, - - - p. k)=m(s, k) for all sequences (p,..... p,) of
distinct primes.

1. Introduction

A sequence (S,, ..., S;) of sets (called blocks) with |J S, = S is called a minimal
vrdered cover of S if, Vte[1, k], | J,., S; is a proper subset of S. It is skown in [2]
that the number of minimal orderzd covers of an n-set, with k blocks, is given by

k
m(n k)= Y (—1)'(’:)(2"—l—r)". (1.1)
r=)
If we set
m(n. k)={(d,..... d.):lem.(d)=n, and Vte[l,k]. l.em. (d),., <m}.(1.2)

and

m(n, k)= l{(d.,....dk):di|l1,n IT] d. and Vie[1,k], n ¥ I:[’d.-} . (1.3)

then it is clear that m(n, k) and m(n, k) extend m(n,k) in the sense that
m(p, - - p,, k) =m(p, - * - py k) = m(s, k) for all sequences (py, ..., p,) of distinct
primes. We derive here explicit formulas for m(n, k) and m(n, k), and consider in
addition a third extension, m(n, k*, of m(n, k) given by

k k
Al k)= ) (—1)’( )T:.A_._,(n), (1.4)
r=0 r
where
r l )
T,(n)=|i(d,,....d,.):[|d,=n}|. (1.5)

The mi(n, k) are perhaps the most natura! :xtension of the min, k). The mitn k).
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88 C.C. Wagner

on the other hand, are defined purely in terms of lattice properties of the nitural
numbers ordered by divisibility, and thus suggest the poss.pility of generalization
tc 2 broade: class of lattices. As for the ri(n, k), we have

o m]ﬂ_ Z ( 1)p( )czk—l r( ), (1'6)
nel

whereas
) n k
,‘; m(n, k) -"‘ﬁ = ';o (- 1)'(':)e¢2“*1-"*, (1.7)

so that the i(n, k) are a natural extension of the m(n, k) from the standpoint ot
generating functions (se Section 4). We remark thai in some cases i{n, k) is
greater than the total namber of sequences (dy, . . ., di) of divisors of n, preclud-
ing a combinatorial interptretation of #i(n, k) analogous to (1.2) and (1.3).

2. Tie nembers m(n, k)

-~

Tor
mn, k)={(d,...,d):lem.(a)=n and Vie[l, k], 1.om. (d),,, <n}
2.1

we have the ;ollowing explicit formula:

Theorem 2.1. Let n=p} - - - p,', where the p; are distinct primes and the n; are
positive integers. Then, Yk=1,

k s
(n k)= Y (- 0’(’:) TT [G + 1) — k= mi, (2.2)
r=0 fi=1
Proof. Writing each divisor d. of n as d; =p}: - - pl, it is clear that rii(n, k)=
|L}, where L consists of a!! k Xs matrices (x;) such that (1) 0<x;=<n;, (2)
Wjel[l. s], 3ie[l, k] such that x; =n;, and (3) Yre[l, k], 3j€[1, 5] such that
x;<m. Vi#r. Let 3 denote the set of all k Xs matrices satisfying p:roperties (1)
and (2) above. For each re[1, k|, let B, denote the set of matrices (x;) € B such
vhat, V, €[1, s}, 3i+¢ r such taat :;, = n;. Then L=B-(B,U --- UB,) and by the
princ.ple of inclusion and exclu:ion
k

tiin, k) =|L|=|B|+ Y. i~ 1)’(’:)|Bm .. B, (2.3)

r="

Now the columns of 1 matrix in B or in BN --- N B, may be chosen inaepen-
Jently of each other. Hence

[81=[] Lin;+ D)% —n¥]

[
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and
|8,N---NB,|= _['[1[(n,.+ Dk —nk—m4 1,
-

which, with (2.3), yields (2.2).
It foilows from (2.2) that m(n, 1)=1 and m(p™, k)=0. Vk =2. Moreover

S k
mlpy -+ puk)=) (- l)'(r)(Z"— =1 =m(s, I),

=0 \
as one would expec: from (2.1) and (1.1).
Replacing the vatiable r in (2.2) by k - r vields

k s
min ki= 3 (“”k_'(k\ L B T T L A
1

ji1 i
r=0 ! Il

= Ak ﬁlv(n,--l— D*=nl ~kn} '+ a0t ']" o
ol
hence it is clear that h(p} - - - p’ k)= 0if k >s. Moreover.
wpt - prs)=ANn, o n) T xS L =sWny o)
which may also be derived directly from (2.1).
3. The namber. m(n, k).

For
mn, k1= I{(d,,....dk):diln. n |Hdi, and Vre[l. k]. nfﬂa!,“,

[N
(3.1)
we have the following explicit formula:

Theorem 2.1. L.t n=p\' - pl. where the p, are distinct primes and the n, are
positie integcre Then, Yk =1,

k ' 5 r
in k)= L (=) 7T 5, -0 Jstme ko0, 3.2)
r=9 r 1=t =0 v
where
k-
s(n;,k.0)=(n,+l)"-—(n’+i: ”;. (3.3)
_ n+k-2 n+k-2
s(n;, k. u)=n,-( Jk-l )—-( ! k ) RIS

and for v =2,
n -1

s(nj, k v)= Z

=0

1315

(P,—l-—fv—lh*(l«'~v)‘)
A -1 ’

Preoof. Writing cach divisor d of woav d =py -0 itas e that s b
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M|, where M :onsists of all k Xs matrices (x;) such that (1) 0<x;<n; (2)
Yaxy2n,and (3) vre(l, k], 3je[1, s]such that } ., x; <n;. Lct S denote the =2t
of all k X s matrices -alisfying properties (1) und (Z) above. For each re[1, k], let
&, denote the set of matrices (x;)€ S such that Vje[l,s], Xix x;=n. Then
M=8~-(S;V --- US,) and so by the principle of inciusion and exclusion,
_ & 1 ivH . .
mi(n, k) ={M|={S|+ 2, (1) \r}lsxn' NS, (3.6)
rwl
Now the columaus of a matrix in S may be chosen independently of each other.
Denote by s(n, k, 0) the number of possible choices for the jth column of such a
matrix. Then

s(ny, k, 0)= {(xl, ceea X):0=xsn and Zx,an,-}i
" k=1 l
aCRUED N )
= {my+ 1) - (”’ +,': - 1), (3.7)
and <o
|5 =;-ﬁ| s(n;. k, 0), (3.8)

where s(n;, k, 0) is given by (3.7).

Similarly, th: colvinns of a matrix belonging to §,N-:-NS, may be chosen
in.iependently of each other. The jth column of such a matrix consists of a
sequence (x,, ..., X) such that 0=<x;<n; and, Yo e[l, 1], (x;+- - - +x)~%,=n,
Let T={(x,," -+, x.):0<x;=mn; and x,+ - +x,2:n}, and for all ve[l,r], let
T,={(x1,.... )€ T:(x,+ - +x)~x,<n}. It follows from the principle of
inclusion and exclusion tnat the jth column of a matrix in S;N--- NS, may te
choten in

4 \
T+ 3 -0} 1mn-
=1 v
ways. By (3.7), |T|=s(n, k, J). Denote |T,N - - - NT,| by s(n, k, v). Then

s.n---ns)=T1[ ; (—-1)"(;)3(:1,, k, a)], 39

and we need only evaluate the s(n;, k, v) for v=1 to complete the proof.
Clearly, s(i, k, v)={(x .-+, x):0=x,<n, X+ X =n, and
(xy+---+x)—x,<n, for all ze[1, v]l. W enumerate such sequences by the
value w taken on by x,(1<w <n;). For fixed w = x,. we must count all scquences
(x3,. .,x,) such that (1) x +--- +xeZm-w, (2) X+ +x%<n, and (3)
(x;+ -+ +x)—x,<n~w fc- all -€{2,v]. We ccunt such sequences by the
value n,-w+1t raken on by . o+ -+ +x (0=<t<w- ). For fixed 1, we require
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the number of -olutions to x,+ - - -.c, = n;— w+ 1 subject tc x, > ¢ for i€[2, v and
x;=0 for ie[v+1, k]. There are
(n,-—w+t—1—(v ~Dr+(k —v))
k-2
such solutions. Hence

) w—1 n — 1l . B
stnp k,v)= Y ZO(, w+t lkf-lz De--(k v))

w=11
="i‘ Z (nf——w+t—i—(v—1)t+(k—v))
t=0 w=t+1! k_z
_% ( —1-(o=1)t+{k~ u)) ((k— v)—(v-—2)t—l)]
t=0 k-1 k-2 )
(3.10)
We noie that
s(n,,k 1)_ Z [(n +k- (k+f—‘2)J
k-1
=n(n,-+k--2)_(n,+k—2) 1
§ k—l k ] (J. 1)
and that for v =2,
" — ) — + —
s(n, k,v)= Z (n 1= (Lk L+ (k v)\' (3.12)
t=0 - .l
In particular,
+k—2
S(ni9 ’!2,2)=(ni k ) (3.13)
Theorem 3.2. Let n=p}: - p& where the p, are distinct primes and the n, are
positive integers. Then m(n, k)=0, if k>n + -+ +n,. Moreover
+0 o 4n)!
m(py' - - - pse n,+...+ns)=("l ") (3.14

nt---n!

Proof. It is clear from (3.5) that if v > n, then sin,. k, v)= 0. Hence we may write

X k
m(n, k)= Z (—l)’( )H (—1)( )s(n k. v). (3.15)

r=0 ;llf)

Replacing the variable r in (3.15) by k —r yields

n

m(n, k)= Z( - 1)k '( \H y. (=1 (k r)u’n,, k. v)

r=u0 :,1.(1

5

= Ak H z (- l)’(k _'\.)s(n,. k.o, - 13 T
&

j=1r=0
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It follows from (3.4) and.(3.5) that s(m, k n)=1, vk >1. Hence m(n, k)=
A¥(x)|s-0, Where degf(x)=n,+---n, and so m(n,k)=0 if k>n,+---+n,
Moreover,

min,n,+- .- +n,)
xll.-!--.-*" =(nl_|_ PR +n')!

x=0 nyd--on!
. ]

. LR (3.17)

n;!"'n‘!

We conclude this section by noting some special cases of (3.2). We have
m(n, 1)=1, Vnzz and

m(t,z)=n(”'+2) 2f](n,+1)+1. (3.18)
=3 =1
Moreover,
k k
m(py - po k)= Zn(_- 1)’(')(2* -1- r)* = m(s, k), (3.19)

as one would expect from (1.1) and (3.1).
For n=p™, we have

aem k=3 ¥ (- )""(")(’)s(m,k,u) (3.20)

re]lp=]

Lok 50 ()()

=s(m, k, k),
as one would expect. Hence #(p™, 1)=s(m, 1,1)=1, and for k=2.

TS (M= = (k=1 TR 1 (= 1)

meno=2 ("), (TG TT) e
since (m—1)--(k - 1)t<k-1if t>[(m—k)/(k—1)). In particular,

m(p", 2)= (;‘)

m(p", m)=:1, (3.22)

m(p”, n-1)=(m- ]1)+llml__2), m=3,

4. The nnmbers ss(n, k)

Let o, (n) dencte thz number of ordered partitions of an n-set, with k blocks.
As is well-known,

F(n) = 8%, . = 2( 1)"~() 4.1)

r=0
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In [1], Carlitz considered the numbers

Ti(n) = 'g (= ll""( :f)'r,m), (4.2)
where

7,(n)=H(d,,.. ,d):11d, = n}|. 4.3
It follows that

Tn)=Hd,,.. ,d):d;>1 and [ld,=n}| 4.4)
and

7ip1* ** p) = 0u(s) (4.5)

for all sequences (py, ..., p,) of distinct primes <o that ‘n Carlitz's terminolcgy,
the 7,(n) extend the a,(n). In addition, it is easy to see that

) rrk(n)f-,=P(e") (4.6)
n=] h!
and
Y T piyn, (4.7)
n=1 N
where
P(zx)=(z—1)", (4.8)
Since
. k
m(n, k)= Z (- 1)’(,_)(2" —-1-r)", 4.9)
r=0
the foregoing remarks suggest that we consider the array ri(n, k) given by
. k
it )= 3 (= 1( i, (4.10)
r=0
It is clear that the ri(n, k) extend the m(n, k). Moreover,
o xl’l
Y m(n k)= =Mie) (4.11
n=} n:
and
Z M(n; k)=M(£(S)), 4.12)
n=1 n
where

k k 19
M(z)=Z("l)'( )."?l_l I SS L 4,13
r=0

r
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For n =p}: - - - pj» we have the expanded formula

A(n, ko= fo (- 1)'(’:) ][J' ("" +2:}"2" ) 4.14)

'We may employ finitc difference mcthods on (4.14). as we did with m(n, k) and
m(n, k), sc show that m(n, k)=0 if k>n,+ -+ n, and that

(ng+---+n
nd--n!

!- 'y -

mn,n +--+n)= =m{r,n,+---+n,). (4.15)

Moreover, it is easy o check that m(n, 2) = r(n,7), (see (3.18)). For n=p™, we

have
, * (k\(m+2*-2-r
m(p 'klz,é,(hl") (r)( m )
=A"(m --k-l-2"—2+x)
nm x=0
=(m-k +2 —2). (4.16)
m-—k
n particular,
. 'm43
m(p™, 3)=| 6 ) 4.17)

On the other hand, tae total number of sequences 1d,, d,, d;) of divisors of p™ is
(m+1)°, and since, for example, m(p*®, 3)> 113, there is no possibility of furnish-
ing a combinatorial interpretation of the m(n, k) analogous to those of m(n, «)
and m(n, k). Howevar, it is clear irom (4 10) that

n, kKN=|{(dy. -+ -, doe_g):[ldi=n and d,>1,Vie[l,k]}, (4.18)

and <o the (a(n, k), like the i'n, k) and ri(n, k), count divisor sequences (albeit
with length 2% —1, rather than k) having a certain minimality property.
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