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Power hyper-sums enumerate quasi-monotone functions
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Abstract. We show that the sequences obtained by taking repeated partial sums of regular powers, falling factorials,
and rising factorials enumerate certain classes of what we term quasi-monotone functions. In the latter two cases, a
g-analogue is also provided.
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1 Introduction

In what follows, P denotes the set of positive integers, and [n] = {1,...,n} for all n € P. If E is any
finite set, then |F| denotes the cardinality of E. If a : P — R, and m € P, the m-th degree hyper-sum
S (n) is defined inductively by

S2(n) = 1) + - +a(n), and 1)
1(n) =8y (n) +---+ 5y (n) foralmeP. (2)
Since, for all m € P, the ordinary generating functions of the sequences {c(n)},>1 and {S% (n)}n>1
are clearly related by the equation

Sa

m

1=2) ™Y a(m)a = 3 84 m)a", (3)
n>1 n>1
it follows immediately that
o B - ~fn—j+m—1
S0n) —;aw( . (@)

Let r € P. In what follows, we consider the special cases of the above given by (i) a(j) = j", (ii)
a(j) = j% = j(j — 1)+ (j —r+1), and (iii) a(j) = 77 i= j(j+ 1)+ (j+7 — 1), denoting 5% in these
three cases, respectively, by S, Si,, and ST .
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2 Quasi-monotone functions
If r,m,n € P, a function f : [r +m] — [n + m] is (r,m,n)—quasi-monotone if
f@)<fr+1) < f(r+2)<---<f(r+m), fori=1,...,r (5)

As shown below, the quantities S7,(n) and Si(n) each enumerate a certain class of (r,m,n)—quasi-
monotone functions, and thus admit of simpler expressions than those furnished by formula (4). A
slight variation on the notion of quasi-monotonicity facilitates a similar simplification of (4) in the
case of ST (n). Our analysis is based on three results from elementary combinatorics, namely, (i)
=|{f:[r] = [5]}, (i) 5% = [{f : [r] — [j] such that f is injective}|, and (iii) j© = the number of
distributions of balls labeled 1,...,r among contents-ordered boxes labeled 1,...,j [1, pp. 19-23].

THEOREM 2.1 For all r,m,n € P,

s =35 ("I ) = k;am n(pm). ©)

j=1

where o(r, k) = Zfzo(—l)i(l?) (k —14)" is the number of surjective functions f : [r] — [k].

7

Proof. = The n-fold sum in (6), which follows from (4), enumerates the set of (r,m,n)—
quasi-monotone functions f : [r+m| — [n+m], the j-th term of this sum enumerating those f for which
f(r+1)=j+1. In the r-fold sum, the k-th term enumerates those f for which [range(f)| = k+m. O

When m = 1, (6) reduces to the well-known power sum formula
S =S (i) g
= k+1)’

see, e.g., [4, 6]. Various g-analogues have been developed for power sums; see, e.g., [2]. We remark
that (7) often appears in the variant form,

Zﬂ S AT (8)

k‘+1

where {}} = U(Z’!k) is the Stirling number of the second kind.

REMARK 2.2 The n-fold sum in (6) may also be reduced to the r-fold sum by a more involved algebraic

argument, using the fact that
R j
"= k 9
=Y et (}). )

k=1
along with the binomial coefficient identity (see [3])

() -G o

J=1
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We next consider the case when a(j) = j-.

THEOREM 2.3 For all r,m,n € P,

Z (n—y—i—m—l)zw‘ )

2 r+mm
Proof. =~ The n-fold sum in (11), which follows from (4), enumerates the set of injective
(r,m,n)—quasi-monotone functions f : [r + m] — [n + m|, where, as above, the j-th term in this
sum counts those f for which f(r + 1) = j + 1. This sum may be simplified as indicated in (11) by
showing that

(n -+ m)=E — (1 + m)™SE, (). (12)

Let F'={f :[r+m] — [n+m] such that f is injective} and G = {g : [r+m] — [n+m] such that g is
(r,m,n) — quasi-monotone and injective}. In what follows, we regard members of F' as distributions
of balls labeled 1,...,r +m among boxes labeled 1,...,n 4+ m, with at most one ball per box, and
members of G as distributions of the aforementioned type such that (a) ball r + i occupies a box with
a smaller label than that of the box occupied by ball »r +i+ 1, for i = 1,...,m — 1, and (b) each of
the balls 1,...,7 occupies a box with smaller label than that of the box occupied by ball » + 1. Now
consider the map 1 : F' — G defined as follows: Given a distribution f € F, let ¢(f) = g, where (i)
g has the same set E C [n + m| of empty boxes as f, (ii) balls 1,...,r are placed in the r boxes of
[n+m| — E with the smallest labels, and in the same order in which they appear in a left-to-right scan
of the distribution f, and (iii) balls 7+ 1,...,r +m are placed in the remaining boxes in their natural
order.

1 =L Bl U5, 215 8164156
)= D12D34567@89

Figure 1: An illustration of the mapping ¢ when r =3, m =4, and n = 5.

Clearly, each distribution in G has (r +m)™ pre-images in F' under . O

THEOREM 2.4 For all r,m,n € P,

P s (n—jtm—1\  (r+m4n-—rm o prim
Sm(”)_zj< m—1 )‘ rrmm T (13)

j=1

Proof. The n-fold sum in (13), which follows from (4), enumerates the distributions of balls labeled
1,...,7 4+ m among contents-ordered boxes labeled 1,...,n 4+ m such that (a) each of the balls r +
1,...,7+mis the sole occupant of its box, (b) ball r + i occupies a box with smaller label than that of
the box occupied by ball r+i+1, fori = 1,...,m—1, and (c) each of the balls 1,...,r occupies a box
with smaller label than that of the box occupied by ball » 4+ 1. The j-th term in this sum enumerates
those distributions in which ball r + 1 occupies box j 4+ 1. This sum may be simplified as indicated in
(13) by the following argument.
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Let A denote the set of distributions of balls labeled 1,...,7 4+ m among contents-ordered boxes
labeled 1,...,n 4+ m in which boxes n+ 1,...,n + m remain empty. By an earlier observation, |A| =
n"t™. Given A\ € A, let x be the right-most ball, in the sense that there are no balls in boxes with
a greater label than that of the box occupied by x and, if there is more than one ball in the box
containing x, then x occupies the right-most position in its box. We first move = to the right by m
boxes (so, for example, if x occupied box n in the distribution A, it would now occupy box n+m). We
then move the second right-most ball y of A to the right by m — 1 boxes (so if y belonged to the same
box as x, necessarily preceding x directly in that box, y would now occupy the box directly preceding
the one now containing x). Continuing in this fashion, move the m right-most balls of A such that the
i-th right-most ball is moved to the right by m — i + 1 boxes, for each i € [m].

Let A\* denote the configuration (now allowing for any of the n + m boxes to be occupied by
balls) which arises after applying the above procedure to A. It may be verified that the map A — \*
is a bijection from A to A*:= the set of distributions of balls labeled 1,...,7r + m among contents-
ordered boxes labeled 1,...,n + m in which the m right-most balls occupy distinct boxes. So also
|A*| = n"t™. But here we are interested only in those A* for which the m right-most balls are precisely
r+1,7+2,...,r+m, occurring in that order from left to right. Now the probability that a A* randomly
chosen from A* has this property is

7! 1 1

(r+m)  (r+m)r+m—-1)--(r+1) (r+1)m

This can be seen by fixing the number of elements that occupy each box, and then assigning the r +m
balls to the  + m slots within the boxes to be occupied by at least one ball. It follows that

7 _ |A*| _ nm
Sml?) = G F

3 g-analogues

In this section, we consider g-analogues of the last two results. Given an indeterminate g, let [j], =
14+q+--+¢Lif j € P, with [0], = 0. Let [n],! = [n]y[n — 1], [1]; if n € P, with [0],! = 1, denote

the g-factorial and let [;ﬂq = % denote the g-binomial coefficient, where 0 < m < n. Given
positive integers n and m, let [n]g" = [n]g[n—1]4- - [n—m+1]g and [n]i" = [n]y[n+1]4--- [n+m—1],

with [n]g = [n]) = 1.

Recall that the number of inversions in a word w = wyws - - - w, over some alphabet of non-negative
integers is the cardinality of the set {(i,j) : 1 <14 < j < n with w; > w;}, which is often denoted by
inv(w). We’ll make use of the fact that the g-binomial coefficient [;‘1] is the generating function for
the statistic that records the number of inversions in binary words of length n containing exactly m
1’s (see [5, Prop. 1.3.17]).

We have the following ¢-generalization of the second identity in Theorem 2.3 above.
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THEOREM 3.1 For all r,m,n € P,

n . r+m

mi=r)[ ]z ”—Hm—l] _ [t mlg—

) [ - — (14)
jzl a m—1 . [r+mlg

Proof. Note that the lower index of the sum on the left-hand side of (14) may be started from j = r
since [j]g = 0 if j < r. Let us assume further n > r, for otherwise both sides of (14) are zero. We
provide a combinatorial proof of (14), rewritten in the form
R R D S UCall') AR (15)
. m—1
j=r g

First we extend P by adding the infinity symbol oo, it being understood that n < co for all n € P.
Let A denote the set of words of length n + m containing exactly n — r infinity symbols and each
member of [r + m| once. Then [n + m]ZJr—m counts the members of A according to the number of
inversions. To see this, first note that the [n —r + 1], factor accounts for the placement of the element
r +m amongst the n — r infinity symbols, written in a row, since anywhere from 0 to n — r inversions
are created. Then [n —r 4 2|, accounts for the placement of the element r +m — 1 once the position
for 7 + m has been determined, and, in general, [n + m — i + 1], accounts for the placement of the
element ¢, 1 < i <7+ m, once the positions for all letters greater than ¢ have been determined.

To show that the right-hand side of (15) also counts the members of A according to the number of
inversions, we first describe a procedure for generating the members of A. We start with a sequence p
of length n +m consisting of n — r infinity symbols, m — 1 zeros, and one occurrence of each element of
[r 4+ 1], where all the elements of [r+ 1] occur to the left of all the zeros, the element 7+ 1 occurs to the
right of all the elements of [r]|, and r+1 is in the (j+1)-st position for some j € [r,n] = {r,r+1,...,n}.
We transform p into another sequence § € A as follows: (i) Replace each letter in [r + 1] occurring in p
with a zero, (ii) Replace m of the r +m zeros in the word resulting from the first step with elements of
[r+ 1,7+ m] so that each letter occurs once, and (iii) Replace the r remaining zeros with the elements
of [r] so that they occur in the same order in which they appear in a left-to-right scan of the word
p. From this, we see that there are (r +m)2 - j2("~7T~1) sequences § € A in which the (r + 1)-st
left-most letter of ¢ that is not an infinity symbol occupies the (5 + 1)-st position, r < j < n.

Then the distribution of the inv statistic on the set consisting of such sequences § € A is given by

m  mG-r) e[V JFm—1
R Sl AN

whence (15) follows from summing over j. To see this, first note that the factor [r+mlg* = [r+m],[r+
m—1], - - - [r+1]4 accounts for both the choice of the positions for the members of [r+1, r+m)] relative to
the positions of all the members of [r+m] within ¢ and the inversions between two letters which aren’t
an oo in which at least one of the letters belongs to [r+1, 7+m]. The factor [jlg = [j]4[i—1] - [i—r+1],
accounts for the choice of the positions for the left-most » members of [r 4+ m] within ¢, the inversions
between these members and infinity symbols, and inversions between two members of [r| (note that the
relative order of the members of [r] did not change in the transformation from p to § described above).
The factor ¢"=") accounts for the inversions between the left-most j — 7 co’s and the right-most
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m members of [r + m] within §. Finally, ["7;1"1“1] accounts for the choice of the positions for the
right-most (n —r) — (j —r) = n — j oo’s amongst the final n +m — j — 1 positions of § along with
inversions involving these oo’s. o

One may also generalize the second identity in Theorem 2.4 above.
THEOREM 3.2 For all r,m,n € P,

- mii_)rar|m—J+m—1 [n]Z’L—m
;q § 1>L7]q[ o L:FHT' (16)

Proof. A proof comparable to the one given for Theorem 3.1 above, the details of which we leave to
the interested reader, may be given for (16), upon multiplying both sides by [+ 1];*. Here, one would
count sequences of length r +m +n — 1 containing n — 1 infinity symbols and each element of [r + m]
once according to the number of inversions. Note that in this case, if there are j — 1 infinity symbols
occurring to the left of the (r + 1)-st left-most element of [r + m| within such a sequence, then there
are m(j — 1) inversions between these symbols and the m right-most elements of [r 4+ m| occurring in
the sequence, whence the factor of ¢"—1). O
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