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t. We show that the sequen
es obtained by taking repeated partial sums of regular powers, falling fa
torials,and rising fa
torials enumerate 
ertain 
lasses of what we term quasi-monotone fun
tions. In the latter two 
ases, a
q-analogue is also provided.Mathemati
s Subje
t Classi�
ation(2010). 05A05, 05A19.Keywords: hyper-sum, q-analogue, 
ombinatorial proof.1 Introdu
tionIn what follows, P denotes the set of positive integers, and [n] = {1, . . . , n} for all n ∈ P. If E is any�nite set, then |E| denotes the 
ardinality of E. If α : P → R, and m ∈ P, the m-th degree hyper-sum
Sα

m(n) is de�ned indu
tively by
Sα

1 (n) = α(1) + · · · + α(n), and (1)
Sα

m+1(n) = Sα
m(n) + · · · + Sα

m(n) for all m ∈ P. (2)Sin
e, for all m ∈ P, the ordinary generating fun
tions of the sequen
es {α(n)}n≥1 and {Sα
m(n)}n≥1are 
learly related by the equation

(1 − x)−m
∑

n≥1

α(n)xn =
∑

n≥1

Sα
m(n)xn, (3)it follows immediately that

Sα
m(n) =

n
∑

j=1

α(j)

(

n− j +m− 1

m− 1

)

. (4)Let r ∈ P. In what follows, we 
onsider the spe
ial 
ases of the above given by (i) α(j) = jr, (ii)
α(j) = jr := j(j − 1) · · · (j − r+ 1), and (iii) α(j) = jr := j(j + 1) · · · (j + r− 1), denoting Sα

m in thesethree 
ases, respe
tively, by Sr
m, Sr

m, and Sr
m.
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tionsIf r,m, n ∈ P, a fun
tion f : [r +m] → [n+m] is (r,m, n)−quasi-monotone if
f(i) < f(r + 1) < f(r + 2) < · · · < f(r +m), for i = 1, . . . , r. (5)As shown below, the quantities Sr

m(n) and Sr
m(n) ea
h enumerate a 
ertain 
lass of (r,m, n)−quasi-monotone fun
tions, and thus admit of simpler expressions than those furnished by formula (4). Aslight variation on the notion of quasi-monotoni
ity fa
ilitates a similar simpli�
ation of (4) in the
ase of Sr

m(n). Our analysis is based on three results from elementary 
ombinatori
s, namely, (i)
jr = |{f : [r] → [j]}|, (ii) jr = |{f : [r] → [j] su
h that f is inje
tive}|, and (iii) jr = the number ofdistributions of balls labeled 1, . . . , r among 
ontents-ordered boxes labeled 1, . . . , j [1, pp. 19�23℄.Theorem 2.1 For all r,m, n ∈ P,

Sr
m(n) =

n
∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
r

∑

k=1

σ(r, k)

(

n+m

k +m

)

, (6)where σ(r, k) =
∑k

i=0(−1)i
(

k
i

)

(k − i)r is the number of surje
tive fun
tions f : [r] → [k].Proof. The n-fold sum in (6), whi
h follows from (4), enumerates the set of (r,m, n)−quasi-monotone fun
tions f : [r+m] → [n+m], the j-th term of this sum enumerating those f for whi
h
f(r+1) = j+1. In the r-fold sum, the k-th term enumerates those f for whi
h |range(f)| = k+m. 2When m = 1, (6) redu
es to the well-known power sum formula

n
∑

j=1

jr =
r

∑

k=1

σ(r, k)

(

n+ 1

k + 1

)

; (7)see, e.g., [4, 6℄. Various q-analogues have been developed for power sums; see, e.g., [2℄. We remarkthat (7) often appears in the variant form,
n

∑

j=1

jr =
r

∑

k=1

{

r
k

}

k + 1
(n+ 1)k+1, (8)where {

r
k

}

= σ(r,k)
k! is the Stirling number of the se
ond kind.Remark 2.2 The n-fold sum in (6) may also be redu
ed to the r-fold sum by a more involved algebrai
argument, using the fa
t that

jr =
r

∑

k=1

σ(r, k)

(

j

k

)

, (9)along with the binomial 
oe�
ient identity (see [3℄)
n

∑

j=1

(

n− j +m− 1

m− 1

)(

j

k

)

=

(

n+m

k +m

)

. (10)
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onsider the 
ase when α(j) = jr.Theorem 2.3 For all r,m, n ∈ P,
Sr

m(n) =

n
∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
(n+m)r+m

(r +m)m
. (11)Proof. The n-fold sum in (11), whi
h follows from (4), enumerates the set of inje
tive

(r,m, n)−quasi-monotone fun
tions f : [r + m] → [n + m], where, as above, the j-th term in thissum 
ounts those f for whi
h f(r + 1) = j + 1. This sum may be simpli�ed as indi
ated in (11) byshowing that
(n+m)r+m = (r +m)mSr

m(n). (12)Let F = {f : [r+m] → [n+m] su
h that f is inje
tive} and G = {g : [r+m] → [n+m] su
h that g is
(r,m, n) − quasi-monotone and inje
tive}. In what follows, we regard members of F as distributionsof balls labeled 1, . . . , r + m among boxes labeled 1, . . . , n + m, with at most one ball per box, andmembers of G as distributions of the aforementioned type su
h that (a) ball r+ i o

upies a box witha smaller label than that of the box o

upied by ball r + i + 1, for i = 1, . . . ,m − 1, and (b) ea
h ofthe balls 1, . . . , r o

upies a box with smaller label than that of the box o

upied by ball r + 1. Now
onsider the map ψ : F → G de�ned as follows: Given a distribution f ∈ F , let ψ(f) = g, where (i)
g has the same set E ⊆ [n + m] of empty boxes as f , (ii) balls 1, . . . , r are pla
ed in the r boxes of
[n+m]−E with the smallest labels, and in the same order in whi
h they appear in a left-to-right s
anof the distribution f , and (iii) balls r+ 1, . . . , r+m are pla
ed in the remaining boxes in their naturalorder.
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7Figure 1: An illustration of the mapping ψ when r = 3, m = 4, and n = 5.Clearly, ea
h distribution in G has (r +m)m pre-images in F under ψ. 2Theorem 2.4 For all r,m, n ∈ P,
Sr

m(n) =
n

∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
(r +m+ n− 1)r+m

(r +m)m
=

nr+m

(r + 1)m
. (13)Proof. The n-fold sum in (13), whi
h follows from (4), enumerates the distributions of balls labeled

1, . . . , r + m among 
ontents-ordered boxes labeled 1, . . . , n + m su
h that (a) ea
h of the balls r +
1, . . . , r+m is the sole o

upant of its box, (b) ball r+ i o

upies a box with smaller label than that ofthe box o

upied by ball r+ i+1, for i = 1, . . . ,m−1, and (
) ea
h of the balls 1, . . . , r o

upies a boxwith smaller label than that of the box o

upied by ball r + 1. The j-th term in this sum enumeratesthose distributions in whi
h ball r+ 1 o

upies box j + 1. This sum may be simpli�ed as indi
ated in(13) by the following argument.



158 M. SHATTUCK AND C. WAGNERLet Λ denote the set of distributions of balls labeled 1, . . . , r + m among 
ontents-ordered boxeslabeled 1, . . . , n +m in whi
h boxes n+ 1, . . . , n +m remain empty. By an earlier observation, |Λ| =
nr+m. Given λ ∈ Λ, let x be the right-most ball, in the sense that there are no balls in boxes witha greater label than that of the box o

upied by x and, if there is more than one ball in the box
ontaining x, then x o

upies the right-most position in its box. We �rst move x to the right by mboxes (so, for example, if x o

upied box n in the distribution λ, it would now o

upy box n+m). Wethen move the se
ond right-most ball y of λ to the right by m− 1 boxes (so if y belonged to the samebox as x, ne
essarily pre
eding x dire
tly in that box, y would now o

upy the box dire
tly pre
edingthe one now 
ontaining x). Continuing in this fashion, move the m right-most balls of λ su
h that the
i-th right-most ball is moved to the right by m− i+ 1 boxes, for ea
h i ∈ [m].Let λ∗ denote the 
on�guration (now allowing for any of the n + m boxes to be o

upied byballs) whi
h arises after applying the above pro
edure to λ. It may be veri�ed that the map λ 7→ λ∗is a bije
tion from Λ to Λ∗:= the set of distributions of balls labeled 1, . . . , r + m among 
ontents-ordered boxes labeled 1, . . . , n + m in whi
h the m right-most balls o

upy distin
t boxes. So also
|Λ∗| = nr+m. But here we are interested only in those λ∗ for whi
h the m right-most balls are pre
isely
r+1, r+2, . . . , r+m, o

urring in that order from left to right. Now the probability that a λ∗ randomly
hosen from Λ∗ has this property is

r!

(r +m)!
=

1

(r +m)(r +m− 1) · · · (r + 1)
=

1

(r + 1)m
.This 
an be seen by �xing the number of elements that o

upy ea
h box, and then assigning the r+mballs to the r +m slots within the boxes to be o

upied by at least one ball. It follows that

Sr
m(n) =

|Λ∗|

(r + 1)m
=

nr+m

(r + 1)m
.

23 q-analoguesIn this se
tion, we 
onsider q-analogues of the last two results. Given an indeterminate q, let [j]q =
1 + q+ · · ·+ qj−1 if j ∈ P, with [0]q = 0. Let [n]q! = [n]q[n− 1]q · · · [1]q if n ∈ P, with [0]q! = 1, denotethe q-fa
torial and let [

n
m

]

q
=

[n]q!
[m]q![n−m]q! denote the q-binomial 
oe�
ient, where 0 ≤ m ≤ n. Givenpositive integers n and m, let [n]

m
q = [n]q[n−1]q · · · [n−m+1]q and [n]mq = [n]q[n+1]q · · · [n+m−1]q,with [n]

0
q = [n]0q = 1.Re
all that the number of inversions in a word w = w1w2 · · ·wn over some alphabet of non-negativeintegers is the 
ardinality of the set {(i, j) : 1 ≤ i < j ≤ n with wi > wj}, whi
h is often denoted byinv(w). We'll make use of the fa
t that the q-binomial 
oe�
ient [

n
m

]

q
is the generating fun
tion forthe statisti
 that re
ords the number of inversions in binary words of length n 
ontaining exa
tly m

1's (see [5, Prop. 1.3.17℄).We have the following q-generalization of the se
ond identity in Theorem 2.3 above.
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n

∑

j=1

qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

=
[n+m]

r+m
q

[r +m]
m
q

. (14)Proof. Note that the lower index of the sum on the left-hand side of (14) may be started from j = rsin
e [j]
r
q = 0 if j < r. Let us assume further n ≥ r, for otherwise both sides of (14) are zero. Weprovide a 
ombinatorial proof of (14), rewritten in the form

[n+m]
r+m
q = [r +m]mq

n
∑

j=r

qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

. (15)First we extend P by adding the in�nity symbol ∞, it being understood that n <∞ for all n ∈ P.Let A denote the set of words of length n + m 
ontaining exa
tly n − r in�nity symbols and ea
hmember of [r + m] on
e. Then [n + m]
r+m
q 
ounts the members of A a

ording to the number ofinversions. To see this, �rst note that the [n− r+ 1]q fa
tor a

ounts for the pla
ement of the element

r+m amongst the n− r in�nity symbols, written in a row, sin
e anywhere from 0 to n− r inversionsare 
reated. Then [n− r + 2]q a

ounts for the pla
ement of the element r +m− 1 on
e the positionfor r + m has been determined, and, in general, [n + m − i + 1]q a

ounts for the pla
ement of theelement i, 1 ≤ i ≤ r +m, on
e the positions for all letters greater than i have been determined.To show that the right-hand side of (15) also 
ounts the members of A a

ording to the number ofinversions, we �rst des
ribe a pro
edure for generating the members of A. We start with a sequen
e ρof length n+m 
onsisting of n− r in�nity symbols, m−1 zeros, and one o

urren
e of ea
h element of
[r+1], where all the elements of [r+1] o

ur to the left of all the zeros, the element r+1 o

urs to theright of all the elements of [r], and r+1 is in the (j+1)-st position for some j ∈ [r, n] = {r, r+1, . . . , n}.We transform ρ into another sequen
e δ ∈ A as follows: (i) Repla
e ea
h letter in [r+1] o

urring in ρwith a zero, (ii) Repla
e m of the r+m zeros in the word resulting from the �rst step with elements of
[r+1, r+m] so that ea
h letter o

urs on
e, and (iii) Repla
e the r remaining zeros with the elementsof [r] so that they o

ur in the same order in whi
h they appear in a left-to-right s
an of the word
ρ. From this, we see that there are (r +m)m · jr

(

n−j+m−1
m−1

) sequen
es δ ∈ A in whi
h the (r + 1)-stleft-most letter of δ that is not an in�nity symbol o

upies the (j + 1)-st position, r ≤ j ≤ n.Then the distribution of the inv statisti
 on the set 
onsisting of su
h sequen
es δ ∈ A is given by
[r +m]mq · qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

,when
e (15) follows from summing over j. To see this, �rst note that the fa
tor [r+m]
m
q = [r+m]q[r+

m−1]q · · · [r+1]q a

ounts for both the 
hoi
e of the positions for the members of [r+1, r+m] relative tothe positions of all the members of [r+m] within δ and the inversions between two letters whi
h aren'tan∞ in whi
h at least one of the letters belongs to [r+1, r+m]. The fa
tor [j]
r
q = [j]q[j−1]q · · · [j−r+1]qa

ounts for the 
hoi
e of the positions for the left-most r members of [r+m] within δ, the inversionsbetween these members and in�nity symbols, and inversions between two members of [r] (note that therelative order of the members of [r] did not 
hange in the transformation from ρ to δ des
ribed above).The fa
tor qm(j−r) a

ounts for the inversions between the left-most j − r ∞'s and the right-most
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m members of [r +m] within δ. Finally, [

n−j+m−1
m−1

]

q
a

ounts for the 
hoi
e of the positions for theright-most (n − r) − (j − r) = n − j ∞'s amongst the �nal n +m − j − 1 positions of δ along withinversions involving these ∞'s. 2One may also generalize the se
ond identity in Theorem 2.4 above.Theorem 3.2 For all r,m, n ∈ P,

n
∑

j=1

qm(j−1)[j]rq

[

n− j +m− 1

m− 1

]

q

=
[n]r+m

q

[r + 1]mq
. (16)Proof. A proof 
omparable to the one given for Theorem 3.1 above, the details of whi
h we leave tothe interested reader, may be given for (16), upon multiplying both sides by [r+ 1]mq . Here, one would
ount sequen
es of length r+m+ n− 1 
ontaining n− 1 in�nity symbols and ea
h element of [r+m]on
e a

ording to the number of inversions. Note that in this 
ase, if there are j − 1 in�nity symbolso

urring to the left of the (r + 1)-st left-most element of [r +m] within su
h a sequen
e, then thereare m(j − 1) inversions between these symbols and the m right-most elements of [r +m] o

urring inthe sequen
e, when
e the fa
tor of qm(j−1). 2Referen
es[1℄ C. Berge, Prin
iples of Combinatori
s, A
ademi
 Press, New York, 1971.[2℄ V. J. Guo and J. Zeng, A q-analogue of Faulhaber's formula for sums of powers, Ele
tron.J. Combin., 11(2) (2004-2006) #R19.[3℄ Y. Inaba, Hyper-sums of powers of integers and the Akiyama-Tanigawa matrix, J. IntegerSeq., 8 (2005) Arti
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