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Sα

m(n) is de�ned indutively by
Sα

1 (n) = α(1) + · · · + α(n), and (1)
Sα

m+1(n) = Sα
m(n) + · · · + Sα

m(n) for all m ∈ P. (2)Sine, for all m ∈ P, the ordinary generating funtions of the sequenes {α(n)}n≥1 and {Sα
m(n)}n≥1are learly related by the equation

(1 − x)−m
∑

n≥1

α(n)xn =
∑

n≥1

Sα
m(n)xn, (3)it follows immediately that

Sα
m(n) =

n
∑

j=1

α(j)

(

n− j +m− 1

m− 1

)

. (4)Let r ∈ P. In what follows, we onsider the speial ases of the above given by (i) α(j) = jr, (ii)
α(j) = jr := j(j − 1) · · · (j − r+ 1), and (iii) α(j) = jr := j(j + 1) · · · (j + r− 1), denoting Sα

m in thesethree ases, respetively, by Sr
m, Sr

m, and Sr
m.



156 M. SHATTUCK AND C. WAGNER2 Quasi-monotone funtionsIf r,m, n ∈ P, a funtion f : [r +m] → [n+m] is (r,m, n)−quasi-monotone if
f(i) < f(r + 1) < f(r + 2) < · · · < f(r +m), for i = 1, . . . , r. (5)As shown below, the quantities Sr

m(n) and Sr
m(n) eah enumerate a ertain lass of (r,m, n)−quasi-monotone funtions, and thus admit of simpler expressions than those furnished by formula (4). Aslight variation on the notion of quasi-monotoniity failitates a similar simpli�ation of (4) in thease of Sr

m(n). Our analysis is based on three results from elementary ombinatoris, namely, (i)
jr = |{f : [r] → [j]}|, (ii) jr = |{f : [r] → [j] suh that f is injetive}|, and (iii) jr = the number ofdistributions of balls labeled 1, . . . , r among ontents-ordered boxes labeled 1, . . . , j [1, pp. 19�23℄.Theorem 2.1 For all r,m, n ∈ P,

Sr
m(n) =

n
∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
r

∑

k=1

σ(r, k)

(

n+m

k +m

)

, (6)where σ(r, k) =
∑k

i=0(−1)i
(

k
i

)

(k − i)r is the number of surjetive funtions f : [r] → [k].Proof. The n-fold sum in (6), whih follows from (4), enumerates the set of (r,m, n)−quasi-monotone funtions f : [r+m] → [n+m], the j-th term of this sum enumerating those f for whih
f(r+1) = j+1. In the r-fold sum, the k-th term enumerates those f for whih |range(f)| = k+m. 2When m = 1, (6) redues to the well-known power sum formula

n
∑

j=1

jr =
r

∑

k=1

σ(r, k)

(

n+ 1

k + 1

)

; (7)see, e.g., [4, 6℄. Various q-analogues have been developed for power sums; see, e.g., [2℄. We remarkthat (7) often appears in the variant form,
n

∑

j=1

jr =
r

∑

k=1

{

r
k

}

k + 1
(n+ 1)k+1, (8)where {

r
k

}

= σ(r,k)
k! is the Stirling number of the seond kind.Remark 2.2 The n-fold sum in (6) may also be redued to the r-fold sum by a more involved algebraiargument, using the fat that

jr =
r

∑

k=1

σ(r, k)

(

j

k

)

, (9)along with the binomial oe�ient identity (see [3℄)
n

∑

j=1

(

n− j +m− 1

m− 1

)(

j

k

)

=

(

n+m

k +m

)

. (10)



POWER HYPER-SUMS ENUMERATE QUASI-MONOTONE FUNCTIONS 157We next onsider the ase when α(j) = jr.Theorem 2.3 For all r,m, n ∈ P,
Sr

m(n) =

n
∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
(n+m)r+m

(r +m)m
. (11)Proof. The n-fold sum in (11), whih follows from (4), enumerates the set of injetive

(r,m, n)−quasi-monotone funtions f : [r + m] → [n + m], where, as above, the j-th term in thissum ounts those f for whih f(r + 1) = j + 1. This sum may be simpli�ed as indiated in (11) byshowing that
(n+m)r+m = (r +m)mSr

m(n). (12)Let F = {f : [r+m] → [n+m] suh that f is injetive} and G = {g : [r+m] → [n+m] suh that g is
(r,m, n) − quasi-monotone and injetive}. In what follows, we regard members of F as distributionsof balls labeled 1, . . . , r + m among boxes labeled 1, . . . , n + m, with at most one ball per box, andmembers of G as distributions of the aforementioned type suh that (a) ball r+ i oupies a box witha smaller label than that of the box oupied by ball r + i + 1, for i = 1, . . . ,m − 1, and (b) eah ofthe balls 1, . . . , r oupies a box with smaller label than that of the box oupied by ball r + 1. Nowonsider the map ψ : F → G de�ned as follows: Given a distribution f ∈ F , let ψ(f) = g, where (i)
g has the same set E ⊆ [n + m] of empty boxes as f , (ii) balls 1, . . . , r are plaed in the r boxes of
[n+m]−E with the smallest labels, and in the same order in whih they appear in a left-to-right sanof the distribution f , and (iii) balls r+ 1, . . . , r+m are plaed in the remaining boxes in their naturalorder.
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7Figure 1: An illustration of the mapping ψ when r = 3, m = 4, and n = 5.Clearly, eah distribution in G has (r +m)m pre-images in F under ψ. 2Theorem 2.4 For all r,m, n ∈ P,
Sr

m(n) =
n

∑

j=1

jr
(

n− j +m− 1

m− 1

)

=
(r +m+ n− 1)r+m

(r +m)m
=

nr+m

(r + 1)m
. (13)Proof. The n-fold sum in (13), whih follows from (4), enumerates the distributions of balls labeled

1, . . . , r + m among ontents-ordered boxes labeled 1, . . . , n + m suh that (a) eah of the balls r +
1, . . . , r+m is the sole oupant of its box, (b) ball r+ i oupies a box with smaller label than that ofthe box oupied by ball r+ i+1, for i = 1, . . . ,m−1, and () eah of the balls 1, . . . , r oupies a boxwith smaller label than that of the box oupied by ball r + 1. The j-th term in this sum enumeratesthose distributions in whih ball r+ 1 oupies box j + 1. This sum may be simpli�ed as indiated in(13) by the following argument.



158 M. SHATTUCK AND C. WAGNERLet Λ denote the set of distributions of balls labeled 1, . . . , r + m among ontents-ordered boxeslabeled 1, . . . , n +m in whih boxes n+ 1, . . . , n +m remain empty. By an earlier observation, |Λ| =
nr+m. Given λ ∈ Λ, let x be the right-most ball, in the sense that there are no balls in boxes witha greater label than that of the box oupied by x and, if there is more than one ball in the boxontaining x, then x oupies the right-most position in its box. We �rst move x to the right by mboxes (so, for example, if x oupied box n in the distribution λ, it would now oupy box n+m). Wethen move the seond right-most ball y of λ to the right by m− 1 boxes (so if y belonged to the samebox as x, neessarily preeding x diretly in that box, y would now oupy the box diretly preedingthe one now ontaining x). Continuing in this fashion, move the m right-most balls of λ suh that the
i-th right-most ball is moved to the right by m− i+ 1 boxes, for eah i ∈ [m].Let λ∗ denote the on�guration (now allowing for any of the n + m boxes to be oupied byballs) whih arises after applying the above proedure to λ. It may be veri�ed that the map λ 7→ λ∗is a bijetion from Λ to Λ∗:= the set of distributions of balls labeled 1, . . . , r + m among ontents-ordered boxes labeled 1, . . . , n + m in whih the m right-most balls oupy distint boxes. So also
|Λ∗| = nr+m. But here we are interested only in those λ∗ for whih the m right-most balls are preisely
r+1, r+2, . . . , r+m, ourring in that order from left to right. Now the probability that a λ∗ randomlyhosen from Λ∗ has this property is

r!

(r +m)!
=

1

(r +m)(r +m− 1) · · · (r + 1)
=

1

(r + 1)m
.This an be seen by �xing the number of elements that oupy eah box, and then assigning the r+mballs to the r +m slots within the boxes to be oupied by at least one ball. It follows that

Sr
m(n) =

|Λ∗|

(r + 1)m
=

nr+m

(r + 1)m
.

23 q-analoguesIn this setion, we onsider q-analogues of the last two results. Given an indeterminate q, let [j]q =
1 + q+ · · ·+ qj−1 if j ∈ P, with [0]q = 0. Let [n]q! = [n]q[n− 1]q · · · [1]q if n ∈ P, with [0]q! = 1, denotethe q-fatorial and let [

n
m

]

q
=

[n]q!
[m]q![n−m]q! denote the q-binomial oe�ient, where 0 ≤ m ≤ n. Givenpositive integers n and m, let [n]

m
q = [n]q[n−1]q · · · [n−m+1]q and [n]mq = [n]q[n+1]q · · · [n+m−1]q,with [n]

0
q = [n]0q = 1.Reall that the number of inversions in a word w = w1w2 · · ·wn over some alphabet of non-negativeintegers is the ardinality of the set {(i, j) : 1 ≤ i < j ≤ n with wi > wj}, whih is often denoted byinv(w). We'll make use of the fat that the q-binomial oe�ient [

n
m

]

q
is the generating funtion forthe statisti that reords the number of inversions in binary words of length n ontaining exatly m

1's (see [5, Prop. 1.3.17℄).We have the following q-generalization of the seond identity in Theorem 2.3 above.



POWER HYPER-SUMS ENUMERATE QUASI-MONOTONE FUNCTIONS 159Theorem 3.1 For all r,m, n ∈ P,
n

∑

j=1

qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

=
[n+m]

r+m
q

[r +m]
m
q

. (14)Proof. Note that the lower index of the sum on the left-hand side of (14) may be started from j = rsine [j]
r
q = 0 if j < r. Let us assume further n ≥ r, for otherwise both sides of (14) are zero. Weprovide a ombinatorial proof of (14), rewritten in the form

[n+m]
r+m
q = [r +m]mq

n
∑

j=r

qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

. (15)First we extend P by adding the in�nity symbol ∞, it being understood that n <∞ for all n ∈ P.Let A denote the set of words of length n + m ontaining exatly n − r in�nity symbols and eahmember of [r + m] one. Then [n + m]
r+m
q ounts the members of A aording to the number ofinversions. To see this, �rst note that the [n− r+ 1]q fator aounts for the plaement of the element

r+m amongst the n− r in�nity symbols, written in a row, sine anywhere from 0 to n− r inversionsare reated. Then [n− r + 2]q aounts for the plaement of the element r +m− 1 one the positionfor r + m has been determined, and, in general, [n + m − i + 1]q aounts for the plaement of theelement i, 1 ≤ i ≤ r +m, one the positions for all letters greater than i have been determined.To show that the right-hand side of (15) also ounts the members of A aording to the number ofinversions, we �rst desribe a proedure for generating the members of A. We start with a sequene ρof length n+m onsisting of n− r in�nity symbols, m−1 zeros, and one ourrene of eah element of
[r+1], where all the elements of [r+1] our to the left of all the zeros, the element r+1 ours to theright of all the elements of [r], and r+1 is in the (j+1)-st position for some j ∈ [r, n] = {r, r+1, . . . , n}.We transform ρ into another sequene δ ∈ A as follows: (i) Replae eah letter in [r+1] ourring in ρwith a zero, (ii) Replae m of the r+m zeros in the word resulting from the �rst step with elements of
[r+1, r+m] so that eah letter ours one, and (iii) Replae the r remaining zeros with the elementsof [r] so that they our in the same order in whih they appear in a left-to-right san of the word
ρ. From this, we see that there are (r +m)m · jr

(

n−j+m−1
m−1

) sequenes δ ∈ A in whih the (r + 1)-stleft-most letter of δ that is not an in�nity symbol oupies the (j + 1)-st position, r ≤ j ≤ n.Then the distribution of the inv statisti on the set onsisting of suh sequenes δ ∈ A is given by
[r +m]mq · qm(j−r)[j]rq

[

n− j +m− 1

m− 1

]

q

,whene (15) follows from summing over j. To see this, �rst note that the fator [r+m]
m
q = [r+m]q[r+

m−1]q · · · [r+1]q aounts for both the hoie of the positions for the members of [r+1, r+m] relative tothe positions of all the members of [r+m] within δ and the inversions between two letters whih aren'tan∞ in whih at least one of the letters belongs to [r+1, r+m]. The fator [j]
r
q = [j]q[j−1]q · · · [j−r+1]qaounts for the hoie of the positions for the left-most r members of [r+m] within δ, the inversionsbetween these members and in�nity symbols, and inversions between two members of [r] (note that therelative order of the members of [r] did not hange in the transformation from ρ to δ desribed above).The fator qm(j−r) aounts for the inversions between the left-most j − r ∞'s and the right-most
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m members of [r +m] within δ. Finally, [

n−j+m−1
m−1

]

q
aounts for the hoie of the positions for theright-most (n − r) − (j − r) = n − j ∞'s amongst the �nal n +m − j − 1 positions of δ along withinversions involving these ∞'s. 2One may also generalize the seond identity in Theorem 2.4 above.Theorem 3.2 For all r,m, n ∈ P,

n
∑

j=1

qm(j−1)[j]rq

[

n− j +m− 1

m− 1

]

q

=
[n]r+m

q

[r + 1]mq
. (16)Proof. A proof omparable to the one given for Theorem 3.1 above, the details of whih we leave tothe interested reader, may be given for (16), upon multiplying both sides by [r+ 1]mq . Here, one wouldount sequenes of length r+m+ n− 1 ontaining n− 1 in�nity symbols and eah element of [r+m]one aording to the number of inversions. Note that in this ase, if there are j − 1 in�nity symbolsourring to the left of the (r + 1)-st left-most element of [r +m] within suh a sequene, then thereare m(j − 1) inversions between these symbols and the m right-most elements of [r +m] ourring inthe sequene, whene the fator of qm(j−1). 2Referenes[1℄ C. Berge, Priniples of Combinatoris, Aademi Press, New York, 1971.[2℄ V. J. Guo and J. Zeng, A q-analogue of Faulhaber's formula for sums of powers, Eletron.J. Combin., 11(2) (2004-2006) #R19.[3℄ Y. Inaba, Hyper-sums of powers of integers and the Akiyama-Tanigawa matrix, J. IntegerSeq., 8 (2005) Artile 05.2.7.[4℄ T. J. Pfaff, Deriving a formula for sums of powers of integers, Pi Mu Epsilon Journal, 12(2007) 425�430.[5℄ R. P. Stanley, Enumerative Combinatoris, Vol. I, Cambridge University Press, 1997.[6℄ C. Wagner, Combinatorial proofs of formulas for power sums, Arh. Math. (Basel), 68(1997) 464�467.


