DIFFERENTIABILITY IN LOCAL FIELDS
OF PRIME CHARACTERISTIC

CARL G. WAGNER

1. Introduction. In 1958 Mahler proved that every continuous p-adic
function defined on the ring of p-adic integers is the uniform limit of an inter-
polation series of binomial form, and he exhibited a necessary and sufficient
condition for such a function to be differentiable [2]. In [3] we showed that
each continuous linear operator on the ring V of formal power series over a
finite field (regarded as a vector space over that field) may be expanded in what
may also be termed an interpolation series, and also characterized the dif-
ferentiable operators. In [4] we dropped the linearity hypothesis of [3] and
exhibited an interpolation series for each continuous function on V, and a
sufficient condition for the differentiability of such a function. In the present
paper we show (Theorem 4.1) that this condition is also necessary and thus
obtain a complete characterization (Theorem 4.2) of differentiable functions
of an “z-adic’ variable.

2. Preliminaries. Denote by F the field of formal power series

(2.1) o= 2 ax,

where the a; are elements of the finite field GF(q) of characteristic p, and all
but a finite number of the a,’s vanish for z < 0. Let b be any real number such
that 0 < b < 1, and define an absolute value | | on F by [0] = 0 and |a| = b",
where n is the least integer such that a, # 0 for a nonzero « given by (2.1).
As is familiar, F is complete with respect to the discrete non-archimedean
absolute value | | and, equipped with the metric topology induced by | |, F
is a totally disconnected, locally compact topological field. In particular,
polynomials over F give rise to continuous functions on F.

The valuation ring V of F consists of all formal power series of the form
(2.1) where a; = 0 for v < 0. V is compact and contains as a dense subring
the ring GF[q, z] of polynomials over GF(q). Similarly, the quotient field of
GF|q, z], denoted GF(q, x), is dense in F.

A polynomial p(t) over GF(q, z) is called zniegral valued if p(m) € GFlq, z] for
all m € GF[g, z]. A polynomial p(t) over F is called integral valued (mod x)
if p(a) € Vioralla € V. Since polynomials give rise to continuous functions
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in F and GF|q, z] is dense in V, it follows that integral valued polynomials
are integral valued (mod z). The integral valued polynomials constitute a
GF|q, x]-module, and the polynomials which are integral valued (mod z) a
V-module. Certain ordered bases, (G.(f)/g.) and (G,'(t)/g.), of these modules
constructed by Carlitz [1], [4, 404-5] play an important role in the construction
of interpolation series for continuous functions from V to F. Indeed, let G, (),
G.'(t), and g, be defined as in [4, pp. 204-5] (note that G,’ () is not the derivative
of G,(t)), and suppose that f : V — F is any continuous function. For each
7 > 0 set

@.2) 4, = (-1 Y Gem=dOW e,

deg m<r ga'—l—i

where 1 < ¢’ and m € GF[q, z]. Then [4, Theorem B] lim;,., A; = 0 in F and

@.3) > 4, %0
=0 i

converges uniformly to f(f) for allt & V. (Moreover, the coefficients A ; defined

in (2.4) yield the only series of the form (2.3) with this property.) The sequence

(G:(t)/g:) plays here the same role as the sequence of Newton polynomials

@@t —1)--- ¢ — ¢+ 1)/2!) in Mahler’s work [2].

3. Preliminaries on Differentiability. Our goal in the remainder of the
paper is to characterize differentiability of a function f at a point ¥ € V in
terms of the coefficients A, in the interpolation series (2.3) for f. We begin
by introducing a certain sequence of auxiliary polynomials over GF(q, z):

Let Ho(f) = 1 and for all 7 > 1 set

3.1) H() = -——G‘t;‘i(t)

Then by [4, (2.8)] H;(¢) is a polynomial of degree 7 over GF(q, ) with leading
coefficient 1/g; , so that (H;(t)) is an ordered basis of the GF (q, x)-vector space
of polynomials over GF(q, ). In fact, the following stronger assertion is true.

LemmA 3.1. The sequence (H;(t)) for © > 0 s an ordered basis of the GF[q, x]-
module of integral valued polynomaials over GF (g, x).

Proof. By [4, Proposition 2], for all > 1
q’(‘)—l,(t>Gi—a°“)(t)
Gqo ) =1Gi—qe (9

where ¢°” | 7 and ¢°“*' } 4. Hence [1; 503] H,(t) is integral valued for all
1 2>0.

Thus it remains only to show that if f is an integral valued polynomial of
arbitrary degree n over GF(q, ) and f(t) = X_i-o" a:H;(f), then a; € GF[g, 7]

(3.2) Ho =9
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for each 7. Clearly, it suffices to show this for the integral valued polynomials
G:(t)/g: for 0 < 7 < n. For each such ¢ we have

HAl) = Zd,wG@

where, by previous remarks, ¢(z, j) € GF[q, z] and ¢(¢, ©) = 1. Solving this
triangular system by Cramer’s rule yields the desired result.

Let f : V — F be a continuous function with interpolation series (2.3). As
usual, we say that f is differentiable at « & V if lim D(f) exists as ¢ — 0 where
D@) = (f¢ + w) — f))/t. By [4, Theorem C] (the stronger hypothesis
f : V. — V appearing in the statement of Theorem C is not really used in its
proof), we have

A, (u)

(3.3) D) = Z T, B eV —(o)
where
(3.4) A = % (11 F)a,, B0,

¢ | jbut ¢°** ¥ j, and L, is given by [4, (2.6)]. We remark that lim A4 ;(u)
=0asj— . If inadditionlim 4,(u)/L., = 0asj— o, then [4, Theorem C]
f is differentiable at » and

(3.5) 1o = 270 00 - 3 -1 A
=1 e(7) n=0 n

As we shall see (Theorem 4.1), the condition lim A ;(u)/L,;, = 0as j — « is

also necessary for the differentiability of f at u. Before proving this, however,

we prove a partial converse of Theorem C which is of independent interest

in that it yields the formula for f'(u) directly from the hypothesis of differ-

entiability. We require first the following lemma.

Lemma 3.2, Forr>21landl <j<q¢ —1

k+1 . . k — . _
(3.6) 2 H,._l(m)={(—1) if j=4¢, k=0,1,---,7r—1

d .
gy 0 otherwise

Proof. 1fj = ¢*, wherek = 0,1, --- , r — 1, then by (3.1)

’ ’
3.7 Z Hi(m) = Gypa/(m)  Gpy'(0)
dek e akier oo Gor

=0 — (=1)" = (=1,

where the last line of (3.7) follows from [1, (5.12)] and [4, (5.6)]. If j = ¢,
then by [4, (5.6)], (3.2), and [1, (5.12)]
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’ .
9 > Hem = 3 Cetmieenn)
deg m<r deg m<r Jaetid—1j—qe (id
my£0
=0

TueOREM 3.3. Let f : V — F be a continuous function with interpolation
series (2.3). If f is differentiable at w € V, then

(3.9) fa = 3 (-1 4

and so im A »(u)/L, = 0asn — o,

Proof. Suppose that f'(u) = M. Define D(t) by (3.3) for ¢ = 0 and set
D) = \. Then D : V — F continuously, and so by [4, Theorem B]

DW= 3 D, G(‘)

i=0

for all t € V, where by (2.2)

(3.10) D, = (-1 ¥ Ge=fMpon <.

deg m<r gq'-l—i

Since (D;) is a null sequence, so is its subsequence (D,._,) for r > 0. But

(3.11) Dyoy = (=DM + (1) 2 D(m)
G LGP Af"’ Hy-(m)

= DN+ (-1 3 =)

by (3.10), (3.3), and Lemma 3.2. Since lim D,._; = 0 as r — «, (3.9) follows
immediately from the last line of (3.11).

k+1 Aak(u)
L,

4. We now prove the full converse of [4, Theorem C].

TueorEM 4.1. Let f : V — F be a continuous function with interpolation
series (2.3). If f is differentiable at w € V, then

4.1) lim 4

i Le(i)
where A ;(u), e(§), and L, are defined by (3.4) and the immediately following text.

Proof. Suppose that f'(u) = N\. Let g(¢) = f(t + u) — M — f(u). Then
g : V — F continuously, and ¢ is differentiable at 0 with ¢’(0) = 0. Let h(f) =
g)/t for t % 0 and h(0) = 0. Then h:V — F continuously and so by
[4, Theorem B] there exists a null sequence (H;) in F such that

=0,
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4.2) o = > B, @ (‘)

Now by [4, 5.14] -

“3) ORI WICE LY
- 3 Avw >G O

i=1
where A,'(u) = A,(u) — Aand A;/(u) = A,-(u) if j > 2. Now for each z > 0,
tG.:(t)/g: is an integral valued polynomial, so by previous remarks, there exists
d(z, j) € GF|q, z] such that
i+1 G t
(4.4) = 36, 5 0.

But then since g(t) = th(t) for allt € V, we have by (4.2) and (4.4)

(4.5 o = 3150
- S 3 6,9 U0
- 248 3 a6,

when the summation interchange is justified by the fact that (H;) is a null
sequence and G;(f)/g; is integral valued (mod z). Thus by the previously
mentioned uniqueness of interpolation series coefficients we have, comparing
(4.3) and (4.5),

(4.6) Ai'(w) = E d@, pH. .

i=j—1
Since (H,) is a null sequence it will follow (from the non-archimedean property
of the absolute value in F) that (4;/(u)/L.,;,), and hence (4;(u)/L,), is a
null sequence if we can show that d(¢, j)/L.;, € GF[q, z]. But by (2.4), [4,
(5.7)], and (3.1)

Gt _ G;() _ 3~ dG, g Gi()
(1) gi B Zd(z D, tg; :Zl L, tgi—

i+1 d ,
- Y dedy .
i=1 e(i)
Since G;(t)/g. is integral valued, it follows from Lemma 3.3 that d(¢, j)/L.;, €
GFlq, ).
Combining Theorem 4.1 with [4, Theorem C] yields the following characteriza-
tion of differentiability in V:
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TureorEM 4.2. Let f : V — F be a continuous function with interpolation
series (2.3). Then f is differentiable at w & V if and only f

(4.9) lim 2@ _ .

Fiadd Le(i)

in which case,
9 1 = 3 (-1 A,

We remark in conclusion that if the function f of Theorem 4.1 is a linear
transformation from V to F, each regarded as GF(g)-vector spaces, then the
interpolation series for f takes a particularly simple form [3, Theorem 4.2],
as do the necessary and sufficient conditions for differentiability of the present
paper [4, 2.10], [3, Theorems 5.1, 5.2]. An example of a continuous, nowhere
differentiable linear operator on V may also be found in [3].
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