WHEN CAN A PRIOR BE RECOVERED FROM A POSTERIOR?

Carl Wagner

1. Strict Conditioning.

Let \mathbf{A} be an algebra of subsets of a set Ω of possible states of the world. Suppose that you are given a finitely additive probability measure (henceforth, "probability") q on \mathbf{A}, and are told that q has come from some probability p on \mathbf{A} by conditioning on the event E. Can you determine p ? Well, yes, if $E=\Omega$ (in which case, it must be true that $p=q$), but not if E is a proper subset of Ω. For given the fully specified posterior q, along with E, there exist infinitely many priors that yield q by conditioning on E. Here's why: Choose any number $v \in(0,1]$ and any $\omega \in E^{c}$. Define the probabilities m_{ω} (called the point mass at ω) and p_{v} for each $A \in \mathbf{A}$ by

$$
\begin{align*}
& m_{\omega}(A)=1 \text { if } \omega \in A \quad \text { and } \quad m_{\omega}(A)=0 \text { if } \omega \notin A, \text { and } \tag{1.1}\\
& p_{v}(A)=v q(A \cap E)+(1-v) m_{\omega}\left(A \cap E^{c}\right) . \tag{1.2}
\end{align*}
$$

It is straightforward to check that m_{ω} and p_{v} are indeed probabilities on A. Furthermore,

$$
\begin{equation*}
p_{v}(A \mid E)=\frac{p_{v}(A \cap E)}{p_{v}(E)}=\frac{v q(A \cap E)}{v}=q(A \cap E)=q(A), \tag{1.3}
\end{equation*}
$$

since $q\left(E^{c}\right)=0$ and, hence, $q\left(A \cap E^{c}\right)=0$.

2. Jeffrey Conditioning.

With Ω and \mathbf{A} as above, suppose that $\mathbf{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ is a measurable partition of Ω (i.e., a set of nonempty, pairwise disjoint events in \mathbf{A}, with union equal to Ω), where $n \geq 2$. Suppose that you are given a probability q on \mathbf{A}, and you are told that q has come from some probability p on A by Jeffrey conditioning (henceforth, "JC") on \mathbf{E}, i.e., that for all $A \in \mathbf{A}$,

$$
\begin{equation*}
q(A)=\sum_{i=1}^{n} e_{i} p\left(A \mid E_{i}\right) \tag{2.1}
\end{equation*}
$$

for some probability p such that $p\left(E_{i}\right)>0, i=1, \ldots, n$, with each $e_{i}\left(=q\left(E_{i}\right)\right)>0$, and $e_{1}+\cdots+e_{n}=1$. It is easy to check that a formula of type (2.1) holds with the posited conditions if and only if

$$
\begin{equation*}
q\left(A \mid E_{i}\right)=p\left(A \mid E_{i}\right) \text { for all } A \in \mathbf{A}, \text { and each } i=1, \ldots, n \tag{2.2}
\end{equation*}
$$

Condition (2.2) is variously termed the rigidity, sufficiency, and invariance. Can p be recovered from q, along with knowledge of the values e_{1}, \ldots, e_{n} and the fact that q has come from p by JC on \mathbf{E} ? Again, no. To take a simple illustration, suppose that $\Omega=\{1,2,3,4\}, \mathbf{A}=2^{\Omega}$ (the set of all subsets of $\Omega, E_{1}=\{1,2\}$ and $E_{2}=\{3,4\}$. Let $q(\{1\})=1 / 9, q(\{2\})=2 / 9$, $q(\{3\})=q(\{4\})=1 / 3$, extending q to the remaining subsets of Ω in the obvious way. We may construct infinitely many probabilities p_{v} on \mathbf{A}, such that q comes from p_{v} by JC on $\left\{E_{1}, E_{2}\right\}$ with $q\left(E_{1}\right)=e_{1}=1 / 3$ and $q\left(E_{2}\right)=e_{2}=2 / 3$. For each $v \in(0,1)$, let $p_{v}(\{1\})=v / 3$, $p_{v}(\{2\})=2 v / 3, p_{v}(\{3\})=p_{v}(\{4\})=(1-v) / 2$. It is easily checked that each p_{v} has the desired property. ${ }^{1}$

Exercise. Let q be a probability on an algebra \mathbf{A} of subsets of the set Ω, and let $\mathbf{E}=$ $\left\{E_{1}, \ldots, E_{n}\right\}$ be a measurable partition of Ω, with $q\left(E_{i}\right)=e_{i}$ for $i=1, \ldots, n$. Let f_{1}, \ldots, f_{n} be any sequence of positive real numbers such that $f_{1}+\cdots+f_{n}=1$. For all $A \in \mathbf{A}$, let

$$
\begin{equation*}
p_{\left(f_{i}\right)}(A)=\sum_{i=1}^{n} f_{i} q\left(A \mid E_{i}\right) \tag{2.3}
\end{equation*}
$$

Then q comes from $p_{\left(f_{i}\right)}$ by JC on \mathbf{E}, with $q\left(E_{i}\right)=e_{i}, i=1, \ldots, n$.

3. An Alternative Parameterization of Jeffrey Conditioning.

Let Ω, \mathbf{A}, and $\mathbf{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ be as above, and let p be a probability on \mathbf{A} such that $p\left(E_{i}\right)>0$ for $i=1, \ldots, n$. Let u_{1}, \ldots, u_{n} be any sequence of positive real numbers, and consider revising the prior p to a posterior q by the formula

$$
\begin{equation*}
q(A)=\frac{\sum_{i=1}^{n} u_{i} p\left(A \cap E_{i}\right)}{\sum_{i=1}^{n} u_{i} p\left(E_{i}\right)} \text {, for all } A \in \mathbf{A} . \tag{3.1}
\end{equation*}
$$

It is straightforward to check that the set function q is indeed a probability on A. Moreover, initial appearances notwithstanding, formula (3.1) furnishes no new and exotic method of probability revision. For, for all $A \in \mathbf{A}$, and $j=1, \ldots, n$,

$$
\begin{equation*}
q\left(A \mid E_{j}\right)=\frac{q\left(A \cap E_{j}\right)}{q\left(E_{j}\right)}=\frac{u_{j} p\left(A \cap E_{j}\right)}{u_{j} p\left(E_{j}\right)}=p\left(A \mid E_{j}\right) . \tag{3.2}
\end{equation*}
$$

So q simply comes from p by JC on \mathbf{E}. But what do the parameters u_{i} represent? Recall that if q is a revision of the probability p and A and B are events, then the Bayes factor $\beta_{p}^{q}(A: B)$ is simply the ratio of the new odds on A against B to the old such odds, i.e.,

$$
\begin{equation*}
\beta_{p}^{q}(A: B)=\frac{q(A) / q(B)}{p(A) / p(B)} . \tag{3.3}
\end{equation*}
$$

When q comes from p by conditioning on E, then $\beta_{p}^{q}(A: B)$ is simply the likelihood ratio $p(E \mid A) / p(E \mid B)$.

Exercise. From formula (3.1) it follows that, for all $i, j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\frac{u_{i}}{u_{j}}=\beta_{p}^{q}\left(E_{i}: E_{j}\right) \tag{3.4}
\end{equation*}
$$

Interestingly, given a posterior q, the partition \mathbf{E}, the parameters u_{1}, \ldots, u_{n}, and the fact that q has come from some probability by JC on E , this information determines a unique prior p satisfying formula (3.1), namely the probability p defined for all $A \in \mathbf{A}$ by

$$
\begin{equation*}
p(A)=\frac{\sum_{i=1}^{n} u_{i}^{-1} q\left(A \cap E_{i}\right)}{\sum_{i=1}^{n} u_{i}^{-1} q\left(E_{i}\right)} . \tag{3.5}
\end{equation*}
$$

It is straightforward to check that (3.5) implies (3.1). But there is more work to be done to show that p, as defined by (3.5), is the only prior that yields q by means of formula (3.1). For this we must show that (3.1) implies (3.5).

From (3.1) and its consequence (3.4),

$$
\begin{align*}
& \frac{u_{j}}{u_{1}}=\beta_{p}^{q}\left(E_{j}: E_{1}\right)=\frac{q\left(E_{j}\right) p\left(E_{1}\right)}{q\left(E_{1}\right) p\left(E_{j}\right)}, \text { and so } \tag{3.6}\\
& p\left(E_{j}\right)=\frac{u_{1} q\left(E_{j}\right) p\left(E_{1}\right)}{u_{j} q\left(E_{1}\right)}, \text { whence } \tag{3.7}\\
& \frac{p\left(E_{j}\right)}{p\left(E_{1}\right)}=\frac{u_{1} q\left(E_{j}\right)}{u_{j} q\left(E_{1}\right)} . \tag{3.8}
\end{align*}
$$

Summing each side of (3.8) from $j=1$ to $j=n$ yields

$$
\begin{align*}
& \frac{1}{p\left(E_{1}\right)}=\sum_{j=1}^{n} \frac{u_{1}}{q\left(E_{1}\right)} \frac{q\left(E_{j}\right)}{u_{j}}=\sum_{i=1}^{n} \frac{u_{1} q\left(E_{i}\right)}{u_{i} q\left(E_{1}\right)}, \text { whence } \tag{3.9}\\
& p\left(E_{1}\right)=\left(\sum_{i=1}^{n} \frac{u_{1} q\left(E_{i}\right)}{u_{i} q\left(E_{1}\right)}\right)^{-1}, \tag{3.10}
\end{align*}
$$

and substituting the right-hand side of (3.10) for $p\left(E_{1}\right)$ in (3.7) yields

$$
\begin{equation*}
p\left(E_{j}\right)=\frac{u_{j}^{-1} q\left(E_{j}\right)}{\sum_{i=1}^{n} u_{i}^{-1} q\left(E_{i}\right)} \tag{3.11}
\end{equation*}
$$

which establishes (3.5) when $A=E_{j}$.
But by (3.2), $p\left(A \mid E_{j}\right)=q\left(A \mid E_{j}\right)$ for all $A \in \mathbf{A}$ and $j=1, \ldots, n$. So

$$
\begin{align*}
& p(A)=\sum_{j=1}^{n} p\left(E_{j}\right) p\left(A \mid E_{j}\right)=\sum_{j=1}^{n} p\left(E_{j}\right) q\left(A \mid E_{j}\right)=\sum_{j=1}^{n} \frac{u_{j}^{-1} q\left(E_{j}\right) q\left(A \mid E_{j}\right)}{\sum_{i=1}^{n} u_{i}^{-1} q\left(E_{i}\right)}= \tag{3.12}\\
& \frac{\sum_{i=1}^{n} u_{i}^{-1} q\left(A \cap E_{i}\right)}{\sum_{i=1}^{n} u_{i}^{-1} q\left(E_{i}\right)}
\end{align*}
$$

Remark. Special cases of formula (3.1) occur in Field (1978), where

$$
\begin{equation*}
u_{i}=G_{i}:=\left(\prod_{j=1}^{n} \beta_{p}^{q}\left(E_{i}: E_{j}\right)\right)^{1 / n}, \tag{3.13}
\end{equation*}
$$

and Jeffrey and Hendrickson (1988/89) and Wagner (2002), where

$$
\begin{equation*}
u_{i}=B_{i}:=\beta_{p}^{q}\left(E_{i}: E_{1}\right) \tag{3.14}
\end{equation*}
$$

References

1. Hartry Field (1978), A note on Jeffrey conditionalization, Philosophy of Science 45: 361-367.
2. Richard Jeffrey and Michael Hendrickson (1988/89), Probabilizing pathology, Proceedings of the Aristotelian Society 89 (Part 3), 211-225.
3. Carl Wagner (2002), Probability kinematics and commutativity, Philosophy of Science 69: 266-278.

Notes

1. For every finite $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, and any probabilities p and q on 2^{Ω} for which $p\left(\left\{\omega_{i}\right\}\right\}>0$ and $q\left(\left\{\omega_{i}\right\}\right)>0$ for $i=1, \ldots, n$, it is (trivially) the case that q comes from p by JC on $\mathbf{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, where $E_{i}=\left\{\omega_{i}\right\}$ and $e_{i}=q\left(\left\{\omega_{i}\right\}\right)$. That is, each positive probability q on 2^{Ω} comes from every positive probability p on 2^{Ω} by JC on \mathbf{E}. In such cases q obliterates all traces of the prior p from which it came by JC , including any nontrivial information about the conditional probabilities $p\left(A \mid E_{i}\right)=q\left(A \mid E_{i}\right)$, which take only the values zero and one here.
