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WHEN CAN A PRIOR BE RECOVERED FROM A POSTERIOR? 

Carl Wagner  

1. Strict Conditioning.   

 Let A be an algebra of subsets of a set   of possible states of the world. Suppose that you are 

given a finitely additive probability measure (henceforth, “probability”) q on A, and are told that 

q has come from some probability p on A by conditioning on the event E. Can you determine p? 

Well, yes, if E=  (in which case, it must be true that )p q ,  but not if E  is a proper subset of 

.  For given the fully specified posterior q, along with E, there exist infinitely many priors that 

yield q by conditioning on E. Here’s why: Choose any number (0,1]   and any .cE  Define 

the probabilities m  (called the point mass at  )  and p  for each AA by 

(1.1)       ( ) 1m A   if  A     and   ( ) 0m A   if  A ,  and 

(1.2)        ( ) ( ) (1 ) ( ).cp A q A E m A E         

It is straightforward to check that m  and p  are indeed probabilities on A.  Furthermore, 

(1.3)                  
( ) ( )

( | ) ( ) ( ),
( )

p A E q A E
p A E q A E q A

p E










 
       

since ( ) 0cq E   and, hence, ( ) 0.cq A E    

2.  Jeffrey Conditioning.  

 With   and A as above, suppose that E = 1{ ,..., }nE E  is a measurable partition of   (i.e., a set 

of nonempty, pairwise disjoint events in A, with union equal to ), where 2.n   Suppose that 

you are given a probability q on A, and you are told that q has come from some probability p on 

A by Jeffrey conditioning (henceforth, “JC”) on E, i.e., that for all AA, 

(2.1)                           
1

( ) ( | )
n

i i

i

q A e p A E


   

for some probability p  such that ( ) 0,ip E   1,...,i n , with each   ( ) 0i ie q E  , and 

1 1.ne e   It is easy to check that a formula of type (2.1) holds with the posited conditions if 

and only if 

(2.2)             ( | ) ( | )i iq A E p A E  for all AA , and each 1,..., .i n   
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Condition (2.2) is variously termed the rigidity, sufficiency, and invariance.  Can p be recovered 

from q, along with knowledge of the values 
1,..., ne e  and the fact that q has come from p by JC 

on E ?  Again, no.  To take a simple illustration, suppose that {1,2,3,4},  A = 2  (the set of 

all subsets of  , 
1 {1,2}E   and 

2 {3,4}.E   Let ({1}) 1/ 9,q   ({2}) 2 / 9,q   

({3}) ({4}) 1/ 3,q q   extending q to the remaining subsets of   in the obvious way.  We may 

construct infinitely many probabilities p  on A, such that q  comes from p  by JC on 1 2{ , }E E  

with 
1 1( ) 1/ 3q E e   and 

2 2( ) 2 / 3.q E e   For each (0,1),   let ({1}) / 3,p   

({2}) 2 / 3,p   ({3}) ({4}) (1 ) / 2.p p      It is easily checked that each p  has the desired 

property.
1
 

Exercise.   Let q  be a probability on an algebra A of subsets of the set  , and let E = 

1{ ,..., }nE E  be a measurable partition of  , with ( )i iq E e  for 1,..., .i n  Let 1,..., nf f  be any 

sequence of positive real numbers such that 1 1.nf f    For all A  A, let 

(2.3)                         
( )

1

( ) ( | ).
i

n

f i i

i

p A f q A E


   

Then q comes from ( )if
p  by JC on E, with ( )i iq E e , 1,..., .i n   

3. An Alternative Parameterization of Jeffrey Conditioning. 

Let ,  A, and E= 1{ ,..., }nE E  be as above, and let p  be a probability on A such that ( ) 0ip E   

for 1,..., .i n  Let 1,..., nu u  be any sequence of positive real numbers, and consider revising the 

prior p  to a posterior q  by the formula 

(3.1)                               1

1

( )

( )

( )

n

i i

i

n

i i

i

u p A E

q A

u p E











 , for all A  A. 

It is straightforward to check that the set function q  is indeed a probability on A.  Moreover, 

initial appearances notwithstanding, formula (3.1) furnishes no new and exotic method of 

probability revision. For, for all A  A, and 1,..., ,j n    

(3.2)                     
( ) ( )

( | ) ( | ).
( ) ( )

j j j

j j

j j j

q A E u p A E
q A E p A E

q E u p E
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So q  simply comes from p  by JC on E.  But what do the parameters 
iu  represent?  Recall that 

if q  is a revision of the probability p  and A  and B  are events, then the Bayes factor ( : )q

p A B  

is simply the ratio of the new odds on A against B  to the old such odds, i.e., 

(3.3)                      
( ) / ( )

( : )
( ) / ( )

q

p

q A q B
A B

p A p B
   . 

 When q  comes from p  by conditioning on ,E  then ( : )q

p A B  is simply the likelihood ratio 

( | ) / ( | ).p E A p E B   

Exercise.   From formula (3.1) it follows that, for all , {1,..., }i j n , 

(3.4)                                           ( : )qi
p i j

j

u
E E

u
   

Interestingly, given a posterior q , the partition E, the parameters  1,..., nu u , and the fact that q  

has come from some probability by JC on E, this information determines a unique prior p  

satisfying formula (3.1), namely the probability p  defined for all AA by 

(3.5)                                     

1

1

1

1

( )

( )

( )

n

i i

i

n

i i

i

u q A E

p A

u q E















 .   

It is straightforward to check that (3.5) implies (3.1).  But there is more work to be done to show 

that ,p  as defined by (3.5), is the only prior that yields q  by means of formula (3.1). For this we 

must show that (3.1) implies (3.5).  

    From (3.1) and its consequence (3.4), 

(3.6)                                      
1

1

1 1

( ) ( )
( : )

( ) ( )

j jq

p j

j

u q E p E
E E

u q E p E
   , and so 

(3.7)                                              
1 1

1

( ) ( )
( )

( )

j

j

j

u q E p E
p E

u q E
  , whence 

(3.8)                                             
1

1 1

( ) ( )
.

( ) ( )

j j

j

p E u q E

p E u q E
   

Summing each side of (3.8) from 1j   to j n  yields 
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(3.9)                  11

1 11 1 1

( ) ( )1

( ) ( ) ( )

n n
j i

j ij i

q E u q Eu

p E q E u u q E 

     , whence 

(3.10)                11
1

1 1

( )
( ) ( )

( )

n
i

i i

u q E
p E

u q E





   , 

and substituting the right-hand side of (3.10) for 1( )p E  in (3.7) yields 

(3.11)             

1

1

1

( )
( ) ,

( )

j j

j n

i i

i

u q E
p E

u q E










 

which establishes (3.5) when .jA E   

But by (3.2), ( | ) ( | )j jp A E q A E  for all A  A and 1,..., .j n  So 

(3.12)     

1

11 1 1

1

( ) ( | )
( ) ( ) ( | ) ( ) ( | )

( )

n n n
j j j

j j j j n
j j j

i i

i

u q E q A E
p A p E p A E p E q A E

u q E



  



     


  

                                 

1

1

1

1

( )

.

( )

n

i i

i

n

i i

i

u q A E

u q E












  

Remark.   Special cases of formula (3.1) occur in Field (1978), where 

(3.13)                            1/

1

: ( ( : ))
n

q n

i i p i j

j

u G E E


   , 

and Jeffrey and Hendrickson (1988/89) and Wagner (2002), where  

(3.14)                            1: ( : ).q

i i p iu B E E    
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Notes 

1.  For every finite 
1{ ,..., },n   and any probabilities p  and q  on 2  for which  

({ }} 0ip    and ({ }) 0iq    for 1,..., ,i n  it is (trivially) the case that q  comes from p  by JC 

on E = 
1{ ,..., },nE E  where { }i iE   and ({ }).i ie q   That is, each positive probability q  on 2  

comes from every positive probability p  on 2  by JC on E. In such cases q obliterates all traces 

of the prior p from which it came by JC, including any nontrivial information about the 

conditional probabilities ( | ) ( | )i ip A E q A E , which take only the values zero and one here. 

 

 

               


