Linear Pseudo-Polynomials over $G F[q, x]$

By
Carl G. Wagner *)

1. Introduction. A pseudo-polynomial over the ring \mathbb{Z} of rational integers is a function f from the nonnegative integers to \mathbb{Z} satisfying $f(n+k) \equiv f(n)(\bmod k)$ for all nonnegative n and k. In [4] R. R. Hall proved that the pseudo-polynomials over \mathbb{Z} are precisely the functions f given by an interpolation series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} A_{n}\binom{x}{n} \tag{1.1}
\end{equation*}
$$

where $A_{n} \in \mathbb{Z}$ and A_{n} is divisible by the l. c. m. of the numbers $1,2, \ldots, n$. He also showed that the integral domain of pseudo-polynomials over \mathbb{Z} (with pointwise multiplication of functions) is not a unique factorization domain.

Let $G F[q, x]$ denote the ring of polynomials over the finite field $G F(q)$. Following Hall, we say that a function $f: G F[q, x] \rightarrow G F[q, x]$ is a pseudo-polynomial over $G F[q, x]$ if $f(M+K) \equiv f(M)(\bmod K)$ for all $M, K \in G F[q, x]$. If, in addition, f is a linear operator on the $G F(q)$-vector space $G F[q, x]$ (in which case the aforementioned congruence reduces to $f(K) \equiv 0(\bmod K)$) we say that f is a linear pseudopolynomial over $G F[q, x]$. In this paper we present a characterization of such operators which is analogous to Hall's. We also show that the linear pseudo-polynomials constitute a non-commutative ring L (with operator composition as the ring multiplication) which is free of zero divisers. We conclude by showing that each operator in L may be extended uniquely to a continuous (though not necessarily differentiable) linear operator on the vector space of formal power series over $G F(q)$, equipped with an x-adic absolute value.
2. Preliminaries. Let $G F[q, x]$ denote the ring of polynomials over the finite field $G F(q)$ of characteristic p, and let $G F(q, x)$ denote the quotient field of $G F[q, x]$. Following Carlitz [2], we define a sequence of polynomials $\psi_{r}(t)$ over $G F[q, x]$ by

$$
\begin{equation*}
\psi_{r}(t)=\prod_{\operatorname{deg} M<r}(t-M), \quad \psi_{0}(t)=t \tag{2.1}
\end{equation*}
$$

where the product in (2.1) extends over all $M \in G F[q, x]$ (including 0) of degree $<r$. It follows [2] that

[^0]\[

\psi_{r}(t)=\sum_{i=0}^{r}(-1)^{r-i}\left[$$
\begin{array}{c}
r \tag{2.2}\\
i
\end{array}
$$\right] t^{q^{i}}
\]

where

$$
\left[\begin{array}{c}
r \tag{2.3}\\
i
\end{array}\right]=\frac{F_{r}}{F_{i} L_{r-i}^{q^{i}}},\left[\begin{array}{l}
r \\
0
\end{array}\right]=\frac{F_{r}}{L_{r}},\left[\begin{array}{c}
r \\
r
\end{array}\right]=1
$$

and

$$
\begin{array}{ll}
F_{r}=\langle r\rangle\langle r-1\rangle^{q} \cdots\langle 1\rangle^{r^{-1}}, & F_{0}=1, \\
L_{r}=\langle r\rangle\langle r-1\rangle \cdots\langle 1\rangle, & L_{0}=1, \tag{2.4}\\
\langle r\rangle=x^{q}-x . &
\end{array}
$$

We remark that $\psi_{r}\left(x^{r}\right)=\psi_{r}(M)=F_{r}$ for M monic of degree r, so that F_{r} is the product of all monic polynomials in $G F[q, x]$ of degree r [2]. On the other hand, L_{r} may be seen to be the l. c. m. of all polynomials in $G F[q, x]$ of degree r [1].

A polynomial $f(t)$ over $G F(q, x)$ is called integral valued if $f(M) \in G F[q, x]$ for all $M \in G F[q, x] ; f(t)$ is called linear if the polynomial function which it induces is a linear operator on the $G F(q)$-vector space $G F(q, x)$. It is proved in [2] and [3] that the sequence $\left(\psi_{r}(t) / F_{r}\right)$ is an ordered basis of the $G F[q, x]$-module of linear integral valued polynomials over $G F(q, x)$. Indeed, given any linear polynomial

$$
f(t)=\sum_{i=0}^{n} \alpha_{i} t^{q^{i}} \quad\left(\alpha_{i} \in G F(q, x)\right),
$$

we bave [2]

$$
\begin{equation*}
f(t)=\sum_{i=0}^{n} \Delta^{i} f(1) \frac{\psi_{i}(t)}{F_{i}} \tag{2.5}
\end{equation*}
$$

where the operators Δ^{i} are defined recursively by

$$
\begin{align*}
\Delta^{0} f(t) & =f(t) \\
\Delta^{1} f(t) & =\Delta f(t)=f(x t)-x f(t), \tag{2.6}\\
\Delta^{i+1} f(t) & =\Delta^{i} f(x t)-x^{q^{i}} \Delta^{i} f(t) .
\end{align*}
$$

We conclude this section with some valuation theoretic remarks. Let $P \in G F[q, x]$ be irreducible. Each nonzero $\alpha \in G F(q, x)$ may be written, in essentially unique fashion, as $\alpha=P^{e} M / N$, where $M, N \in G F[q, x]$ are prime to P and to each other, and $e \in \mathbb{Z}$. Setting $v_{P}(\alpha)=e$ yields an integer-valued valuation on $G F(q, x)$. The valuation v_{P} induces a discrete non-archimedean absolute value $\left|\left.\right|_{P}\right.$ on $G F(q, x)$ by $|0|_{P}=0$ and $|\alpha|_{P}=b^{v_{P}(\alpha)}$ (for some fixed b such that $0<b<1$) if $\alpha \neq 0$. As is familiar, $G F(q, x)$ may be embedded as a dense subfield in an essentially unique complete field. When $P=x$ this complete field is simply the field of formal power series

$$
\begin{equation*}
\alpha=\sum_{i=-\infty}^{\infty} a_{i} x^{i} \tag{2.7}
\end{equation*}
$$

where $a_{i} \in G F(g)$ and all but a finite number of the a_{i} 's vanish for $i<0$ (if n is the least integer such that $a_{n} \neq 0$, we have the extended valuation $\left.v_{x}(\alpha)=n\right)$. We denote this field by $G F((q, x))$. Its valuation ring, denoted $G F[[q, x]]$, consists
of all formal power series of the form

$$
\alpha=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

Obviously, $G F[q, x]$ is a dense subring of the compact ring $G F[[q, x]]$.
3. Linear pseudo-polynomials over $G F[q, x]$. We recall from the Introduction that a linear pseudo-polynomial over $G F[q, x]$ is a linear operator f on the $G F(q)$-vector space $G F[q, x]$ such that $f(K) \equiv 0(\bmod K)$ for all $K \in G F[q, x]$. Obviously, each linear polynomial $f(t)$ with coefficients in $G F[q, x]$ gives rise to a linear pseudopolynomial over $G F[q, x]$. The same is true for some (but not all) linear, integral valued polynomials over $G F(q, x)$ (see Theorem 3.2). We denote the set of all linear pseudo-polynomials over $G F[q, x]$ by L. For $f, g \in L$ set $f+g(M)=f(M)+g(M)$ and $f \circ g(M)=f(g(M))$ for all $M \in G F[q, x]$. Clearly, $(L,+, 0)$ is a noncommutative ring with identity. It follows from the next theorem that L is free of zero-divisors.

Theorem 3.1. Let f be a nonzero linear operator in L. Then the null space of f is finite dimensional and the range of f is infinite dimensional.

Proof. Suppose that the null space of f is infinite dimensional. Then there is an infinite sequence M_{1}, M_{2}, \ldots of polynomials in $G F[q, x]$ such that for all i,

$$
\operatorname{deg} M_{i}<\operatorname{deg} M_{i+1} \quad \text { and } \quad f\left(M_{i}\right)=0
$$

Now let $K \in G F[q, x]$ be arbitrary. Then $f\left(M_{i}+K\right)=f(K)$ for all i. But since f is a pseudo-polynomial, $M_{i}+K$ divides $f(K)$ for all i. Since the degree of $M_{i}+K$ ultimately exceeds that of $f(K)$, it follows that $f(K)=0$. This contradicts the hypothesis that f is not the zero operator.

It follows immediately that the range of f is infinite dimensional, for it is well known that the null space and range of a linear operator on an infinite dimensional vector space (in this case the $G F(q)$-vector space $G F[q, x])$ cannot both be finite dimensional.

Corollary. L contains no zero diviso s.

Proof. Let $f, g \in L$, where g is not the zero operator. If $f \circ g$ is the zero operator, then the (infinite dimensional) range of g is contained in the null space of f. Hence, by the previous theorem, f is the zero operator.

We now present a concrete characterization of the operators of L. Let f be any linear operator on the $G F(q)$-vector space $G F[q, x]$. It follows easily from assertion (2.5) for linear polynomials that, for all $M \in G F[q, x]$,

$$
\begin{equation*}
f(M)=\sum_{i=0}^{\operatorname{deg} M} \Delta^{i} f(1) \frac{\psi_{i}(M)}{F_{i}} \tag{3.1}
\end{equation*}
$$

where the operators Δ^{i} are defined by (2.6). Since $\psi_{i}(M)=0$ if $\operatorname{deg} M<i$, we may rewrite (3.1) as

$$
\begin{equation*}
f(t)=\sum_{i=0}^{\infty} \Delta^{i} f(1) \frac{\psi_{i}(t)}{F_{i}} \tag{3.2}
\end{equation*}
$$

where the variable t is understood to run through $G F[q, x]$. From (2.6) it is clear that $\Delta^{i} f(1) \in G F[q, x]$ for all i. Conversely, given any sequence $\left(A_{i}\right)$ in $G F[q, x]$, since $\psi_{i}(t) / F_{i}$ is integral valued [3], it follows that

$$
\begin{equation*}
g(t)=\sum_{i=0}^{\infty} A_{i} \frac{\psi_{i}(t)}{F_{i}} \tag{3.3}
\end{equation*}
$$

defines a linear operator g on $G F[q, x]$ for which $\Delta^{i} g(1)=A_{i}$. The following theorem specifies which of these linear operators are pseudo-polynomials over $G F[q, x]$.

Theorem 3.2. Let the linear operator g on $G F[q, x]$ be given by the interpolation series (3.3). Then g is a pseudo-polynomial over $G F[q, x]$ if and only if A_{i} is divisible by L_{i} in $G F[q, x]$ for all i, where L_{i} is defined by (2.4).

Sufficiency. It obviously suffices to show that

$$
\begin{equation*}
\frac{L_{n} \psi_{n}(K)}{F_{n}} \equiv 0(\bmod K) \tag{3.4}
\end{equation*}
$$

for all $K \in G F[q, x]$. If $\operatorname{deg} K<n$, then by (2.1) $\psi_{n}(K)=0$. If $\operatorname{deg} K=n$ and the leading coefficient of K is c, then by the remark following (2.4) $L_{n} \psi_{n}(K) / F_{n}=$ $=c L_{n}$, and since L_{n} is the l. c. m. of all polynomials of degree n, (3.4) follows.

Suppose then that deg $K>n$. To establish (3.4) in this case it suffices to show that if P is a monic irreducible divisor of K such that P^{e} divides K but P^{e+1} does not divide K, then P^{e} divides $L_{n} \psi_{n}(K) / F_{n}$, i.e., $v_{P}\left(L_{n} \psi_{n}(K) / F_{n}\right) \geqq e$. Suppose that the P-adic expansion of K is

$$
\begin{equation*}
K=K_{e} P^{e}+\cdots+K_{s} p^{s} \tag{3.5}
\end{equation*}
$$

where $K_{i} \in G F[q, x], K_{e}, K_{s} \neq 0$, and deg $P=d$. Recall that P divides $\langle r\rangle$ (see 2.4) exactly once in $G F[q, x]$ if and only if d divides r. Hence by (2.4)

$$
\begin{equation*}
v_{P}\left(L_{n}\right)=\sum_{j=1}^{[n / d]} 1=[n / d] \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{P}\left(F_{n}\right)=\sum_{j=1}^{[n / d]} q^{n-j a} \tag{3.7}
\end{equation*}
$$

To evaluate $v_{P}\left\langle\psi_{n}(K)\right)$, let $S_{n}=\{M \in G \bar{F}[q, x]: \operatorname{deg} M<n\}$ and, for each $j \geqq 1$, let $a_{j}=\operatorname{card}\left\{M \in S_{n}: M \equiv K\left(\bmod P^{j}\right)\right\}$. Then by (2.2)

$$
\begin{equation*}
v_{P}\left(\psi_{n}(K)\right)=\sum_{M \in S_{n}} v_{P}(K-M)=\sum_{j=1}^{\infty} j\left(a_{j}-a_{j+1}\right)=\sum_{j=1}^{\infty} a_{j} \tag{3.8}
\end{equation*}
$$

where, in the last two sums of (3.8) all but a finite number of terms vanish. Indeed, it is clear from (3.5) and the fact that $\operatorname{deg} K>n$ that $a_{j}=0$ when $j>s$. On the other hand, if $1 \leqq j \leqq[n \mid d]$, then since S_{n} contains precisely $q^{n-j d}$ complete residue systems $\left(\bmod P^{j}\right), a_{j}=q^{n-j d}$ for such j. For $[n / d]<j \leqq \varepsilon$, however, $\alpha_{j} \leqq 1$, since in such cases S_{n} contains only a fragment of a complete residue system (mod P^{j}). Along with (3.6), (3.7), and (3.8) the foregoing remarks yield the preliminary formula

$$
\begin{equation*}
v_{P}\left(\frac{L_{n} \psi_{n}(K)}{F_{n}}\right)=[n / d]+\sum_{j=[n / d]+1}^{s} a_{j} \tag{3.9}
\end{equation*}
$$

where $0 \leqq a_{j} \leqq 1$. If $[n / d] \geqq e$, the desired result follows immediately. Suppose then that $[n / d]=e-r$ for some $r>1$. Since $0 \in S_{n}$ and $K \equiv 0\left(\bmod P^{j}\right)$ for $j \leqq e$, we have $a_{j}=1$ for $e-r+1 \leqq j \leqq e$. Hence by (3.9)

$$
v_{P}\left(\frac{L_{n} \psi_{n}(K)}{F_{n}}\right)=(e-r)+\sum_{j=e-r+1}^{s} a_{j} \geqq(e-r)+\sum_{j=e-r+1}^{e} 1=e
$$

Necessity. We are given that K divides $g(K)$ for all $K \in G F[q, x]$. We show by induction on i that L_{i} divides A_{i} for all i. By (2.4), $L_{0}=1$ and so L_{0} divides A_{0}. Suppose that L_{i} divides A_{i} for all $i<n$. Let $K \in G F[q, x]$ be an arbitrary monic polynomial of degree n. Then

$$
g(K)=\sum_{i=0}^{n} A_{i} \frac{\psi_{i}(K)}{F_{i}}=\sum_{i=0}^{n-1} A_{i} \frac{\psi_{i}(K)}{F_{i}}+A_{n}
$$

Since L_{i} divides A_{i} for $i<n$, then by the preceding proof of sufficiency, K divides $A_{i} \psi_{i}(K) / F_{i}$ for $i<n$. Since K also divides $g(K), K$ divides A_{n}. Hence A_{n} is divisible by L_{n}, the l. c. m. of all polynomials in $G F[q, x]$ of degree n.
4. Extensions to $G F[[q, x]]$. In [4] Hall remarks that it would be of interest to find an interpolation formula for the function f given in (1.1) "which would extend its definition to all real or even complex values of x ". While this would appear to be a task of some difficulty, it may be of interest to note that the aforementioned function f extends by the very same formula to a continuous function on the ring \mathbb{Z}_{p} of p-adic integers for any prime p. Indeed, Mahler [5] has shown that a series of the form (1.1), where $A_{n} \in \mathbb{Z}_{p}$, represents a continuous function on \mathbb{Z}_{p} precisely when $\lim A_{n}=0$ for the p-adic topology, and Hall's divisibility conditions on the A_{n} $n \rightarrow \infty$
clearly insure that $\left(A_{n}\right)$ is a p-adic null sequence. On the other hand, this extension of a pseudo-polynomial to \mathbb{Z}_{p} may not yield a differentiable function, for Mahler [5] has proved, among other things, that the extended function f of (1.1) is differentiable at 0 if and only if $\left(A_{n} / n\right)$ is a p-adic null sequence. Thus if we set $A_{n}=$ l.c.m. $\{1,2, \ldots, n\}, f$ is not differentiable at 0 since the subsequence $\left(A_{p^{r}} / \dot{p}^{r}\right)$ is not a p-adic null sequence.

Analogously, the linear pseudo-polynomial g given by (3.3) extends by the very same formula to a continuous linear operator on the $G F(q)$-vector space $G F[[q, x]]$. For it is known [6] that a series of the form (3.3), where $A_{i} \in G F[[q, x]]$ represents a continuous linear operator on $G F[[q, x]]$ (for the x-adic topology) precisely when $\left(A_{i}\right)$ is an x-adic null sequence, and the divisibility conditions on A_{i} insure this when g is an extension of a linear pseudo-polynomial. On the other hand, g is differentiable at 0 (hence everywhere) if and only if $\left(A_{i} / L_{i}\right)$ is an x-adic null sequence [6]. Hence if we set $A_{i}=L_{i}$ in (3.3), this yields a linear pseudo-polynomial over $G F[q, x]$, the unique continuous extension of which to $G F[[q, x]]$ is nowhere differentiable.

References

[1] L. Carlitz, On Polynomials in a Galois Field. Bull. Amer. Math. Soc. 38, 736-744 (1932).
[2] L. Carlitz, On Certain Functions Connected with Polynomials in a Galois Field. Duke Math. J. 1, 137-168 (1935).
[3] L. Carlitz, A Set of Polynomials. Duke Math. J. 6, 486-504 (1940).
[4] R. R. Hall, On Pseudo-Polynomials. Mathematika 18, 71-77 (1971).
[5] K. Marmer, An interpolation series for continuous functions of a p-adic variable. J. Reine Angew. Math. 251, 23-34 (1958).
[6] C. Wagner, Linear operators in local fields of prime characteristic. J. Reine Angew. Math. 251, 153-160 (1971).

Eingegangen am 11. 11. 1973
Anschrift des Autors:
Carl G. Wagner
Mathematics Department
University of Tennessee
Knoxville, Tennessee 37916, USA

[^0]: *) This work was supported by the University of Tennessee Faculty Research Fund.

