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If r and n are nonnegative integers, the r" power sum S_(n) is defined by
(1) S,(n):=> k", where 0°:=1.
k=0

In particular,
(2 Sp(n) =1+n.
Along with (2), the following recurrence provides a recursive formula for S, (n):

3) sr(n)zriﬂ{(n +1)f+1—§(ri+lj S.(n)}, forall r>1.

Proof of (3): By the binomial theorem,

@) (k+1)”1—k”1:§(r;rl) K,

and so

5) knzo[(k £ K] = k:o izro(ri”j K :Z;[r.ﬂjkz;k :ZO:UIHJ s,(n).

r+l

Since the left-most sum above telescopes to (n+1)"", this yields the implicit recurrence

©) Z(rﬂ 5,0 =0+,

which yields (3) upon solving for S, (n). See Wagner [2] for a combinatorial proof of (6). o

From (2) and (3) it follows by induction on r that S, (n) is a polynomial in n of degreer +1.
Accordingly, let us write
r+1

(") S.(n) =Za(r, n’.

From (2) and the recurrence (3), we may compute



1 1
8) S (n)==n+=n?,
8) S,(n) 5"t

1 1 1
9) S (nN)==n+=n*+=n°,
9) »(n) st 3

1 1 1
10) S.(n)==n*+=n*+=n*, and
(10)  S4(n) 2 5 2

1 1 1
11) S,(n)=——n+=n®+=n*
(11) S,(n) "3 >

+1n , efc.

Tabulating the coefficients of these polynomials clarifies the connection between the coefficients

of S, (n) and those of S, ,(n).

Tablel. a(r,j) for0<r<4 and 0<j<5

r=0 1 1

r=1 0 Ya Y
r=2 0 1/6 Yo
r=3 0 0 Ya
r=4 0 -1/30 0

=3 j=4  j=5

1/3
1 Ya

1/3 Yo 1/5

A careful examination of the above table leads us to conjecture the following theorem:

Theorem. Forall r>1, a(r,0)=0 and

r+1 r+1

(12) Y a(r,j)=> a(r, j)=1, whence,

r+1

(13) a(r,))=1->a(r, j).
j=2
Forall r>1and j>2,

(14 a(r,j) =% a(r-1,j-1).



r+l
Proof (Owens [1]). Setting n=1 in (7) yields Za(r, j)=S,(1)=0"+1" =1. Setting n=0 in
j=0

(7) for r>1 yields a(r,0)=S,(0)=0"=0. Now consider the polynomial

r+1

(15) S, (X) :=Za(r, jxd.

In what follows we use the easily established fact that, applied to a polynomial p(x), the finite
difference operator A and the differentiation operator D commute, i.e.,

(16)  A(Dp(x)) = D(Ap(x)).

Now by (1), it is the case that for fixed r>0 and all n>0, S, (n+1)—S, (n)=(n+1)", which
implies the polynomial identity

(17)  AS,(X)=S,(x+1)—S,(x)=(x+1)".

From (16) and (17) it follows that

(18) A(DS,(x))=D(A S, (X)) =D(X+1)'= r(x+1)"* =rA S,_,(x) = ArS, ,(X).
Hence,

(19) A(D S, (x)—rS,,4(x) =0,

from which it follows that the polynomial DS _(x)—rS, ;(x) is equal to a constant*, namely, the
constant ¢ = DS (0) - rS,_,(0)= a(r,1) -rd,,. Hence,

(20) DS, (x)=rS, ,(x)+c, which implies that

r+1 r

(21) Z ja(r, j)xi™ :Z(j +Da(r, j+)x' = Zr:ra(r -1, jx'+ c.

Comparing coefficients of x! for j>1 vyields
(22) (j+Da(r, j+L)=ra(r-1,j) forall r,j>1 ie.,

(23) ja(r,j)=ra(r-1,j-1) forall r>=1andall j>2. o



Remark. The numbers B, defined by B, =a(0,1), B, =-a(11), and B, =a(r,1) forall r >2,
are called Bernoulli numbers. We have

B,=1B=-1/2,B,=1/6,B,=0,B, =-1/30,B,=0,B,=1/42,B, =0,B, =-1/30,B, =0,B,, =5/ 66,
B, =0, B, =—691/2730, etc. It may be proved that B, =0 for all odd r >3, and that B,
alternates in sign for r even. If we define a function f: R—>R by

(24) ()= —2— if x=0 and B(0)=1 (=lim_,—>—)
e -1 e -1
then
(25) gBr);—r!:ﬁ(x) (and so0 ga(r,l))r(—r!zﬂ(xhx) for |x|<27.
Notes

Lf p(x):ch()j(j, and Ap(x):ZCj(jXJ:O, then ¢, =---=c,_ =0, since the set of
j=0 j=1 -

polynomials { ( . X 1], j=1,...,m} is a basis for the vector space of polynomials of degree

<m-1. So p(x) =c,.
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