Recursive Formulae for Power Sums

Carl Wagner

If r and n are nonnegative integers, the $r^{\text {th }}$ power $\operatorname{sum} S_{r}(n)$ is defined by

$$
\begin{equation*}
S_{r}(n):=\sum_{k=0}^{n} k^{r}, \text { where } 0^{0}:=1 \tag{1}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
S_{0}(n)=1+n . \tag{2}
\end{equation*}
$$

Along with (2), the following recurrence provides a recursive formula for $S_{r}(n)$:

$$
\begin{equation*}
S_{r}(n)=\frac{1}{r+1}\left\{(n+1)^{r+1}-\sum_{i=0}^{r-1}\binom{r+1}{i} S_{i}(n)\right\}, \text { for all } r \geq 1 \tag{3}
\end{equation*}
$$

Proof of (3): By the binomial theorem,

$$
\begin{equation*}
(k+1)^{r+1}-k^{r+1}=\sum_{i=0}^{r}\binom{r+1}{i} k^{i}, \tag{4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{k=0}^{n}\left[(k+1)^{r+1}-k^{r+1}\right]=\sum_{k=0}^{n} \sum_{i=0}^{r}\binom{r+1}{i} k^{i}=\sum_{i=0}^{r}\binom{r+1}{i} \sum_{k=0}^{n} k^{i}=\sum_{i=0}^{r}\binom{r+1}{i} S_{i}(n) . \tag{5}
\end{equation*}
$$

Since the left-most sum above telescopes to $(n+1)^{r+1}$, this yields the implicit recurrence
(6) $\sum_{i=0}^{r}\binom{r+1}{i} S_{i}(n)=(n+1)^{r+1}$,
which yields (3) upon solving for $S_{r}(n)$. See Wagner [2] for a combinatorial proof of (6).
From (2) and (3) it follows by induction on r that $S_{r}(n)$ is a polynomial in n of degree $r+1$.
Accordingly, let us write

$$
\begin{equation*}
S_{r}(n)=\sum_{j=0}^{r+1} a(r, j) n^{j} \tag{7}
\end{equation*}
$$

From (2) and the recurrence (3), we may compute
(8) $S_{1}(n)=\frac{1}{2} n+\frac{1}{2} n^{2}$,
(9) $\quad S_{2}(n)=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}$,
(10) $\quad S_{3}(n)=\frac{1}{4} n^{2}+\frac{1}{2} n^{3}+\frac{1}{4} n^{4}$, and
(11) $S_{4}(n)=-\frac{1}{30} n+\frac{1}{3} n^{3}+\frac{1}{2} n^{4}+\frac{1}{5} n^{5}$, etc.

Tabulating the coefficients of these polynomials clarifies the connection between the coefficients of $S_{r}(n)$ and those of $S_{r-1}(n)$.

Table 1. $a(r, j)$ for $0 \leq r \leq 4$ and $0 \leq j \leq 5$

$$
j=0 \quad j=1 \quad j=2 \quad \mathrm{j}=3 \quad j=4 \quad j=5
$$

$r=0$	1	1				
$r=1$	0	$1 / 2$	$1 / 2$			
$r=2$	0	$1 / 6$	$1 / 2$	$1 / 3$		
$r=3$	0	0	$1 / 4$	$1 / 2$	$1 / 4$	
$r=4$	0	$-1 / 30$	0	$1 / 3$	$1 / 2$	$1 / 5$

A careful examination of the above table leads us to conjecture the following theorem:
Theorem. For all $r \geq 1, a(r, 0)=0$ and
(12) $\sum_{j=0}^{r+1} a(r, j)=\sum_{j=1}^{r+1} a(r, j)=1$, whence,

$$
\begin{equation*}
a(r, 1)=1-\sum_{j=2}^{r+1} a(r, j) . \tag{13}
\end{equation*}
$$

For all $r \geq 1$ and $j \geq 2$,

$$
\begin{equation*}
a(r, j)=\frac{r}{j} a(r-1, j-1) \tag{14}
\end{equation*}
$$

Proof (Owens [1]). Setting $n=1$ in (7) yields $\sum_{j=0}^{r+1} a(r, j)=S_{r}(1)=0^{r}+1^{r}=1$. Setting $n=0$ in (7) for $r \geq 1$ yields $a(r, 0)=S_{r}(0)=0^{r}=0$. Now consider the polynomial

$$
\begin{equation*}
S_{r}(x):=\sum_{j=0}^{r+1} a(r, j) x^{j} . \tag{15}
\end{equation*}
$$

In what follows we use the easily established fact that, applied to a polynomial $p(x)$, the finite difference operator Δ and the differentiation operator D commute, i.e.,

$$
\begin{equation*}
\Delta(D p(x))=D(\Delta p(x)) \tag{16}
\end{equation*}
$$

Now by (1), it is the case that for fixed $r \geq 0$ and all $n \geq 0, S_{r}(n+1)-S_{r}(n)=(n+1)^{r}$, which implies the polynomial identity

$$
\begin{equation*}
\Delta S_{r}(x)=S_{r}(x+1)-S_{r}(x)=(x+1)^{r} . \tag{17}
\end{equation*}
$$

From (16) and (17) it follows that

$$
\begin{equation*}
\Delta\left(D S_{r}(x)\right)=D\left(\Delta S_{r}(x)\right)=D(x+1)^{r}=r(x+1)^{r-1}=r \Delta S_{r-1}(x)=\Delta r S_{r-1}(x) \tag{18}
\end{equation*}
$$

Hence,
(19) $\Delta\left(D S_{r}(x)-r S_{r-1}(x)=0\right.$,
from which it follows that the polynomial $D S_{r}(x)-r S_{r-1}(x)$ is equal to a constant ${ }^{1}$, namely, the constant $c=D S_{r}(0)-r S_{r-1}(0)=a(r, 1)-r \delta_{r, 1}$. Hence,

$$
\begin{equation*}
D S_{r}(x)=r S_{r-1}(x)+c \text {, which implies that } \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{r+1} j a(r, j) x^{j-1}=\sum_{j=0}^{r}(j+1) a(r, j+1) x^{j}=\sum_{j=0}^{r} r a(r-1, j) x^{j}+c . \tag{21}
\end{equation*}
$$

Comparing coefficients of x^{j} for $j \geq 1$ yields
$(j+1) a(r, j+1)=r a(r-1, j)$ for all $r, j \geq 1$, i.e.,

$$
\begin{equation*}
j a(r, j)=r a(r-1, j-1) \text { for all } r \geq 1 \text { and all } j \geq 2 \tag{22}
\end{equation*}
$$

Remark. The numbers B_{r} defined by $B_{0}=a(0,1), B_{1}=-a(1,1)$, and $B_{r}=a(r, 1)$ for all $r \geq 2$, are called Bernoulli numbers. We have
$B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, B_{5}=0, B_{6}=1 / 42, B_{7}=0, B_{8}=-1 / 30, B_{9}=0, B_{10}=5 / 66$, $B_{11}=0, B_{12}=-691 / 2730$, etc. It may be proved that $B_{r}=0$ for all odd $r \geq 3$, and that B_{r} alternates in sign for r even. If we define a function $\beta: \mathbb{R} \rightarrow \mathrm{R}$ by

$$
\begin{equation*}
\beta(x)=\frac{x}{e^{x}-1} \text { if } x \neq 0 \text { and } \beta(0)=1\left(=\lim _{x \rightarrow 0} \frac{x}{e^{x}-1}\right), \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{r=0}^{\infty} B_{r} \frac{x^{r}}{r!}=\beta(x) \quad\left(\text { and so } \quad \sum_{r=0}^{\infty} a(r, 1) \frac{x^{r}}{r!}=\beta(x)+x\right) \quad \text { for } \quad|x|<2 \pi \tag{25}
\end{equation*}
$$

Notes

${ }^{1}$ If $p(x)=\sum_{j=0}^{m} c_{j}\binom{x}{j}$, and $\Delta p(x)=\sum_{j=1}^{m} c_{j}\binom{x}{j-1}=0$, then $c_{1}=\cdots=c_{m}=0$, since the set of polynomials $\left\{\binom{x}{j-1}, j=1, \ldots, m\right\}$ is a basis for the vector space of polynomials of degree $\leq m-1$. So $p(x)=c_{0}$.

References

1. R. Owens, Sums of powers of integers, Mathematics Magazine 65 (1992), 38-40.
2. C. Wagner, Combinatorial proofs of formulas for power sums, Archiv der Mathematik 68 (1997), 464-467.
