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Recursive Formulae for Power Sums                                                                        1 April 2013 

 Carl Wagner                   

If r  and n  are nonnegative integers, the thr power sum ( )rS n  is defined by 
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In particular,  
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Along with (2), the following recurrence provides a recursive formula for ( ) :rS n  
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  ( )},iS n  for all 1.r   

Proof of  (3):  By the binomial theorem, 
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and so 
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Since the left-most sum above telescopes to 1( 1) ,rn   this yields the implicit recurrence 

(6)   
0

1r

i

r

i

 
 
 

 1( ) ( 1) ,r

iS n n    

which yields (3) upon solving for ( ).rS n  See Wagner [2] for a combinatorial proof of (6).   □ 

From (2) and (3) it follows by induction on r  that ( )rS n  is a polynomial in n  of degree 1.r   

Accordingly, let us write 
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From (2) and the recurrence (3), we may compute 
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(8)    2
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(9)     2 3
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6 2 3
S n n n n    

(10)    2 3 4

3

1 1 1
( ) ,

4 2 4
S n n n n    and 

(11)    3 4 5

4

1 1 1 1
( ) ,

30 3 2 5
S n n n n n      etc. 

Tabulating the coefficients of these polynomials clarifies the connection between the coefficients 

of ( )rS n  and those of 1( ).rS n  

Table 1.      ( , )a r j   for 0 4r   and 0 5j   

                      0j        1j        2j         j=3      4j        5j   

0r                 1             1 

1r                  0             ½            ½  

2r                 0            1/6           ½          1/3 

3r                 0             0             ¼           ½           ¼  

4r                 0          -1/30         0            1/3         ½          1/5 

A careful examination of the above table leads us to conjecture the following theorem: 

Theorem.   For all 1,r   ( ,0) 0a r   and 
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For all  1r   and 2,j   
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Proof  (Owens [1]).  Setting  1n   in (7) yields  
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     Setting 0n   in 

(7) for 1r   yields ( ,0) (0) 0 0.r

ra r S     Now consider the polynomial 
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In what follows we use the easily established fact that, applied to a polynomial ( ),p x  the finite 

difference operator   and the differentiation operator D  commute, i.e.,  

(16)     ( ( )) ( ( )).Dp x D p x    

Now by (1), it is the case that for fixed 0r   and all 0,n   ( 1) ( ) ( 1) ,r

r rS n S n n     which 

implies the polynomial identity 

(17)      ( ) ( 1) ( ) ( 1) .r

r r rS x S x S x x      

From (16) and (17) it follows that 

(18)   ( ( )) (rDS x D   ( )) ( 1)r

rS x D x  = 1( 1)rr x r   1 1( ) ( ).r rS x rS x    

Hence,    
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from which it follows that the polynomial 1( ) ( )r rDS x rS x is equal to a constant
1
, namely, the 

constant c  (0)rDS  1(0)rrS  = ,1( ,1) .ra r r  Hence, 
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Comparing coefficients of jx  for 1j    yields 

(22)   ( 1) ( , 1) ( 1, )j a r j ra r j     for all , 1,r j   i.e., 

(23)    ( , ) ( 1, 1)ja r j ra r j    for all  1r   and all 2.j       □ 
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Remark.  The numbers 
rB  defined by 

0 (0,1),B a  
1 (1,1),B a   and ( ,1)rB a r  for all 2,r   

are called Bernoulli numbers.  We have  

0 1 2 3 4 5 6 7 8 9 101, 1/ 2, 1/ 6, 0, 1/ 30, 0, 1/ 42, 0, 1/ 30, 0, 5 / 66,B B B B B B B B B B B             

11 0,B  12 691/ 2730,B    etc.  It may be proved that 0rB   for all odd 3,r   and that 
rB  

alternates in sign for r  even. If we define a function :  RR by 
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  )    for  | |x < 2 . 

 

Notes                                                                                                                                                  
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1,..., }j m  is a basis for the vector space of polynomials of degree 

1.m   So 0( ) .p x c  
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