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Linear operators in local fields of prime characteristic

By Carl G. Wagner at Knoxville, Tennessee

1. Introduction

In 1958 Mahler [5] proved a strong Weierstrass approximation theorem for the
field of p-adic numbers by showing that every continuous p-adic function f on the valua-
tion ring of @, is the uniform limit of an interpolation series

(4 1) - o= a.(;),

where the coefficients in (1. 1) are uniquely determined by

f

(1.2) A= 4710 = 2 — 0 (})ftn— .

In addition, Mahler stated necessary and sufficient conditions involving the coefficients
A, for such a function to be differentiable at a given point.

In the present paper, we prove analogues of Mahler’s theorems for continuous
linear operators defined in local fields of prime characteristic, i. e., in fields of formal
power series over finite fields.

Let GF((g, z)) denote the field of formal power series over the finite field GF{q),
and let GF[[g, #]] denote the valuation ring of GF ((¢, =) for the usual absolute value.
[See section 3.] We show (Theorem 4. 2) that every continuous linear operator f on the
G F(g)-vector space GF[[g, x]] is the uniform limit of an interpolation series
K10

F,

(1.3) )= F A

where the operators A" are defined recursively by

A°f(1) = f(t)

(1. 4) 4f() = flot) — 2f0)
A™(E) = Anflat) — " A fe),
(1. 5) ¥ (1) ﬁeggﬂ—'m) (m € GFlq, z)),

and F, is the product of all monic polynomials in G F|[g, z] of degree n..The proof is pat-
terned on Mahler’s argument and makes extensive use of interpolation properties of the
polynomials ¥, () due to Carlitz [2].
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In addition, we prove (Theorems 5.1 and 5.2) that the confinuous function f
given by (1. 3) is everywhere differentiable on G F[[q, 2]] if and only if

(1. 6) lim A1) _

- H
RO L”

where L, is the . ¢. m. of all polynomials in G F[g, z] of degree n; and that, if (1. 6) holds,

then
@ fw= 3128
for all u € GF[[q, z}]. It follows that
(1. 8) f) = 2 an
v S

is an example of a continuous nowhere differentiable linear operator on GF[ig, z]].

2. Preliminaries

Let G F[g, ] be the ring of polynomials over .the finite field G F(q), and let GF (g, x)
be the quotient field of GF(¢,2]. Define a sequence of polynomials ¥, () over
GFlg, x] by

(@ 1) @ Hg—m), Fon=1

where the product in (2. 1) extends over all polynomials m € G Flg, %] (including o) of
degree < r. It follows that

2) w0 = 21|,
where . F . . . .
2.9 =g ol = U=t
and
Fo=rr — 1301, Fy=1
(2. 4) L= —11- 1, Le=1

[r] = 2¥ — .

Note that ¥ (z") = ¥,(m) for m monic of degree r, so that F, is the product of
all monic polynomials in GF[g, 2] of degree r. On the other hand, L, may be seen to be
the 1 ¢. m. of all polynomials in GF{g, ] of degree r (cf. [3]).

Let K be any extension field of GF(g, z). By (2. 2) the polynomial functions asso-
ciated to the polynomials ¥,(t} are linear operators on the GF(g)-vector space K. It is
easily seen that a polynomial f(z) € K[t] whose associated polynomial function is a linear
operator on the GF(g)-vector space K has the form

(2. 5) | F(ty = _z: at® (a, € K).

Moreover, the sequence {¥,(t)},=o is an ordered basis of the K-vector space of such
“linear” polynomials. Indeed, if f(z) has the form (2. 5), then

2.6) = 2471 25,

i
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where the operators A* are defined recursively by

A°f(t) = f(2)
(2. 7) A'f(t) = Af(t) = flxt) — af(t)
AMf(t) = Af(wt) — aT AYf@) (2]

It ig useful to generalize the polynomialg ¥, (t) to a set of interpolation polynomials
for the full K-vector space K[¢]. Let r be a positive integer, and write

(2.8) r=eteagt -t 0Se <gh
Define polynomials G,(¢) and G*{t) over GFlq, z] by

(2. 9) G,(t) = Wp(t) « + - Woo(2), Goft) = 1
and

(2. 10) G (1) = IT Ga(t),

-0
where
ity for 0 e <g—1
(2. 11) G:;i =5

Wity — Fi for e = g — 1.
In particular,

(2. 12) cjula)::fﬂgﬂ.

Evidently the sequences {G,(t)},», and {G*(#)},., are ordered bases of the K-vector
space K[t].

Finally, we shall find it useful to employ generalizations of the polynomials F,.
If ris given by (2. 8), set

(2. 13) 8= Fit- B gy =1,

(The polynomials g, may be regarded as analogues of the integers r1.) For further details
on the above, the reader is referred to Carlitz [2), [4].

3. The tield of formal power series over GF(q)

Let GF((g, «)) denote the field of formal power series over GF(g), If

x € GF((g, x)} — {0},
and

3. 1) o= 3 au

where all but a finite number of the a, vanish for ¢ < 0, set v(x) = n, where n is the least
integer for which a, + 0. Fix a real number » such that 0 < & <1 and set | & | = p*¥,
Then || is a discrete non-archimedean absolute value on GF ((g, z)) and GF((g, x)) is
complete with respect to ||. The valuation ring of GF({g, z}), denoted by G F{[g, =1],
consists of the ring of formal power series of the form

(3.2) &= 3 aa

i=0
20*
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- GF[g, x] is dense in GF(ig, z]], as is GF (g, ) in GF((g, %)). Furthermore, G F[{g, z]}
is open and compact, so that G F((g, %)) is locally compact. Indeed, it is known that every
locally compact field of prime characteristic is topologically isomorphic to some power
series field GF({g, z)) ([7), pp. 10—12).

To conclude this section, we note a useful bound on the polynomial funetions ¥,
G,, and G*, restricted to GF[[g,#]]. It is shown in [4] that if m € GF[g, 2], then
W, (m)[F, € GFg, ], G (m)lg, € GFq,x], and G} (m)lg, € GF[g, x]. Since GF[q,x] is
dense in GF[[g, #]] and the polynomial functions associated to the polynomials
¥ E,, G.(t)g,, and GF(t)/g, are obviously continuous, it follows that if & € GF((g, %))
and [ | < 1 then |, ()/F, | =1, | G (x)fg, | =1, and | G¥(x)/g, | = 1. In fact, it can
be shown that {¥ (1)/F,}),=, is an ordered basis of the GF[[g, #]]-module of “linear”
polynomials over G F((¢r)) which map GF[[g,«]] into itself, and that {G,(#)/g.}r=0
and {G*(t)/g,},z0 arve ordered bases of the G F([q, #]]-module of polynomials over
G F((g, #)) which map G F[[g, #]] into itself [6].

4. Interpolation series for continuous linear operators

In [6] it is shown that every continuous function f: G F[[g, ;c]]—> GF{[g, ]} is
the uniform limit of a unique interpolation series

1) F(t) = zA g(‘)

where, for any r such that i < ¢,

G%_, Am) '
(4. 2) Ap= (1) X flm}—"——— (mE€GF[g, 2]
degm <r o1
It is also proved as a corollary to (4. 1) that such a function f is a linear operator on the
G F (g)-vector space GF[[g, #]] precisely when the coefficients A4, vanish for ¢ not a
power of g, in which case

(4.3) = % B, 210
i=0 i

(B, = Aq‘)

The proof of (4. 1) employs a set of auxiliary polynomials Q,(¢) along with theorems
of Amice [1] concerning the use of these polynomials in eonstructing interpolation series
for continuous functions. While a more self-contained proof of (4. 1) would certainly be
desirable, we have not yet succeeded in constructing such a proof (although this would
follow from a proof that {4} is a null sequence, where 4, is given by (4. 2)). If we restrict
our attention to linear operators, however, the coofficients B, of (4. 3) may be exhibited
in a more tractable form, and a solf-contained proof of (4. 3) may be given as follows:

Lemma 4. 1. For all § = 0

1 — VR ' 7
(4 4) ’f“’i(m+1)=((xi)1€;‘ (e=14qg+¢"++q)

Proof. The recurrence

(4. 5) Pty = Vi, () — FIo V., (2]
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may be used to give an inductive proof of (4. 4). Assuming (4. 4) as hypothesis, one has

1 L i Fiq i Fg_IFi
(4‘ 6) g:f‘i-l-l(m) - (— 1) (x _[_ 1)q+g2+---+q"+1 —-(-"' 1) (:’v _+_ 1)1+q+'“+qi
—_ (_1)¢+1 Fg(a;QHI_'x)
— (x +1)1+Q+"'+Q’i+1
— (__ 1 i1 F‘-]-I

(x 4 1)t+gd gl ?
from which the desired result follows.
Theovem 4. 1. Let {A},., be a sequence in GF ({g, z}). Then the series

i ¥,
(4. 7) ifa A, 7,

converges uniformly for all t € G F[[q, #1] if and only if {A}} is null.

Proof. Sufficiency. If 1 € GF[[q, 2]) then, by a previous remark, | ¥,(2)/F,| < 1.
Hence, if {4} is null, {4,%,()/F} is null and (4. 7) converges uniformly as | | is non-
archimedean.

Necessity. By Lemma 4.1,

1
(4. 8) gf‘(eri) _ (—=1)¢
: Y (@ - 1)itetord |

for all i. Hence {4,} must be null if (4. 7) is to converge for t = 1/x - 1.

Theorem 4. 2, Let f be o continuous linear operator on the GUF(q)-vector space
GF[[g, 2]). Then the series

(4.9) 3 a2

4=0 i

where the operators A* are defined by (1. 4), converges uniformly to f on GF[[q, z]]. More-
over, the coefficients in (4. 9) are uniguely determined by f. :

_ Proof. Tt follows from (1. 4) that
(4. 10) A1) = Cof (1) + Cyf (@) + «+ - + Cyf (&),

where
C,=1
{4. 11)

= 1) Zat 0=j<i),
GESj

S, being the set of all sums of distinct elements of {1, q,...,¢"" taken i —j at a time.
Hence 9(C,) = 0 and ¢(C;) =14 ¢ 4 -+ + ¢, where 0 = J < i. Given any posi-
tive integer R, there exists, by continuity of f at 0, a positive integer N, such that j = N,
implies that v(f(z’)) = R. There exists also a positive integer NV, such that k = N,
implies that 4 + ¢ - -+ + ¢* = R. Let N = N, + N,. Then if i = NV, it follows from
(4. 10} and (4. 11) that »(4*f(1)) = R. Hence {A'f(1)}iz0 15 a null sequence, and by
Theorem 4. 1, (4. 9) converges uniformly on G Fllq, z]].

As the uniform limit of a sequence of polynomial functions, the series (4. 9) re-
presents some continuous function on G F[{g, ]]. That this funetion is in fact f follows
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from the observation that on G Fig, ], which is dense in GF[[g, z1}, (4.9 reduces to
a finite series which obviously represents f. Finally, suppose fhat

(4. 12) o) = = Ai%&.
=0 i
Forming the polynomial partial sums,
Wt
(4 13) fy = 34,82,
i=0 1

of (4. 12), we have, by (2. 6) and (2. 7,
(4. 14) A, = Atf, (1) = Af(1),

since f(¢) and f,(2) agree on the set {1, z, . . ., #"}. Hence the representation (4. 9) is unique.

5. Ditferentiable linear operators

Given a continuous linear operator f on the G F({g)-vector space GF[q, =]}, it 18
clear that the differentiability of f ab 0 is equivalent to its differentiability everywhere
in GF[q, z)]. Suppose that f is represented by the interpolation series

N 10
(5. 1) = A
i=0 1
where {4} is the null sequence {A*f(4)}. Then, by (2. 4), (2. 12), and (2. 13), the difference
guotient at 0, denoted D{t), is given by

*.
piy =10 — 54,500 - A Giald)

i Flard tFi = Li Zi (t =+ 0).

(5. 2)
Now if {A,/L;} is a null sequence, then, as |G;‘f,-r_]l(t)/gqt1 | < 4, the right-most
series in (b. 2) converges uniformly for all t€ GF[lg, z]}. As the uniform limit of poly-

nomial functions this series represents & function continuous ab levery point of
GF{[g, 2]} Hence f'(0) exists and

. © A, G

5.3 () =lm D() = 37 47

(5. 3) FO) =limD@) = 2Tt
From (2.2), (2.3), and (2. 12) it follows that

_ 1 F‘I

(5. 4) G’q",;_l(O) = (—1) I,
Hence,

(5.5) F)= 2 (V5

i=0 1

Thus we have proved

Theovem b, 1. Let f, @ continuous linear operator on the G F{g)-vector space
GFllg, x]], be given by
)

(5. 6) f) = 3 Ay
=0 {
Then if {A,/L;} is a null sequence, f is differentiable everywhere in GF{g, 2]} with derivative
© A
(5. 7) iy = Z (— O F
i=0 : s

In order to I;rove the converse of Theorem 5. 1, we require the following lemma:
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Lemma 6. 1. For ail positive integers r and for all integers i such that 0 << i =

* r
(5. 8) G @) = (—1)* (mod z).

Bi-1

Proof. By (2. 2), (2. 3), (2. 4), (2. 12), and (2. 13),

Gy (=) L, i 3 i L '
5.9) ~IA L 3y H[”. 20—y -y L e
(5. 9) » 7,2 ) (— '+ 2(—1) Py

But each of the terms other than (— 1)* in the above sum is congruent to 0 (mod z),
for if 1 <j<i<n,

(5. 10} » —I'—ifx(fihl)’ =i+ —Dr—f—H—( f gt g1
F,Le
== =1 +if — 4 g4 Y >0
Theorem b. 2, Let f, a continuous linear operator on the GF(g)-vector space
GF[[q, x]], be given by (5.6). If f is differentiable at 0, then {AdL iz is a null sequence.
Proof. Suppose that f/(0) = 1. We show (L) that {4,/L} must be hounded and
(IL.) that {4,/L,} cannot be bounded but not null.
(I.) Suppose that {4,/L} is unbounded, so that lm sup | A,/L,| = 4 co. Then
there exists a strictly increasing sequence of positive integers {i,},., such that

lim | A fL, | = 4 oco. By substituting an appropriate subsequence of i, if neeessary,
F->00 .
we may assume, for 0 < { < i,, that
A, 4,,
(6. 11) ,[-E' <' L, |’

Letting ¢-> 0 along 2¥, wehave, by (5. 2),

[N * iy
(5. 12) lim D(z") = lim 3 Ay Gyl

>0 o0 fg Ly gq‘—l

(By (1.5) and (2. 12), G5 (8") = 0 if { > i,). But,
34 Gy @

i=0 Ly By )
. e g

.t'_l 'A'i qu—-l (x !') Air

S Pt

iso Ly gay '

(5. 13) lim

¥~»o00

= lim
¥l

\ -Lhi;l = -i—OO,
where the last step follows from (5.11) and the fact that |z%|= lLs, | and
| G;“,-_l ($i')/gq¢_1 | £ 1. Thus we have derived a contradiction to (5. 123,

(IL.) Suppose that

— lim
¥-—>w

o A GY_(t
(5. 14) im ¥ A Gy = A,

t—+0 ;=g n g q“—l
and that {4,/L;} is bounded but not null. As we may multiply the coefficients A, by a
fixed power of  and may further change finitely many of these coefficients arbitrarily
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without affecting the above assertion, there is no loss of generality in assuming that
A
i

As || is discrete, the second assertion of (5.15) is equivalent to the statement that
[ A,JL,| = 1 for an infinite number of indices i.
Letting £— 0 in (5. 14) along {2"},.,, we have
r G5 (&'
(5. 16) hm 34 G

reoico Ly g4y

Ai
I |= b

1

< 1 andlim sup

i+

(5. 15)

In particular, there exists a positive integer s such that, for all r = s

r G% ("
(5. 17) —f—*J:L(ml—a < b.
i=0 Lsg Bgia
Combining (5. 17) with (5. 8) we have, for all n = 0,
gtn A
(5. 18) 2 (=)'t =2+ on),
=0 i
where | o(n) | < b. Hence for all n = 1
(5. 19) (— il o) —o(e—1) | 0,
g-+n

in contradiction to (5, 15).
1t follows from the preceding theorem that

o 1 T4lt)
i:zo -’E F¢

is a continuous nowhere differentiable linear operator on the GF(g)-vector space
GFlig, ])-

(5. 20)
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