Carl Wagner

A NON-INDUCTIVE PROOF OF THE PRINCIPLE OF INCLUSION AND EXCLUSION

Lemma. For all positive integers n,

(1)
$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0.$$

Proof. Let \mathcal{E} denote the set of all subsets of [n] having even cardinality, and \mathcal{O} the set of all subsets of [n] having odd cardinality. Formula (1) is equivalent to the assertion that $|\mathcal{E}| = |\mathcal{O}|$. It remains only to observe that the map from \mathcal{E} to \mathcal{O} defined by (i) $E \mapsto E - \{1\}$ if $1 \in E$, and (ii) $E \mapsto E \cup \{1\}$ if $1 \notin E$ is a bijection.

The Characteristic Function of a Set. Suppose that A and B are sets and B \subset A. The *characteristic function of* B, denoted χ_B , is defined for all $a \in A$ by (i) $\chi_B(a) = 1$ if $a \in B$, and (ii) $\chi_B(a) = 0$ if $a \notin B$. Note that if B is finite, then

(2)
$$|\mathbf{B}| = \sum_{a \in A} \chi_B(a).$$

Theorem (*Principle of Inclusion and Exclusion, a.k.a. the Sieve Formula*). Let $A_1, ..., A_n$ be a sequence of subsets of the finite set A. Then

(3)
$$|A_1 \cup \ldots \cup A_n| = \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} | \cap_{i \in I} A_i |.$$

Proof. Let $A_I := \bigcap_{i \in I} A_{i}$. By (2), formula (3) is equivalent to

(4)
$$\sum_{a \in A} \chi_{A_1 \cup \ldots \cup A_n}(a) = \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} \sum_{a \in A} \chi_{A_I}(a) = \sum_{a \in A} \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} \chi_{A_I}(a).$$

And formula (4) holds if, for each $a \in A$,

(5)
$$\chi_{A_1 \cup \ldots \cup A_n}(a) = \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} \chi_{A_I}(a).$$

If a is an element of none of the sets A_i , then (5) holds in the form 0 = 0. Suppose then that $a \in A_i$ for precisely those $i \in J$, where |J| = j > 0. Then the left-hand side of (5) is equal to 1, and the right-hand side of (5) is equal to

(6)
$$\sum_{\emptyset \neq I \subset J} (-1)^{|I|-1} = \sum_{i=1}^{j} (-1)^{i-1} {j \choose i} = 1,$$

by the Lemma.