A NON-INDUCTIVE PROOF OF THE PRINCIPLE OF INCLUSION AND EXCLUSION

Lemma. For all positive integers n,

$$
\begin{equation*}
\sum_{k=o}^{n}(-1)^{k}\binom{n}{k}=0 \tag{1}
\end{equation*}
$$

Proof. Let \mathcal{E} denote the set of all subsets of [n] having even cardinality, and \mathcal{O} the set of all subsets of [n] having odd cardinality. Formula (1) is equivalent to the assertion that $|\mathcal{E}|=|\mathcal{O}|$. It remains only to observe that the map from \mathcal{E} to \mathcal{O} defined by (i) $\mathrm{E} \mapsto \mathrm{E}-\{1\}$ if $1 \in \mathrm{E}$, and (ii) $\mathrm{E} \mapsto \mathrm{E} \cup\{1\}$ if $1 \notin \mathrm{E}$ is a bijection.

The Characteristic Function of a Set. Suppose that A and B are sets and B $\subset A$. The characteristic function of B , denoted χ_{B}, is defined for all $\mathrm{a} \in \mathrm{A}$ by (i) $\chi_{B}(\mathrm{a})=1$ if $\mathrm{a} \in \mathrm{B}$, and (ii) $\chi_{B}(\mathrm{a})=0$ if $\mathrm{a} \notin \mathrm{B}$. Note that if B is finite, then

$$
\begin{equation*}
|\mathrm{B}|=\sum_{a \in A} \chi_{B}(a) . \tag{2}
\end{equation*}
$$

Theorem (Principle of Inclusion and Exclusion, a.k.a. the Sieve Formula).
Let $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ be a sequence of subsets of the finite set A. Then

$$
\begin{equation*}
\left|\mathrm{A}_{1} \cup \ldots \cup \mathrm{~A}_{\mathrm{n}}\right|=\sum_{\varnothing \neq I \subset[n]}(-1)^{\mid I I-1}\left|\cap_{i \in I} A_{i}\right| . \tag{3}
\end{equation*}
$$

Proof. Let $\mathrm{A}_{\mathrm{I}}:=\cap_{i \in I} A_{i .}$ By (2), formula (3) is equivalent to

$$
\begin{equation*}
\sum_{a \in A} \chi_{A_{1} \cup \ldots \cup A_{n}}(a)=\sum_{\varnothing \neq I \subset[n]}(-1)^{I I I-1} \sum_{a \in A} \chi_{A_{l}}(a)=\sum_{a \in A} \sum_{\varnothing \neq I \subset[n]}(-1)^{|I|-1} \chi_{A_{l}}(a) . \tag{4}
\end{equation*}
$$

And formula (4) holds if, for each $\mathrm{a} \in \mathrm{A}$,

$$
\begin{equation*}
\chi_{A_{1} \cup \ldots \cup A_{n}}(a)=\sum_{\varnothing \neq I \subset[n]}(-1)^{|I|-1} \chi_{A_{l}}(a) . \tag{5}
\end{equation*}
$$

If a is an element of none of the sets A_{i}, then (5) holds in the form $0=0$. Suppose then that $a \in A_{i}$ for precisely those $i \in J$, where $|J|=j>0$. Then the left-hand side of (5) is equal to 1 , and the right-hand side of (5) is equal to

$$
\begin{equation*}
\sum_{\varnothing \neq I \subset J}(-1)^{|I|-1}=\sum_{i=1}^{j}(-1)^{i-1}\binom{j}{i}=1, \tag{6}
\end{equation*}
$$

by the Lemma.

