
Carl Wagner                                                                                                    28 January 2011 

A NON-INDUCTIVE PROOF OF THE PRINCIPLE OF INCLUSION AND EXCLUSION 

Lemma.  For all positive integers n, 
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Proof.  Let E denote the set of all subsets of [n] having even cardinality, and O the set of all 

subsets of [n] having odd cardinality. Formula (1) is equivalent to the assertion that |E| = |O|. It 

remains only to observe that the map from E to O defined by (i) E� E – {1}  if 1∈E, and        

(ii) E� E ∪ {1} if 1∉E  is a bijection. 

The Characteristic Function of a Set.  Suppose that A and B are sets and B ⊂ A. The 

characteristic function of  B,  denoted 
B

χ , is defined for all a∈A  by  (i) 
B

χ (a) = 1 if  a∈B,     

and  (ii) 
B

χ (a) = 0  if  a∉B.  Note that if B is finite, then 
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Theorem (Principle of Inclusion and Exclusion, a.k.a. the Sieve Formula).                               

Let A1 ,…, An be a sequence of subsets of the finite set A. Then 
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Proof.   Let AI : = .i I i
A∈∩  By (2), formula (3) is equivalent to 
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And formula (4) holds if, for each a∈A, 
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If a is an element of none of the sets Ai, then (5) holds in the form 0 = 0. Suppose then that a∈Ai 

for precisely those i∈J, where |J| = j > 0.  Then the left-hand side of (5) is equal to 1, and the 

right-hand side of (5) is equal to 
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by the Lemma. 



 

         

 


