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MODERATE DEVIATIONS AND LAW OF THE ITERATED
LOGARITHM FOR INTERSECTIONS OF THE

RANGES OF RANDOM WALKS1

BY XIA CHEN

University of Tennessee

Let S1(n), . . . , Sp(n) be independent symmetric random walks in Z
d .

We establish moderate deviations and law of the iterated logarithm for the
intersection of the ranges

#{S1[0, n] ∩ · · · ∩ Sp[0, n]}
in the case d = 2, p ≥ 2 and the case d = 3, p = 2.

1. Introduction. Let p ≥ 2 be an integer and let {S1(n)}, . . . , {Sp(n)} be
symmetric independent d-dimensional lattice valued random walks with the same
distribution. Throughout we assume that {S1(n)}, . . . , {Sp(n)} have finite second
moment and that the smallest group that supports these random walks is Z

d .
Write � for their covariance matrix. Unless claiming otherwise, we assume that
the random walks start at the origin, that is,

Sj (0) = 0, j = 1, . . . , p.

To simplify the notation, we use {S(n)} for a random walk of the same distribution
as {S1(n)}, . . . , {Sp(n)}, in the context where only a single random walk is
involved. For any � ∈ R

+, we set

S(�) = {S(k); k ∈ �}.
In the transient case d ≥ 3, we write

γ (S) = P{S(n) �= 0, n ≥ 1}.
It is known [Dvoretzky, Erdös and Kakutani (1950, 1954)] that the trajectories

of the random walks {S1(n)}, . . . , {Sp(n)} intersect infinitely often if and only if
p(d − 2) ≤ d . There are two ways to measure the intensity of such intersection.
One is to count the times of intersection by introducing the intersection local time

In = #{(k1, . . . , kp) ∈ [0, n]p; S1(k1) = · · · = Sp(kp)}.(1.1)
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INTERSECTION OF RANGES 1015

Another is to count the sites of intersection by considering the intersection of the
ranges

Jn = #{S1[0, n] ∩ · · · ∩ Sp[0, n]}.(1.2)

In the critical cases defined by p(d − 2) = d , a weak law obtained by Le Gall
(1986b) shows that In and Jn are attracted by �-distributions. The law of the
iterated logarithm (LIL) for In and Jn has been obtained in Marcus and Rosen
(1997) and Rosen (1997). See (1.19) and (1.20) below for the LIL for Jn.

In Chen and Li (2004) and Chen (2004), the moderate deviations and the law of
the iterated logarithm for In have been established in the noncritical cases defined
by p(d − 2) < d . See also Chen, Li and Rosen (2005) and Chen and Rosen (2005)
for the extensions of such results to the stable random walks.

In this paper, we study the moderate deviations and the law of the iterated
logarithm for Jn under the condition

p(d − 2) < d and d ≥ 2(1.3)

which consists of the case d = 2, p ≥ 2 and the case d = 3, p = 2. Our work is
partially inspired by two papers. One is Le Gall (1986a) in which it is pointed out
[Theorem 5.1, Le Gall (1986b)] that as d = 2, p ≥ 2, m = 1,2, . . . ,

(logn)pm

nm
EJm

n −→ (2π)pm det(�)m/2
Eα([0,1]p)m (n → ∞)(1.4)

and [Theorem 5.3, Le Gall (1986a)] that as d = 3 and p = 2, m = 1,2, . . . ,

n−m/2
EJm

n −→ γ (S)2m det(�)−m/2
Eα([0,1]2)m (n → ∞)(1.5)

where α([0,1]p) is the Brownian intersection local time

α([0,1]p) =
∫

Rd

[ p∏
j=1

∫ 1

0
δx

(
Wj(s)

)
ds

]
dx(1.6)

generated by the independent d-dimensional Brownian motions W1(t), . . . ,Wp(t).
Here we make the following remarks: First, Le Gall only discussed the case where
the covariance matrix � is a multiple of the identical matrix. By examining his
argument, we made a slight extension without repeating his proof. Second, it is
very likely that (1.4) and (1.5) can be developed into the laws of weak convergence.
To our best knowledge, this was confirmed [see, e.g., Le Gall (1986a) and Le Gall
and Rosen (1991)] in the case d = 2, p = 2,3 and the case d = 3 and p = 2.

Another is the recent large deviation result [Theorem 2.1, Chen (2004); see also
Chen and Rosen (2005) for its stable extension]

lim
t→∞ t−1 log P

{
α([0,1]p) ≥ td(p−1)/2}= −p

2
κ(d,p)−4p/(d(p−1))(1.7)

under the condition (1.3), where κ(d,p) > 0 is the Gagliardo–Nirenberg constant
given below. In view of (1.4) and (1.5), it is natural to expect that the tail behavior
given in (1.7) passes to Jn in certain ways.
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For each d , p satisfying (1.3), we introduce the positive number κ(d,p) as the
best constant of the Gagliardo–Nirenberg inequality

‖f ‖2p ≤ C‖∇f ‖d(p−1)/(2p)
2 · ‖f ‖1−d(p−1)/(2p)

2 , f ∈ W 1,2(Rd),

where W 1,2(Rd) denotes the Sobolev space

W 1,2(Rd) = {f ∈ L2(Rd); ∇f ∈ L2(Rd)}.
That is,

κ(d,p) = inf
{
C > 0; ‖f ‖2p ≤ C‖∇f ‖d(p−1)/(2p)

2 · ‖f ‖1−d(p−1)/(2p)
2

(1.8)
for f ∈ W 1,2(Rd)

}
.

The Gagliardo–Nirenberg inequality can be obtained from the Sobolev inequality
by a simple substitution. We refer the interested reader to Levine (1980), Weinstein
(1983), Carlen and Loss (1993), Del Pino and Dolbeault (2003) and Cordero-
Erausquin, Nazaret and Villani (2004) for an overview of the latest state in finding
the value of Gagliardo–Nirenberg constants.

THEOREM 1. As d = 2 and p ≥ 2,

lim
n→∞

1

bn

log P

{
Jn ≥ λ

n

(logn)p
bp−1
n

}

= −p

2
(2π)−p/(p−1)(1.9)

× det(�)−1/(2(p−1))κ(2,p)−2p/(p−1)λ1/(p−1) (λ > 0)

for each positive sequence {bn} satisfying

bn → ∞ and bn = o
(
(logn)2/3) (n → ∞).(1.10)

THEOREM 2. As d = 3 and p = 2,

lim
n→∞

1

bn

log P
{
Jn ≥ λ

√
nb3

n

}
(1.11) = −det(�)1/3γ (S)−4/3κ(3,2)−8/3λ2/3 (λ > 0)

for each positive sequence {bn} satisfying

bn → ∞ and bn = o(n2/9) (n → ∞).(1.12)

REMARK. We point out the fact that as d ≥ 3,

γ (S) =
( ∞∑

k=0

P{S(k) = 0}
)−1

=
(

1

(2π)d

∫
[−π,π ]d

1

1 − ϕ(λ)
dλ

)−1

(1.13)
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where ϕ(λ) is the characteristic function of the i.i.d. increments of {S(n)}. To prove
the first equality in (1.13), let τ0 be the last time that the random walk S(n) visits 0.
By transience and the Markov property,

1 =
∞∑

k=0

P{τ0 = k} =
∞∑

k=0

P{S(k) = 0}γ (S).

The second equality in (1.13) follows from the fact that

P{S(k) = 0} = 1

(2π)d

∫
[−π,π ]d

ϕ(λ)k dλ, k = 0,1, . . . .

We now compare Jn with In. A trivial observation gives that Jn ≤ In with the
difference caused by the possibility that the multiple intersection may happen at
the same site. By Theorem 2.2 in Chen (2004),

lim
n→∞

1

bn

log P{In ≥ λnbp−1
n } = −p

2

√
det(�)κ(2,p)−2p/(p−1)λ(p−1)−1

(1.14)

as d = 2, p ≥ 2; and

lim
n→∞

1

bn

log P
{
In ≥ λ

√
nb3

n

}= −det(�)1/3κ(3,2)−8/3λ2/3(1.15)

as d = 3, p = 2, where {bn} can be any positive sequence satisfying

bn → ∞ and bn = o(n) (n → ∞).(1.16)

Comparing (1.9) with (1.14), we see a substantial difference in asymptotic
behaviors between In and Jn as d = 2.

Another difference is in the range of {bn}. By comparison it is natural to ask if
we can extend Theorems 1 and 2 so that any sequence {bn} satisfying (1.16) can
be included. The answer is “No.” Indeed, if we take bn ≥ δ(logn)p/(p−1) in (1.9),
or bn ≥ δn1/3 in (1.11), then the involved probability is bounded by

P{Jn ≥ δλn}
which is eventually zero for λ > δ−1. So our results do not hold in this case.

It seems that in Theorem 2, the right condition on {bn} is

bn → ∞ and bn = o(n1/3) (n → ∞).

As for Theorem 1, we can push a little further: If (1.9) were true for bn = logn,
we would have

lim
n→∞

1

logn
log P

{
Jn ≥ λ

n

logn

}

= −p

2
(2π)−p/(p−1) det(�)−1/(2(p−1))κ(2,p)−2p/(p−1)λ1/(p−1).
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This is implausible since, in the sense of moderate deviation at the scale bn = logn,
Jn would have the rate n(logn)−1 independent of p, which sharply contrasts
with (1.4). We believe that in Theorem 1, the right condition on {bn} is

bn → ∞ and bn = o(logn) (n → ∞).

We are not able to prove our results under these conditions. So we leave this
problem to future study.

THEOREM 3. As d = 2 and p ≥ 2,

lim sup
n→∞

(logn)p

n(log logn)p−1 Jn = (2π)p
(

2

p

)p−1√
det(�)κ(2,p)2p a.s.(1.17)

As d = 3 and p = 2,

lim sup
n→∞

1√
n(log logn)3

Jn = γ (S)2 det(�)−1/2κ(3,2)4 a.s.(1.18)

Recall that the trajectories of {S1(n)}, . . . , {Sp(n)} intersect infinitely often if
and only if p(d − 2) ≤ d . In the critical cases defined as p(d − 2) = d—the case
“d = 4, p = 2” and the case “d = p = 3,” the law of the iterated logarithm for Jn

has been obtained in Marcus and Rosen (1997) and in Rosen (1997), respectively.
Under the assumption of finite third moment, it has been proved [Marcus and
Rosen (1997)] that

lim sup
n→∞

Jn

logn log log logn
= γ (S)2

2π2
√

det(�)
a.s.(1.19)

as d = 4 and p = 2, and [Rosen (1997)] that

lim sup
n→∞

Jn

logn log log logn
= γ (S)3

π det(�)
a.s.(1.20)

as d = p = 3.
As d = 1, we have

Jn ≤ min
1≤j≤p

max
k≤n

Sj (k) − max
1≤j≤p

min
k≤n

Sj (k).(1.21)

Since the equality holds in the special case of simple random walks, it is natural
to believe that even in the general case, both sides of (1.21) are asymptotically
equivalent in a suitable sense. By the classical results on the tail estimate of the
random walks, therefore, we conjecture that

lim
n→∞

1

bn

log P
{
Jn ≥ λ

√
nbn

}= −pλ2

2σ 2(1.22)

for any positive sequence {bn} satisfying (1.16), where σ 2 > 0 is the variance of
the random walks. The rigorous proof of (1.22) [more precisely, the lower bound
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of (1.22)] for the general random walks can be difficult. By comparing (1.22)
with Theorems 1, 2, (1.19) and (1.20), it is interesting to note that the asymptotic
magnitude of Jn is not monotonic in dimension d and that asymptotically, Jn is
maximized by d = 2.

Another interesting problem is the study of #{S[0, n]} (i.e., Jn with p = 1). In
the case d = 1, it is expected that #{S[0, n]} behaves like

max
k≤n

S(k) − min
k≤n

S(k)

in terms of the upper and lower tail behaviors.
In the multidimensional case, the behaviors of the range #{S[0, n]} are generally

different from what we observe in the present paper. In the case d ≥ 3, it has been
shown [Jain and Pruitt (1972) and Bass and Kumagai (2002)] that the centered
sequence

#{S[0, n]} − E#{S[0, n]}, n = 1,2, . . . ,(1.23)

has Gaussian tails and behaves essentially like a partial sum of independent
random variables.

The case d = 2 is the most interesting case in which the tail of the sequence
in (1.23) is no longer Gaussian, not even symmetric. Bass and Kumagai (2002)
obtain

lim sup
n→∞

(logn)2

n log log logn
(#{S[0, n]} − E#{S[0, n]}) = C a.s.(1.24)

with the unidentified constant C > 0. In a forthcoming paper, we [Bass, Chen and
Rosen (2004)] shall identify the constant C and we shall show that it is the lim inf
behavior of the sequence in (1.23) (i.e., Jn − EJn with p = 1) that is relevant to
the lim sup behavior of Jn (with p = 2) given in Theorem 3.

Finally, we point out some interesting problems in the case

p(d − 2) > d.(1.25)

According to Dvoretzky, Erdös and Kakutani (1950, 1954), we have

I∞ = #{(k1, . . . , kp) ∈ [0,∞)p; S1(k1) = · · · = Sp(kp)} < ∞ a.s.,

J∞ = #{S1[0,∞) ∩ · · · ∩ Sp[0,∞)} < ∞ a.s.;
a natural problem is to study the tails of the random variables I∞ and J∞. In
Khanin, Mazel, Shlosman and Sinai (1994), this problem is linked to the study of
the random walk in the random potential. In the special case d ≥ 5 and p = 2,
Khanin, Mazel, Shlosman and Sinai (1994) prove that there are c1, c2 > 0, such
that

exp{−c1t
1/2} ≤ P{I∞ ≥ t} ≤ exp{−c2t

1/2}(1.26)
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and that given δ > 0,

exp{−t1−2/d+δ} ≤ P{J∞ ≥ t} ≤ exp{−t1−2/d−δ}(1.27)

holds for large t . From (1.26) and (1.27) we observe again a fundamental
difference between the intersection local time and the intersection of independent
ranges. In particular, this observation breaks the stereotype that J· always behaves
like γ (S)pI· in the transient case. It is certainly of great interest in studying precise
large deviations for I∞ and J∞ under (1.25).

The paper is organized as follows. In Section 2, we formulate a nonstandard
version (Theorem 4) of the Gärtner–Ellis theorem with nearly standard proof.
From the viewpoint of large deviation theory, our work contributes an important
example which is not quite suitable for the classic Gärtner–Ellis theorem but can
be solved in a nonstandard way.

In Section 3, we prove the upper bounds given in Theorems 1 and 2. The key
tool is a moment inequality (Theorem 6) for Jn which is parallel to the one given
in Theorem 5.1 in Chen (2004) for In.

In Section 4, we prove the lower bounds given in Theorems 1 and 2. This is
the most delicate part of the whole paper and some substantially new ideas are
needed. First we establish a weak law (Theorem 7) for certain functionals related
to Jn, which seems new and has independent interest for its own sake. Second,
we partition the time interval [0, n] properly and conduct some sharp estimate to
eliminate the influence from intersection of trajectories between any two different
time periods. Finally, we establish some Feynman–Kac type large deviation lower
bounds (Theorem 8) in a way close to Theorem 4.1 in Chen and Li (2004).

In Section 5, we prove the laws of the iterated logarithm given in Theorem 3.
The nontrivial part is the lower bound, for which some uniform lower bounds of
the moderate deviations are needed.

In spite of some technical connections to the recent works Chen and Li (2004),
Bass and Chen (2004), Chen (2004), Chen, Li and Rosen (2005), Chen and Rosen
(2005) and Bass, Chen and Rosen (2005) on the exponential asymptotics for
intersection local times, the main approach used here is fundamentally different.

2. A Gärtner–Ellis type theorem. Let {Zε} be a family of nonnegative
random variables and let p ≥ 1 be an integer. Assume that for any θ > 0, the
following limit exists:

lim
ε→0+ ε log

∞∑
m=0

(θε−1)m

m! (EZm
ε )1/p = �(θ).(2.1)

It is easy to see that �(θ) is nondecreasing and convex on [0,∞) with �(0) = 0.
By the Gärtner–Ellis theorem, Zε satisfies the large deviation principle if p = 1
and if �(θ) and its convex conjugate �∗(λ) satisfy some regularity conditions
[see, e.g., Theorem 2.3.6 in Dembo and Zeitouni (1998) for details]. What we
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intend to establish in this section is a large deviation principle under (2.1) and
some additional regularity assumptions in the case p ≥ 1.

Write

I (λ) = p sup
θ>0

{λ1/pθ − �(θ)}.(2.2)

By Lemma 2.3.9 in Dembo and Zeitouni (1998), I is a good rate function: I is
lower semicontinuous on [0,∞] and for each l > 0, the level set {λ; I (λ) ≤ l} is
compact. In addition, one can easily see that I (0) = 0 and that I (| · |p) is convex
on (−∞,∞).

DEFINITION. λ0 ∈ [0,∞) is called a p-distinguishable point of I if there is
θ0 ∈ [0,∞) such that

λ1/pθ0 − 1

p
I (λ) < �(θ0) ∀λ > 0 with λ �= λ0.

REMARK. By an argument of duality [see the proof of Lemma 5.3 in Chen
(2004)] we have that for any θ0 > 0,

sup
λ>0

{
λ1/pθ0 − 1

p
I (λ)

}
= �(θ0).

Therefore, λ0 is p-distinguishable if λ0 is the unique maximizer of the function

ϕ(λ) = λ1/pθ0 − 1

p
I (λ)

for some θ0 ≥ 0.
An important ingredient of our idea is the following generalization of the

Gärtner–Ellis theorem on large deviations.

THEOREM 4. Let {Zε} be a family of nonnegative random variables and let
p ≥ 1 be an integer. Assume that for any θ > 0, (2.1) holds. Then for any λ > 0,

lim sup
ε→0+

ε log P{Zε ≥ λ} ≤ −I (λ).(2.3)

Further, if the set of p-distinguishable points of I is dense in [0,∞), then

lim
ε→0+ ε log P{Zε ≥ λ} = −I (λ), λ > 0.(2.4)

PROOF. The proof of the upper bound is just a routine application of the
Chebyshev inequality: For any θ > 0,

λm/p(θε−1)m(P{Zε ≥ λ})1/p ≤ (θε−1)m(EZm
ε )1/p
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for any integer m ≥ 0. Summing up gives

eθλ1/pε−1
(P{Zε ≥ λ})1/p ≤

∞∑
m=0

(θε−1)m

m! (EZm
ε )1/p.

Hence

lim sup
ε→0+

ε log P{Zε ≥ λ} ≤ −p{λ1/pθ − �(θ)}.

Taking the supremum over θ gives the desired upper bound.
To accomplish the second part, we need only to prove that for any

p-distinguishable point λ0 and any δ > 0,

lim inf
ε→0+ ε log P{Zε ∈ (λ0 − δ, λ0 + δ)} ≥ −I (λ0).(2.5)

We may assume that 0 < δ < λ0. Notice that

(λ0 + δ)m/p(
P{Zε ∈ (λ0 − δ, λ0 + δ)})1/p ≥ (EZm

ε 1{Zε∈(λ0−δ,λ0+δ)}
)1/p

.

Summing up we have

eε−1θ0(λ0+δ)1/p(
P{Zε ∈ (λ0 − δ, λ0 + δ)})1/p

≥
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε∈(λ0−δ,λ0+δ)}
)1/p

where θ0 is given as in the definition of the p-distinguishable point λ0.
If we can prove that for any δ > 0,

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε∈(λ0−δ,λ0+δ)}
)1/p

(2.6)

∼
∞∑

m=0

(θ0ε
−1)m

m! (EZm
ε )1/p (ε → 0+)

then we will have

lim inf
ε→0+ ε log P{Zε ∈ (λ0 − δ, λ0 + δ)} ≥ −p{θ0(λ + δ)1/p − �(θ0)}.

For any 0 < δ′ < δ, replacing δ by δ′ and noticing that

P{Zε ∈ (λ0 − δ, λ0 + δ)} ≥ P{Zε ∈ (λ0 − δ′, λ0 + δ′)},
we obtain

lim inf
ε→0+ ε log P{Zε ∈ (λ0 − δ, λ0 + δ)} ≥ −p{θ0(λ + δ′)1/p − �(θ0)}.
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Letting δ′ → 0+ gives

lim inf
ε→0+ ε log P{Zε ∈ (λ0 − δ, λ0 + δ)} ≥ −p{θ0λ

1/p − �(θ0)} ≥ −I (λ0).

That is (2.5).
To prove (2.6), notice that

∞∑
m=0

(θ0ε
−1)m

m! (EZm
ε )1/p

≤
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε∈(λ0−δ,λ0+δ)}
)1/p

+
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε /∈(λ0−δ,λ0+δ)}
)1/p

.

In view of (2.1), we will have (2.6) if

lim inf
ε→0+ ε log

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε /∈(λ0−δ,λ0+δ)}
)1/p

< �(θ0).(2.7)

Write B0 = (λ0 − δ, λ0 + δ). Since I (λ) is a good rate function, by distinguisha-
bility

η ≡ �(θ0) − sup
λ/∈B0

{
λ1/pθ0 − 1

p
I (λ)

}
> 0.

From the Hölder inequality, (EZm
ε )1/p ≥ EZ

m/p
ε and the assumption (2.1) we have

lim sup
ε→0

ε log E exp{θε−1Zε} < ∞, θ > 0.

According to Lemma 5.3(iii) in Chen (2004) (or Theorem 5 below), therefore,

lim
N→∞ lim sup

ε→0+
ε log

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p = −∞.

Let N > λ + δ be fixed for a moment and let

Bi = [ai, bi], i = 1, . . . , l,

be intervals such that

[0,N] \ B0 =
l⋃

i=1

Bi
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and that (bi − ai)
1/p < η/2 for i = 1, . . . , l. Then

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε /∈B0}
)1/p

≤
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p +

l∑
i=1

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε∈Bi}
)1/p

≤
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p +

l∑
i=1

eθ0biε
−1

(P{Zε ≥ ai})1/p.

By the proved upper bound,

lim sup
ε→0+

ε log
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε /∈B0}
)1/p

≤ max

{
lim sup
ε→0+

ε

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p

,

max
1≤i≤l

{
θ0b

1/p
i − 1

p
I (ai)

}}

≤ max

{
lim sup
ε→0+

ε

∞∑
m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p

,

sup
λ/∈B0

{
θ0λ

1/p − 1

p
I (λ)

}
+ η

2

}
.

Letting N → ∞ gives

lim sup
ε→0+

ε log
∞∑

m=0

(θ0ε
−1)m

m!
(
EZm

ε 1{Zε /∈B0}
)1/p

≤ sup
λ/∈B0

{
θ0λ

1/p − 1

p
I (λ)

}
+ η

2
< �(θ0). �

Like Varadhan’s integral lemma [Theorem 4.3.1 in Dembo and Zeitouni (1998)]
to the well-known Gärtner–Ellis theorem, the following theorem is a converse of
Theorem 4. We give it without proof, as it is essentially given in the proof for
Lemma 5.3 in Chen (2004) (only some obvious modification is needed).

THEOREM 5. Let {Zε} be a family of nonnegative random variables and let
p ≥ 1 be an integer. Let I (λ) be a nondecreasing good rate function on [0,∞)

such that I (0) = 0, I (| · |p) is convex on (−∞,∞). Assume that

lim
ε→0+ ε log P{Zε ≥ λ} = −I (λ) (λ > 0)
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and that θ > 0 satisfies

lim
N→∞ lim sup

ε→0+
ε log

∞∑
m=1

(θε−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p = −∞;(2.8)

then

lim
ε→0+ ε log

( ∞∑
m=0

(θε−1)m

m! (EZm
ε )1/p

)
= sup

λ>0
{θλ1/p − p−1I (λ)}.(2.9)

In particular, the condition (2.8) is satisfied if there is a θ ′ > 2pθ such that

lim sup
ε→0+

ε log E exp{ε−1θ ′Z1/p
ε } < ∞.(2.10)

Theorem 4 applies to the proof of Theorems 1 and 2 as follows.

CLAIM 1. We will have Theorem 1 if

lim
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p

(EJm
n )1/p

(2.11)

= 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p (θ > 0)

in the case d = 2, p ≥ 2.

CLAIM 2. We will have Theorem 2 if

lim
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn

n

)m/4√
EJm

n

(2.12)

= 2
(

3

4

)3

(γ (S)θ)4 det(�)−1κ(3,2)8 (θ > 0)

in the case d = 3, p = 2.

Due to similarity we only show how Claim 1 follows from Theorem 4. First, the
condition (2.1) is satisfied with

�(θ) = 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p.

A simple calculus gives that

I (λ) = p sup
θ>0

{λ1/pθ − �(θ)}

= p

2
(2π)−p/(p−1) det(�)−1/(2(p−1))κ(2,p)−2p/(p−1)λ1/(p−1).



1026 X. CHEN

Second, every λ0 > 0 is p-distinguishable. Indeed, doing simple calculus again
one can directly verify that for

θ0 = 1

2

p

p − 1
(2π)−p/(p−1)κ(2,p)−2p/(p−1)λ

1/(p(p−1))
0 ,

λ0 is the unique maximizer of the function

ϕ(λ) = λ1/pθ0 − 1

p
I (λ).

3. Upper bounds. The main goal of this section is to prove that in the case
d = 2, p ≥ 2,

lim sup
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p

(EJm
n )1/p

(3.1)

≤ 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p (θ > 0)

for any {bn} satisfying (1.10); and that in the case d = 3, p = 2,

lim sup
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn

n

)m/4√
EJm

n

(3.2)

≤ 2
(

3

4

)3

(γ (S)θ)4 det(�)−1κ(3,2)8 (θ > 0)

for any {bn} satisfying (1.12).
To begin, we first consider {S1(n)}, . . . , {Sp(n)} as any independent and

identically distributed Z
d -random walks. Let the integer a ≥ 2 be fixed and let

n1, . . . , na be positive integers, n0 = 0. Write

�i = [n0 + · · · + ni−1, n0 + · · · + ni], i = 1, . . . , a,

A =∑
x

p∏
j=1

a∑
i=1

1{x∈Sj (�i)}.

Notice that

Jn1+···+na =∑
x

p∏
j=1

1{x∈Sj [0,n1+···+na]} ≤ A.

For the needs of the upper bound, it is enough to control Jn1+···+na . In the
proof of the lower bound, however, it is required to control the self-intersection
between two different parts of a single trajectory, which is associated with A (with
a,n1, . . . , na being suitably chosen) in law. In addition, the hardest part of this
work is to essentially show that A and Jn1+···+na are asymptotically equivalent as
a,n1, . . . , na (all depend on n) are suitably chosen.
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THEOREM 6. For any integer m ≥ 1,

(EAm)1/p ≤ ∑
k1+···+km=m
k1,...,km≥0

m!
k1! · · ·ka!

(
EJ k1

n1

)1/p · · · (EJ ka
na

)1/p
.(3.3)

Consequently, for any λ > 0,

∞∑
m=0

θm

m! (EAm)1/p ≤
a∏

i=1

∞∑
m=0

θm

m!
(
EJm

ni

)1/p
.(3.4)

PROOF.

(EAm)1/p =
( ∑

x1,...,xm

[
E

m∏
k=1

a∑
i=1

1{xk∈S(�i)}
]p)1/p

=
( ∑

x1,...,xm

[
a∑

i1,...,im=1

E
(
1{x1∈S(�i1 )} · · ·1{xm∈S(�im)}

)]p)1/p

≤
a∑

i1,...,im=1

( ∑
x1,...,xm

[
E
(
1{x1∈S(�i1 )} · · ·1{xm∈S(�im)}

)]p)1/p

.

Given integers i1, . . . , im between 1 and a, let k1, . . . , ka be the number of
occurrences of i· = 1, . . . , i· = a, respectively. Then k1 + · · · + ka = m. To
prove (3.3), it suffices to show∑

x1···xm

[
E
(
1{x1∈S(�i1 )} · · ·1{xm∈S(�im)}

)]p ≤ EJ k1
n1

· · ·EJ ka
na

.(3.5)

Without losing generality we may only consider the case when k1, . . . , ka ≥ 1.
Under the notation x̄i = (xi

1, . . . , x
i
ki
) ∈ (Zd)ki , we set

φi(x̄i) = E

(
ki∏

l=1

1{xi
l ∈S[0,ni ]}

)
.

It is easy to see that ∑
x̄i

φ
p
i (x̄i) = EJ ki

ni
, i = 1, . . . , a.

Define

S̄i(k) = (
ki︷ ︸︸ ︷

S(k), . . . , S(k)
)

and S̄i
j (k) = (

ki︷ ︸︸ ︷
Sj (k), . . . , Sj (k)

)
, k = 1,2, . . . ,
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where 1 ≤ i ≤ a and 1 ≤ j ≤ p. Then∑
x1···xm

[
E
(
1{x1∈S(�i1 )} · · ·1{xm∈S(�im)}

)]p

=∑
x̄1

· · ·∑
x̄a

[
E

a∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

]p

.

Notice that

∑
x̄a

[
E

a∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

]p

=∑
x̄a

[
E

{(
a−1∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

)
φa

(
x̄a − S̄a(n − na)

)}]p

=∑
x̄a

E

{ p∏
j=1

(
a−1∏
i=1

1{xi
1∈Sj (�i)} · · ·1{xi

ki
∈Sj (�i)}

)
φa

(
x̄a − S̄a

j (n − na)
)}

= E

{( p∏
j=1

a−1∏
i=1

1{xi
1∈Sj (�i)} · · ·1{xi

ki
∈Sj (�i)}

)∑
x̄a

p∏
j=1

φa

(
x̄a − S̄a

j (n − na)
)}

≤ E

{( p∏
j=1

a−1∏
i=1

1{xi
1∈Sj (�i)} · · ·1{xi

ki
∈Sj (�i)}

)

×
p∏

j=1

(∑
x̄a

φp
a

(
x̄a − S̄a

j (n − na)
))1/p}

= E

{( p∏
j=1

a−1∏
i=1

1{xi
1∈Sj (�i)} · · ·1{xi

ki
∈Sj (�i)}

)∑
x̄a

φp
a (x̄a)

}

=
{

E

a−1∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

}p

· EJ ka
na

.

So we have

∑
x̄1

· · ·∑
x̄a

[
E

a∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

]p

≤ EJ ka
na

·∑
x̄1

· · ·∑
x̄a−1

[
E

a−1∏
i=1

1{xi
1∈S(�i)} · · ·1{xi

ki
∈S(�i)}

]p

.

Repeating this procedure gives (3.5). �
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Immediately, we have:

COROLLARY 1. For any integer m ≥ 1,

(
EJm

n1+···+na

)1/p ≤ ∑
k1+···+km=m
k1,...,km≥0

m!
k1! · · ·ka!

(
EJ k1

n1

)1/p · · · (EJ ka
na

)1/p
.

Consequently, for any λ > 0,
∞∑

m=0

λm

m!
(
EJm

n1+···+na

)1/p ≤
a∏

i=1

∞∑
m=0

λm

m!
(
EJm

ni

)1/p
.

As application, we have the following sharp moment estimate.

LEMMA 1. There is a constant C > 0 depending only on d and p such that:

(i) When d = 2 and p ≥ 2,

EJm
n ≤ (m!)p−1Cmnm

(
min
{

1

(log(n/m))p
,1
})m

∀m,n = 1,2, . . . .(3.6)

(ii) When d = 3, p = 2,

EJm
n ≤ (m!)3/2Cmnm/2 ∀m,n = 1,2, . . . .(3.7)

PROOF. Due to similarity we only prove (3.6) in the case log(n/m) ≥ 1. Write
l(m,n) = [n/m] + 1. Then

(EJm
n )1/p ≤ ∑

k1+···+km=m
k1,...,km≥0

m!
k1! · · ·km!

(
EJ

k1
l(m,n)

)1/p · · · (EJ
km

l(m,n)

)1/p

≤ ∑
k1+···+km=m
k1,...,km≥0

m!
k1! · · ·km!k1! · · ·km!(EJl(m,n)

)k1/p · · · (EJl(m,n)

)km/p

=
(

2m − 1
m

)
m!Cm(

EJl(m,n)

)m/p

=
(

2m − 1
m

)
m!Cm

(
(n/m)

(log(n/m))p

)m/p

≤
(

2m

m

)
(m!)(p−1)/pCm

(
n

(log(n/m))p

)m/p

where the second inequality follows from the fact [Remarks, page 664 in Le Gall
and Rosen (1991)] that

EJ k
n ≤ (k!)p(EJn)

k, k = 0,1, . . . .
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Hence

EJm
n ≤

(
2m

m

)p

Cpm(m!)p−1
(

n

(log(n/m))p

)m

.

Finally, the desired conclusion follows from the fact(
2m

m

)
≤ 4m. �

We are ready to prove the upper bounds for Theorems 1 and 2. Due to similarity
we only prove (3.1). Let t > 0 be fixed and let tn = [tn/bn]. Applying Corollary 1,
we have

∞∑
m=0

1

m!θ
m

(
bn logp n

n

)m/p

(EJm
n )1/p

(3.8)

≤
( ∞∑

m=0

1

m!θ
m

(
bn logp n

n

)m/p(
EJm

tn

)1/p

)[n/tn]+1

.

By (1.4), Lemma 1 and the dominated convergence theorem,
∞∑

m=0

1

m!θ
m

(
bn logp n

n

)m/p(
EJm

tn

)1/p

(3.9)

−→
∞∑

m=0

1

m!(2πθ)mtm/p det(�)1/(2p)m(
Eα([0,1]p)m

)1/p

as n → ∞. Hence,

lim sup
n→∞

1

bn

log

( ∞∑
m=0

1

m!θ
m

(
bn logp n

n

)m/p

(EJm
n )1/p

)
(3.10)

≤ 1

t
log

( ∞∑
m=0

1

m!(2πθ)mtm/p det(�)1/(2p)m(
Eα([0,1]p)m

)1/p

)
.

In view of (1.7) (with d = 2), applying Theorem 5 to ε = t−1,

Zε = t−(p−1)α([0,1]p) and I (λ) = p

2
κ(2,p)−2p/(p−1)λ1/(p−1)

gives

lim
t→∞

1

t
log

( ∞∑
m=0

1

m!(2πθ)mtm/p det(�)1/(2p)m(
Eα([0,1]p)m

)1/p

)

= sup
λ>0

{
(2πθ)det(�)1/(2p)λ1/p − 1

2
κ(2,p)−2p/(p−1)λ1/(p−1)

}

= 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p.
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Letting t → ∞ in (3.10) gives (3.1).

4. Lower bounds. The main goal of this section is to prove that in the case
d = 2, p ≥ 2,

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p

(EJm
n )1/p

(4.1)

≥ 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p (θ > 0)

for any {bn} satisfying (1.10); and that in the case d = 3, p = 2,

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn

n

)m/4√
EJm

n

(4.2)

≥ 2
(

3

4

)3

(γ (S)θ)4 det(�)−1κ(3,2)8 (θ > 0)

for any {bn} satisfying (1.12).
We proceed in two steps. The main result in the first step is a weak law given in

Theorem 7 and the essential tool is the second moment estimate. The second step
starts after the proof of Theorem 7 and the goal is to establish Theorem 8 which
leads to (4.1) and (4.2) through a simple argument. To this end we first establish
a Feynman–Kac lower bound in Lemma 5, using an argument similar to the one
given in the proof of Theorem 4.1 of Chen and Li (2004). The accomplishment
of Theorem 8 relies on eliminating the contribution from self-intersection between
different time periods. This part is carried out in Lemma 6.

For any x = (x1, . . . , xd) ∈ R
d , we adopt the notation [x] ∈ Z

d throughout this
section for the lattice part of x, that is,

[x] = ([x1], . . . , [xd ]).
Recall that a Z

d random walk {S(n)} is said to be aperiodic if the greatest
common factor of the set {

n ≥ 1;P{S(n) = 0} > 0
}

is 1. According to a remark made in page 661 of Le Gall and Rosen (1991), the
aperiodicity implies

sup
x∈Zd

∣∣∣∣nd/2
P{S(n) = x} − 1

(2π)d/2 det(�)1/2 exp
{
− 1

2n
〈x,�−1x〉

}∣∣∣∣→ 0(4.3)

as n → ∞.
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LEMMA 2. Let {S(n)} be a mean zero, square integrable random walk in Z
d .

For any x ∈ Z
d , write

Tx = inf{n ≥ 0;S(n) = x}.
Then

P{Tx ≤ n} ≥
n∑

k=0

P{S(k) = x}
/ n∑

k=0

P{S(k) = 0}, n = 1,2, . . . .(4.4)

PROOF. By the Markov property,

P{S(k) = x} =
k∑

j=0

P{Tx = j, S(k) = x}
(4.5)

=
k∑

j=0

P{Tx = j}P{S(k − j) = 0}.

Summing up on both sides,

n∑
k=0

P{S(k) = x} =
n∑

k=0

k∑
j=0

P{Tx = j}P{S(k − j) = 0}

=
n∑

j=0

P{Tx = j}
n∑

k=j

P{S(k − j) = 0}

≤ P{Tx ≤ n}
n∑

k=0

P{S(k) = 0}.
�

LEMMA 3. Let {S(n)} be a mean zero, square integrable random walk in Z
d .

(i) As d = 2,

sup
n

E exp
{
θ

logn

n
#{S[0, n]}

}
< ∞ (θ > 0).(4.6)

(ii) As d ≥ 3,

sup
n

E exp
{
θ

1

n
#{S[0, n]}

}
< ∞ (θ > 0).(4.7)

PROOF. Since #{S[0, n]} ≤ n+ 1, (4.7) is trivial. To prove (4.6), we first show
that for any a, b > 0 and any integer n ≥ 1,

P
{
#{S[0, n]} ≥ a + b

}≤ P
{
#{S[0, n]} ≥ a

}
P
{
#{S[0, n]} ≥ b

}
.(4.8)
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Notice that #{S[0, n]} takes integer values. So we may assume that a and b are
integers, for otherwise we can use [a], [b] and [a + b] instead of a, b and a + b,
respectively, in the following argument. Define the stopping time

τ = inf
{
k;#{S[0, n]} ≥ a

}
.

Then

P
{
#{S[0, n]} ≥ a + b

}
= P
{
#{S[0, n]} ≥ a + b, τ ≤ n

}
=

n∑
k=0

P
{
τ = k,#{S[0, n]} − #{S[0, k]} ≥ b

}

≤
n∑

k=0

P
{
τ = k,#{S[k,n]} ≥ b

}

=
n∑

k=0

P{τ = k}P{#{S[0, n − k]} ≥ b
}

≤ P{τ ≤ n}P{#{S[0, n]} ≥ b
}

= P
{
#{S[0, n]} ≥ a

}
P
{
#{S[0, n]} ≥ b

}
.

We now prove (4.6) in the case d = 2. Let C > 0 be fixed. By (4.8) we have

P

{
#{S[0, n]} ≥ Cm

n

logn

}
≤
(

P

{
#{S[0, n]} ≥ C

n

logn

})m

.

By the fact that E#{S[0, n]} = O(n(logn)−1) one can take C > 0 large enough so

sup
n

P

{
#{S[0, n]} ≥ C

n

logn

}
≤ e−2.

Therefore, (4.6) holds for θ = C−1. We now show that it holds for all θ > 0.
Indeed, take δ > 0 such that θ < C−1[δ−1] and write kn = [δn]. The desired
conclusion follows from the following estimate:

E exp
{
θ

logn

n
#{S[0, n]}

}
≤
(

E exp
{
θ

logn

n
#{S[0, kn]}

})[δ−1]+1

≤
(

E exp
{
C−1 log kn

kn

#{S[0, kn]}
})[δ−1]+1

. �

THEOREM 7. Let {S(n)} be a mean zero, square integrable random walk in Z
d

and let Xt be the symmetric Lévy Gaussian process such that S(1) and X1 have the
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same covariance matrix �. Let f (x) be a bounded, continuous function on R
d .

(i) As d = 2,(
logn

2πn
√

det(�)

∑
x∈S[0,n]

f

(
x√
n

)
,
S(n)√

n

)
d−→
(∫ 1

0
f (Xt) dt,X1

)
.(4.9)

(ii) As d ≥ 3,(
1

γ (S)n

∑
x∈S[0,n]

f

(
x√
n

)
,
S(n)√

n

)
d−→
(∫ 1

0
f (Xt) dt,X1

)
.(4.10)

PROOF. We only consider the case d = 2, as the proof for d ≥ 3 is similar. By
the invariance principle,(

1

n

n∑
k=1

f

(
S(k)√

n

)
,
S(n)√

n

)
d−→
(∫ 1

0
f (Xt) dt,X1

)
.

Let

l(n, x) =
n∑

k=1

1{S(k)=x}, x ∈ Z
2, n ≥ 1,

be the local time of {S(n)}. By the fact

n∑
k=1

f

(
S(k)√

n

)
= ∑

x∈Z2

f

(
x√
n

)
l(n, x)

we need only to prove

1

n2 E

[ ∑
x∈Z2

f

(
x√
n

)
l(n, x)

− logn

2π
√

det(�)

∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

]2

→ 0(4.11)

(n → ∞)

where Tx = inf{n ≥ 0, S(n) = x}.
We may assume that f ≥ 0, for otherwise we consider the decomposition

f = f + − f −. We only need to prove

1

n2 E

[ ∑
x∈Z2

f

(
x√
n

)
l(n, x)

]2

−→ E

[∫ 1

0
f (Xt) dt

]2

(n → ∞),(4.12)
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log2 n

4π2n2 det(�)
E

[ ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

]2

(4.13)

−→ E

[∫ 1

0
f (Xt) dt

]2

(n → ∞),

logn

2πn2
√

det(�)
E

[( ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

)( ∑
x∈Z2

f

(
x√
n

)
l(n, x)

)]

(4.14)

−→ E

[∫ 1

0
f (Xt) dt

]2

(n → ∞).

Clearly, (4.12) is a direct consequence of the invariance principle and the
dominated convergence theorem. Notice that

∑
x∈Z2

f

(
x√
n

)
1{Tx≤n} =

∫
R2

f

( [x]√
n

)
1{T[x]≤n} dx

= n

∫
R2

f

( [√nx]√
n

)
1{T[√nx]≤n} dx

= o(1) · #{S[0, n]} + n

∫
R2

f (x)1{T[√nx]≤n} dx (n → ∞).

By Lemma 3, (4.13) is equivalent to

log2 n

4π2 det(�)
E

[∫
R2

f (x)1{T[√nx]≤n} dx

]2

−→ E

[∫ 1

0
f (Xt) dt

]2

(n → ∞).

Notice that

E

[∫
R2

f (x)1{T[√nx]≤n} dx

]2

= 2
∫

R2×R2
f (x)f (y)P

{
T[√nx] ≤ T[√ny] ≤ n

}
dx dy.

By (5.d) and (5.e) in Le Gall (1986a), respectively,

lim
n→∞(logn)2

P
{
T[√nx] ≤ T[√ny] ≤ n

}
= (2π)2 det(�)

∫ ∫
{0≤s≤t≤1}

ps(x)pt−s(y − x)ds dt,

(logn)2
P
{
T[√nx] ≤ T[√ny] ≤ n

}≤ C2h(|x|)h(|y − x|),
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where pt(x) is the density of Xt and h(r) = (log(1/r))+ + r−21{r>1/2}. By the
dominated convergence theorem,

lim
n→∞

log2 n

4π2 det(�)
E

[∫
R2

f (x)1{T[√nx]≤n} dx

]2

= 2
∫

R2×R2
f (x)f (y)

{∫ ∫
{0≤s≤t≤1}

ps(x)pt−s(y − x)ds dt

}
dx dy

= 2
∫ ∫

{0≤s≤t≤1}
ds dt

∫
R2

dx f (x)ps(x)

∫
R2

f (y)pt−s(y − x)dy

= 2
∫ ∫

{0≤s≤t≤1}
ds dt E{f (Xs)EXsf (Xt−s)}

= 2
∫ ∫

{0≤s≤t≤1}
E{f (Xs)f (Xt)}ds dt = E

[∫ 1

0
f (Xt) dt

]2

.

We now come to the proof of (4.14). Since

E

[( ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

)( ∑
x∈Z2

f

(
x√
n

)
l(n, x)

)]

≤
{

E

[ ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

]2}1/2{
E

[ ∑
x∈Z2

f

(
x√
n

)
l(n, x)

]2}1/2

,

by (4.12) and (4.13)

lim sup
n→∞

logn

2πn2
√

det(�)
E

[( ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

)( ∑
x∈Z2

f

(
x√
n

)
l(n, x)

)]

≤ E

[∫ 1

0
f (Xt) dt

]2

.

To obtain the lower bound for (4.14), notice that

E

[( ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

)( ∑
x∈Z2

f

(
x√
n

)
l(n, x)

)]

∼ ∑
x,y∈Z2

f

(
x√
n

)
f

(
y√
n

) ∑
0≤j≤k≤n

P{Tx = j, S(k) = y}

+ ∑
x,y∈Z2

f

(
x√
n

)
f

(
y√
n

) ∑
0≤j≤k≤n

P{S(j) = x,Ty = k}.
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By the Markov property,

∑
0≤j≤k≤n

P{Tx = j, S(k) = y}

= ∑
0≤j≤k≤n

P{Tx = j}P{S(k − j) = y − x}

=
n∑

k=1

P{S(k) = y − x}P{Tx ≤ n − k}

≥
n∑

k=1

P{S(k) = y − x}(G(n − k)
)−1

n−k∑
j=1

P{S(j) = x}

≥ (G(n))−1
n∑

k=1

P{S(k) = y − x}
n−k∑
j=1

P{S(j) = x}

= (G(n))−1
∑

0≤j≤k≤n

P{S(j) = x}P{S(k − j) = y − x},

where, by Proposition 2.4 in Le Gall and Rosen (1991),

G(n) ≡
n∑

k=0

P{S(k) = 0} ∼ 1

2π
√

det(�)
logn (n → ∞)

and where the third step follows from Lemma 2.
Using the Markov property again,

∑
0≤j≤k≤n

P{S(j) = x,Ty = k}

= ∑
0≤j≤k≤n

P{S(j) = x,Ty ≥ j, S(j) �= y, . . . , S(k − 1) �= y,S(k) = y}

= ∑
0≤j≤k≤n

P{S(j) = x,Ty ≥ j}P{Ty−x = k − j}

= ∑
0≤j≤k≤n

P{S(j) = x}P{Ty−x = k − j}

− ∑
0≤j≤k≤n

P{S(j) = x,Ty < j}P{Ty−x = k − j}.
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For the first term on the right-hand side,∑
0≤j≤k≤n

P{S(j) = x}P{Ty−x = k − j}

=
n∑

j=0

P{S(j) = x}P{Ty−x ≤ n − j}

≥
n∑

j=0

P{S(j) = x}(G(n − j)
)−1

n−j∑
k=0

P{S(k) = y − x}

≥ (G(n))−1
∑

0≤j≤k≤n

P{S(j) = x}P{S(k − j) = y − x}.

For the second term,∑
0≤j≤k≤n

P{S(j) = x,Ty < j}P{Ty−x = k − j}

≤ P{Ty−x ≤ n}
n∑

j=0

P{S(j) = x,Ty < j}

= P{Ty−x ≤ n}
n∑

j=0

j∑
i=0

P{Ty = i, S(j) = x}

= P{Ty−x ≤ n}
n∑

j=0

j∑
i=0

P{Ty = i}P{S(j − i) = x − y}

≤ P{Tx ≤ n}P{Ty−x ≤ n}
n∑

j=0

P{S(j) = x − y}.

Summarizing what we have,

lim inf
n→∞

logn

2πn2
√

det(�)
E

[( ∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

)( ∑
x∈Z2

f

(
x√
n

)
l(n, x)

)]

≥ lim inf
n→∞

1

n2 E

[ ∑
x∈Z2

f

(
x√
n

)
l(n, x)

]2

− lim sup
n→∞

logn

2πn2
√

det(�)

∑
x,y∈Z2

f

(
x√
n

)
f

(
y√
n

)

× P{Tx ≤ n}P{Ty−x ≤ n}
n∑

j=0

P{S(j) = x − y}.
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In view of (4.12), it remains to prove

lim
n→∞

logn

n2

∑
x,y∈Z2

f

(
x√
n

)
f

(
y√
n

)
(4.15)

× P{Tx ≤ n}P{Ty−x ≤ n}
n∑

j=0

P{S(j) = x − y} = 0.

Indeed,∑
x,y∈Z2

f

(
x√
n

)
f

(
y√
n

)
P{Tx ≤ n}P{Ty−x ≤ n}

n∑
j=0

P{S(j) = x − y}

≤ ‖f ‖∞
∑

x,y∈Z2

f

(
x√
n

)
P{Tx ≤ n}P{Ty−x ≤ n}

n∑
j=0

P{S(j) = x − y}

≤ ‖f ‖∞
{

E

∑
x∈Z2

f

(
x√
n

)
1{Tx≤n}

}{ ∑
x∈Z2

P{Tx ≤ n}
n∑

j=0

P{S(j) = −x}
}
.

From (4.13),

lim sup
n→∞

logn

n
E

∑
x∈Z2

f

(
x√
n

)
1{Tx≤n} < ∞.

Notice that∑
x∈Z2

P{Tx ≤ n}
n∑

j=0

P{S(j) = −x}

≤
{ ∑

x∈Z2

(P{Tx ≤ n})2

}1/2{ ∑
x∈Z2

[
n∑

j=0

P{S(j) = x}
]2}1/2

.

Finally, (4.15) follows from the fact that as p = 2,

EJn = ∑
x∈Z2

(P{Tx ≤ n})2 = O

(
n

(logn)2

)
,

EIn = ∑
x∈Z2

[
n∑

j=0

P{S(j) = x}
]2

= O(n).
�

Fix integer t ≥ 1 and the bounded measurable function f on R
d . Define the

linear operator T on L2(Zd) by

(T ξ)(x) = Ex

[
exp

{ ∑
y∈S[0,t]

f (y)

}
ξ(S(t))

]

= E

[
exp

{ ∑
y∈S[0,t]

f (x + y)

}
ξ
(
x + S(t)

)]
.
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LEMMA 4. Given any symmetric random walk {S(n)} on Z
d , T is self-adjoint:

For any ξ, η ∈ L2(Zd), 〈η,T ξ〉 = 〈T η, ξ〉.

PROOF.

〈η,T ξ〉 = ∑
x∈Zd

η(x)E

[
exp

{ ∑
y∈S[0,t]

f (x + y)

}
ξ
(
x + S(t)

)]

= E

[ ∑
x∈Zd

η
(
x − S(t)

)
exp

{ ∑
y∈S[0,t]

f
(
x + y − S(t)

)}
ξ(x)

]

= E

[ ∑
x∈Zd

η
(
x + S′(t)

)
exp

{ ∑
y∈S′[0,t]

f (x + y)

}
ξ(x)

]

= E

[ ∑
x∈Zd

η
(
x + S(t)

)
exp

{ ∑
y∈S[0,t]

f (x + y)

}
ξ(x)

]

= 〈T η, ξ〉,
where S′(k) = −S(t) + S(t − k), k = 0,1, . . . , t and the fourth equality follows
from the fact that

{S′(0), . . . , S′(t)} d= {S(0), . . . , S(t)}. �

In the rest of the paper, we adopt the notation

tn = [n/bn] and �i = [(i − 1)tn, itn], i = 1,2, . . . .(4.16)

Write

Fd = {g ∈ L2(Rd); ‖g‖2 = 1 and ‖∇g‖2 < ∞}.

LEMMA 5. Let {S(n)} be a symmetric, square integrable and aperiodic
random walk on Z

d and let f be bounded and continuous on R
d . Assume that

{bn} satisfies (1.16).

(i) As d = 2,

lim inf
n→∞

1

bn

log E exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}

(4.17)
≥ sup

g∈F2

{∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.



INTERSECTION OF RANGES 1041

(ii) As d ≥ 3,

lim inf
n→∞

1

bn

log E exp

{
bn

γ (S)n

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}

(4.18)
≥ sup

g∈F3

{∫
R3

f (x)g2(x) dx − 1

2

∫
R3

〈∇g(x),�∇g(x)〉dx

}
.

PROOF. We only consider the case d = 2, as the proof for d ≥ 3 is similar. For
each n, define the continuous, self-adjoint linear operator Tn on L2(Z2) as

Tnξ(x) = Ex

(
exp

{
bn log(n/bn)

2πn
√

det(�)

∑
x∈S[0,tn]

f

(√
bn

n
x

)}
ξ
(
Stn

))

where x ∈ Z
2 and ξ ∈ L2(Z2).

Let g be a bounded function on R
2 and assume that g is infinitely differentiable,

supported by a finite box [−M,M]2 and∫
R2

|g(x)|2 dx = 1

and write

ξn(x) = g

(√
bn

n
x

)/√√√√√∑
y∈Z2

g2

(√
bn

n
y

)
, x ∈ Z

2.

Let Ptn(x) (x ∈ Z
2) be the probability density of Stn . Then

E exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]∑
i=2

∑
x∈S(�i)

f

(√
bn

n
x

)}

= ∑
x∈Z2

Ptn(x)Ex exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]−1∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}

≥ 1

supy |g(y)|2
{ ∑

y∈Z2

g2

(√
bn

n
y

)}
· ∑
x∈Z2

Ptn(x)ξn(x)

× Ex

(
exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]−1∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}
ξn

(
S
(
([bn] − 1)tn

)))

= 1

supy |g(y)|2
{ ∑

y∈Z2

g2

(√
bn

n
y

)}
· ∑
x∈Z2

Ptn(x)ξn(x)T [bn]−1
n ξn(x)
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where the last step follows from the Markov property. Notice that

∑
y∈Z2

g2

(√
bn

n
y

)
∼ n

bn

∫
R2

|g(x)|2 dx = n

bn

as n → ∞. In view of (4.3), by aperiodicity

sup
x∈Z2

∣∣∣∣tnPtn(x) − 1

(2π)det(�)1/2 exp
{
− 1

2tn
〈x,�−1x〉

}∣∣∣∣→ 0 (n → ∞).

Since ξn(x) = 0 outside [−M
√

nb−1
n ,M

√
nb−1

n ]2, there is a δ > 0 independent
of n, such that

E exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]∑
i=2

∑
x∈S(�i)

f

(√
bn

n
x

)}

≥ δ
∑
x∈Z2

ξn(x)T [bn]−1
n ξn(x) = δ

〈
ξn, T

[bn]−1
n ξn

〉
.

Consider the spectral representation of Tn:

〈ξn, Tnξn〉 =
∫ ∞

0
λµξn(dλ)

where µξn is a probability measure on R
+. By the mapping theorem,

〈
ξn, T

[bn]−1
n ξn

〉= ∫ ∞
0

λ[bn]−1µξn(dλ)

≥
(∫ ∞

0
λµξn(dλ)

)[bn]−1

= 〈ξn, Tnξn〉[bn]−1

where the second step follows from the Jensen inequality. Hence,

lim inf
n→∞

1

bn

log E exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}

≥ lim inf
n→∞ log〈ξn, Tnξn〉.

Let the Lévy Gaussian process Xt be given in Theorem 7. Then

〈ξn, Tnξn〉 =
( ∑

y∈Z2

g2

(√
bn

n
y

))−1

· ∑
x∈Z2

g

(√
bn

n
x

)

× Ex

(
exp

{
bn log(n/bn)

2πn
√

det(�)

∑
y∈S[0,tn]

f

(√
bn

n
y

)}
g

(√
bn

n
S(tn)

))
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= (1 + o(1)
)(bn

n

) ∑
x∈Z2

g

(√
bn

n
x

)

× E

(
exp

{
bn log(n/bn)

2πn
√

det(�)

∑
y∈S[0,tn]

f

(√
bn

n
(x + y)

)}

× g

(√
bn

n

(
x + S(tn)

)))

−→
∫

R2
g(x)Ex

[
exp
{∫ 1

0
f (Xs) ds

}
g(X1)

]
dx (n → ∞)

where the last step follows from Theorem 7, Lemma 3 and the dominated
convergence theorem.

Summarizing what we have so far, we obtain

lim inf
n→∞

1

bn

log E exp

{
bn log(n/bn)

2πn
√

det(�)

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}

(4.19)
≥ log

∫
R2

g(x)Ex

[
exp
{∫ 1

0
f (Xs) ds

}
g(X1)

]
dx.

What follows next is a standard treatment [see, e.g., Remillard (2000)] which is
briefly described here: Let the semigroup of linear operators {�t } on L2(R2) be
defined as

�th(x) = Ex

[
exp
{∫ t

0
f (Xs) ds

}
h(Xt)

]
, h ∈ L2(R2), t ≥ 0.

The infinitesimal generator of {�t } is

Ah(x) = 1

2

d∑
i,j=1

aij

∂2h

∂xi ∂xj

(x) + f (x)h(x)

where aij (1 ≤ i, j ≤ d) are entries of the matrix �. Clearly, A is self-adjoint. Let

(g,Ag) =
∫ ∞
−∞

λµg(dλ)

be the spectral representation of the quadratic form (g,Ag), where µg is a
probability measure on (−∞,∞). By the Jensen inequality,∫

R2
g(x)Ex

[
exp
{∫ 1

0
f (Xs) ds

}
g(X1)

]
dx

= (g,�1g)
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=
∫ ∞
−∞

eλµg(dλ) ≥ exp
{∫ ∞

−∞
λµg(dλ)

}
= exp{〈g,Ag〉}
= exp

{∫
R2

f (x)g2(x) dx − 1
2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

In view of (4.19), taking the supremum over g ends the proof. �

Recall that tn and �i are defined by (4.16).

LEMMA 6. Let {S(n)} be a mean zero and square integrable random walk on
Z

d and let ε > 0 be fixed but arbitrary.

(i) As d = 2 and {bn} satisfies (1.10),

lim sup
n→∞

1

bn

log P

{ ∑
1≤j<k≤[bn]

#{S(�j ) ∩ S(�k)} ≥ ε
n

logn

}
= −∞.(4.20)

(ii) As d = 3 and {bn} satisfies (1.12),

lim sup
n→∞

1

bn

log P

{ ∑
1≤j<k≤[bn]

#{S(�j ) ∩ S(�k)} ≥ εn

}
= −∞.(4.21)

PROOF. Due to similarity we only prove (4.20). To be consistent with the
notation used in this paper, {S1(n)} and {S2(n)} are two independent copies of
{S(n)} and Jn = #{S1[0, n] ∩ S2[0, n]}. Notice that

∑
1≤j<k≤[bn]

#{S(�j ) ∩ S(�k)} =
[bn]−1∑
j=1

[bn]∑
i=j+1

#{S(�j ) ∩ S(�i)}

and that for any fixed 1 ≤ j ≤ [bn] − 1,

[bn]∑
i=j+1

#{S(�j ) ∩ S(�i)} d=
[bn]−j∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}

≤
[bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}
.

By the triangular inequality, we need only to prove

lim sup
n→∞

1

bn

log P

{ [bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}≥ ε

n

bn logn

}
= −∞.(4.22)
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Indeed,

[bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}= ∑

x∈Z2

1{−x∈S1(�1)}
[bn]∑
i=1

1{x∈S2(�i)}.

So for any integer m ≥ 1,

E

[ [bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}]m

= ∑
x1,...,xm

[
E

m∏
k=1

1{−xk∈S(�1)}
][

E

m∏
k=1

[bn]∑
i=1

1{xk∈S(�i)}
]

≤
{ ∑

x1,...,xm

[
E

m∏
k=1

1{xk∈S(�1)}
]2}1/2{ ∑

x1,...,xm

[
E

m∏
k=1

[bn]∑
i=1

1{xk∈S(�i)}
]2}1/2

= (EJm
tn

)1/2
{

E

[ ∑
x∈Z2

2∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
]m}1/2

.

Hence, for any θ > 0,

∞∑
m=0

θm

m!
(

b
3/2
n (logn)2

n

)m/2
{

E

[ [bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}]m}1/2

≤
[ ∞∑

m=0

θm

m!
(

b2
n(logn)2

n

)m/2(
EJm

tn

)1/2
]1/2

×
( ∞∑

m=0

θm

m!
(

bn(logn)2

n

)m/2
{

E

[ ∑
x∈Z2

2∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
]m}1/2)1/2

.

Applying (3.1) with p = 2 and with n being replaced by tn, we have

lim sup
n→∞

1

bn

log

[ ∞∑
m=0

θm

m!
(

b2
n(logn)2

n

)m/2(
EJm

tn

)1/2
]

≤ C1θ
2.

By (3.4) with p = 2,

∞∑
m=0

1

m!
(

bn(logn)2

n

)m/2
{

E

[ ∑
x∈Z2

2∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
]m}1/2

≤
[ ∞∑

m=0

1

m!
(

bn(logn)2

n

)m/2{
EJm

tn

}1/2
]bn

.
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Using (3.9) there is C2 > 0 such that

lim sup
n→∞

1

bn

log
∞∑

m=0

1

m!
(

bn(logn)2

n

)m/2

×
{

E

[ ∑
x∈Z2

2∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
]m}1/2

≤ C2.

Replacing bn by θ2bn gives

lim sup
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn(logn)2

n

)m/2

(4.23)

×
{

E

[ ∑
x∈Z2

2∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
]m}1/2

≤ C2θ
2.

Combining the above observations there is C3 > 0 such that for any θ > 0,

lim sup
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

b
3/2
n (logn)2

n

)m/2

×
{

E

[ [bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}]m}1/2

≤ C3θ
2.

Applying (2.3) in Theorem 4 we can find δ > 0 such that

lim sup
n→∞

1

bn

log P

{ [bn]∑
i=1

#
{(−S1(�1)

)∩ S2(�i)
}≥ λ

nb
1/2
n

(logn)2

}
≤ −δλ.

Therefore, (4.22) follows from (1.10). �

Let p ≥ 2 be the integer given in Theorem 1 and let q > 1 be the conjugate of p

defined by the relation p−1 + q−1 = 1.

THEOREM 8. Let {S(n)} be a symmetric, square integrable random walk
on Z

d . Let f be a nonnegative, bounded and uniformly continuous function
on R

d .

(i) As d = 2, f ∈ Lq(R2) and {bn} satisfies (1.10),

lim inf
n→∞

1

bn

log E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

}
(4.24)

≥ sup
g∈F2

{
2π
√

det(�)

∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.
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(ii) As d = 3, f ∈ L2(R3) and {bn} satisfies (1.12),

lim inf
n→∞

1

bn

log E exp

{
bn

n

∫
R3

f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

}
(4.25)

≥ sup
g∈F3

{
γ (S)

∫
R3

f (x)g2(x) dx − 1

2

∫
R3

〈∇g(x),�∇g(x)〉dx

}
.

PROOF. Due to similarity we only prove (4.24). We first assume that {S(n)} is
aperiodic. By uniform continuity

∣∣∣∣∣
∫

R2
f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx − ∑

x∈S[0,n]
f

(√
bn

n
x

)∣∣∣∣∣≤ θn#{S[0, n]},(4.26)

where {θn} is a deterministic positive sequence with θn → 0 as n → ∞. Recall that
tn and �i are defined by (4.16). Notice that

E exp
{
θ
bn logn

n
#{S[0, n]}

}
≤
(

E exp
{
θ
bn logn

n
#{S[0, tn]}

})bn+1

.

By Lemma 3,

lim sup
n→∞

1

bn

log E exp
{
θ
bn logn

n
#{S[0, n]}

}
≤ �(θ) (θ > 0)(4.27)

where �(θ) → 0 as θ → 0+. By (4.26), (4.27) and a standard argument of
exponential approximation, (4.24) is equivalent to

lim inf
n→∞

1

bn

log E exp

{
bn logn

n

∑
x∈S[0,n]

f

(√
bn

n
x

)}

(4.28)

≥ sup
g∈F2

{
2π
√

det(�)

∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

To prove (4.28), notice that

∑
x∈S[0,n]

f

(√
bn

n
x

)

≥
[bn]∑
i=1

∑
x∈S(�j )

f

(√
bn

n
x

)
− ∑

1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

)
.
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Therefore, for any given ε > 0,

E exp

{
bn logn

n

∑
x∈S[0,n]

f

(√
bn

n
x

)}

≥ E exp

{
bn logn

n

( [bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)

− ∑
1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

))}

≥ e−εbnE exp

{
bn logn

n

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}
(4.29)

− E

[
exp

{
bn logn

n

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}
;

∑
1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

)
≥ ε

n

logn

]

= (I) − (II) (say).

By Lemma 5,

lim inf
n→∞

1

bn

log(I ) ≥ −ε + sup
g∈F2

{
2π
√

det(�)

∫
R2

f (x)g2(x) dx

(4.30)
− 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

By the Cauchy–Schwarz inequality,

(II) ≤
[
E exp

{
2bn logn

n

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}]1/2

(4.31)

×
[
P

{ ∑
1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

)
≥ ε

n

logn

}]1/2

.

Notice that

∑
1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

)
≤ ‖f ‖∞

∑
1≤j<k≤[bn]

#{S(�j ) ∩ S(�k)}.
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By Lemma 6,

lim sup
n→∞

1

bn

log P

{ ∑
1≤j<k≤[bn]

∑
x∈S(�j )∩S(�k)

f

(√
bn

n
x

)
≥ ε

n

logn

}
= −∞.(4.32)

In view of (4.29)–(4.32), it remains to prove

lim sup
n→∞

1

bn

log E exp

{
2bn logn

n

[bn]∑
i=1

∑
x∈S(�i)

f

(√
bn

n
x

)}
< ∞.

By the exponential approximation used earlier, this is equivalent to

lim sup
n→∞

1

bn

log E exp

{
2bn logn

n

∫
R2

f

(√
bn

n
x

) [bn]∑
i=1

1{[x]∈S(�i)} dx

}
< ∞.(4.33)

For any integer m ≥ 1,

E

(∫
R2

f

(√
bn

n
x

) [bn]∑
i=1

1{[x]∈S(�i)} dx

)m

=
(

n

bn

)m

E

(∫
R2

f (x)

[bn]∑
i=1

1{[√n/bnx]∈S(�i)} dx

)m

=
(

n

bn

)m ∫
(R2)m

dx1 · · · dxm

(
m∏

k=1

f (xk)

)
E

m∏
k=1

[bn]∑
i=1

1{[√n/bnxk]∈S(�i)}

≤ ‖f ‖m
q

(
n

bn

)m
{∫

(R2)m
dx1 · · · dxm

(
E

m∏
k=1

[bn]∑
i=1

1{[√n/bnxk]∈S(�i)}

)p}1/p

(4.34)

= ‖f ‖m
q

(
n

bn

)(p−1)/pm
{∫

(R2)m
dx1 · · · dxm

(
E

m∏
k=1

[bn]∑
i=1

1{[xk]∈S(�i)}
)p}1/p

= ‖f ‖m
q

(
n

bn

)(p−1)/pm
{ ∑

x1,...,xm

(
E

m∏
k=1

[bn]∑
i=1

1{xk∈S(�i)}
)p}1/p

= ‖f ‖m
q

(
n

bn

)(p−1)/pm
{

E

( ∑
x∈Z2

p∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
)m}1/p

.
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Similar to (4.23),

lim sup
n→∞

1

bn

log
∞∑

m=0

(2‖f ‖q)m

m!
(

bn(logn)p

n

)m/p

×
{

E

( ∑
x∈Z2

p∏
j=1

[bn]∑
i=1

1{x∈Sj (�i)}
)m}1/p

< ∞.

So (4.33) follows from (4.34).
We now prove (4.24) without assuming aperiodicity. Let 0 < η < 1 be fixed and

let {δn}n≥1 be i.i.d. Bernoulli random variables with the common law:

P{δ1 = 0} = 1 − P{δ1 = 1} = η.

We assume independence between {S(n)} and {δn}.
Define the renewal sequence {σk}k≥0 by

σ0 = 0 and σk+1 = inf{n > σk; δn = 1}.
Then {σk − σk−1}k≥1 is an i.i.d. sequence with common distribution

P{σ1 = n} = (1 − η)ηn−1, n = 1,2, . . . .

Consider the random walk S̃(n) = S(σn). {S̃(n)} is symmetric with covariance

Cov
(
S(σ1), S(σ1)

)= (Eσ1)� = (1 − η)−1�.

By the fact that

P{S(σ1) = 0} = (1 − η)

∞∑
k=1

ηk−1
P{S(k) = 0} > 0,

{S̃(n)} is aperiodic. Applying what we have proved to {S̃(n)},

lim inf
n→∞

1

bn

log E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S̃[0,n]} dx

}

≥ sup
g∈F2

{
2π

√
det(�)

1 − η

∫
R2

f (x)g2(x) dx

− 1

2(1 − η)

∫
R2

〈∇g(x),�∇g(x)〉dx

}

≥ sup
g∈F2

{
2π
√

det(�)

∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Notice that

S̃[0, n] = {S(σ0), . . . , S(σn)} ⊂ S[0, σn].
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Given ε > 0,

E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,[(1+ε)n]]} dx

}

≥ E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S̃[0,n]} dx

}

− E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S̃[0,n]} dx

}
1{σn≥(1+ε)n}.

By Cramér large deviation [Theorem 2.2.3 of Dembo and Zeitouni (1998)] as
(1 − η)−1 < 1 + ε there is u > 0 such that

P{σn ≥ (1 + ε)n} ≤ e−un

for sufficiently large n. By (4.33) [with S(n) being replaced by S̃(n)] and the
Cauchy–Schwarz inequality, therefore,

lim sup
n→∞

1

bn

log E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S̃[0,n]} dx

}
1{σn≥(1+ε)n} = −∞.

Hence,

lim inf
n→∞

1

bn

log E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,[(1+ε)n]]} dx

}

≥ sup
g∈F2

{
2π
√

det(�)

∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Replacing [(1 + ε)n] by n and f (x) by (1 + ε)−1f ((1 + ε)−1/2x), we have

lim inf
n→∞

1

bn

log E exp

{
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

}

≥ sup
g∈F2

{
2π
√

det(�)(1 + ε)−1
∫

R2
f (x)g2(x) dx

− 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Letting ε → 0+ gives (4.21). �

We are finally ready to prove (4.1) and (4.2). Due to similarity we only
prove (4.1). Notice that

Jn = ∑
x∈Z2

p∏
j=1

1{x∈Sj [0,n]}.
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For any nonnegative, bounded and uniformly continuous function f on R
2 with

‖f ‖q = 1, a procedure similar to (4.34) gives(
n

bn

)(p−1)/pm

(EJm
n )1/p ≥ E

(∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

)m

,

m = 0,1, . . . .

Therefore,
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p

(EJm
n )1/p

≥ E exp

{
θ
bn logn

n

∫
R2

f

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

}
.

By Theorem 8,

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p

(EJm
n )1/p

≥ sup
g∈F2

{
2πθ
√

det(�)

∫
R2

f (x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f on R

2 with ‖f ‖q = 1, the right-hand side becomes

sup
g∈F2

{
2πθ
√

det(�)

(∫
R2

|g(x)|2p dx

)1/p

− 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}

= (2πθ)p
√

det(�) sup
g∈F2

{(∫
R2

|h(x)|2p dx

)1/p

− 1

2

∫
R2

|∇h(x)|2 dx

}
(4.35)

= 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p,

where the first equality follows from the substitution g(x) = √|detA|h(Ax) with
the 2 × 2 matrix A satisfying

Aτ�A = (2πθ)p
√

det(�)I2

with I2 being the 2 × 2 identity matrix, and the second equality follows from
Lemma A.2 in Chen (2004).

5. Law of the iterated logarithm. We prove Theorem 3 in this section. With
the moderate deviations given in Theorems 1 and 2, the proof of the upper bound
is just a standard practice of the Borel–Cantelli lemma. So we only give proof to
the lower bounds. That is, we prove:
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As d = 2 and p ≥ 2,

lim sup
n→∞

(logn)p

n(log logn)p−1 Jn ≥ (2π)p
(

2

p

)p−1√
det(�)κ(2,p)2p a.s.(5.1)

As d = 3 and p = 2,

lim sup
n→∞

1√
n(log logn)3

Jn ≥ γ (S)2 det(�)−1/2κ(3,2)4 a.s.(5.2)

By the technology used in the proof of Theorem 8, which extends the lower bound
established under aperiodicity to the general case, we may assume aperiodicity in
the proof given below.

For given x̄ = (x1, . . . , xp) ∈ (Zd)p , we introduce the notation P
x̄ for the

probability induced by the random walks S1(n), . . . , Sp(n) in the case when
S1(n), . . . , Sp(n) start at x1, . . . , xp , respectively. The notation E

x̄ denotes the
expectation correspondent to P

x̄ . To be consistent with the notation we used before,
we have P

(0,...,0) = P and E
(0,...,0) = E. Write

‖x̄‖ = max
1≤j≤p

|xj |, x̄ = (x1, . . . , xp) ∈ (Rd)p.

LEMMA 7. Under the conditions in Theorem 1,

lim inf
n→∞

1

bn

log inf
‖x̄‖≤√

n/bn

P
x̄

{
Jn ≥ λ

n

(logn)p
bp−1
n

}

≥ −p

2
(2π)−p/(p−1)(5.3)

× det(�)−1/(2(p−1))κ(2,p)−2p/(p−1)λ1/(p−1) (λ > 0).

Under the conditions in Theorem 2,

lim inf
n→∞

1

bn

log inf
‖x̄‖≤√

n/bn

P
x̄{Jn ≥ λ

√
nb3

n

}
(5.4) ≥ −det(�)1/3γ (S)−4/3κ(3,2)−8/3λ2/3 (λ > 0).

PROOF. Due to similarity we only prove (5.3). For given ȳ = (y1, . . . , yp) ∈
(Z2)p and m,n ≥ 1,

E
ȳJm

n = ∑
x1,...,xm

p∏
j=1

E

m∏
k=1

1{yj+xk∈S[0,n]}

≤
p∏

j=1

( ∑
x1,...,xm

[
E

m∏
k=1

1{yj+xk∈S[0,n]}
]p)1/p

= ∑
x1,...,xm

[
E

m∏
k=1

1{xk∈S[0,n]}
]p

= EJm
n .
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By (3.1) we have

lim sup
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p(
sup
ȳ

E
ȳJm

n

)1/p

≤ 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p (θ > 0).

It is easy to see from Theorem 4 that we will have (5.3) if we can prove

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p(
inf

‖ȳ‖≤√
n/bn

E
ȳJm

n

)1/p

(5.5)

≥ 1

p

(
2(p − 1)

p

)p−1

(2πθ)p
√

det(�)κ(2,p)2p

for every θ > 0.
Let ε > 0 be fixed for a moment. For any sets A,B ⊂ Z

2, A + B is defined as
the set {x + y;x ∈ A and y ∈ B}. In particular, x + B ≡ {x} + B for any x ∈ Z

2.
Write

Bn(x) = {y; |y − x| ≤ ε
√

n/bn

}
, x ∈ Z

2,

and set Bn = Bn(0).
For any function f on R

2, write

fε(x) = 1

πε2

∫
{|y|≤ε}

f (x + y)dy

whenever the integral on the right-hand side makes sense.
Define

Jn(ε) = ∑
x∈Z2

p∏
j=1

(
1

#(Bn)
1{x∈Sj [0,n]+Bn}

)
.

Let f be a nonnegative, bounded and uniformly continuous function on R
2 with

‖f ‖q = 1: ∫
R2

f

(√
bn

n
x

)
1

#(Bn)
1{[x]∈S[0,n]+Bn} dx

=
∫

R2
f

(√
bn

n
x

)
1

#(Bn)

∑
y∈Bn

1{[x−y]∈S[0,n]} dx

=
∫

R2
1{[x]∈S[0,n]}

(
1

#(Bn)

∑
y∈Bn

f

(√
bn

n
(x + y)

))
dx

= (1 + o(1)
) ∫

R2
1{[x]∈S[0,n]}fε

(√
bn

n
x

)
dx
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where o(1) is bounded by a deterministic sequence that approaches to zero as
n → ∞.

Similar to (4.34), for any integer m ≥ 1,

(
n

bn

)(p−1)/pm(
EJn(ε)

m)1/p

≥ E

(∫
R2

f

(√
bn

n
x

)
1

#(Bn)
1{[x]∈S[0,n]+Bn} dx

)m

≥ (1 + o(1)
)m

E

(∫
R2

1{[x]∈S[0,n]}fε

(√
bn

n
x

)
dx

)m

.

Therefore,

∞∑
m=0

θm

m!
(

bn logp n

n

)m/p(
EJn(ε)

m)1/p

≥ E exp

{(
1 + o(1)

)
θ
bn logn

n

∫
R2

fε

(√
bn

n
x

)
1{[x]∈S[0,n]} dx

}
.

By Theorem 8,

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p(
EJn(ε)

m)1/p

≥ sup
g∈F2

{
2πθ
√

det(�)

∫
R2

fε(x)g2(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}

= sup
g∈F2

{
2πθ
√

det(�)

∫
R2

f (x)(g2)ε(x) dx − 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f on R

2 with ‖f ‖q = 1 gives

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p(
EJn(ε)

m)1/p

≥ sup
g∈F2

{
2πθ
√

det(�)

(∫
R2

|(g2)ε(x)|p dx

)1/p

(5.6)

− 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.
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Take tn = [n/bn]. To prove (5.5), notice that

E
ȳJm

n ≥ E

(∑
x

p∏
j=1

1{yj+x∈Sj [tn,n]}
)m

= ∑
x1,...,xm

p∏
j=1

E

(
m∏

k=1

1{yj+xk∈S[tn,n]}
)

≥ ∑
x1,...,xm

p∏
j=1

E

(
m∏

k=1

∑
z∈Bn(yj )

1{S(tn)=z} · 1{yj−z+xk∈S′[0,n−tn]}
)

where S′(k) = S(k + tn) − S(tn) (k = 1,2, . . . ). By the identity,
m∏

k=1

∑
z∈Bn(yj )

1{S(tn)=z} · 1{yj−y+xk∈S′[0,n−tn]}

= ∑
y∈Bn(yj )

1{S(tn)=z} ·
m∏

k=1

1{yj−z+xk∈S′[0,n−tn]}

and therefore by independence,

E

(
m∏

k=1

∑
z∈Bn(yj )

1{S(tn)=z} · 1{yj−z+xk∈S′[0,n−tn]}
)

= ∑
z∈Bn(yj )

P{S(tn) = z} · E

[
m∏

k=1

1{yj−z+xk∈S[0,n−tn]}
]

≥ min
1≤j≤p

inf
z∈Bn(yj )

{
P{S(tn) = z}} ∑

z∈Bn

E

[
m∏

k=1

1{xk−z∈S[0,n−tn]}
]

= γn

∑
z∈Bn

E

[
m∏

k=1

1{xk−z∈S[0,n−tn]}
]

(say).

Hence,

E
ȳJm

n ≥ γ p
n

∑
x1,...,xm

( ∑
z∈Bn

E

[
m∏

k=1

1{xk−z∈S[0,n−tn]}
])p

= ∑
x1,...,xm

∑
z1,...,zp∈Bn

p∏
j=1

E

[
m∏

k=1

1{xk−zj∈S[0,n−tn]}
]

= γ p
n

∑
z1,...,zp∈Bn

∑
x1,...,xm

E

[
m∏

k=1

p∏
j=1

1{xk−zj∈Sj [0,n−tn]}
]



INTERSECTION OF RANGES 1057

= γ p
n

∑
z1,...,zp∈Bn

E

(∑
x

p∏
j=1

1{x−zj∈Sj [0,n−tn]}
)m

≥ γ p
n #{Bn}pE

(
1

#{Bn}p
∑

z1,...,zp∈Bn

∑
x

p∏
j=1

1{x−zj∈Sj [0,n−tn]}
)m

= γ p
n #{Bn}pE

(∑
x

p∏
j=1

1

#{Bn}1{x∈Sj [0,n−tn]+Bn}
)m

,

where the fifth step follows from Jensen’s inequality. By (4.3) (with d = 2 and n

replaced by tn),

γn = 1

tn
min

1≤j≤p
inf

|yj |≤√
n/bn

inf
z∈Bn(yj )

[
exp
{
− 1

2tn
〈y,�−1y〉

}
+ o(1)

]
≥ ct−1

n .

We have proved that there is a δ = δ(ε) > 0, such that for any integer m ≥ 0 and
n ≥ 1,

inf
‖ȳ‖≤√

n/bn

E
ȳJm

n ≥ δE

(∑
x

p∏
j=1

1

#{Bn}1{x∈Sj [0,n−tn]+Bn}
)m

.

By (5.6) (with n replaced by n − tn),

lim inf
n→∞

1

bn

log
∞∑

m=0

θm

m!
(

bn logp n

n

)m/p(
inf

‖ȳ‖≤√
n/bn

E
ȳJm

n

)1/p

≥ sup
g∈F2

{
2πθ
√

det(�)

(∫
R2

|(g2)ε(x)|p dx

)1/p

− 1

2

∫
R2

〈∇g(x),�∇g(x)〉dx

}
.

Finally, we let ε → 0+ on the right-hand side. Then (5.5) follows from (4.35). �

We only prove (5.1) as the proof of (5.2) is analogous. Let nk = kk . We first
show that for any λ < (2π)p( 2

p
)p−1√det(�)κ(2,p)2p,

lim sup
k→∞

(lognk+1)
p

nk+1 log lognk+1
#{S1[nk, nk+1] ∩ · · · ∩ Sp[nk, nk+1]} ≥ λ a.s.(5.7)

We consider the 2p-dimensional random walk S̄(n) = (S1(n), . . . , Sp(n)). By the
Markov property and Lévy’s Borel–Cantelli lemma [see Corollary 5.29 in Breiman
(1992)], (5.7) holds if we have∑

k

P
S̄(nk)

{
Jnk+1−nk

≥ λ
nk+1 log lognk+1

(lognk+1)p

}
= ∞ a.s.(5.8)
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Indeed, it is easy to see that
√

nk log lognk = o(
√

nk+1/ log lognk+1 ) as k → ∞.
By the classic Hartman–Wintner law of the iterated logarithm, with probability 1
the events {‖S̄(nk)‖ ≤ √

nk+1/ log lognk+1
}
, k = 1,2, . . . ,

eventually hold. Therefore, (5.8) holds if we have∑
k

inf
‖x̄‖≤√

nk+1/ log lognk+1

P
x̄

{
Jnk+1−nk

≥ λ
nk+1 log lognk+1

(lognk+1)p

}
= ∞

which follows from Lemma 7 with bn = log logn.
Since

Jnk+1 ≥ #{S1[nk, nk+1] ∩ · · · ∩ Sp[nk, nk+1]},
letting

λ −→ (2π)p
(

2

p

)p−1√
det(�)κ(2,p)2p

in (5.7) proves (5.1).
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