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QUENCHED ASYMPTOTICS FOR BROWNIAN MOTION IN
GENERALIZED GAUSSIAN POTENTIAL

BY XIA CHEN1

University of Tennessee

In this paper, we study the long-term asymptotics for the quenched mo-
ment

Ex exp
{∫ t

0
V (Bs) ds

}
consisting of a d-dimensional Brownian motion {Bs; s ≥ 0} and a generalized
Gaussian field V . The major progress made in this paper includes: Solution
to an open problem posted by Carmona and Molchanov [Probab. Theory Re-
lated Fields 102 (1995) 433–453], the quenched laws for Brownian motions
in Newtonian-type potentials and in the potentials driven by white noise or
by fractional white noise.

1. Introduction. The classic Anderson model can be formulated as the fol-
lowing heat equation:{

∂tu(t, x) = 1
2�u(t, x) + V (x)u(t, x),

u(0, x) = 1,
(1.1)

where {V (x);x ∈ R
d} is often made as a stationary random field called potential.

Under some regularity assumption such as Hölder continuity on V (x), the sys-
tem has a unique solution with Feynman–Kac representation

u(t, x) = Ex exp
{∫ t

0
V (Bs) ds

}
,(1.2)

where {Bt ; t ≥ 0} is a d-dimensional Brownian motion independent of V (x),
and Ex is the expectation with respect to Bt given B0 = x.

An important aspect in studying parabolic Anderson models is its long-term
asymptotics. There are two types of asymptotics: one is labeled as quenched law
concerning the limit behavior of the random field u(t, x) conditioning on the ran-
dom potential V (x); another is known as annealed law with interest in the limit
behavior of Eu(t, x) and other deterministic moments of u(t, x). In the case when
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{V (x);x ∈ R
d} is a mean zero stationary Gaussian field with the covariance func-

tion

γ (x) = Cov
(
V (0),V (x)

)
, x ∈ R

d .(1.3)

Carmona and Molchanov (Theorem 5.1, [5]) establish the quenched law

lim
t→∞

1

t
√

log t
log Ex exp

{∫ t

0
V (Bs) ds

}
=
√

2dγ (0), a.s.(1.4)

under the condition lim|x|→∞ γ (x) = 0. See [14] for the asymptotics of the second
order, and [4, 6, 16, 24] and [25] for a variety of versions in literature.

This paper is concerned with the setting of the generalized Gaussian fields, in
which the potential V is not defined pointwise. A typical example is when V is a
white or fractional white noise. Recall that a generalized function is defined as a
linear functional {〈ξ,ϕ〉;ϕ ∈ S(Rd)} on a suitable space S(Rd) of the functions
known as the test functions. The classic notion of function is generalized in the
sense that

〈ξ,ϕ〉 =
∫

Rd
ξ(x)ϕ(x) dx, ϕ ∈ S

(
R

d)(1.5)

whenever ξ(x) is a “good” function defined pointwise on R
d . We refer the

book [17] by Gel’fand and Vilenkin for details.
A generalized random field V is a generalized random function. In this paper,

we consider the case when S(Rd) is the Schwartz space of rapidly decreasing and
infinitely smooth functions, and {〈V,ϕ〉;ϕ ∈ S(Rd)} is a mean-zero Gaussian field
satisfying the homogeneity{〈

V,ϕ(· − x)
〉;ϕ ∈ S

(
R

d)} d= {〈V,ϕ〉;ϕ ∈ S
(
R

d)}, x ∈ R
d .(1.6)

The covariance functionals Cov(〈V,ϕ〉, 〈V,ψ〉) of the generalized Gaussian
fields considered in this work are continuous on S(Rd) × S(Rd). Consequently,
{〈V,ϕ〉;ϕ ∈ S(Rd)} is continuous in probability and therefore yields a measurable
version.

The classic Bochner representation can be generalized ((1), page 290, [17]) in
the following way: There is a positive measure μ(dλ) on R

d , known as spectral
measure, such that

Cov
(〈V,ϕ〉, 〈V,ψ〉)= 1

(2π)d

∫
Rd

F (ϕ)(λ)F (ψ)(λ)μ(dλ),(1.7)

where F (ϕ)(λ) denotes the Fourier transform of the function ϕ ∈ S(Rd). Further,
μ(dλ) is tempered in the sense that (1 + | · |2)−p ∈ L(Rd,μ) for some p > 0.

In the settings considered in this paper, the notion of covariance function γ (·)
defined by (1.3) can also be extended to the form

Cov
(〈V,ϕ〉, 〈V,ψ〉)= ∫

Rd
γ (x − y)ϕ(x)ψ(y)dx dy, ϕ,ψ ∈ S

(
R

d)(1.8)
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with γ (x) = δ0(x) (Dirac function) or with γ (x) being defined pointwise on R
d \

{0} and satisfying γ (0) ≡ limx→0 γ (x) = ∞—in both cases μ(dλ) is an infinite
measure. As a consequence, it is impossible to make V pointwise defined through
relation (1.5), for otherwise we would have to face the “Gaussian variable” V (x)

with Var(V (x)) = γ (0) = ∞ for every x ∈ R
d .

Nevertheless, representation (1.2) can be extended to the generalized setting
under some suitable condition. The generalized Gaussian potentials appearing in
our main theorems satisfy (Lemma A.2)∫

Rd

1

(1 + |λ|2)1−δ
μ(dλ) < ∞(1.9)

for some δ > 0. As a consequence (Lemma A.1), the L2-limit∫ t

0
V (Bs) ds

def= lim
ε→0+

∫ t

0
Vε(Bs) ds

exists and, the time integral defined in this way yields a continuous version as a
stochastic process, where the pointwise defined Gaussian field Vε(x) appears as a
smoothed version of V ; see Lemma A.1 for details. In addition, the time integral
defined in this way is exponentially integrable with respect to Ex , as pointed out in
Section 3. Consequently, representation (1.2) makes sense in our settings. Accord-
ing to a treatment proposed on page 448 of [5], it solves the Anderson model (1.1)
in some proper sense. The major goal of this work is to study the large-t behavior
of the quenched exponential moment in (1.2).

In [5], Carmona and Molchanov ask what happens when the covariance function
γ (x) is defined pointwise, continuous in R

d \ {0} but γ (0) = ∞ with the degree
of singularity measured by

γ (x) ∼ c(γ )|x|−α (x → 0)(1.10)

for some 0 < α < 2 and c(γ ) > 0. Here we point out that the restriction “α <

d” has to be added for the covariance functional Cov(〈V,ϕ〉, 〈V,ψ〉) to be well-
defined. Indeed, for a nonnegative ϕ ∈ S(Rd) strictly positive in a neighborhood
of 0, there are C > 0 and ε > 0 such that

Var
(〈V,ϕ〉)≥ C−1

∫
{|x|≤ε}×{|y|≤ε}

dx dy

|x − y|α .

The right-hand side diverges if α ≥ d .
In their paper, Carmona and Molchanov [5] conjecture that under (1.10),

log Ex exp
{∫ t

0
V (Bs) ds

}
≈ t (log t)(4−α)/(2−α), a.s. (t → ∞).

The following theorem tells a slightly different story.
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THEOREM 1.1. Let the covariance function γ (x) be continuous on R
d \ {0}

and be bounded outside every neighborhood of 0. Assume (1.10) with 0 < α <

2 ∧ d . Then for any x ∈ R
d ,

lim
t→∞ t−1(log t)−2/(4−α) log Ex exp

{∫ t

0
V (Bs) ds

}
(1.11)

= 4 − α

4

(
α

2

)α/(4−α)(
2dc(γ )κ(d,α)

)2/(4−α)
, a.s.,

where the constant c(γ ) > 0 is given in (1.10), and κ(d,α) > 0 is the best constant
of the inequality [see (A.18) in the Appendix]∫ ∫

Rd×Rd

f 2(x)f 2(y)

|x − y|α ≤ C‖f ‖4−α
2 ‖∇f ‖α

2 , f ∈ W 1,2(
R

d)
with W 1,2(Rd) being defined as the Sobolev space

W 1,2(
R

d)= {
f ∈ L2(

R
d);∇f ∈ L2(

R
d)}.(1.12)

We now consider a special case. In light of some classical laws of physics,
such as Newton’s gravity law and Coulomb’s electrostatics law, it makes sense to
consider the potential formally given as

V (x) =
∫

Rd

1

|x − y|p W(dy), x ∈ R
d

in the parabolic Anderson model (1.1). Here {W(x);x ∈ R
d} is a standard Brown-

ian sheet. The relevant Gaussian field

〈V,ϕ〉 =
∫

Rd

[∫
Rd

ϕ(y)

|y − x|p dy

]
W(dx), ϕ ∈ S

(
R

d)(1.13)

is well defined with the covariance function

γ (x) = C(d,p)|x|−(2p−d),(1.14)

provided d/2 < p < d+2
2 ∧ d , where

C(d,p) = πd/2 �2((d − p)/2)�((2p − d)/2)

�2(p/2)�(d − p)
.(1.15)

Indeed,

Cov
(〈V,ϕ〉, 〈V,ψ〉)= ∫

Rd

[∫
Rd

ϕ(y) dy

|y − x|p
][∫

Rd

ψ(z) dy

|z − x|p
]
dx

=
∫

Rd×Rd
ϕ(y)ψ(z)

[∫
Rd

dx

|y − x|p|z − x|p
]
dy dz

= C(d,p)

∫
Rd×Rd

ϕ(y)ψ(z)

|y − z|2p−d
dy dz,
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where the last step follows from (1.31) in [11] (with σ being replaced by 2p − d).
Thus (1.10) holds with α = 2p − d < 2 ∧ d .

COROLLARY 1.2. In the special case given in (1.13) with d/2 < p < d ∧ d+2
2 ,

lim
t→∞ t−1(log t)−2/(4+d−2p) log Ex exp

{
θ

∫ t

0
V (Bs) ds

}

= 4 + d − 2p

4

(
2p − d

2

)(2p−d)/(4+d−2p)

(1.16)

× (
2dC(d,p)θ2κ(d,2p − d)

)2/(4+d−2p)
, a.s.

for any θ > 0, where C(d,p) > 0 is given in (1.15).

In the next theorem, the potential is a fractional white noise formally written as

V (x) = ∂dWH

∂x1 · · · ∂xd

(x), x = (x1, . . . , xd) ∈ R
d,

where WH(x) (x = (x1, . . . , xd) ∈ R
d ) is a fractional Brownian sheet with Hurst

index H = (H1, . . . ,Hd). We assume that

1

2
< Hj < 1 (j = 1, . . . , d) and

d∑
j=1

Hj > d − 1.(1.17)

The generalized Gaussian field relevant to the problem is defined by the stochastic
integral

〈V,ϕ〉 =
∫

Rd
ϕ(x)WH(dx), ϕ ∈ S

(
R

d).(1.18)

In this setting,

γ (x) = CH

(
d∏

j=1

|xj |2−2Hj

)−1

and

(1.19)

μ(dλ) = ĈH

(
d∏

j=1

|λj |2Hj−1

)−1

dλ,

where CH > 0 and ĈH > 0 are two constants with

CH =
d∏

j=1

Hj(2Hj − 1).

Under assumption (1.17),

0 < α ≡ 2d − 2
d∑

j=1

Hj < 2 ∧ d.(1.20)
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THEOREM 1.3. Assume (1.17). For any θ > 0 and x ∈ R
d ,

lim
t→∞ t−1(log t)−2/(4−α) log Ex exp

{
θ

∫ t

0

∂dWH

∂x1 · · · ∂xd

(Bs) ds

}
(1.21)

= 4 − α

4

(
α

2

)α/(4−α)(
2dCHθ2κ̃(d,H)

)2/(4−α)
, a.s.,

where κ̃(d,H) is the best constant of the inequality [see (A.30) in the Appendix]∫
Rd×Rd

f 2(x)f 2(y)

(
d∏

j=1

|xj − yj |2−2Hj

)−1

dx dy ≤ C‖f ‖4−α
2 ‖∇f ‖α

2 ,

f ∈ W 1,2(
R

d
)
.

In the next theorem, we take d = 1. The Gaussian potential is a white noise for-
mally given as V (x) = Ẇ (x) where W(x) (x ∈ R) is a two-side Brownian motion.
The relevant generalized Gaussian field is defined as

〈V,ϕ〉 =
∫ ∞
−∞

ϕ(x)W(dx), ϕ ∈ S(R).(1.22)

In this case the covariance function γ (·) = δ0(·) is the Dirac function and the spec-
tral measure μ(dλ) = dλ is Lebesgue measure on (−∞,∞).

THEOREM 1.4. For any θ > 0 and x ∈ R,

lim
t→∞ t−1(log t)−2/3 log Ex exp

{
θ

∫ t

0
Ẇ (Bs) ds

}
(1.23)

= 1

2

(
3

2

)2/3
θ4/3, a.s.

We now comment on our main theorems. It is interesting to see that (1.11) is
consistent with (1.4) when the latter is regarded as the case α = 0, with easy and
natural identifications c(γ ) = γ (0), κ(d,0) = 1, and the natural convention that
00 = 1.

Given an integer valued symmetric simple random walk {Xt ; t ≥ 0} and an in-
dependent family {ξ(x);x ∈ Z} of the i.i.d. standard normal random variables, by
Theorem 4.1, [15], or by Theorem 2.2, [16],

lim
t→∞ t−1(log t)−1/2 log Ex exp

{
θ

∫ t

0
ξ(Xs) ds

}
= √

2θ, a.s.

Comparing this to Theorem 1.4, we witness a highly unusual difference between
continuous and discrete settings.

The almost sure limits stated in our theorems are largely determined by the
scaling or asymptotic scaling exponent α of the covariance function γ (x) at x = 0.
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The restriction α < 2 in our theorems is essential. In connection to Theorem 1.4,
notice that a Dirac function on R

d satisfies δ0(cx) = |c|dδ0(x). In particular, α = d

as γ (x) = δ0(x). To comply with the restriction α < 2, the space dimension d has
to be 1 in Theorem 1.4.

A challenge beyond the scope of this paper is the quenched long-term asymp-
totics for the time dependent potential V (t, x) in connection to Theorems 1.3
and 1.4. Associated to Theorem 1.3 is the case when

V (t, x) = ∂d+1WH

∂t ∂x1 · · · ∂xd

(t, x), (t, x) ∈ R
+ × R

d,

where WH(t, x) is a time–space fractional Brownian sheet with some restriction
on its Hurst parameter H = (H0,H1, . . . ,Hd). An interested reader is referred to
the paper by Hu, Nualart and Song [19] for the Feynman–Kac representation of
the solution in this system; and to the recent work [9] by Chen, Hu, Song and Xing
for the annealed asymptotics in this and other time–space settings.

Theorem 1.4 corresponds to the famous Karda–Parisi–Zhang (KPZ) model
which starts from a nonlinear stochastic partial differential equation and is trans-
formed into the parabolic Anderson equation with the potential

V (t, x) = ∂2W

∂t ∂x
(t, x), (t, x) ∈ R

+ × R

by some renormalization treatment together with the Hopf–Cole transform. We
cite the references [20] and [21] for the physical background of the problem, and
[1, 2, 18] for the mathematical set-up and recent progress on the KPZ equation.

In addition, it is worth mentioning a recent work [12] by Conus et al. in which
they consider a possibly nonlinear heat equation

∂tu = 1
2�u + V (t, x)σ (u).

Here V (t, x) is a time–space generalized Gaussian field with the covariance func-
tion

δ0(s − t)γ (x − y), (s, x), (t, y) ∈ R
+ × R

d .

When the space covariance function γ (x) satisfies (1.10) with 0 < α < 2 ∧ d ,
a quenched space-asymptotic law (Theorem 2.6, [12]) states that

C1 ≤ lim sup
|x|→∞

(
log |x|)−2/(4−α) logu(t, x) ≤ C2, a.s.

for any fixed t > 0. The exponent 2/(4 −α) seems to suggest a deep link to (1.11).
In general, going from the time-independent potential to the time-dependent poten-
tial is a big step. We specially mention the work [25] by Viens and Zhang for their
effort beyond the sub-additivity treatment. It is our hope that some ideas developed
in the current paper may play a role in the future investigation of this direction.
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We now comment on the approaches adopted in this paper and their relations
to earlier works. As usual, the proof consists of two major steps: a semi-group
method to associate the quenched exponential moment in (1.2) to the principal
eigenvalue of random linear operator 2−1�+V with the zero boundary on (−t, t)d

and asymptotic estimation of the principal eigenvalue for which a nice idea devel-
oped in [13] and [14] is adopted; see (2.27) to control the principal eigenvalue over
the large domain (−t, t)d by the extreme among the principal eigenvalues over the
sub-domains. On the other hand, what sets this paper apart is the singularity of our
models. The following are some of the novelties appearing in this paper.

(1) Algorithm development. The algorithms existing in the literature often de-
pend on the asymptotics of the generating function of V (0). Unfortunately, this
strategy does not apply here as V (0) is not even defined in our models. Indeed, the
appearance of ‖∇g‖2 in the constants of our main theorems is a testimony of the
dynamics different from the classic settings represented by (1.4). Our approach
involves a rescaling strategy that highlights the role of the diffusion part of the
principal eigenvalue. Some of the ideas adopted in this paper have been used in the
recent work [8] in the setting of renormalized Poissonian potential. However, there
are substantial differences between these two settings that demand some new adap-
tations. The renormalized Poissonian potential is defined pointwise and essentially
total variational in the sense that it can be decomposed as the difference of positive
and negative parts under suitable truncation, while it is classic knowledge that the
potentials driven by white noise or fractional white noise are not total variational.

(2) Entropy estimate. The entropy method has become an effective tool in deal-
ing with the tail, continuity, integrability or finiteness for the random quantities
given as supremum. In the case when V (x) is defined pointwise, the concern is
the supremum supx∈D V (x) over a compact D ⊂ R

d , and the problem is to count
the ε-balls that cover D. Not surprisingly, the entropy number is bounded by a
polynomial of ε−1 if the distance is Euclidean or nearly Euclidean. On the other
hand, the entropy method in the context of generalized potential is for the supre-
mum supg∈Gd (D)〈V,g2〉 over (a dense set of) the unit sphere of the Sobolev space
over the domain D; see Proposition 2.1. Counting the covering ε-balls in a func-
tional space is much harder and the result is less predictable due to complexity in
geometric structure.

(3) Lower bound by Slepian lemma. In the classic setting, the lower bound
for (1.4) can be established by decomposing V (x) into two homogeneous Gaussian
fields such that the first field has finite correlation radius and the second is negli-
gible. Under the assumptions of Theorems 1.1 and 1.3, such decomposition is not
available. Our treatment is based on a famous comparison lemma by Slepian [23]
and is formulated in Lemma 4.2 below.

2. Gaussian supremum. Let D ⊂ R
d be a fixed bounded open domain. We

use the notation S(D) for the space of the infinitely smooth functions on D that



584 X. CHEN

vanish at the boundary of D. For convenience, we always view S(D) as a subspace
of S(Rd) by defining g(x) = 0 outside D for each g ∈ S(D). Given g ∈ S(D), for
example, we may alternate between the notation∫

D

∣∣∇g(x)
∣∣2 dx and

∫
Rd

∣∣∇g(x)
∣∣2 dx

according to convenience. The notation ‖∇g‖2 is used for both spaces S(D) and
S(Rd). Set

Fd(D) = {
g ∈ S(D); ‖g‖2

2 = 1
}
,(2.1)

Gd(D) = {
g ∈ S(D); ‖g‖2

2 + 1
2‖∇g‖2

2 = 1
}
.(2.2)

Our approach largely relies on the estimate of the supremum

sup
g∈Fd (D)

{〈
V,g2〉− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
.(2.3)

Notice that for each g ∈ S(D), g2 ∈ S(D). Consequently, the random variable
〈V,g2〉 is well defined and normal. On the other hand, it is not obvious whether or
not the supremum is finite. When it is finite, the variation in (2.3) is the principal
eigenvalue of the linear operator (1/2)� + V with the zero boundary condition
over D. The main goal of this section is to show that the supremum in (2.3) is
finite when D is bounded, and to establish a sharp almost-sure asymptotic bound
as D expands to R

d in a suitable way. The treatment is entropy estimation.

2.1. Entropy bounds. Consider a pseudometric space (E,ρ) with the pseudo-
metric ρ(·, ·). For any ε > 0, let N(E,ρ, ε) be the minimal number of the open
balls of the diameter no greater than ε, which are necessary for covering E. In this
section we take E = Gd(D) and

ρ(f, g) = {
E
[〈
V,f 2〉− 〈V,g2〉]2}1/2

, f, g ∈ Gd(D).

We have that

ρ(f, g) =
{∫

Rd×Rd
γ (x − y)

(
f 2(x) − g2(x)

)(
f 2(y) − g2(y)

)
dx dy

}1/2

,

(2.4)
f,g ∈ Gd(D).

Here we specially mention that γ (x) = δ0(x) in the context of Theorem 1.4.

PROPOSITION 2.1. Under the assumptions of Theorems 1.1, 1.3 or 1.4,

lim
ε→0+ εβ logN

(
Gd(D),ρ, ε

)= 0(2.5)

whenever

β > 1 ∨ 2d

d + 2
.(2.6)
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Noticing that the right-hand side of (2.6) is less than 2,∫ 1

0

√
logN

(
Gd(D),ρ, ε

)
dε < ∞.(2.7)

PROOF. Let l(x) ∈ S(Rd) (mollifier) be a symmetric probability density func-
tion supported on {|x| ≤ 1} and introduce the function lε(x) (ε-mollifier) as

lε(x) = ε−d l
(
ε−1x

)
, x ∈ R

d, ε > 0.(2.8)

In addition, we assume that F (l)(·) ≥ 0. Define the operator Sε on S(Rd) as

Sεg(x) =
{∫

Rd
g2(x − y)lε(y) dy

}1/2

, x ∈ R
d .(2.9)

By Fourier transform,

E
[〈
V,g2〉− 〈V, Sε(g)2〉]2 = 1

(2π)d

∫
Rd

∣∣1 − F (l)(ελ)
∣∣2∣∣F

(
g2)(λ)

∣∣2μ(dλ),

g ∈ Gd(D).

Notice that |1 − F (l)(ελ)| ≤ 2. By the mean-value theorem there is Cδ > 0 such
that ∣∣1 − F (l)(ελ)

∣∣≤ 21−δ
∣∣1 − F (l)(ελ)

∣∣δ ≤ Cδ|ελ|δ, λ ∈ R
d, ε > 0,

where 0 < δ < 1 is chosen by (1.9), in connection to Lemma A.2 in the Appendix.
Thus, there is a constant C > 0 independent of ε and g, such that

ρ(g, Sεg) ≤ Cεδ

{∫
Rd

|λ|2δ
∣∣F
(
g2)(λ)

∣∣2μ(dλ)

}1/2

, g ∈ Gd(D), ε > 0.

Notice that ∣∣F
(
g2)(λ)

∣∣≤ F
(
g2)(0) = ‖g‖2

2 ≤ 1, g ∈ Gd(D).

In addition, for any λ ∈ R
d \ {0},

F
(
g2)(λ) = i

d

∫
Rd

(
λ

|λ|2 · ∇g2(x)

)
eiλ·x dx.

Hence,∣∣F
(
g2)(λ)

∣∣≤ 1

d
|λ|−1

∫
Rd

∣∣∇g2(x)
∣∣dx = 2

d
|λ|−1

∫
Rd

∣∣g(x)
∣∣∣∣∇g(x)

∣∣dx

≤ 2

d
|λ|−1‖g‖2‖∇g‖2 ≤ 2

d
|λ|−1.

Consequently,∣∣F
(
g2)(λ)

∣∣2 ≤
(

1 + 2

d

)(
1 ∧ 1

|λ|2
)
, g ∈ Gd(D).
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By (1.9), this leads to

sup
g∈Gd (D)

∫
Rd

|λ|2δ
∣∣F
(
g2)(λ)

∣∣2μ(dλ) < ∞.

Summarizing our argument, there is a constant C > 0 such that

sup
g∈Gd (D)

ρ(g, Sεg) ≤ Cεδ, ε > 0.(2.10)

Write φ(ε) = εδ−1
. We have that

sup
g∈Gd (D)

ρ(g, Sφ(ε)g) ≤ Cε, ε > 0.

To prove (2.5), therefore, all we need is to show that for any β satisfying (2.6),

lim
ε→0+ εβ logN

(
Gd(D),ρε, ε

)= 0,(2.11)

where the pseudometric ρε is defined as ρε(f, g) = ρ(Sφ(ε)f, Sφ(ε)g) (f,g ∈
Gd(D)). By (2.4)

ρε(f, g) ≤
(∫

Rd

∣∣(Sφ(ε)f )2(x) − (Sφ(ε)g)2(x)
∣∣dx

)1/2

×
(

sup
x∈D′

∣∣∣∣∫
Rd

γ (x − y)
{
(Sφ(ε)f )2(y) − (Sφ(ε)g)2(y)

}
dy

∣∣∣∣)1/2

,

where D′ is the 1-neighborhood of D. Take

Aε(f )(x) = (Sφ(ε)f )2(x) and Bε(f )(x) =
∫

Rd
γ (x − y)(Sφ(ε)f )2(y) dy,

x ∈ D′

in Lemma A.3 of the Appendix. All we need is to exam that there are p > 1
satisfying

β >
2p

2p − 1
> 1 ∨ 2d

d + 2
(2.12)

and C > 0, m > 0 independent of ε > 0 such that∣∣(Sφ(ε)f )2(x) − (Sφ(ε)f )2(y)
∣∣≤ Cε−m|x − y|,(2.13) ∣∣∣∣∫

Rd

{
γ (x − z) − γ (y − z)

}
(Sφ(ε)f )2(z) dz

∣∣∣∣≤ Cε−m|x − y|,(2.14) ∫
Rd

∣∣(Sφ(ε)f )(z)
∣∣2p

dz ≤ C(2.15)

and ∣∣∣∣∫
Rd

γ (x − z)(Sφ(ε)f )2(z) dz

∣∣∣∣≤ C(2.16)
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for all x, y ∈ D′ and f ∈ Gd(D).
Indeed, by the mean value theorem∣∣(Sφ(ε)f )2(x) − (Sφ(ε)f )2(y)

∣∣≤ ∫
Rd

∣∣lφ(ε)(x + z) − lφ(ε)(y + z)
∣∣f 2(z) dz

≤ Cφ(ε)−(d+1)|x − y|
∫

Rd
f 2(z) dz

≤ Cφ(ε)−(d+1)|x − y|.
Thus (2.13) holds with m = (d + 1)δ−1. For the same m, (2.14) follows
from (2.13), the relation∫

Rd

{
γ (x − z) − γ (y − z)

}
(Sφ(ε)f )2(z) dz

=
∫

Rd
γ (z)

{
(Sφ(ε)f )2(z − x) − (Sφ(ε)f )2(z − y)

}
dz,

and the fact that ∫
D̃

∣∣γ (z)
∣∣dz < ∞

for D̃ = {z1 + z2 ∈ R
d; z1, z2 ∈ D′}.

We now come to (2.15). First, for any p > 1 and by Jensen’s inequality,∫
Rd

∣∣(Sφ(ε)f )(z)
∣∣2p

dz ≤
∫

Rd

∣∣f (z)
∣∣2p

dz.

We claim that there is a p > 1 satisfying (2.12) and p(d − 2) < d . Indeed, this
is obvious when d ≤ 2 as we can make p sufficiently large. When d ≥ 3, our
assertion is secured by the facts that the quantity 2p(2p − 1)−1 is strictly de-
creasing in p, and that the supremum of p under the constraint p(d − 2) < d is
b ≡ d(d − 2)−1 which solves the equation

2b

2b − 1
= 2d

d + 2
.

By Gagliardo–Nirenberg inequality (see, e.g., page 303, [7]), for which the restric-
tion p(d − 2) < d is critically needed,∫

Rd

∣∣f (x)
∣∣2p

dx ≤ C‖f ‖d(p−1)
2 ‖∇f ‖2p−d(p−1)

2 ≤ C.

Thus, we have proved (2.15).
It remains to establish (2.16). In the context of Theorem 1.3, by (A.29),∣∣∣∣∫

Rd
γ (x − z)(Sφ(ε)f )2(z) dz

∣∣∣∣≤ C‖Sφ(ε)f ‖4−α
2 ‖∇Sφ(ε)f ‖α

2 .
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By Jensen inequality, ‖Sφ(ε)f ‖2 ≤ ‖f ‖2 ≤ 1. From (2.9)∣∣∇Sφ(ε)f (x)
∣∣

=
(∫

Rd
lφ(ε)(y)f 2(x − y)dy

)−1/2∣∣∣∣∫
Rd

lφ(ε)(y)f (x − y)∇f (x − y)dy

∣∣∣∣
≤
{∫

Rd
lφ(ε)(y)

∣∣∇f (x − y)
∣∣2 dy

}1/2

,

where the inequality follows from Cauchy–Schwarz inequality. Hence, by Fubini’s
theorem and translation invariance,

‖∇Sφ(ε)f ‖2
2 ≤

∫
Rd

lφ(ε)(y)

[∫
Rd

∣∣∇f (x − y)
∣∣2 dx

]
dy = ‖∇f ‖2

2.(2.17)

The right-hand side is bounded by 1. Thus (2.16) holds.
In the context of Theorem 1.1, (2.16) follows from the bound |γ (z)| ≤ C(1 +

|z|−α) and a similar estimate [with (A.29) being replaced by (A.17)].
In the context of Theorem 1.4,∫

Rd
γ (x − z)(Sφ(ε)f )2(z) dz = (Sφ(ε)f )2(x) ≤ sup

y∈R

f 2(y).

Hence, (2.16) follows from the estimate

f 2(y) ≤ 2
∫ ∞
−∞
∣∣f (u)f ′(u)

∣∣du

≤ 2
{∫ ∞

−∞
f 2(u) du

}1/2{∫ ∞
−∞
∣∣f ′(u)

∣∣2 du

}1/2

≤ 2, y ∈ R. �

2.2. Consequences of the entropy bounds. According to the classic theory on
sample path regularity (see, e.g., Appendix D, [7]), under (2.7) the supremum
in (2.3) is finite, integrable and {〈V,g2〉;g ∈ Gd(D)} has continuous sample paths
with respect to the pseudometric induced by its covariance. By the linearity of V

and a standard extension argument, such sample continuity is extended to S(Rd).
Given a generalized function ξ on R

d , that is, a linear functional on Sd(Rd), set

λξ (D) = sup
g∈Fd (D)

{〈
ξ, g2〉− 1

2

∫
D

∣∣∇g(x)
∣∣2 dx

}
.(2.18)

For any ε > 0, let Dε be the ε-neighborhood of D. By the obvious monotonicity
of λξ (D) in D, the limit

λ+
ξ (D) ≡ lim

ε→0+ λξ (Dε)(2.19)

always exists at least as extended number. It is not clear to us whether or when
λ+

ξ (D) = λξ (D).
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Let the ε-mollifier lε(·) be given in (2.8) and define the pointwise random field
Vε(·) as

Vε(x) = 〈
V, lε(· − x)

〉
, x ∈ R

d .(2.20)

LEMMA 2.2. Under the assumptions of Theorems 1.1, 1.3 or 1.4

lim
ε→0+ E sup

g∈Gd ((−ε,ε)d )

〈
V,g2〉= 0(2.21)

and

λθV (D) ≤ lim inf
ε→0+ λθVε(D) ≤ lim sup

ε→0+
λθVε(D) ≤ λ+

θV (D), a.s.(2.22)

for any θ > 0 and bound domain D ⊂ R
d .

PROOF. In our view, Gd((−ε, ε)d) is a subset of Gd((−1,1)d) as ε < 1. By
the continuity of the Gaussian field {〈V,g2〉;g ∈ Gd((−1,1)d)} with respect to its
covariance function established by Proposition 2.1,

lim
δ→0+ E sup

{〈
V,g2〉;g ∈ Gd

(
(−1,1)d

)
and E

〈
V,g2〉2 ≤ δ

}= 0.

To establish (2.21), it suffices to examine that

lim
ε→0+ sup

g∈Gd ((−ε,ε)d )

E
〈
V,g2〉2 = 0.(2.23)

Indeed, in the case of Theorem 1.1,

E
〈
V,g2〉2 =

∫
Rd

γ (x − y)g2(x)g2(y) dx dy

≤ C

∫
Rd

g2(x)g2(y)

|x − y|α dx dy ≤ Cεα′−α
∫

Rd

g2(x)g2(y)

|x − y|α′ dx dy,

where the constant C > 0 is different in each step but independent of g. The con-
stant α′ is chosen by the principle that α < α′ < 2 ∧ d . Consequently,∫

Rd

g2(x)g2(y)

|x − y|α′ dx dy ≤ Cα′‖g‖2−α′
2 |∇g‖α′

2 ≤ Cα′, g ∈ Gd

(
(−ε, ε)d

)
,

where Cα′ is given in (A.18) with α being replaced by α′. Hence, we have (2.23).
This argument applies also to the settings of Theorems 1.3 and 1.4. For Theo-

rem 1.3, we use (A.29) instead of (A.17) and pick 2Hj −1 < αj < 1 (j = 1, . . . , d)
with α1 + · · · + αd < 2.

As for Theorem 1.4, we first apply in (A.2), [3] [with p = d = 1, σ = 1/2 and
f (x) = g4(x)] that gives∫ ∞

−∞
g4(x)

|x|1/2 dx ≤ C‖g‖4
8, g ∈ Gd(R),
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where C > 0 is independent of g. The right-hand side is uniformly bounded
over g ∈ Gd(R) according to the Gagliardo–Nirenberg inequality (see, e.g., (C.1),
page 303, [7])

‖g‖8 ≤ C
∥∥g′∥∥3/8

2 ‖g‖5/8 ≤ C, g ∈ Gd(R).

We now come to (2.22). Let g ∈ Fd(D) be fixed but arbitrary.

λθVε(D) ≥ θ

∫
Rd

Vε(x)g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx.

By linearity,∫
Rd

Vε(x)g2(x) dx =
∫

Rd

〈
V, lε(· − x)

〉
g2(x) dx = 〈

V, (Sεg)2〉.(2.24)

In addition, by (2.10) and a proper normalization one can see that Sεg converges
to g under the covariance pseudomatric ρ given in (2.4). By the sample path con-
tinuity of the functional 〈V,g2〉 resulting from Proposition 2.1,

lim
ε→0+

〈
V, (Sεg)2〉= 〈

V,g2〉, a.s.

Hence,

lim inf
ε→0+ λθVε(D) ≥ θ

〈
V,g2〉− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx, a.s.

Taking supremum over g on the right-hand side, we establish the lower bound
needed by (2.22).

As for the upper bound, first notice that for any g ∈ Fd(D), f ≡ ‖Sεg‖−1
2 Sεg ∈

Fd(Dε). By (2.24) and linearity,

λθVε(D) ≤ sup
g∈Fd (D)

{〈
V, (Sεg)2〉− 1

2

∫
Rd

∣∣∇(Sεg)(x)
∣∣2 dx

}

≤
(

sup
g∈Fd (D)

‖Sεg‖2
2

)
sup

f ∈Fd (Dε)

{〈
V,f 2〉− 1

2

∫
Rd

∣∣∇f (x)
∣∣2 dx

}
≤ λθV (Dε),

where the last step follows from the fact ‖Sεg‖2 ≤ ‖g‖2 = 1 [see (2.17)] for any
g ∈ Fd(D).

Letting ε → 0+ leads to the upper bound needed by (2.22). �

In the rest of the section, we demonstrate how Proposition 2.1 (or Lemma 2.2,
more precisely) is used to bound the principal eigenvalue given in (2.3).

The principal eigenvalue over a large domain can be essentially bounded by the
extreme value among the principal eigenvalues of the sub-domains, according to
a nice strategy developed by Gärtner and König [13]. Let r ≥ 2. By Proposition 1
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in [13], also by Lemma 4.6 in [14], there is a nonnegative and continuous function
�(x) on R

d whose support is contained in the 1-neighborhood of the grid 2rZ
d ,

such that for any R > r and any generalized function ξ ,

λξ−�y (QR) ≤ max
z∈2rZd∩QR

λξ (z + Qr+1), y ∈ Qr,(2.25)

where �y(x) = �(x +y), and we use the notation QR = (−R,R)d for any R > 0.
In addition, �(x) is periodic with period 2r ,

�(x + 2rz) = �(x), x ∈ R
d, z ∈ Z

d,

and there is a constant K > 0 independent of r such that

1

(2r)d

∫
Qr

�(x)dx ≤ K

r
.(2.26)

It should be pointed out that originally, (2.25) was established for the ordinary
function ξ . However, it can be extended to the generalized function without any
extra effort, due to the linearity preserved by the form 〈ξ,ϕ〉 (ϕ ∈ S(Rd)).

Write

η(x) = 1

(2r)d

∫
Qr

�(x + y)dy = 1

(2r)d

∫
Qr

�y(x) dy, x ∈ R
d .

By periodicity, η ≡ η(x) is a constant with a bound given in (2.26). Hence,

λξ (QR) ≤ K

r
+ λξ−η(QR) ≤ K

r
+ 1

(2r)d

∫
Qr

λξ−�y (QR)dy

(2.27)

≤ K

r
+ max

z∈2rZd∩QR

λξ (z + Qr+1),

where the last inequality follows from (2.25), and the second inequality follows
from the following steps:

λξ−η(QR) = sup
g∈Fd (QR)

{
1

(2r)d

∫
Qr

〈
ξ − �y,g2〉dy − 1

2

∫
QR

∣∣∇g(x)
∣∣2 dx

}

= sup
g∈Fd (QR)

{
1

(2r)d

∫
Qr

[〈
ξ − �y,g2〉dy − 1

2

∫
QR

∣∣∇g(x)
∣∣2 dx

]
dy

}

≤ 1

(2r)d

∫
Qr

sup
g∈Fd (QR)

[〈
ξ − �y,g2〉dy − 1

2

∫
QR

∣∣∇g(x)
∣∣2 dx

]
dy

= 1

(2r)d

∫
Qr

λξ−�y (QR)dy.

In the next lemma, we not only show that the principal eigenvalue in (2.3) is
finite for any bounded domain D, but also provide sharp asymptotic bounds for
the almost-sure increasing rate of the principal eigenvalue as D expands to R

d in
a proper way.
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LEMMA 2.3. Under the assumptions of Theorems 1.1 or 1.3, for any θ > 0,

lim sup
t→∞

(log t)−2/(4−α)λθV (Qt) ≤ θ4/(4−α)h(d,α), a.s.,(2.28)

where

h(d,α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4 − α

4

(
α

2

)α/(4−α)(
2dc(γ )κ(d,α)

)2/(4−α)
,

in the setting of Theorem 1.1,
4 − α

4

(
α

2

)α/(4−α)(
2dCH κ̃(d,H)

)2/(4−α)
,

in the setting of Theorem 1.3.

(2.29)

Under the assumption of Theorem 1.4, for any θ > 0,

lim sup
t→∞

(log t)−2/3λθV

(
(−t, t)

)≤ 1

2

(
3

2

)2/3

θ4/3, a.s.(2.30)

PROOF. Let u > 0 be fixed, and write

a(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

u(log t)1/(4−α),

in the setting of Theorems 1.1 or 1.3,√
u(log t)1/3,

in the setting of Theorem 1.4.

(2.31)

For each g ∈ S(Rd), write

gt (x) = a(t)d/2g
(
a(t)x

)
, x ∈ R

d .(2.32)

By rescaling substitution g �→ gt ,

λθV (Qt) = a(t)2 sup
g∈Fd (Qta(t))

{
θa(t)−2〈V,g2

t

〉− 1

2

∫
Qta(t)

∣∣∇g(x)
∣∣2 dx

}
.(2.33)

Let {〈Vt , ϕ〉;ϕ ∈ S(Rd)} be the generalized Gaussian field defined as 〈Vt , ϕ)〉 =
〈V, ϕ̃t 〉, where ϕ̃(x) = a(t)dϕ(a(t)x) [notice that this is different from the defini-
tion in (2.32)]. Then we have 〈V,g2

t 〉 = 〈Vt , g
2〉. Taking ξ = θa(t)−2Vt in (2.27),

by (2.33) we have that

λθV (Qt) ≤ a(t)2
{
K

r
+ max

z∈2rZd∩Qta(t)

Xz(t)

}
(2.34)

for any r ≥ 2, where, by homogeneity of the Gaussian field {〈V,ϕ〉;ϕ ∈ S(Rd)},
the stochastic processes

Xz(t) ≡ sup
g∈Fd (z+Qr+1)

{
θa(t)−2〈V,g2

t

〉− 1

2

∫
z+Qr+1

∣∣∇g(x)
∣∣2 dx

}
,

z ∈ 2rZ
d ∩ Qta(t)
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are identically distributed. Thus

P

{
max

z∈2rZd∩Qta(t)

Xz(t) > 1
}

≤ #
{
2rZ

d ∩ Qta(t)

}
P
{
X0(t) > 1

}
.

By linearity, for any g ∈ Fd(Qr+1),

θa(t)−2〈V,g2
t

〉− 1

2

∫
z+Qr+1

∣∣∇g(x)
∣∣2 dx

≤ θa(t)−2
(

sup
f ∈Gd (Qr+1)

〈
V,f 2

t

〉)(
1 + 1

2
‖∇g‖2

2

)
− 1

2
‖∇g‖2

2.

Here we recall that the class Gd(D) is defined in (2.2). Taking supremum over g,

X0(t) ≤ sup
g∈Fd (Qr+1)

{
θa(t)−2

(
sup

f ∈Gd (Qr+1)

〈
V,f 2

t

〉)(
1 + 1

2
‖∇g‖2

2

)
− 1

2
‖∇g‖2

2

}
.

Consequently, {
X0(t) ≥ 1

}⊂
{

sup
f ∈Gd (Qr+1)

〈
V,f 2

t

〉≥ θ−1a(t)2
}
.

Summarizing our argument,

P

{
max

z∈2rZd∩Qta(t)

Xz(t) > 1
}

(2.35)
≤ #

{
2rZ

d ∩ Qta(t)

}
P

{
sup

g∈Gd (Qr+1)

〈
V,g2

t

〉≥ θ−1a(t)2
}
.

Notice that for each g ∈ Gd(Qr+1), (1 + a(t)2‖∇g‖2
2)

−1/2gt (·) ∈
Gd(Q(r+1)a(t)−1). By linearity,

E sup
g∈Gd (Qr+1)

〈
V,g2

t

〉 ≤ (
1 + a(t)2)

E sup
f ∈Gd (Q

(r+1)a(t)−1 )

〈
V,f 2〉

= o
(
a(t)2) (t → ∞),

where the last step follows from (2.21) in Lemma 2.2.
By the concentration inequality for Gaussian field (see, e.g., (5.152), Theo-

rem 5.4.3, page 219, [22], in connection to Corollary 5.4.5, page 224, [22]),

P

{
sup

g∈Gd (Qr+1)

〈
V,g2

t

〉
> θ−1a(t)2

}
= P

{
sup

g∈Gd (Qr+1)

〈
V,g2

t

〉− E sup
g∈Gd (Qr+1)

〈
V,g2

t

〉
>
(
1 + o(1)

)
θ−1a(t)2

}
(2.36)

≤ exp
{
−(1 + o(1)

) a(t)4

2θ2σ 2
t

}
,
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where

σ 2
t = sup

g∈Gd (Qr+1)

Var
(〈
V,g2

t

〉)
.

In the setting of Theorem 1.1, by (1.10) and other assumptions on γ (x),

σ 2
t = sup

g∈Gd (Qr+1)

∫
Rd×Rd

γ (x − y)g2
t (x)g2

t (y) dx dy

= sup
g∈Gd (Qr+1)

∫
Rd×Rd

γ
(
a(t)−1(x − y)

)
g2(x)g2(y) dx dy

∼ c(γ )a(t)α sup
g∈Gd (Qr+1)

∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy (t → ∞).

Notice that

sup
g∈Gd (Qr+1)

∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy ≤ σ 2(d,α)

=
(

4 − α

4

)(4−α)/2(α

2

)α/2

κ(d,α),

where σ(d,α) is the variation defined in (A.21) and the last step follows
from (A.23) of Lemma A.4 in the Appendix.

In view of (2.31),

P

{
sup

g∈Gd (Qr+1)

〈
V,g2

t

〉
> θ−1a(t)2

}

≤ exp
{
−(1 + o(1)

)( 4

4 − α

)(4−α)/2( 2

α

)α/2 a(t)4−α

2c(γ )θ2κ(d,α)

}
(2.37)

≤ exp
{−(d + v) log t

}
for some v > 0, whenever t is large and the constant u [appearing in (2.31)] satis-
fies u > θ4/(4−α)h(d,α).

The asymptotic bound (2.37) also holds in the setting of Theorem 1.3 by the
same calculation of σ 2

t , where (A.23) in Lemma A.4 is replaced by (A.35) in
Lemma A.6.

By (2.35), for large t there is v′ > 0 such that

P

{
max

z∈2rZd∩Q2ta(t)+2r

Xz(t) > 1
}

≤ exp
{−v′ log t

}
.

Consequently, ∑
k

P

{
max

z∈2rZd∩Q2tka(tk)+2r

Xz(tk) > 1
}

< ∞
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for tk = 2k (k = 1,2, . . .). By Borel–Cantelli lemma,

lim sup
k→∞

max
z∈2rZd∩Q2tka(tk)+2r

Xz(tk) ≤ 1, a.s.

In view of (2.31) and (2.34),

lim sup
k→∞

(log tk)
−2/(4−α)λθV (Qtk ) ≤

(
K

r
+ 1

)
u, a.s.

for any u > θ4/(4−α)h(d,α). Thus, (2.28) follows from the facst that λθV (Qt) is
monotonic in t , K > 0 is independent of r , r can be arbitrarily large and u can be
arbitrarily close to θ4/(4−α)h(d,α).

Based on the same argument, to establish (2.30) all we need is to show that

P

{
sup

g∈G1(Qr+1)

〈
V,g2

t

〉≥ θ−1a(t)2
}

≤ exp
{−(1 + v) log t

}
(2.38)

for some v > 0, whenever t is large and and u > 1
2(3

2)2/3θ4/3.
Indeed,

σ 2
t = sup

g∈G1(Qr+1)

∫ r+1

−(r+1)

(
g2

t (x)
)2

dx ≤ a(t) sup
g∈G1(R)

∫ ∞
−∞

g4(x) dx = 3

4

(
1

2

)3/2

a(t),

where the last step follows from (A.37) in Lemma A.7. By (2.36), therefore,

P

{
sup

g∈G1(Qr+1)

〈
V,g2

t

〉≥ θ−1a(t)2
}

≤ exp
{
−(1 + o(1)

)(2

3

)
23/2θ−2a(t)3

}
= exp

{
−(1 + o(1)

)(2

3

)
23/2θ−2u3/2 log t

}
,

which leads to (2.38). �

REMARK. Clearly, (2.28) and (2.30) still hold when λθV (Qt) is replaced by
λ+

θV (Qt). Further, they can be improved into equalities where the limsup can be
strengthened into limit. The needed lower bounds will be given in Lemma 4.1
below.

3. Upper bounds. In this section we establish the upper bounds needed for
Theorems 1.1, 1.3 and 1.4. Thanks to the homogeneity of the potential, the distribu-
tion of the quenched moment in our theorems does not depends on B0. Therefore,
we may take B0 = 0 in the proof. In other words, we prove that for any θ > 0,

lim sup
t→∞

t−1(log t)−2/(4−α) log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
(3.1)

≤ θ4/(4−α)h(d,α), a.s.
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in the context of Theorems 1.1 or 1.3, where h(d,α) is defined in (2.29) and

lim sup
t→∞

t−1(log t)−2/3 log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
(3.2)

≤ 1

2

(
3

2

)2/3

θ4/3, a.s.

in the context of Theorem 1.4.
First, in all settings,

E ⊗ E0 exp
{
θ

∫ t

0
V (Bs) ds

}
< ∞, t > 0.(3.3)

Consequently,

E0 exp
{
θ

∫ t

0
V (Bs) ds

}
< ∞, a.s. t > 0.

Here we recall our notation that “E,” “P” are used for the expectation and proba-
bility with respect to the Gaussian potential, and that “E0,” “P0” are used for the
expectation and probability with respect to the Brownian motion starting at 0.

Indeed, by the (conditional) Gaussian property stated in Lemma A.1,

E ⊗ E0 exp
{
θ

∫ t

0
V (Bs) ds

}
= E0 exp

{
θ2

2

∫ t

0

∫ t

0
γ (Bu − Bv)dudv

}
.

Therefore, (3.3) follows from Theorem 4.3, [5] in the setting of Theorem 1.1;
from (A.28) below in the setting of Theorem 1.3; and from Theorem 4.2.1,
page 103, [7] in the setting of Theorem 1.4.

For any open domain D ∈ R
d , set the exit time

τD = inf{s ≥ 0;Bs /∈ D}.
Recall the notation QR = (−R,R)d .

In light of Lemma 2.3, our strategy for both upper and lower bounds can be
roughly outlined by the following asymptotic relation:

E0 exp
{
θ

∫ t

0
V (Bs) ds

}
≈ exp

{
tλθV (QR(t))

}
,(3.4)

where the principal eigenvalue is introduced in (2.18), and square radius R(t) is
nearly linear and carefully chosen according to the context. To implement the up-
per bound, we consider the decomposition

E0 exp
{
θ

∫ t

0
V (Bs) ds

}
= E0

[
exp

{
θ

∫ t

0
V (Bs) ds

}
; τQR1

≥ t

]
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+
∞∑

k=1

E0

[
exp

{
θ

∫ t

0
V (Bs) ds

}
; τQRk

< t ≤ τQRk+1

]

≤ E0

[
exp

{
θ

∫ t

0
V (Bs) ds

}
; τQR1

≥ t

]

+
∞∑

k=1

(
P0{τQRk

< t})1/2
{
E0

[
exp

{
2θ

∫ t

0
V (Bs) ds

}
; τQRk+1

≥ t

]}1/2

,

where

Rk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Mt(log t)1/(4−α)

)k
,

in the context of Theorems 1.1 or 1.3,(
Mt(log t)1/3)k,

in the context of Theorem 1.4,

k = 1,2, . . .

and the constant M > 0 is fixed (for a while at least), but arbitrary.
The first term in the above decomposition is the dominating term and is esti-

mated in the following. Let p,q > 1 with p−1 + q−1 = 1 with p close to 1. By
Lemma 4.3 [(4.5), with δ = 1 and (α,β) being replaced by (p, q)] in [8], we have
for any ε > 0,

E0

[
exp

{
θ

∫ t

0
Vε(Bs) ds

}
; τQR1

≥ t

]

≤
(

E0 exp
{
θq

∫ 1

0
Vε(Bs) ds

})1/q

×
{

1

(2π)d/2

∫
QR1

Ex

[
exp

{
pθ

∫ t−1

0
Vε(Bs) ds

}
; τQR1

≥ t − 1
]
dx

}1/p

,

where the Gaussian field Vε(·) is defined in (2.20).
The purpose of taking the above steps is to localize the Brownian range and

to re-shuffle the starting point of the Brownian motion uniformly over QR1 . The
Brownian motion reaches anywhere of a super-linear (in t) distance from the origin
with a super-exponentially small probability which is negligible in comparison to
the essentially linear deviation scales shown in our main theorems. The reason
behind re-shuffling is the explicit bounds (see, e.g., Lemmas 4.1 and 4.2 in [8])
between the principal eigenvalues appearing in Lemma 2.3 and the exponential
moment of the Brownian occupation time, in the case when the Brownian motion
has a uniformly distributed starting point. Indeed, according to Lemma 4.1 in [8],∫

QR1

Ex

[
exp

{
pθ

∫ t−1

0
Vε(Bs) ds

}
; τQR1

≥ t − 1
]
dx

≤ |QR1 | exp
{
(t − 1)λpθVε (QR1)

}
.
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Hence,

E0

[
exp

{
θ

∫ t

0
Vε(Bs) ds

}
; τQR1

≥ t

]
dx

≤
(

2R2
1

π

)d/(2p)(
E0 exp

{
qθ

∫ 1

0
Vε(Bs) ds

})1/q

exp
{
(t − 1)λθpVε(QR1)

}
.

The reason for considering Vε instead of V is that Lemmas 4.3 and 4.1 in [8]
were designed only for the pointwise defined functions. To pass the above inequal-
ity from Vε to V , we let ε → 0+ on the both sides. First notice that for any fixed t ,
by comparing the variance between Vε and V , we have that

E ⊗ E0 exp
{
θ

∫ t

0
Vε(Bs) ds

}
≤ E ⊗ E0 exp

{
θ

∫ t

0
V (Bs) ds

}
and by (3.3), the right-hand side is finite for arbitrary θ > 0. Hence, a standard
argument by uniform integrability together with Lemma A.1 leads to

lim
ε→0+ E ⊗ E0

∣∣∣∣exp
{
θ

∫ t

0
Vε(Bs) ds

}
− exp

{
θ

∫ t

0
V (Bs) ds

}∣∣∣∣= 0.(3.5)

Applying Fatou’s lemma and (2.22) in Lemma 2.2 to the inequality,

E0

[
exp

{
θ

∫ t

0
V (Bs) ds

}
; τQR1

≥ t

]
dx

≤
(

2R2
1

π

)d/(2p)(
E0 exp

{
qθ

∫ 1

0
V (Bs) ds

})1/q

exp
{
(t − 1)λ+

θpV (QR1)
}
,

a.s.

By a similar argument with p = q = 2,

E0

[
exp

{
2θ

∫ t

0
V (Bs) ds

}
; τQRk+1

≥ t

]

≤
(2R2

k+1

π

)d/4(
E0 exp

{
4θ

∫ 1

0
V (Bs) ds

})1/2

exp
{
(t − 1)λ+

4θV (QRk+1)
}
,

a.s.

for k = 1,2, . . . .

Summarizing our estimate,

E0 exp
{
θ

∫ t

0
V (Bs) ds

}

≤
(

2R2
1

π

)d/(2p)(
E0 exp

{
θq

∫ 1

0
V (Bs) ds

})1/q

exp
{
(t − 1)λ+

θpV (QR1)
}
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+
(

E0 exp
{

4θ

∫ 1

0
V (Bs) ds

})1/2

×
∞∑

k=1

(2R2
k+1

π

)d/4(
P0{τQRk

< t})1/2 exp
{
(t − 1)λ+

4θV (QRk+1)
}
, a.s.

By the classic fact on the Gaussian tail,(
P0{τQRk

< t})1/2 ≤ exp
{−cR2

k/t
}= exp

{−cM2kt2k−1(log t)2k/(4−α)}.
Consequently, (3.1) and (3.2) follow from Lemma 2.3. Indeed, by (2.28) or (2.30)
(depending on the context), the second term (in the form of infinite series)
on the right-hand side of the established bound is almost surely bounded
when M is sufficiently large, and the first term contributes essentially up to
the bound given in (3.1) or (3.2) as p > 1 can be made arbitrarily close
to 1.

4. Lower bounds. In this section we establish the lower bounds needed for
Theorems 1.1, 1.3 and 1.4. In other words, we prove that for any θ > 0,

lim inf
t→∞ t−1(log t)−2/(4−α) log E0 exp

{
θ

∫ t

0
V (Bs) ds

}
(4.1)

≥ θ4/(4−α)h(d,α), a.s.

in the context of Theorems 1.1 or 1.3, where h(d,α) is defined in (2.29) and

lim inf
t→∞ t−1(log t)−2/3 log E0 exp

{∫ t

0
V (Bs) ds

}
(4.2)

≥ 1

2

(
3

2

)2/3

θ4/3, a.s.

in the context of Theorem 1.4.
Our treatment consists of two parts: Implementation of (3.4) for its lower

bounds and establishment of the lower bounds for the principal eigenvalues which
correspond to the upper bounds given in Lemma 2.3.

All notation used in Sections 2 and 3 is adopted here. Let p,q > 1 satisfy p−1 +
q−1 = 1 with p being close to 1, and let 0 < b < 1 be close to 1. For each ε > 0, let
the pointwise defined potential Vε(x) be given as (2.20). Taking α = p and q = β ,
δ = tb in (4.6), Lemma 4.3, [8] we have

E0 exp
{
θ

∫ t

0
Vε(Bs) ds

}

≥
(

E0 exp
{
−q

p
θ

∫ tb

0
Vε(Bs) ds

})−p/q
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×
(∫

Q
tb

ptb(x)Ex exp
{

θ

p

∫ t−tb

0
Vε(Bs) dx

})p

≥
(

E0 exp
{
−q

p
θ

∫ tb

0
Vε(Bs) ds

})−p/q

×
(

e−ctb

(2πtb)d/2

∫
Q

tb

Ex exp
{

θ

p

∫ t−tb

0
Vε(Bs)

}
dx

)p

,

where ptb(x) is the probability density of Btb .
Taking δ = tb again and replacing t , α and β by t − tb, p and q , respectively,

in Lemma 4.2, [8],∫
Q

tb

Ex exp
{

θ

p

∫ t−tb

0
Vε(Bs)

}
dx

≥ (2π)pd/2(t − tb
)db/2(

t − tb
)pd/(2q)(

t − tb
)−2db

× exp
{
−p

q

(
t − tb

)b
λ(p/q)θVε (Qtb)

}
exp

{
ptλθVε/p(Qtb)

}
.

Noticing that λθVε/p(Qtb), λ(p/q)θVε (Qtb) ≥ 0, and replacing e−ctb by e−Ctb for a
larger C to absorb all bounded-by-polynomial quantities,

E0 exp
{
θ

∫ t

0
Vε(Bs) ds

}
≥ e−Ctb

(
E0 exp

{
−q

p
θ

∫ tb

0
Vε(Bs) ds

})−p/q

× exp
{
−p2

q
tbλ(p/q)θVε (Qtb)

}
exp

{
tλθVε/p(Qtb)

}
.

Letting ε → 0+ and taking the relation V
d= −V into account, by (3.5)

and (2.22) in Lemma 2.2,

E0 exp
{
θ

∫ t

0
V (Bs) ds

}

≥ e−Ctb
(

E0 exp
{
−q

p
θ

∫ tb

0
V (Bs) ds

})−p/q

× exp
{
−p2

q
tbλ+

(p/q)θV (Qtb)

}
exp

{
tλθV/p(Qtb)

}
, a.s.

Here we try to explain the strategy used in the above steps. The Brownian mo-
tion is allowed to re-shuffle its starting point uniformly over Qtb within the afford-

able price e−Ctb . We take b < 1 to make sure that the energy spent by the Brownian
motion during the “relocation period” [0, tb] is insignificant. Indeed, replacing V



BROWNIAN MOTION IN GENERALIZED GAUSSIAN POTENTIAL 601

by −V and t by tb in (3.1) or in (3.2),

log E0 exp
{
−q

p
θ

∫ tb

0
V (Bs) ds

}
= o(t), a.s. (t → ∞).

In addition, by Lemma 2.1,

p2

q
tbλ+

(p/q)θV (Qtb) = o(t), a.s.

under b < 1.
On the other hand, we make b close to 1 to give the Brownian motion a decent

chance to reach any location (within the period [0, tb]) up to the distance tb ≈ t

where the energy is rich to the degree requested by the lower bounds in (4.1)
and (4.2).

By the fact that p > 1 and b < 1 can be made arbitrarily close to 1 [In particular,
λθV/p(Qtb) ≈ λθV (Qt).], the lower bounds (4.1) and (4.2) follow from the next
lemma which states another side of the story stated in Lemma 2.3.

LEMMA 4.1. Under the assumptions of Theorems 1.1 or 1.3, for any θ > 0,

lim inf
t→∞ (log t)−2/(4−α)λθV (Qt) ≥ θ4/(4−α)h(d,α), a.s.,(4.3)

where h(d,α) is given in (2.29).
Under the assumption of Theorem 1.4, for any θ > 0

lim inf
t→∞ (log t)−2/3λθV

(
(−t, t)

)≥ 1

2

(
3

2

)2/3

θ4/3, a.s.(4.4)

PROOF. Recall that a(t) and gt (x) are defined in (2.31) and (2.32), respec-
tively. Let the constant r > 0 be fixed but arbitrary, and set Nt = 2rZ

d ∩ Qt−r .
By (2.33) and by the monotonicity of λθV (D) in the set D ⊂ R

d ,

λθV (Qt) ≥ a(t)2 max
z∈Nt

sup
g∈Fd (a(t)z+Qr)

{
θa(t)−2〈V,g2

t

〉− 1

2

∫
a(t)z+Qr

∣∣∇g(x)
∣∣2 dx

}
.

For any g ∈ Gd(Qr) and z ∈ Nt , notice that gz(·) ≡ g(· − a(t)z) ∈ Fd(a(t)z +
Qr), and by translation invariance,∫

a(t)z+Qr

∣∣∇gz(x)
∣∣2 dx =

∫
Qr

∣∣∇g(x)
∣∣2 dx, z ∈ Nt .

Consequently,

λθV (Qt) ≥ a(t)2
{
θa(t)−2 max

z∈Nt

〈
V,
(
gz)2

t

〉− 1

2

∫
Qr

∣∣∇g(x)
∣∣2 dx

}
(4.5)



602 X. CHEN

for any g ∈ Fd(Qr). In the following argument g ∈ Fd(Qr) is fixed but arbitrary.
Set tk = 2k (k = 1,2, . . .). Our next step is to show that

lim inf
k→∞ a(tk)

−2 max
z∈Ntk

〈
V,
(
gz)2

tk

〉≥ σ(g), a.s.(4.6)

whenever ⎧⎪⎨⎪⎩
u <

(
2dc(γ )

)2/(4−α)
, in the context of Theorem 1.1,

u < (2dCH )2/(4−α), in the context of Theorem 1.3,

u < 22/3, in the context of Theorem 1.4,

(4.7)

where

σ(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∫
Rd×Rd

g2(x)g2(y)

|x − y|p dx dy

)1/2

,

in Theorem 1.1,(∫
Rd×Rd

g2(x)g2(y)

(
d∏

j=1

|xj − yj |2−2Hj

)−1

dx dy

)1/2

,

in Theorem 1.3,(∫ ∞
−∞

g4(x) dx

)1/2

,

in Theorem 1.4.
The proof of (4.6) in the setting of Theorem 1.4 is easy due to the fact that the

sequence 〈
V,
(
gz)2

t

〉
, z ∈ Nt

is an i.i.d. family with the common distribution N(0, a(t)σ 2(g)). Consequently,

P

{
max
z∈Nt

〈
V,
(
gz)2

t

〉≤ a(t)2
(∫ ∞

−∞
g4(x) dx

)1/2}

=
(

1 − P

{〈
V,
(
g0)2

t

〉
> a(t)2

(∫ ∞
−∞

g4(x) dx

)1/2})#(Nt )

.

By the classic tail estimate for normal distribution,

P

{〈
V,
(
g0)2

t

〉
> a(t)2

(∫ ∞
−∞

g4(x) dx

)1/2}

= exp
{
−(1 + o(1)

)a(t)3

2

}
= exp

{
−(1 + o(1)

)u3/2 log t

2

}
.

By the fact that #(Nt ) ∼ (2r)−1t as t → ∞, we have

P

{
max
z∈Nt

〈
V,
(
gz)2

t

〉≤ a(t)2
(∫ ∞

−∞
g4(x) dx

)1/2}
≤ exp

{−tβ
}

(4.8)
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for some β > 0, whenever u < 22/3. Consequently,

∑
k

P

{
max
z∈Ntk

〈
V,
(
gz)2

tk

〉≤ a(tk)
2
(∫ ∞

−∞
g4(x) dx

)1/2}
< ∞.

Hence, (4.6) follows from Borel–Cantelli lemma.
In the settings of Theorems 1.1 and 1.3, the proof of (4.6) is harder due to

lack of independence. Our approach relies on the control of the covariance. Write
ξz(t) = 〈V, (gz)2

t 〉. For each z, z′ ∈ Nt ,

Cov(ξz, ξz′)

=
∫

Rd×Rd
γ (x − y)

(
gz)2

t (x)
(
gz′)2

t (y) dx dy

=
∫

Rd×Rd
γ
(
x − y + (

z − z′))g2
t (x)g2

t (y) dx dy

=
∫

Rd×Rd
γ
(
a(t)−1(x − y) + (z − z′))g2(x)g2(y) dx dy, z, z′ ∈ Nt .

Taking z = z′ in the setting of Theorem 1.1,

Var
(
ξ0(t)

)= ∫
Rd×Rd

γ
(
a(t)−1(x − y)

)
g2(x)g2(y) dx dy

(4.9)
∼ c(γ )σ 2(g)a(t)α (t → ∞),

where the last step follows from (1.10).
Using (1.19) instead of (1.10), we can see that in the setting of Theorem 1.3,

Var
(
ξ0(t)

)= CHσ 2(g)a(t)α (t > 0).(4.10)

We now claim that in both settings,

Rt ≡ max
z,z′∈Nt

z �=z′

∣∣Cov
(
ξz(t), ξz′(t)

)∣∣= o
(
a(t)α

)
(t → ∞).(4.11)

By the assumption that γ (x) is bounded on {|x| ≥ 1}, Cov(ξz(t), ξz′(t)) is
bounded uniformly over the pairs (z, z′) with z �= z′ and over t in the setting of
Theorem 1.1. In particular, (4.11) holds.

The proof of (4.11) is a little trickier when it comes to Theorem 1.3. That is the
reason why we cannot have a constant bound for Cov(ξz(t), ξz′(t)) with z �= z′.
More precisely, Cov(ξz(t), ξz′(t)) → ∞ as t → ∞ when zj = z′

j for some 1 ≤
j ≤ d . Here we use the notation z = (z1, . . . , zd). Write

J
(
z, z′)= {

1 ≤ j ≤ d; zj = z′
j

}
, z, z′ ∈ Nt .
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By (1.19),∫
Rd×Rd

γ
(
a(t)−1(x − y) + (z − z′))g2(x)g2(y) dx dy

∼ CH

( ∏
j /∈J (z,z′)

∣∣zj − z′
j

∣∣2−2Hj

)−1

a(t)α(z,z′)

×
∫

Rd×Rd
g2(x)g2(y)

( ∏
j∈J (z,z′)

|xj − yj |2−2Hj

)−1

dx dy (t → ∞),

where

α
(
z, z′)= ∑

j∈J (z,z′)
(2 − 2Hj).

By the fact that |zj − z′
j | ≥ 2r for j /∈ J (z, z′), the above asymptotic equivalence

can be developed into the uniform bound

max
z,z′∈Nt

z �=z′

∣∣Cov
(
ξz(t), ξz′(t)

)∣∣≤ Ca(t)α
′
,

where

α′ ≡ max
z,z′∈Nt

z �=z′

α
(
z, z′)< α.

So (4.11) holds.
Given a small but fixed v > 0, taking A = σ(g)a(t)2 and B = vσ(g)a(t)2 in

Lemma 4.2 below,

P

{
max
z∈Nt

ξz(t) ≤ σ(g)a(t)2
}

≤
(

P

{
ξ0(t) ≤ (1 + v)σ (g)a(t)2

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

})#Nt

+ P
{
U ≥ vσ(g)a(t)2/

√
2Rt

}
,

where U is a standard normal random variable.
For the second term on the right-hand side,

P
{
U ≥ vσ(g)a(t)2}= exp

{
−(1 + o(1)

)v2a(t)4σ 2(g)

4Rt

}
≤ exp{−2 log t}

for large t , where the last step follows from (4.11).
As for the first term, by (4.9) and (4.10) the algorithm used in (4.8) shows that it

is bounded by e−tβ for some β > 0 when t is large, v is small and u satisfies (4.7).
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Summarizing our computation, we obtain a bound that leads to∑
k

P

{
max
z∈Ntk

ξz(tk) ≤ σ(g)a(tk)
2
}

< ∞.

So (4.6) follows from Borel–Cantelli lemma.
In view of (4.5), (4.6) implies that for every g ∈ Fd(Qr),

lim inf
k→∞ (log tk)

−2/(4−α)λθV (Qtk )

≥ (2dc(γ )
)2/(4−α)

{
θ

(∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

)1/2

(4.12)

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
, a.s.

in the setting of Theorem 1.1, that

lim inf
k→∞ (log tk)

−2/(4−α)λθV (Qtk )

≥ (2dCH )2/(4−α)

{
θ

(∫
Rd×Rd

g2(x)g2(y)

(
d∏

j=1

|xj − yj |2−2Hj

)−1

dx dy

)1/2

(4.13)

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
,

a.s.

in the setting of Theorem 1.3, and that

lim inf
k→∞ (log tk)

−2/3λθV (Qtk )

(4.14)

≥ 22/3
{
θ

(∫ ∞
−∞

g4(x) dx

)1/2

− 1

2

∫ ∞
−∞
∣∣g′(x)

∣∣2 dx

}
, a.s.

in the setting of Theorem 1.4.
By the monotonicity of λθV (Qt) in t , the liminf along the sub-sequence tk

in (4.12), (4.13) and (4.14) can be extended into the liminf along the continuous
time t .

Recall that W 1,2(Rd) is the Sobolev space defined in (1.12). Consistently
with (2.1), we define

Fd

(
R

d)= {
g ∈ W 1,2(

R
d); ‖g‖2 = 1

}
.

We now prove that the functions g on the right-hand sides of (4.12), (4.13)
and (4.14) can be extended from Fd(Qr) to Fd(Rd), and complete the proof of
Lemma 4.1.

We start with (4.12). The right-hand side can be extended to all g ∈ Fd(Rd)

for the following two reasons: First, the infinitely smooth, rapidly decreasing and



606 X. CHEN

locally supported functions are dense in the Sobolev space W 1,2(Rd) under the
Sobolev norm

‖g‖W 1,2(Rd ) ≡
√

‖g‖2
2 + 1

2‖∇g‖2
2

and r > 0 in (4.12) is arbitrary. Second, by (A.18) the functional

F (g) =
(∫

Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

)1/2

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

is continuous under the Sobolev norm ‖ · ‖W 1,2(Rd ).
Taking supremum over g ∈ Fd(Rd) on the right-hand side of (4.12) we obtain

the lower bound

lim inf
t→∞ (log t)−2/(4−α)λθV (Qt)

≥ (2dc(γ )
)2/(4−α)

Md,α(θ)

= 4 − α

4

(
α

2

)α/(4−α)(
2dc(γ )θ2κ(d,α)

)2/(4−α)
, a.s.

in the setting of Theorem 1.1, where Md,α(θ) is defined in (A.20), and the last step
follows from the variation identity (A.22).

Using (A.34) (with αj = 2 − 2Hj ) instead of (A.22), by the same argument,
from (4.13) we derive that

lim inf
t→∞ (log t)−2/(4−α)λθV (Qt)

≥ (2dCH )2/(4−α)M̃d,α(θ)

= 4 − α

4

(
α

2

)α/(4−α)(
2dc(γ )θ2κ̃(d,H)

)2/(4−α)
, a.s.

in the setting of Theorem 1.3.
In the same way, by (A.36) and (4.14) we have

lim inf
t→∞ (log t)2/3λθV (Qt)

≥ 22/3 sup
g∈F1(R)

{
θ

(∫ ∞
−∞

g4(x) dx

)1/2

− 1

2

∫ ∞
−∞
∣∣g′(x)

∣∣2 dx

}

= 1

2

(
3

2

)2/3

θ4/3, a.s.

in the setting of Theorem 1.4. �

We end this section with the following lemma.
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LEMMA 4.2. Let (ξ1, . . . , ξn) be a mean-zero Gaussian vector with identically
distributed components. Write

R = max
i �=j

∣∣Cov(ξi, ξj )
∣∣

and assume that Var(ξ1) ≥ 2R. Then for any A,B > 0,

P

{
max
k≤n

ξk ≤ A
}

≤
(

P

{
ξ1 ≤

√
2R + Var(ξ1)

Var(ξ1)
(A + B)

})n

+ P{U ≥ B/
√

2R},

where U is a standard normal random variable.

PROOF. Let η1, . . . , ηn be an i.i.d. sequence independent of U . Assume that

η1
d= ξ1 and write

ζk =
√

Var(ξ1)

2R + Var(ξ1)
(ηk + √

2RU).

With the assumption Var(ξ1) ≥ 2R, it is straightforward to exam that

Var(ξk) = Var(ζk) and Cov(ξi, ξj ) ≤ Cov(ζi, ζj ), i, j, k = 1, . . . , n.

By Slepian’s lemma ([23], see also Lemma 5.5.1, [22]),

P

{
max
k≤n

ξk ≤ A
}

≤ P

{
max
k≤n

ζk ≤ A
}
.

Notice that

max
k≤n

ζk =
√

2R Var(ξ1)

2R + Var(ξ1)
U +

√
Var(ξ1)

2R + Var(ξ1)
max
k≤n

ηk.

By the triangle inequality,

P

{
max
k≤n

ξk ≤ A
}

≤ P

{
max
k≤n

ηk ≤
√

2R + Var(ξ1)

Var(ξ1)
(A + B)

}
+ P{U ≤ −B/

√
2R}.

The conclusion follows from the symmetry of U and the independence of {ηk}.
�

APPENDIX

A.1. Brownian integral as a limit. In this subsection, 〈V,ϕ〉 (ϕ ∈ S(Rd))
is a mean-zero generalized Gaussian field with homogeneity defined in (1.6). Let
μ(dx) be the spectral measure of 〈V,ϕ〉 and let the pointwise defined Gaussian
field Vε(x) (x ∈ R

d ) be given in (2.20). The main goal here is to prove
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LEMMA A.1. Assume that∫
Rd

1

1 + |λ|2 μ(dλ) < ∞.(A.1)

Under the product law P ⊗ Px , the L2-limit∫ t

0
V (Bs) ds

def= lim
ε→0+

∫ t

0
Vε(Bs) ds(A.2)

exists for every t ≥ 0. In addition, there is a modification of the limiting process
in (A.2) that is (1

2 − u)-Hölder continuous for any u > 0. Further, conditioned on
the Brownian motion, the process∫ t

0
V (Bs) ds, t ≥ 0(A.3)

is mean-zero Gaussian with the (conditional) variance

E

{∫ t

0
V (Bs) ds

}2

= 1

(2π)d

∫
Rd

∣∣∣∣∫ t

0
eiλ·Bs ds

∣∣∣∣2μ(dλ), t ≥ 0.(A.4)

PROOF. First notice that conditioned on the Brownian motion, the process

Iε(t) =
∫ t

0
Vε(Bs) ds, t ≥ 0

is Gaussian with the conditional variance

EI 2
ε (t) = 1

(2π)d

∫
Rd

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2∣∣F (l)(ελ)
∣∣2μ(dλ).(A.5)

We claim that there is a constant C > 0 such that∫
Rd

Ex

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2μ(dλ) ≤ C
(
t ∨ t2), t ≥ 0.(A.6)

Indeed,

Ex

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2 =
∫ t

0

∫ t

0
Exe

iλ·(Bu−Bv) dudv

=
∫ t

0

∫ t

0
exp

{
−|λ|2

2
|u − v|

}
dudv.

The right-hand side is equal to

4

|λ|2
[
t − 2

|λ|2
(
1 − e−t |λ|2/2)],

which yields a bound 4t/|λ|2 for |λ| ≥ 1. As for |λ| ≤ 1, we use the trivial bound∫ t

0

∫ t

0
exp

{
−|λ|2

2
|u − v|

}
dudv ≤ t2.
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Thus∫
Rd

Ex

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2μ(dλ) ≤ 4t

∫
{|λ|≥1}

1

|λ|2 μ(dλ) + t2
∫
{|λ|≤1}

μ(dλ).

Hence, (A.6) follows from (A.1).
To prove the L2-convergence described in (A.2), all we need is to establish the

existence of the limit limε,ε′→0+ Ex ⊗ E(Iε′(t)Iε(t)).
Indeed, similar to (A.5),

Ex ⊗ E
(
Iε′(t)Iε(t)

)= 1

(2π)d

∫
Rd

Ex

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2F (l)(ελ)F (l)
(
ε′λ
)
μ(dλ).

By (A.6), the fact that∣∣F (l)(ελ)
∣∣≤ 1 and lim

ε→0+ F (l)(ελ) = 1,

and by the dominant convergence theorem we obtain

lim
ε,ε′→0+ Ex ⊗ E

(
Iε′(t)Iε(t)

)= 1

(2π)d

∫
Rd

Ex

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2μ(dλ).

Write I0(t) = limε→0+ Iε(t) as the L2(Px ⊗ P)-limit. Recall the classical fact
that the L2-limit of Gaussian process remains Gaussian. Conditioned on the Brow-
nian motion, {I0(t); t ≥ 0} is Gaussian with zero mean and the conditional variance

EI 2
0 (t) = 1

(2π)d

∫
Rd

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2μ(dλ).(A.7)

Strictly speaking, {I0(t); t ≥ 0} exists as a family of equivalent classes. In the
following we try to find a continuous modification of this family. For any s, t ≥ 0
with s < t , notice that I0(t) − I0(s) is conditionally normal with the variance

E
[
I0(t) − I0(s)

]2 = 1

(2π)d

∫
Rd

∣∣∣∣∫ t

s
eiλ·B(u) du

∣∣∣∣2μ(dλ)

d= 1

(2π)d

∫
Rd

∣∣∣∣∫ t−s

0
eiλ·B(u) du

∣∣∣∣2μ(dλ).

Thus, for any integer m ≥ 1,

Ex ⊗ E
[
I0(t) − I0(s)

]2m

(A.8)

= (2m − 1)!!Ex

(∫
Rd

∣∣∣∣∫ t−s

0
eiλ·B(u) du

∣∣∣∣2μ(dλ)

)m

.

To estimate the right-hand side, we consider the nonnegative, continuous pro-
cess

Zt =
{∫

Rd

∣∣∣∣∫ t

0
eiλ·B(u) du

∣∣∣∣2μ(dλ)

}1/2

, t ≥ 0.
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By the triangle inequality,

Zs+t ≤ Zt + Z′
s, s, t ≥ 0,(A.9)

where

Z′
s =

{∫
Rd

∣∣∣∣∫ t+s

t
eiλ·B(u) du

∣∣∣∣2μ(dλ)

}1/2

is independent of {Bu;0 ≤ u ≤ t} and equal in law to Zs . By (1.3.7), page 21 in [7],
for any t, a, b > 0,

Px{Zt ≥ a + b} ≤ Px{Zt ≥ a}Px{Zt ≥ b}.
Consequently,

Px{Zt ≥ Mn
√

t} ≤ (Px{Zt ≥ M
√

t})n, n = 1,2, . . . .

By (A.6), one can take M > 0 sufficiently large so

sup
0<t≤1

Px{Zt ≥ M
√

t} ≤ e−2.

Hence,

sup
0<t≤1

Ex exp
{
M−1Zt/

√
t
}
< ∞.(A.10)

Replacing t by t − s and applying it to (A.8), we obtain

E ⊗ E
∣∣I0(t) − I0(s)

∣∣2m ≤ Cm|t − s|m for all s, t ≥ 0 with |t − s| ≤ 1.

By the classic result on chaining (see, e.g., Lemma 9, [10]), there is a modification
of {I0(t); t ≥ 0} that is (1

2 − u)-Hölder continuous for any u > 0. �

LEMMA A.2. Under the assumptions in Theorems 1.1, 1.3 or 1.4, (1.9) holds
for some δ > 0. In particular, the Brownian integral in (A.3) is well-defined as
stated in Lemma A.1.

PROOF. We first consider the setting of Theorem 1.1. By the fact that μ is
tempered, all we need to show is∫

{|λ|≥1}
1

|λ|2(1−δ)
μ(dλ) < ∞.

Let ϕ be the density of the standard normal distribution on R
d . By Fourier

transform

2kd
∫

Rd
γ (x)ϕ

(
2kx

)
dx = 1

(2π)d

∫
Rd

exp
{
−|2−kλ|2

2

}
μ(dλ)

≥ cμ
{
2k−1 ≤ |λ| ≤ 2k}.
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On the other hand, by (1.10)

2kd
∫

Rd
γ (x)ϕ

(
2kx

)
dx =

∫
Rd

γ
(
2−kx

)
ϕ(x)dx

∼ c(γ )2αk
∫

Rd

ϕ(x)

|x|α dx (k → ∞).

Hence, there is a constant C > 0 such that

μ
{
2k−1 ≤ |λ| ≤ 2k}≤ C2αk, k = 1,2, . . . .

Thus ∫
{|λ|≥1}

1

|λ|2(1−δ)
μ(dλ) ≤ C

∞∑
k=1

2−2(1−δ)(k−1)μ
{
2k−1 ≤ |λ| ≤ 2k}< ∞

for any δ < 2−α
2 .

In the setting of Theorem 1.4, where μ(dλ) = dλ is the 1-dimensional Lebesgue
measure, the validity of (1.9) can be directly verified with any δ < 1.

As for the setting of Theorem 1.3, by (1.19) and spherical substitution,∫
Rd

1

(1 + |λ|2)1−δ
μ(dλ) = ĈH

∫
Rd

(
d∏

j=1

|λj |2Hj−1

)−1
1

(1 + |λ|2)1−δ
dλ

= C

∫ ∞
0

r−(d−α) rd−1

(1 + r2)1−δ
dr

= C

∫ ∞
0

rα−1

(1 + r2)1−δ
dr < ∞

as δ < 2−α
2 . �

A.2. Counting the covering balls. Let D,D′ ⊂ R
d be two domains in R

d

and Q(D) be a class of functions on D. Assume that D′ is bounded. For each
ε > 0, let ρε(f, g) be a pseudometric on Q(D) such that

ρε(f, g) ≤
(∫

D′
∣∣Aε(f )(x) − Aε(g)(x)

∣∣dx

)1/2(
sup
x∈D′

∣∣Bε(f )(x) − Bε(g)(x)
∣∣)1/2

,

where Aε and Bε are two (possibly nonlinear) maps from Q(D) to the space
Lip(D′) of Lipschitz functions on D′. Assume further that there are constants
C > 0, p > 1, m ≥ 1 such that∣∣Bε(g)(x)

∣∣≤ C and
(A.11) ∣∣Bε(g)(x) − Bε(g)(y)

∣∣≤ Cε−m|x − y|, x, y ∈ D′,∫
D′
∣∣Aε(g)(x)

∣∣p dx ≤ C and
(A.12) ∣∣Aε(g)(x) − Aε(g)(y)

∣∣≤ Cε−m|x − y|, x, y ∈ D′
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uniformly for all g ∈ Q(D) and sufficiently small ε > 0.

LEMMA A.3. Under the above assumptions,

logN
(

Q(D),ρε, ε
)= O

(
ε−2p/(2p−1) log

1

ε

) (
ε → 0+).

PROOF. Notice that

ρ̂ε(f, g) =
∫
D′
∣∣Aε(f )(x) − Aε(g)(x)

∣∣dx and

ρ∗
ε (f, g) = sup

x∈D′

∣∣Bε(f )(x) − Bε(g)(x)
∣∣

define two pseudometrics on Q(D). We now claim that for any u, v > 0 with√
uv = ε,

N
(

Q(D),ρε, ε
)≤ N

(
Q(D),ρ∗

ε , u
)
N
(

Q(D), ρ̂ε, v
)
.(A.13)

Indeed, we first cover Q(D) by N(Q(D),ρ∗
ε , u) ρ∗

ε -balls with the diameter
smaller than u. For each such ball, it can be covered by at most N(Q(D), ρ̂ε, v) of
ρ̂ε-balls with the diameter smaller than v. In this way, the set Q(D) is covered by
at most N(Q(D),ρ∗, u)N(Q(D), ρ̂ε, v) of its nonempty subsets. For f,g coming
from same subset, ρ̂ε(f, g) < u and ρ∗

ε (f, g) < v. Hence

ρε(f, g) ≤
√

ρ̂ε(f, g)ρ∗(f, g) <
√

uv = ε.

Hence, (A.13) holds.
With (A.13), it is sufficient to establish

N
(

Q(D),ρ∗
ε , ε2p/(2p−1))

(A.14)

= exp
{
O

(
ε−2p/(2p−1) log

1

ε

)} (
ε → 0+)

N
(

Q(D), ρ̂ε, ε
(2(p−1))/(2p−1))

(A.15)

= exp
{
O

(
ε−2p/(2p−1) log

1

ε

)} (
ε → 0+).

Indeed, applying (A.13) with

u(ε) = ε2p/(2p−1) and v(ε) = ε(2(p−1))/(2p−1),(A.16)

and using (A.14) and (A.15) we have

N
(

Q(D),ρε, ε
) ≤ N

(
Q(D),ρ∗

ε , u(ε)
)
N
(

Q(D), ρ̂ε, v(ε)
)

= exp
{
O

(
ε−2p/(2p−1) log

1

ε

)} (
ε → 0+).
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We first prove (A.14). Let u(ε) be defined in (A.16). Define the map

B∗
ε : Q(D) −→ (

(
√

dC)−1εmu(ε)Zd ∩ D′)u(ε)Z∩[−C,C]

as B∗
ε f (x) = u(ε)[u(ε)−1Bε(f )(x0)] whenever

x ∈ (x0 − (2
√

dC)−1εmu
(
ε
)
, x0 + (2

√
dC)−1εmu(ε)

]d
for some x0 ∈ (

√
dC)−1εmu(ε)Zd ∩ D′, where [·] is the integer-part function.

By (A.11)

sup
x∈D′

∣∣Bεg(x) − B∗
ε g(x)

∣∣< u(ε)

2
, g ∈ Q(D).

Consequently, for any f,g ∈ Q(D) with B∗
ε f = B∗

ε g,

ρ∗
ε (f, g) = sup

x∈D′

∣∣Bεf (x) − Bεg(x)
∣∣< u(ε).

Hence,

N
(

Q(D),ρ∗
ε , u(ε)

) ≤ #
{(

(
√

dC)−1εmu(ε)Zd ∩ D′)u(ε)Z∩[−C,C]}
= exp

{
O

(
ε−2p/(2p−1) log

1

ε

)} (
ε → 0+).

It remains to establish (A.15). Let v(ε) be given in (A.16), and write

Mε = (
8Cv(ε)−1)(p−1)−1

.

Define the map

A∗
ε : Q(D) −→ ((

4
∣∣D′∣∣√dC

)−1
εmv(ε)Zd ∩ D′)(8∣∣D′∣∣)−1v(ε)Z∩[−Mε,Mε]

as A∗
εg(x) = {(8|D′|)−1v(ε)[8|D′|v(ε)−1Aεg(x0)] ∧ Mε} ∨ (−Mε), whenever

x ∈ (x0 − (8∣∣D′∣∣√dC
)−1

εmv(ε), x0 + (8∣∣D′∣∣√dC
)−1

εmv(ε)
]d

for some x0 ∈ (4|D′|√dC)−1εmv(ε)Zd ∩ D′.
By (A.12),

sup
g∈Q(D)

∫
D′
∣∣Aε(g)(x) − A∗

ε(g)(x)
∣∣dx

≤ 1

4
v(ε) + 2 sup

g∈Q(D)

∫
{|Aε(g)|>Mε}

∣∣Aε(g)(x)
∣∣dx

≤ 1

4
v(ε) + 2M−(p−1)

ε C ≤ 1

2
v(ε).

Consequently, for f,g ∈ Q(D) with A∗
εf = A∗

εg, ρ̂ε(f, g) < v(ε) for small ε.
Hence,

N
(

Q(D), ρ̂ε, v(ε)
) ≤ #

{((
4|D′|√dC

)−1
εmv(ε)Zd ∩ D′)(8|D′|)−1v(ε)Z∩[−Mε,Mε]}

= exp
{
O

(
ε−2p/(2p−1) log

1

ε

)} (
ε → 0+). �
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A.3. Variations. In this section we establish some Sobolev-type inequalities
and validate the variations used in the paper. Recall that W 1,2(Rd) is the Sobolev
space defined in (1.12) and

Fd

(
R

d)= {
g ∈ W 1,2(

R
d); ‖g‖2 = 1

}
.

Similar to (2.2), define

Gd

(
R

d)= {
g ∈ W 1,2(

R
d); ‖g‖2

2 + 1
2‖g‖2

2 = 1
}
.

Recall (Lemma 7.2, [8]) that for any 0 ≤ α < 2 ∧ d there is Cα > 0 such that∫
Rd

f 2(x)

|x|α dx ≤ Cα‖f ‖2−α
2 ‖∇f ‖α

2 , f ∈ W 1,2(
R

d).(A.17)

A simple trick by translation invariance, show that (A.17) remains true with the
same constant Cα if the left-hand side is replaced by

sup
y∈Rd

∫
Rd

f 2(x)

|x − y|α dx.

Immediately,∫
Rd×Rd

f 2(x)f 2(y)

|x − y|α dx dy =
∫

Rd
f 2(y)

[∫
Rd

f 2(x)

|x − y|α dx

]
dy

(A.18)
≤ Cα‖f ‖4−α

2 ‖∇f ‖α
2

for every f ∈ W 1,2(Rd).
As a consequence, the constant

κ(d,α) = inf
{
C > 0;

∫
Rd×Rd

f 2(x)f 2(y)

|x − y|α dx dy

(A.19)

≤ C‖f ‖4−α
2 ‖∇f ‖α

2 ∀f ∈ W 1,2(
R

d)}
is finite.

Other variations relevant to Theorem 1.1 are

Md,α(θ) = sup
g∈Fd (Rd )

{
θ

(∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

)1/2

(A.20)

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
, θ > 0,

σ (d,α) = sup
g∈Gd (Rd )

{∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

}1/2

.(A.21)

By (A.17), one can easily show that Md,α(θ) and σ(d,α) are finite under the as-
sumption 0 ≤ α < 2 ∧ d .
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LEMMA A.4. Under α < 2 ∧ d ,

Md,α(θ) = 4 − α

4

(
α

2

)α/(4−α)

κ(d,α)2/(4−α)θ4/(4−α),(A.22)

σ(d,α) =
(

4 − α

4

)(4−α)/4(α

2

)α/4

κ(d,α)1/2.(A.23)

PROOF. Let f ∈ F (Rd) be fixed but arbitrary, and let Cf > 0 satisfy∫
Rd×Rd

f 2(x)f 2(y)

|x − y|α dx dy = Cf ‖∇f ‖α
2 .

Given β > 0 let g(x) = βd/2f (βx). Then ‖∇g‖2 = β‖∇f ‖2 and therefore∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy = βα
∫

Rd×Rd

f 2(x)f 2(y)

|x − y|α dx dy = Cf βα‖∇f ‖α
2 .

By the fact that g ∈ Fd(Rd),

Md,α(θ) ≥ θC
1/2
f βα/2‖∇f ‖α/2

2 − 1
2‖∇g‖2

2 = θC
1/2
f βα/2‖∇f ‖α/2

2 − 1
2β2‖∇f ‖2

2.

Notice β‖∇f ‖2 runs over all positive numbers. So we have

Md,α(θ) ≥ sup
x>0

{
θC

1/2
f xα/2 − 1

2
x2
}

= 4 − α

4

(
α

2

)α/(4−α)

C
2/(4−α)
f θ4/(4−α).

Take supremum over f on the right-hand side. Noticing that S(Rd) is dense in
W 1,2(Rd), by space homogeneity we have established the relation “≥” for (A.22).

On the other hand, for any g ∈ Fd(Rd),

θ

(∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

)1/2

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

≤ θκ(d,α)1/2‖∇g‖α/2
2 − 1

2
‖∇g‖2

2 ≤ sup
x>0

{
θκ(d,α)1/2xα/2 − 1

2
x2
}

= 4 − α

4

(
α

2

)α/(4−α)

κ(d,α)2/(4−α)θ4/(4−α).

Taking supremum over g ∈ Fd(Rd) on the left-hand side, we reach the relation
“≤” for (A.22).

For any g ∈ Fd(Rd) by space homogeneity,

1

σ(d,α)

(∫
Rd×Rd

g2(x)g2(y)

|x − y|α dx dy

)1/2

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

≤ 1

σ(d,α)
σ (d,α)

(
1 + ‖∇g‖2

2
)− 1

2
‖∇g‖2

2 = 1.
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Taking supremum over g,

Md,α

(
1

σ(d,α)

)
≤ 1.

Combining this with (A.22) we have proved the “≥” half for (A.23).
On the other hand, for any f ∈ W 1,2(Rd),(∫

Rd×Rd

f 2(x)f 2(y)

|x − y|α dx dy

)1/2

≤ κ(d,α)1/2‖f ‖(4−α)/2
2 ‖∇f ‖α/2

2

= κ(d,α)1/2
(

2α

4 − α

)α/4(‖f ‖2
2
)(4−α)/4

(
4 − α

2α
‖∇f ‖2

2

)α/4

≤ κ(d,α)1/2
(

2α

4 − α

)α/4 4 − α

4

(
‖f ‖2

2 + 1

2
‖∇f ‖2

2

)
,

where the last step follows from the Hölder inequality ab ≤ p−1ap + q−1bq with
p = 4(4 − α)−1 and q = 4/α. This leads to the “≤” half for (A.23). �

We need an inequality comparable to the one in (A.17) for formulating and
proving Theorem 1.3, but could not find it in literature. We establish it in the fol-
lowing.

Let the real numbers α1, . . . , αd satisfy 0 ≤ αj < 1 and α ≡ α1 + · · · + αd < 2.

LEMMA A.5. For any θ > 0,

sup
g∈Fd (Rd )

{
θ

∫
Rd

(
d∏

j=1

|xj |−αj

)
g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
< ∞.(A.24)

PROOF. Define the function

K(x) =
d∏

j=1

|xj |−αj , x = (x1, . . . , xd) ∈ R
d .

The fact that K(x) blows up at every coordinate plane make the problem harder
comparing to setting of the Newtonian kernel |x|−α which blows up only at 0. The
fact that α1, . . . , αd are allowed to be different posts an extra challenge. The proof
provided here is probabilistic.

Let the linear Brownian motions B1(s), . . . ,Bd(s) be the independent compo-
nents of the d-dimensional Brownian motion Bs and define the process

ηt =
∫ t

0
K(Bs) ds =

∫ t

0

(
d∏

j=1

∣∣Bj(s)
∣∣−αj

)
ds, t > 0.(A.25)
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This process is well defined under our assumption on α1, . . . , αd . Indeed, it is not
hard to see that for each t > 0, E0ηt < ∞. Further, we now prove that there is a
b > 0 such that

E0 exp
{
bη

2/α
1

}
< ∞.(A.26)

We point out that (A.26) is a strengthened version of the exponential integrability
for η1 obtained by Hu, Nualart and Song (Lemma A.5, [19]) and the approach
for (A.26) presented here is modified from theirs.

Given the integer m ≥ 1,

E0η
m
t =

∫
[0,t]m

ds1 · · ·dsm

d∏
j=1

E0

m∏
k=1

∣∣B1(sk)
∣∣−αj

= m!
∫
[0,t]m<

ds1 · · ·dsm

d∏
j=1

E0

m∏
k=1

∣∣B1(sk)
∣∣−αj ,

where the multi-dimensional time set [0, t]m< is defined as

[0, t]m< = {
(s1, . . . sm) ∈ [0, t]m; s1 < s2 · · · < sm

}
.

Let (s1, . . . , sm) ∈ [0, t]m< be fixed for a while and As = σ {B1(u);0 ≤ u ≤ s} be
the filtration generated by the linear Brownian motion B1(t). Write

E0
{∣∣B1(sk)

∣∣−αj |Ask−1

}=
∫ ∞

0
P0
{∣∣B1(sk)

∣∣−αj ≥ a|Ask−1

}
da

=
∫ ∞

0
P0
{∣∣B1(sk)

∣∣≤ a−1/αj |Ask−1

}
da.

By Anderson’s inequality,

P0
{|Bsk | ≤ a−1/αj |Ask−1

}
= P0

{∣∣B1(sk−1) + (
B1(sk) − B1(sk−1)

)∣∣≤ a−1/αj |Ask−1

}
≤ P0

{∣∣B1(sk) − B1(sk−1)
∣∣≤ a−1/αj |Ask−1

}= P0
{∣∣B1(sk − sk−1)

∣∣−αj ≥ a
}
.

So we have

E0

m∏
k=1

∣∣B1(sk)
∣∣−αj ≤

m∏
k=1

E0
∣∣B1(sk − sk−1)

∣∣−αj

= {
E0
∣∣B1(1)

∣∣−αj
}m m∏

k=1

(sk − sk−1)
−αj , j = 1, . . . , d.

Here the convention s0 = 0 is adopted.
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Summarizing our computation,

E0η
m
t ≤ m!

(
d∏

j=1

E0
∣∣B1(1)

∣∣−αj

)m ∫
[0,t]m<

m∏
k=1

(sk − sk−1)
−α/2 ds1 · · ·dsm.

Let τ be an exponential time with parameter 1 such that τ is independent of Bt .
By Fubini’s theorem

E
τ ⊗ E0η

m
τ

≤ m!
(

d∏
j=1

E0
∣∣B1(1)

∣∣−αj

)m

×
∫ ∞

0
e−t

[∫
[0,t]m<

m∏
k=1

(sk − sk−1)
−α/2 ds1 · · ·dsm

]
dt(A.27)

= m!
(

d∏
j=1

E0
∣∣B1(1)

∣∣−αj

)m(∫ ∞
0

t−α/2e−t dt

)m

= m!
(
�

(
2 − α

2

) d∏
j=1

E0
∣∣B1(1)

∣∣−αj

)m

for m = 1,2, . . . .

On the other hand, notice that ηt
d= t (2−α)/2η1. So we have

E
τ ⊗ E0η

m
τ = (

E
τ τ ((2−α)/2)m)

E0η
m
1 = �

(
1 + 2 − α

2
m

)
E0η

m
1 .

Combining this with (A.27), by Stirling formula we conclude that there is a con-
stant C > 0 such that

E0η
m
1 ≤ (m!)α/2Cm, m = 1,2, . . . .

This implies (A.26) with b < C−2/α .
We now claim that

lim sup
t→∞

1

t
log E0 exp{θηt } < ∞ ∀θ > 0.(A.28)

Indeed, by scaling,

E0 exp{θηt } = E0 exp
{
θt(2−α)/2η1

}
≤ E0 exp

{
bη

2/α
1

}+ E0
{
exp

{
θt(2−α)/2η1

};η1 ≤ (θb−1)2/(2−α)
tα/2}

≤ E0 exp
{
bη

2/α
1

}+ exp
{(

θb−1)2/(2−α)
t
}
.

Hence, (A.28) follows from (A.26).
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Given N > 0,

ηt ≥
∫ t

0

(
K(Bs) ∧ N

)
ds.

On the other hand, applying Theorem 4.1.6, [7] to the bounded, continuous func-
tion K(x) ∧ N gives

lim
t→∞

1

t
log E0 exp

{∫ t

0

(
K(Bs) ∧ N

)
ds

}
= sup

g∈Fd (Rd )

{∫
Rd

(
K(x) ∧ N

)
g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
.

Thus,

sup
g∈Fd (Rd )

{∫
Rd

(
K(x) ∧ N

)
g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}

≤ lim sup
t→∞

1

t
log E0 exp{θηt }.

Letting N → ∞ on the left-hand side, by (A.28) we have (A.24). �

With (A.24), an obvious modification of the argument for (A.22) shows that
there is a constant C̃α > 0 such that the inequality∫

Rd

(
d∏

j=1

|xj |−αj

)
f 2(x) dx ≤ C̃α‖f ‖2−α

2 ‖∇f ‖α
2 , f ∈ W 1,2(

R
d)(A.29)

holds. Recall our discussion based on the inequality (A.17). Replacing (A.17) by
(A.29) and copying the same derivation we obtain a parallel system of inequalities
and relations among variations that are summarized in the following.

First, we have the inequality∫
Rd×Rd

(
d∏

j=1

|xj − yj |−αj

)
f 2(x)f 2(y) dx dy

(A.30)
≤ C̃α‖f ‖4−α

2 ‖∇f ‖α
2 , f ∈ W 1,2(

R
d).

Consequently, the best consequence

κ̃(d,α) = inf

{
C > 0;

∫
Rd×Rd

(
d∏

j=1

|xj − yj |−αj

)
f 2(x)f 2(y) dx dy

(A.31)

≤ C‖f ‖4−α
2 ‖∇f ‖α

2 ∀f ∈ W 1,2(
R

d)}
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is finite.
Second, the quantities defined through the variations

M̃d,α(θ)

= sup
g∈Fd (Rd )

{
θ

(∫
Rd×Rd

(
d∏

j=1

|xj − yj |−αj

)
g2(x)g2(y) dx dy

)1/2

(A.32)

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
,

θ > 0,

σ̃ (d,α)
(A.33)

= sup
f ∈Gd (Rd )

{∫
Rd×Rd

(
d∏

j=1

|xj − yj |−αj

)
f 2(x)f 2(y) dx dy

}1/2

are finite
Third, these variations are co-related according to the following lemma.

LEMMA A.6. Under 0 ≤ αj < 1 (j = 1, . . . , d and α1 + · · · + αd < 2,

M̃d,α(θ) = 4 − α

4

(
α

2

)α/(4−α)

κ̃(d,α)2/(4−α)θ4/(4−α),(A.34)

σ̃ (d,α) =
(

4 − α

4

)(4−α)/4(α

2

)α/4

κ̃(d,α)1/2.(A.35)

The next lemma is related to Theorem 1.4.

LEMMA A.7.

sup
g∈F1(R)

{
θ

(∫ ∞
−∞

g4(x) dx

)1/2

− 1

2

∫ ∞
−∞
∣∣f ′(x)

∣∣2 dx

}
(A.36)

= 1

2

(
3

4

)2/3

θ4/3 (θ > 0),

sup
g∈G1(R)

∫ ∞
−∞

g4(x) dx = 3

4

(
1

2

)3/2

.(A.37)

PROOF. The identity (A.36) is given in Theorem C.4, page 307, [7]. This the-
orem also claims the Sobolev inequality

‖f ‖4 ≤ 3−1/8‖f ‖3/4
2

∥∥f ′∥∥3/4
2 , f ∈ W 1,2(

R
d)

with 3−1/8 as the best constant. A natural modification of the proof for (A.23)
leads to (A.37). �
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