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On the Law of the Iterated
Logarithm for Local Times
of Recurrent Random Walks

Xia Chen

ABSTRACT We consider the law of the iterated logarithm (LIL) for the local
time of one-dimensional recurrent random walks. First we show that the constants
in the LIL for the local time and for its supremum (with respect to the space
variable) are equal under a very general condition given in Jain and Pruitt (1984).
Second we evaluate the common value of the constants, as the random walk is
in the domain of attraction of a not necessarily symmetric stable law. The first
problem relies on a special maximal inequality established in this paper and the
second on the LIL for Markovian additive functionals given in the author’s recent
work.

1 Introduction and main results

Consider a random walk {Sn}n≥0 on the lattice Z

S0 = 0 and Sn =
n∑

k=1

Xk n = 1, 2, · · ·(1.1)

generated by an i.i.d. sequence {X, Xn}n≥1 with integer values. We assume
for convenience that the law of X is not supported on a proper subgroup
of Z. The local time Ln(x) and its maxima L∗

n are defined as

Ln(x) =
n∑

k=0

I{Sk=x} and L∗
n = sup

y∈Z
Ln(y) x ∈ Z, n = 1, 2, · · · .(1.2)

To make things interesting, we always consider the case when {Sn}n≥0

is recurrent. This requires that EX = 0 whenever E|X| < +∞. So the
condition EX = 0 is assumed throughout without further mention.

Asymptotic properties for the local times have been extensively studied
since the pioneering work by Chung and Hunt (1948), who established the
first LIL for the local times of a symmetric simple random walk. Refer to
Révész (1990) and the references therein for the historical development of
this subject. Jain and Pruitt (1984) obtained some interesting LIL results
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for local times of the random walk under a very general condition, which
we shall now describe.

Let F (x) be the distribution function of X and write

G(x) = 1 − F (x) + F (−x) and K(x) = x−2

∫ x

−x

y2dF (y) ,(1.3)

Q(x) = G(x) + K(x) = x−2E
(
|X| ∧ x

)2(1.4)

for x > 0. The function Q is continuous and strictly decreasing for x large
enough. Thus we can define the function a(y) by

Q
(
a(y)

)
=

1
y

(1.5)

for sufficiently large y, and a(y) ↑ ∞. The basic assumption in Jain and
Pruitt (1984) is

(A) lim sup
x→∞

G(x)
K(x)

< 1

which implies, in particular, that E|X| < +∞. Under (A), the random
walk {Sn}n≥0 is recurrent, in which case Jain and Pruitt (1984) proved
that there exist 0 < θ1, θ2 < ∞ such that

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) = θ1 a.s. ,(1.6)

lim sup
n→∞

n−1a
( n

log log n

)
L∗

n = θ2 a.s.(1.7)

The quantity on the left of (A) was introduced by Feller (1966) to describe
the compactness and convergence of the normalized random walks. If X is
in the domain of attraction of a stable law of index α, for example, then

lim
x→∞

G(x)
K(x)

=
2 − α

α
(1.8)

so that Jain and Pruitt’s results include all cases when X is in the domain
of attraction of a stable law of index α > 1 and of zero mean. As pointed
out by Jain and Pruitt, the class of the distributions described by (A) is
much larger than this. Jain and Pruitt also pointed out that condition (A)
excludes the case when the local time has a slowly varying increasing rate.
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Jain and Pruitt (1984) then asked whether or not θ1 = θ2 under their
condition. To this author’s best knowledge, the first work related to this
question is by Kesten (1965) who proved equality when the random walk
is replaced by Brownian motion. By approximation, Kesten’s result can be
used to show that the equality holds for a symmetric simple random walk
(Révész (1990)). As an application of large deviation theory, Donsker and
Varadhan (1977) extended Kesten’s observation to the case of symmetric
stable processes with index α > 1. In all mentioned cases, the common
value of θ1 and θ2 is obtained.

Our first goal is to answer this question under condition (A). Indeed, we
have

Theorem 1. Under condition (A),

θ1 = θ2(1.9)

where θ1 and θ2 are constants given by (1.6) and (1.7), respectively.

We are not able to determine the common value in (1.9) explicitly under
condition (A). However, we have

Theorem 2. Assume that

(B) lim
x→∞

G(x)
K(x)

=
2 − α

α
and p ≡ lim

x→∞
1 − F (x)

G(x)

exist for some 1 < α < 2. Then

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) = lim sup

n→∞
n−1a

( n

log log n

)
L∗

n = Λ(α) a.s.

(1.10)

where

Λ(α) =
Γ(1 − 1/α)Γ(1/α)

π

(
2 cos

(
(ρ − 1/2)απ

)
Γ(3 − α) sin (α−1)π

2

)1/α

(α − 1)
2−α

α sin(ρπ),

(1.11)

ρ =
1
2

+
1

απ
arctan

(
(2p − 1) tan

(απ

2
))

.(1.12)

Theorem 3. Assume that

(C) lim
x→∞

G(x)
K(x)

= 0.

Then

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) = lim sup

n→∞
n−1a

( n

log log n

)
L∗

n =
√

2 a.s.

(1.13)
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Remark. According to Chap. IX, Theorem 8.1, p.303 in Feller (1966),
(B) and (C) are the necessary and sufficient conditions for F being in the
domain of attraction of a stable law with 1 < α < 2 and α = 2, respectively.
Under (B) (or (C) with α = 2),

G
(
a(n)

)
∼ 2 − α

2n
and K

(
a(n)

)
∼ α

2n
.(1.14)

By Chap. XI, Theorem 8.2 and the comment on p. 305 in Feller (1966)
there is a stable law L with index α such that

Sn/a(n) −→ L in distribution.(1.15)

It turns out that when 1 < α < 2, the characteristic exponent of L is of
the form:

Ψ(λ) =
Γ(3 − α)
2(α − 1)

sin
(α − 1)π

2
×|λ|α

(
1 − i(2p − 1)sgn(λ) tan

(απ

2
))(1.16)

where λ ∈ R. Hence (see, e.g., Section 2.6 in Zolotarev (1986))

ρ = 1 − L(0) = lim
n→∞

P{Sn ≥ 0}.(1.17)

Moreover, one can easily see that 1−1/α ≤ ρ ≤ 1/α. The extreme points
ρ = 1/α and ρ = 1 − 1/α correspond to the cases when p = 0 and p = 1,
respectively. In particular cos

(
(ρ−1/2)απ

)
> 0 and therefore the constant

we obtain in Theorem 2 remains positive for all 0 ≤ p ≤ 1. It is also
interesting to see that the maximal limit value in Theorem 2 is achieved
when p = 1/2, especially when X is symmetrically distributed — in which
case Theorem 2 essentially belongs to (in the light of Theorem 1) Marcus
and Rosen (1994). Bertoin (1995) obtains a law of the iterated logarithm
for the local times of Lévy processes which are not necessarily symmetric.
In Bertoin’s result (Corollary 2), the constant of the LIL is given under a
condition essentially the same as (B) (The author thanks the referee of this
paper for pointing out Bertoin’s contribution).

When X has a finite second moment σ2, i.e.,

σ2 ≡ E|X|2 < +∞ ,(1.18)

one can easily see that a(n) ∼ √
nσ as n → ∞. Hence by Theorem 3 we

have

lim sup
n→∞

Ln(0)√
2n log log n

= lim sup
n→∞

L∗
n√

2n log log n
=

1
σ

a.s.(1.19)
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2 Proof of Theorem 1

Clearly we have θ1 ≤ θ2. Hence we need to show

θ1 ≥ θ2 .(2.1)

Our approach is to compare the tail probabilities of Ln(0) and L∗
n and we

rely on the following inequalities.

Lemma 1. For any integers a, b > 0 and n ≥ 1,

P
{
Ln(x) ≥ a

}
≤ P

{
Ln(0) ≥ a

}
x ∈ Z,(2.2)

P
{
L∗

n ≥ a + b
}
≤ P

{
L∗

n ≥ a
}
P

{
L∗

n ≥ b
}
,(2.3)

P
{
L∗

n ≥ a
}
≤

(
1 − P

{
max
k≤n

|Sk| ≥ b
})−1

P
{

sup
|x|≤b

Ln(x) ≥ a
}
.(2.4)

Proof. Define the stopping times as

τ1 = inf{k ≥ 1; Sk = x},(2.5)

τ2 = inf{k ≥ 1; L∗
k ≥ b},(2.6)

τ3 = inf{k ≥ 1; |Sk| ≥ b}.(2.7)

To prove (2.2), we may assume that x �= 0. Hence

P
{
Ln(x) ≥ a

}
= P

{
τ1 ≤ n,

n∑
k=τ1

I{Sk=x} ≥ a
}

=
n∑

j=1

P
{

τ1 = j,
n∑

k=j

I{Sk−Sj=0} ≥ a
}

=
n∑

j=1

P
{
τ1 = j

}
P

{
Ln−j(0) ≥ a

}
≤ P

{
Ln(0) ≥ a

}
.

The proof of (2.3) and (2.4) relies on the fact that for each 1 ≤ j ≤ n, the
random variable

sup
x∈Z

n∑
k=j

I{Sk=x}(2.8)
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is independent of {X1, · · · , Xj}. Notice that L∗
τ2

= b.

P
{
L∗

n ≥ a + b
}

= P
{
τ2 ≤ n, L∗

n − L∗
τ2

≥ a
}

≤ P
{

τ2 ≤ n, sup
x∈Z

n∑
k=τ2

I{Sk=x} ≥ a
}

≤ P
{
L∗

n ≥ a
}
P

{
L∗

n ≥ b
}
.

We shall now prove (2.4). Notice that

P
{
L∗

n ≥ a
}

≤ P
{

sup
|x|≤b

Ln(x) ≥ a
}

+ P
{

sup
|x|>b

Ln(x) ≥ a
}

= (I) + (II) (say)

and that

(II) ≤ P
{

τ3 ≤ n, sup
x

n∑
k=τ3

I{Sk=x} ≥ a
}
≤ P

{
max
k≤n

|Sk| ≥ b
}
P

{
L∗

n ≥ a
}
.

(2.9)

Therefore (
1 − P

{
max
k≤n

|Sk| ≥ b
})

P
{
L∗

n ≥ a
}
≤ P

{
sup
|x|≤b

Ln(x) ≥ a
}

(2.10)

which gives (2.4). Q.E.D.

To prove (2.1), we let

bn = n

[
a
( n

log log n

)]−1

and cn = a
( n

log log n

)
.(2.11)

We let ε > 0 be fixed but arbitrary. Applying (2.3) gives

P
{
L∗

n ≥ (θ1 + 4ε)bn

}
≤ P

{
L∗

n ≥ 2εbn

}
P

{
L∗

n ≥ (θ1 + 2ε)bn

}
.(2.12)

Note (Lemma 3, Jain and Pruitt (1984)) that there is an M > 0 such that

P
{

max
k≤n

|Sk| ≥ Ma(n)
}
≤ 1

2
.(2.13)

Thus by (2.4),

P
{
L∗

n ≥ 2εbn

}
≤ 2P

{
sup

|x|≤Ma(n)

Ln(x) ≥ 2εbn

}
,(2.14)

P
{
L∗

n ≥ (θ1 + 2ε)bn

}
≤ 2P

{
sup

|x|≤Ma(n)

Ln(x) ≥ (θ1 + 2ε)bn

}
.(2.15)
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According to Lemma 11 in Jain and Pruitt (1984), there is a δ > 0 and a

C > 0 such that

P
{

sup
|x−y|≤δcn

∣∣Ln(x) − Ln(y)
∣∣ ≥ εbn

}
≤ C

log2 n
(2.16)

for all n ≥ 1. On the other hand, notice that the interval [−Ma(n), Ma(n)]
can be covered by no more than (K log log n)λ intervals with diameters less
than δcn, where λ > 0 and K > 0 are constants. Hence

P
{

sup
|x|≤Ma(n)

Ln(x) ≥ 2εbn

}

≤ (K log log n)λ sup
x∈Z

P
{
Ln(x) ≥ εbn

}
+

C

log2 n
,

P
{

sup
|x|≤Ma(n)

Ln(x) ≥ (θ1 + 2ε)bn

}

≤ (K log log n)λ sup
x∈Z

P
{
Ln(x) ≥ (θ1 + ε)bn

}
+

C

log2 n
.

In view of (2.2) and (2.12),

P
{
L∗

n ≥ (θ1 + 4ε)bn

}
≤ 4(K log log n)2λP

{
Ln(0) ≥ εbn

}
P

{
Ln(0) ≥ (θ1 + ε)bn

}
+C

(log log n)λ

log2 n

where the constant C > 0 may differ from before. By examining the proof
of Lemma 8 in Jain and Pruitt (1984) one can see that

P
{
Ln(0) ≥ εbn

}
≤ 1

(log n)δ
(2.17)

eventually holds for some small constant δ > 0. Hence,

P
{
L∗

n ≥ (θ1 + 4ε)bn

}
≤ P

{
Ln(0) ≥ (θ1 + ε)bn

}
+ C

(log log n)λ

log2 n

(2.18)

for large n.
On the other hand, given a γ > 1 we take a subsequence {nk} such that

bnk
∼ γk (k → ∞).(2.19)

By Lemma 3.3 in Chen (1999),
∑

k

P
{
Lnk

(0) ≥ (θ1 + ε)bnk

}
< +∞.(2.20)



254 X. Chen

From (2.18),
∑

k

P
{
L∗

nk
≥ (θ1 + 4ε)bnk

}
< +∞.(2.21)

Since γ > 1 and ε > 0 are arbitrary, a standard argument via the Borel-
Cantelli lemma gives

lim sup
n→∞

L∗
n

/
bn ≤ θ1 a.s.(2.22)

Hence, (2.1) is proved. Q.E.D.

3 Proof of Theorem 2 and Theorem 3

In view of Theorem 1, we only need to show

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) = Λ(α) a.s.(3.1)

for 1 < α < 2, and

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) =

√
2 a.s.(3.2)

for α = 2.

The proof we present here appears as an application of the LIL (Chen
(1999)) for additive functionals of Harris recurrent Markov chains. Let the
stable law L be given by (1.15). From (2.j) in Le Gall-Rosen (1991), as
n → ∞,

g(n) ≡
n∑

k=1

P{Sk = 0} ∼ p(0)
n∑

k=1

1
a(k)

,(3.3)

where p(·) is the density of L. Note that a(y) is non-decreasing and varies
regularly at infinity with index α−1. As a routine exercise one can show
that, as n → ∞,

g(n) ∼ p(0)
n

a(n)

∫ 1

0

1
x1/α

dx = p(0)
α

α − 1
n

a(n)
.(3.4)

In particular, g(n) varies regularly at infinity with index 1− 1/α. Viewing
{Sn}n≥0 as a recurrent Markov chain with the counting measure on Z as
its invariant measure, we obtain from Theorem 2.4 in Chen (1999) that

lim sup
n→∞

(
g
( n

log log n

)
log log n

)−1

Ln(0) = (α − 1)1/αΓ(1 − 1/α) a.s.

(3.5)
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In view of (3.4),

lim sup
n→∞

n−1a
( n

log log n

)
Ln(0) =

αΓ(1 − 1/α)
(α − 1)1−1/α

p(0) a.s.(3.6)

When α = 2, we have from (1.14) that

nP{|X| > a(n)} −→ 0 and E|X|2I{|X|≤a(n)} ∼ a(n)2

n
(n → ∞).(3.7)

By performing the truncation at the level a(n) and by the classical
method for the central limit theorem we can obtain that L = N(0, 1). In
particular p(0) = (2π)−1/2. Hence (3.2) follows from (3.5). We now assume
1 < α < 2.

To evaluate p(0), we first verify that the characteristic exponent Ψ(λ) of
L is given by (1.16) (This may be known, but we fail to find a complete
statement of this result in the literature). By Theorem C.1 and (I.11) in
Zolotarev (1986)

P{X > an} ∼ C1

n
and P{X ≤ −an} ∼ C2

n
(3.8)

where C1, C2 ≥ 0 are two parameters of the spectral function of L given in
that theorem. From the first part in (1.14) and the second part in (B) we
have

C1 + C2 =
2 − α

2
> 0 and p =

2C1

2 − α
.(3.9)

Hence (1.16) follows from the construction given in the proof of Theorem
C.2 in Zolotarev (1986) and the fact that the law L has zero mean.

We finally evaluate p(0) in the case when 0 < α < 2. Write

c =
Γ(3 − α)
2(α − 1)

sin
(α − 1)π

2
.(3.10)

Taking the inverse Fourier transformation gives

p(0) =
1
2π

∫ +∞

−∞
exp

{
− c|λ|α

(
1 − i(2p − 1)sgn(λ) tan

(απ

2
))}

dλ

=
1

απ

∫ +∞

0

x1/α−1e−cx cos
[(

c(2p − 1) tan
(απ

2
))

x
]
dx

=
cos

(
α−1 arctan

(
(2p − 1) tan

(
απ
2

)))

απc1/α
[
1 + (2p − 1)2 tan2

(
απ
2

)]1/2α
Γ(1/α)

= (απ)−1
[
c−1 cos

(
(ρ − 1/2)απ

)]1/α

sin(ρπ)Γ(1/α)

= (απ)−1
[2(α − 1) cos

(
(ρ − 1/2)απ

)
Γ(3 − α) sin (α−1)π

2

]1/α

sin(ρπ)Γ(1/α)

(3.11)
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where the third step follows from the fact that

∫ ∞

0

xt−1e−ax cos(bx)dx =
sin

(
t arctan

(
b
a

))
(a2 + b2)t/2

Γ(t)(3.12)

for all real numbers t > −1, a > 0 and b.

Bringing our computation of p(0) back to (3.5) yields (3.1). Q.E.D.

4 Further remark

Since the LIL in a general Markovian context applied to Theorem 2 and
Theorem 3 holds also in the case of non-discrete state space, we can achieve
some results for non-lattice valued random walks, which take a form similar
to (3.1) or (3.2). Here we consider a random walk {Sn}n≥0 on R. In the
terminology of Revuz (1975), {Sn}n≥0 is called spread out, if there is an
integer k ≥ 1 such that the kth convolution F ∗k is not singular to the
Lebesgue measure on R, where F is the distribution of its i.i.d. increment.
Revuz (1975) points out that this class is much larger than the class of
absolutely continuous F . It is known (see, e.g., Sections 4 and 5, Chapter
3 in Revuz (1975)) that when viewed as a Markov chain with Lebesgue
measure as its invariant measure, {Sn}n≥0 is Harris recurrent if it is spread
out.

We adopt all notations introduced in Section 1. By an argument almost
identical to the one carried out in Section 3, we can prove

Theorem 4. Assume that {Sn}n≥0 is spread out and satisfies condition
(B) for some 1 < α < 2. Then for any non-negative Lebesgue integrable
function f on R,

lim sup
n→∞

n−1a
( n

log log n

) n∑
k=1

f(Sk) = Λ(α)
∫ ∞

−∞
f(x)dx a.s.(4.1)

where the constant Λ(α) > 0 is given as in Theorem 2.

Theorem 5. Assume that {Sn}n≥0 is spread out and satisfies condition
(C). Then for any non-negative Lebesgue integrable function f on R,

lim sup
n→∞

n−1a
( n

log log n

) n∑
k=1

f(Sk) =
√

2
∫ ∞

−∞
f(x)dx a.s.(4.2)
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