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Gaussian noise: Stratonovich regime

X1A CHEN? YAOzHONG Hu'

Abstract

In this paper, we investigate the hyperbolic Anderson equation generated by a time-independent
Gaussian noise with two objectives: The solvability and intermittency. First, we prove that
Dalang’s condition is necessary and sufficient for existence of the solution. Second, we establish
the precise long time and high moment asymptotics for the solution under the usual homogene-
ity assumption of the covariance of the Gaussian noise. Our approach is fundamentally different
from the ones existing in literature. The main contributions in our approach include the repre-
sentation of Stratonovich moment under Laplace transform via the moments of the Brownian
motions in Gaussian potentials and some large deviation skills developed in dealing effectively
with the Stratonovich chaos expansion.
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1 Introduction

In this paper we consider the hyperbolic Anderson equation

2
gtg(t,w) = Au(t,z) + W(z)u(t,z), (t,z)€RT x R?

(1.1)

u(0,z) = ug(z) and %(O,x) =ui(z), =cR?

run by a time-independent, mean zero and possibly generalized Gaussian noise W(:U) with the
covariance function

Cov (W(x), W(y)) =v(x—vy), =xy€ RY . (1.2)

As a covariance function the non-negative definiteness of +(-) implies that it admits a spectral
measure p(d€) on R? uniquely defined by the relation

~v(x) = /Rd ST (de) zeR?, (1.3)
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Throughout this work, we assume that v(-) > 0 and d = 1,2, 3. The system is set up in Stratonovich
regime in the sense that the product in (1.1) is interpreted as the ordinary (instead of Wick) one. The
equation (1.1) will be approximated appropriately by classical wave equations run by the smoothed
Gaussian noise W, (x). We shall provide the details of the construction of the solution in Section 2.

Our first concern is the condition to ensure the existence of solution. It is often formulated in
terms of the integrability of the spectral measure p(d€). In the Skorohod regime, where the product
between W (z) and u(t,z) in (1.1) is understood as Wick product, the condition ([1, Theorem 1.6],
[9, Remark 3.4] ) that (1.1) has a unique solution is

[ () o< 0

Back to the Stratonovich regime and still in the time independent setting, Balan (|2]) recently
proved that in the dimensions d = 1,2 Equation (1.1) has a solution if

/Rd <1+115\2>1/2“(d5) < oo (1.5)

In the setting of time-space Gaussian noise, Chen, Deya, Song and Tindel ([8]) establish the exis-
tence/uniqueness under a condition comparable to (1.5).

Our first main result is to obtain the best condition for the existence of the solution, which is to
remove the square root in (1.5). We can also allow the spatial dimension to be three as well.

Theorem 1.1. Let d =1,2,3 and assume that uo(x) =1 and ui(z) =0 in (1.1).

(i) Under Dalang’s condition

/R d 1+1|§’2u(d§) <0 (1.6)

the equation (1.1) has a solution in the sense of Definition 2.1 given in Section 2.

(ii) If the equation (1.1) has a square integrable solution u(t,x) that admits the Stratonovich
expansion (see (2.9)) for some t > 0, then Dalang’s condition (1.6) must be satisfied.

Roughly speaking, the system (1.1) in Stratonovich regime can be viewed as a randomization of the
deterministic wave equation

0%u + d

—(t,z) = Au(t,z) + f(x)u(t,z), (t,z) e RT xR

ot (1.7)

u(0,2) = ug(z) and %(O,x) =wu(z), =z€R?

with a deterministic potential function f(x) on R?. To this regard, it is hard not to notice the
stochastic representation constructed by Dalang, Mueller and Tribe (|11]). We devote the subsection
3.3 below to address this link and to add some new elements to the representation theory for wave
equations.

Our next topic is the ittermittency of the equation (1.1). More precisely, our concern is the asymp-
totic behaviors of the moments
EuP(t,z) and Elu(t,z)?



ast — oo or as p — oo.

To this end, we assume the homogeneity for the covariance structure:

y(ex) =c¢ % (z), xeR?, ¢>0 (1.8)

for some a > 0. Taking f(\) = (1 + A?)~! and v(d¢) = p(d€) in [9, Lemma 3.10] yields

[ 1 amtd) = anfe e mss i < 1) [T

pe 1+ €Y 8 T e Tptple

as far as either of the above two sides is finite. This shows that under the homogeneity (1.8) on
the noise covariance condition, Dalang’s condition (1.6) becomes “av < 2”. In addition (Remark 1.4,
[9]), the fact that (-) is non-negative and non-negative definite (for being qualified as covariance
function) requires that o < d. Further, the only setting where “a = d” is allowed under a < 2 is
when a = d = 1, or when () is a constant multiple of Dirac function (i.e., W is an 1-dimensional
spatial white noise, see Corollary 1.3 below for inttermitency in this case).

Theorem 1.2. Under the homogeneity condition (1.8) with 0 < o < 2Ad or with « =d =1 and
under the initial condition ug(x) =1 and ui(x) = 0, the following limits hold:

_ _ _ 1/2\ 3=a
— p _3—a ta/2M _ e
Jim 757 log Bu(t, 2) = —5—pi=e | - —— ;o p=1,2,--; (1.9)
o _ o [IML/2\ 3=a
pliq}op_iialogE|u(t,x)‘P: 3 2at§—a< élj\ia > , Yt>0, (1.10)
where
1/2
M = sup {</ Yz — y)92($)92(y)d$dy> / IVg(x)l2d:ﬂ} (1.11)
g€Fq R4xRd Rd
and

Fa={gew@y [ lowPas =1},
Rd
where W2 is the Sobolev space.

An interesting special case is when W (z) (z € R) is a white noise that symbols the derivative of
a two sided Brownian motion W (z) on R. The corresponding covariance () = do(-) is the Dirac
delta function and the spectral measure p(d§) = d€/(2m) is a multiple of the Lebesgue measure on
R. In this case by [4, Theorem C.4, p.307] (with p = 2 and 6 = 1), we have

14/3
M_Z 3

Thus we can write

Corollary 1.3. When W (z) (z € R) is an I-dimensional white noise

1
tlgglof?’/QlogEup(t,x) = 2</§p3/2, p=1,2,---. (1.12)
L —3)2 L4330
lim p~°*logElu(t,x)|P = =/ =t*, Vt>0. (1.13)
p—0o0 2V4
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In Skorohod regime ([1]), the high moment asymptotic theorem takes the same form as (1.10), while
the long time asymptotic theorem takes the form

_d-a 3—« 1 2MY/2N\ 3=a
1 3—a P — — 3—a
th_)nélot 3=a log E|u(t, )] 5 p(p—1)3 ( 1o > (1.14)

for p > 2.

We now mention some new ideas that are introduced in this paper. As usual, the solution can be
formally written in terms of Stratonovich expansion (2.9). Therefore, the level of investigation is
largely determined by our capability of handling the Stratonovich multiple integral S, (gn(', t, m))
(see (2.11) for its definition) for fixed n and for large n as well. To this regard, the most significant
observation made in this paper is the moment representation given in Theorem 3.3 that associates
the study of S, (gn(-,t,z:)) to the problem of Brownian motions in Gaussian potential. Another
notable input is the algorithm development related to the Gaussian moment formula (2.14), which
is crucial to, among other things, the establishment of a moment inequality (Lemma 5.3) for the
lower bound of the high moment asymptotics given in (1.10). Last but not least, some skills on
large deviations and Laplacian transforms are developed for dealing with Stratonovich expansion.

Here is the organization of the paper. In next section (Section 2), we introduce the multiple
Stratonovich integral and formally express the solution as Stratonovich expansion. In Section 3,
we establish the Stratonovich integrability for the functions g,(-,¢,z), develop the Fubini theo-
rem for the multiple Strotonovich integration and represent the Laplace transform of the multiple
Stratonovich integral S, (gn(~7 t, x)) in terms of Brownian motions in Gaussian potential. Section 4
and Section 5 are devoted to the proofs of Theorem 1.1 and 1.2, respectively. Some relevant results
about the moment bound of Brownian intersection local times and about multiple Stratonovich
integrals are provided in the appendix.

2 Stratonovich expansion and approximations

As usual by the Duhammel principle the mathematical definition of the hyperbolic Anderson equa-
tion (1.1) will be the following mild form

u(t,z) = up(t, x) +/

R [/0 G(t = s,z —y)u(s,y)ds|\ W(dy), (2.1)

where
(i) G(t,x) is the fundamental solution defined by the deterministic wave equation
0*G

W(t’ x) = AG(t,x)

G(0,z) =0 and %(O,x) =d(z), zeR?.

(ii) wo(t, ) is the solution to the deterministic part of the equation (1.1):

uo(t, z) = /Rd %G(tvm — y)uo(y)dy + /Rd Gtz — y)ui(y)dy .

Under the initial condition given in Theorem 1.1 and Theorem 1.2, ug(t,z) = 1;

(iii) the stochastic integral on the right hand side of (2.1) is interpreted as Stratonovich one (see
discussion below for details).



2.1 Green’s function

The fundamental solution G (¢, z) associated with (2.2) plays a key role in determining the behavior
of the system (2.1). Let us recall some basic facts. Taking Fourier transform in (2.2) we get the
expression for the fundamental solution

y (t,z)e x G

in its Fourier transform. In the dimensions d = 1,2, 3, the fundamental solution G(t, z) itself can
be expressed explicitly as

(t,€) € RT x R? (2.3)

1 —
511{\m|1st} d=1
[ (N} —
G(t.2) = 2n /2 — a2 d=2 (2.4)
1
—oy(d d=
47Ttat( li) 37
where o¢(dx) is the surface measure on the sphere {x € R3; |x| = t}. We limit our attention

to d = 1,2,3 in this work because the treatment developed here requires G(t,z) > 0. A scaling
property we frequently use (especially in the proof of Theorem 1.2) is

Gt,z) =t~ Va7 'z), (t,2) e RT xR?. (2.5)

2.2 Stratonovich integral

Before giving the definition of the mild solution we need to give a meaning to the Stratonovich
integral appeared in (2.1). We shall do this by smoothing the noise as follows

We(z) = g W(y)p-(y —2)dy, e>0, zecR?, (2.6)

_l=?

—4/2 exp ( ?) is the heat kernel. The covariance of W (z) is

where p.(x) = (2me)

E [ We(@)We(@)| = 2:( ~ ). (2.7)
where V. (%) = [paV(2)p(x — 2z)dz. Given a random field ¥(z) (z € R?) such that
/Rd U(z)We(x)dz € L2(Q, F,P) Ve >0,
We define the Stratonovich integral of {¥(z),z € R} as

/ U (z)W (dz) 2 lim U (x)We (z)da (2.8)
R4 e—=0t JRd

whenever such limit exists in £2(£2, F,P). We can also use the convergence in probability in above
definition. But as in most works on SPDE, £2(Q, F,P) norm is easier to deal with so that we
choose the £2(Q, F,P) convergence throughout this work. Notice that this definition implicates
that u(t,z) as a solution to (2.1) is in £2(Q, F,P) for all (t,z) € RT x R% After defining the
Stratonovich integral, we can give the following definition about the solution.



Definition 2.1. A random field {u(t,z),t > 0,2 € R} is called a mild solution to (1.1) iffot G(t—
s,x —y)u(s,y)ds is well-defined and is Stratonovich integrable such that (2.1) is satisfied.

To prove Theorem 1.1, we shall use the Stratonovich expansion (see [15], [14] and references therein
for the multiple Stratonovich integrals). Formally iterating (2.1) infinitely many times we have
heuristically a solution candidate

u(t, ) = an(gn(',tax)) (2.9)
n=0

with So(go(+,,2)) = 1. Here is how the notation S, (gn(-,,2)) is justified: The iteration procedure
creates the recurrent relation

Sn+1 (gnJrl('v t, $)) = /

R4

t
UO G(t—s,2 = y)Sn(gn(: s, y))dS] W (dy). (2.10)
Iterating this relation formally we have

Sn(gn (-1, 2)) (2.11)

=/ [/ er(trn,ynx>-~G<r2n,yle)}W(dm)--W(dxn)
(Rd)m [0,2]%

= /(Rd)n [/[o,t}g ds< ﬁ G(sk — Sp_1, Tk — xk_l))] W(dzy) -+ W(dzy,)

k=1

= /(Rd)n gn(x1, -z, t,x)W(dxy) - - W(dz,) (say),

where [0,]2 := {(s1,---,sn) € [0,t]" satisfying 0 < s1 < sy <--- <s, <t}, and the conventions
g = x and sy = 0 are adopted and the above second equality follows from the substitutions
sp=t—rp_gy1and oy =yp_gr1 —x (k=1,--- ,n).

Thus, the notation “S, (gn(-,t,aj))” is reasonably introduced for a n-multiple Gaussian integral of
the integrand

gn(fljlu" : ,xn,t,x) :/

[0,]%

<HG(Sk — Sp_1,Tk —xk_1)>d81-~dsn, (2.12)
k=1

(n=1,2,---). In Section 3, the Stratonovich integrability of g, (-, ¢, z) shall be rigorously established
(see Theorem 3.8 and see also Theorem 6.2 for Stratonovich integrablity of general kernels) and the
Fubini’s theorem posted in (2.10) shall be mathematically ratified (Remark 3.10).

The above argument gives us the impression that the existence of system (2.1) can be implied by
the convergence of the random series defined by (2.9) in a certain appropriate form. This will
be justified rigorously in Section 4 after we have more understanding of the multiple Stratonovich
integral Sy, (gn(-,t,x)) with the specific kernel (2.12).

The multiple Strtonovich integration is defined as follows.

Definition 2.2. Let f : R™ — R be measurable so that for every e > 0
/ flay - ,xn)(HWg(xk))dxl..-dzn € LY(Q, F,P).
(Rd)n k=1
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Then we define the n-multiple Stratonovich integral of f as

Su(f) = /(Rd)n Py o)W (day) - W (da) (2.13)

= lim flay--- ,$n)<HWg(xk)>d1:1--~d:En
k=1

=0T J(rd)n

whenever the limit exists L2(Q, F,P).

Remark 2.3. Along with the set-up of our model, the Stratonovich integrand f is given as a measure
in the dimension three (d = 3). Indeed ([19]), Definition 2.2 can be extended to the setting of
generalized functions f. A detail is provided near the end of this section for the construction needed
ind=3.

The following lemma provides a convenient test of Stratonovich integrability that we shall use in
this work.
Lemma 2.4. The n-multiple Stratonovich integral S, (f) exists if and only if the limit

n

lim E{ /(Rd)n f(xl,---xn)<HWE(xk)>dx1-~-dxn}

e,/ =0+ i)
X {/ f(:rl,--~xn)(HWef(xk)>dx1-~-dxn}
(RI)n k=1

exists

Proof. The existence of the limit in (2.13) is another way to say that the family

Zsz/ f(:vl,'--xn)<HWE(xk))dazl---dxn, e>0,
(Rd)n k=1

is a Cauchy sequence in £2(Q, F,P) as ¢ — 07, which is equivalent to the lemma. O

We refer to Theorem 6.2 for the exact conditions on f so that the multiple Stratonovich integral
Sn(f) exists in L2.

The definition 2.2 can be extended to a random field f(z1,--- ,2,) in an obvious way. For most of
the time in this paper, however, we deal with a deterministic integrand and demand some effective
ways to compute the expectation of multiple Stratonovich integral of deterministic integrands. To
this end let us recall [18, p.201, Lemma 5.2.6] that

2n
El]or= > 1II Eoin
k=1 Delly, (5,k)eD
(2.14)
2n—1

E H g =0,
k=1




where (g1,---,g2n) is a mean zero normal vector, and II, is the set of all pair partitions of
{1,2,---,2n}. As a side remark, #(II,) = )l Applying (2.14) to g = W, (x)) in the case

2nnl
of deterministic integrand f, and taking the e-limit, we have

E [/ Fla, ,xznl)W(dxl)---W(dxgnl)] —0 (2.15)
(Rd)2n—1
and
E / Fa,- - ,a:gn)W(dxl)---W(dxgn)] (2.16)
(Rd)Qn
= 'y(a:'—az))f(a:g--,xn)daz'--dxn
> /(W <(j,££p =) ) f@n,- e s o)y - das

under the Stratonovich integrability on the left hand sides. In particular, the expectation of a
(2n)-multiple Stratonovich integral is non-negative if the integrand is non-negative.

Since Dalang’s condition (1.6) encompasses the cases where the covariance function (-) exists only
as a generalized function (e.g., y(-) = dp(+) in d = 1), the meaning of the multiple integral on the
right hand side of (2.16) needs to be clarified. Indeed, by (2.14)

2n

E/(Rd)2n fl@r- oo son) [T Wela)

k=1

- /(Rd)zn < H 725(x]‘ - mk)) f($1, te 7$2n)d;1;1 - den
(j,k)ED

where, we recall
Vel) = /Rd Y(Wpe(z —y)dy, €>0, xR,

Inspired by (2.13), we therefore define

/(d)2 ( H ’y(a:j—mk)>f(x1,~-- , Top)dxy - - - dToy, (2.17)
R n
é lim ( d)2 < H "}/ge(wj—l'k)>f($1,-" ,xgn)dl'l“'dxgn

R n

whenever the limit exists.

According to Theorem 6.2 and Remark 6.3, the £2-convergence in (2.13), Definition 2.2 implies
the L£P-convergence for any p € [2,00). Consequently, for any integers li,--- I, > 1 and the [;-
multiple variate functions f; (1 < j < m), the Stratonovich integrability of fi,---, f,, implies the
Strotonovich integrability of fi ® -+ ® f,,, and

Sttt (1@ @ ) = [[ S0, (f5) - (2.18)
j=1



According to (2.15), in particular,

E H Si;(fj) =0 whenever Iy + -+, is odd . (2.19)
j=1

Given two Stratonovich integrable functions f(z1,-- ,zy) and g(x1,- -+ ,x,), by (2.16) and (2.18)
(with m = 2),

ESn(f)Sn(9) 220,
D; /Rd ..'d$2n((]£[€D'Y i — Tk )f(ajh ’xn)g(xn_,'_l,... 7‘T2n)~

To end this section we take the chance to address an inconvenient fact from (2.4) where G(¢, ) is
defined as a measure rather than a function in d = 3 dimensional Euclidean space. In this case, we
can combine gy (x1,- -+ ,xy,t,x) and dzy - - - dz,, together to have that

gn(xla te ,mn,t,x)dazl codxy, = /

X 1
———————Os; s, (xk—l,dka)>d81---d8n
(0,2 (l;[l Am( )

Sk — Sk—1
A
= b (dey - - day)

defines a measure on (R3)", where o4(x,dy) represents the surface measure on the sphere {y €
R3; |y — x| = t}. For example, in defining Sy, (gn(-,¢,)) by (2.13) we use the convention

gn(x1, - ,mn,t,m)< Ws(a:k)> dxy - -dzp, :/ ( W (g >un (dxq---dxy) .
/(R3)" kl;[l (R3)n H

It will be verified in the future that as e | 0+, the above sequence converges in L?(§2, F,P) and the
limit is denoted still by

/ gn(‘rh"' 7xn7t7 JI)W(d.’El)W(diUn)
(R3)"
with

EU@W P ,xn,t,x)W(d:L"l)---W(dxn)r (2.21)

-y [ (10

Wy = ) i .+ ).
Delly, (j,k)eD

and the integral on the right hand side of (2.21) will be justified (Lemma 3.6) together with dimen-
sions d = 1,2 by the approximation procedure proposed in (2.17).

3 Stratonovich moments

In the following discussion, B(t), Bi(t), Ba(t), - - - are independent d-dimensional Brownian motions.
We assume independence between W and the Brownian motions and use the notation E, for the



expectation with respect to the Brownian motions with starting point . We adopt the notation

e=(e1, - ,epn) and € = (€41, ,€2y) for €1, -+ ,€9, > 0 and set
n
Snf(gn(-,t, 1:)) = /( ) gn(T1,+  Tp,t, ) ( H Wk, (xk)>d:v1 coedag . (3.1)
Re)r k=1
For any pair partition D € II,,, set
Fg/(tl,tQ) :/ d dLITQn( H ’yfy‘i’fk — )) (32)
(Ret)2n (j,k)eD
X gn(xly cre T,y L, O)Qn(wn—i-l, cee, Top, €, O) .

Again, d = 1,2, 3.

3.1 Strantonovich moment representation

Lemma 3.1. Letn =1,2,---. Under Dalang’s condition (1.6),
(i) For anyn>1, €1,--- €, >0 and A >0
o0
/ e_)‘tSn’E (gn(-,t,x))dt (3.3)
0

2

G)n /OOO P { - %t}Ex /[o,ﬂz e klill W (Blon)) o

(ii) For any A\, A2 >0
oo oo
/ / 67)‘1“7)\2152}735/ (tl, tg)dtldtg (34)
o Jo

Ay f1\2n [° [ )\%tl + )\%tg
< — A SN
=y (2) /0 /0 dt b eXp{ 2 }

X Eo/ dsy---dsoyn [[ (B (si) = Buy(sk))
[O)tl]z [0 t2]n (j,k:)ED

A
2

where the map v: {1,2,--- ,2n} — {1,2} is defined as: v(k) =1 for 1 <k <n and v(k) =2 for
n+1<k<n.

(i1i) For any A1, Ao >0

limo/ / e MRl D (4 o)t dity (3.5)
€,6— ’
A /\ SRR
! 2 / / dtldtQ exp ! —; 2 }
X Eo/ dsy---dsap H Y(Bug(55) = Buiy (58)) -
[0,t1]% x[0,t2]%

(j,k)eD

10



Remark 3.2. Under Dalang’s condition (1.6), the intersection local times (Lemma A.1, [5])

/otl /;2 Y(B(s) - B(r))dsdr and /Otl/: 1(Bi(s) = Bolr))dsdr, - t1,t2> 0

are properly defined, so are the multiple time integral on the right hand sides of (3.4) and (3.5) in
the spirit of Fubini’s theorem. By Lemma 6.1, the moments of the intersection local times have (at
most) polynomial increasing rate in t1,ts. Consequently, the right hand sides of (3.4) and (3.5) are
finite for any A1, Ay > 0.

Proof. The reason behind (3.3) is the simple fact that

oo 1 oo
/ e MG(t, x)dt = 2/ e_)‘2t/2p(t,x)dt, r eR? (3.6)
0 0

for any A > 0, where p(¢, x) is the density of B(t):

BT G b R
exp 5 ] (t,x) e R™ x R®.

Indeed, both sides have the same Fourier transform

weal [ o0 _yysin [t 1
/]Rdeé [/0 e ’\tG(t,x)dt]dm—/o e M €] dt:)\2+’£|2
L e 1o _/ i 1/00 22t/
= 2/0 e exp{ 2|£\ t}dt— Rde 5/, e p(t, z)dt|dx

for every ¢ € R%

Recall the identity (Lemma 2.2.7, p.39 in [4])

n

/ e‘”/{ | dsy -~ dsp [ [ o(sk — sp-1) = A7" H/ p(t)e dt (3.7)
0 0,4 0

k=1 k=1

with the convention sg = 0. Using it twice,

oo
/ e_Atgn(xla' T ,fL’n,t,fE)dt (38)
0
= / dte—’\t/ dsy---dsp ( H G(sp — Sp—1, Tk — mkl))
0 [0,t]2 k=1
n 00 1\ 7 n 00
=)t H / e MGtz — xp_1)dt = (5) A1 H / e NU2p(t a2y — mp_y )dt
k=10 w10

A/Iyn [ a
5 (5) / dte A2'5/2/ dsy---dsp < Hp(sk — Sk—1,Tk — xkl)) .
0 [0,t]2 k=1

11



Hence,

/ ef)‘tSnya (gn(-, t, x)) dt
0

- / dte_/\t/ dzy - dengn(T1,- -+ Tn,t,T) < H W, (xk)>
0 (Rd)"

k=1

A/1\n [ A2

=3)" [ weol{ -5} [ aneean

X/(d) dxl---dﬂ?n<Hp(Sk—$k1,36k—3?k1)><HWEk($k)>-
RE)™ k=1

k=1
Given (sq,-++ , sn) € [0,¢]%, the random vector (B(s1),---,B(sp)) has the joint density

n

A
f517'“75n(x17 Tt ,.Tn) = Hp(sk — Sk—1, Tk — xk—l) .
k=1
So we have
/ dX< I o(sk = sp—1. 26 — xkl)) < 11w, (xk)> =E, [ We (B(sk)) -
(R)™ k=1 k=1 k=1

This completes the proof (3.3).
By (3.8) we have

o
/ / e M2t D (4 4y diy dt

1 2n SRR
>\1)\2 / / dt1dts exp L+ Ayl } / dsi---dsop
2 2 [07t1]2><[07t2}2

d n cide —
/Rd 2n 2 ( H ryj—i_ k )>

(3,k)eD

X

X <p si,z1) | | p(sk — Sk—1, 2k — xk1)>

2n
X (P(Sn+1,$n+1) I »Csk = s, 0 — $k—1)> :

k=n-+2

For fixed (s, -, S2,), the function

f(wy, - w2,)

n 2n
= (p(shwl) T pCsk = sk, 20 — xkl)) <P(8n+179€n+1) IT pCsk— sk, 26 — 2i1)

k=2 k=n+2
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is the density of the random vector (Bl(sl), <o, B1(sn); Ba(sn+41), - - BQ(SQn)). We have

o0 o0
/ / €7A1t17A2t2FE',D€, (tla tQ)dtldtQ

)\2t A3t
)\1)\2 / / dtldtg exp ! + 2 } / d81 o dSQn
2 [0,£1]7 x[0,£2]7

H Yes+er (Bu() (85) = Bury (s1)) -

(J,k)eD

By Fourier transform

Eo H Yej+er (Bu() (55) — By (sk))

(3,k)eD
€+ €

—/ ( 1T u(dﬁj,k)> exp{ - > - k’fj k’2}
®D™ N\ (jk)eD (j.k)ED
x Eo eXp{ Z ik ( (85) — Bv(kz)(sk))}

(4,k)eD
€+ €

:/ ( H u(dﬁj,k)> eXp{— Z ! k’fgkp}

®D™ N\ (jkyeD (j.k)ED
1
XeXP{ - 2Var< > G (Bug(sy) — Bv(k)(sk))>}~
(4,k)eD
We have
/ / _Altl_AQtQFD (tl,tQ)dtldtQ
0
2 2
’\1’\2 / / dtydty eXp At tz}/ dsy - - - dsop,
2 [0,61]7 x[0,t2]7
€; + €
x / . < 11 M(déj,k)> eXP{ D k‘fﬂ |2}
RD™ N\ (jk)eD (j,k)ED
X exp{ — §Var < Z gj,k . (BU(J)(S]) — Bv(k)(£k))> }
(4,k)€D
Therefore

00 00
/ / 6_A1t1_>\2t2F£€/(t1,tg)dtldtg

2n >\2t M3t
)\1)\2 / / dt1dts exp L+ 2 } / dsy---dsaop
2 [0,t1)7 x[0,¢2]2

X/(Rd)n< 11 Md&j’”) exp{—2VaI'< Y &g (Bug(ss) — Bv<k)(3k))>}

(J,k)eD

:/ dsy---dsop H ’Y(Bv(j)<3j) _Bv(k)(sk))'
[0,61]Z x[0,2]% (j,k)ED

(j,k)eD

13



We have proved (3.4). Finally, taking limit in (3.9)

lim / / _Altl A2t2FD (tl,tg)dtldtg

€,/ =0

)\1)\2 /\2t1 + /\2t2
1 (2 / / dt1dts exp { f} /[‘O’tl]n X [0,ta] dsy -+ -dsop

y /(Rd)n < H ng,{)) exp{ - ;Var< Z ik - (Bug)(s5) — Bv(k)(sk))>}

(4,k)eD (4,k)eD

— dSl-..dSQn ’7 B'U (S)tik(Sk)
/[O,tl]zx[o,tg}g H ( (H\=3 (k) )

(4,k)eD

which leads to (3.5). O

Theorem 3.3. Under Dalang’s condition (1.6), the function g, (-, t,z) defined in (2.12) is Stratonovich
integrable in the sense of Definition 2.2. Furthermore,

2

/OOO e Sy (gn (- t,x))dt = ;,;(;)n/ooo eXp{ - %t}Ex [/:W(B(s))ds]ndt (3.10)

almost surely for any A > 0.

Proof. We first explain the time integral appearing on the right hand side of (3.10). It is defined as

/tW(B(s))ds 2 lim tWE(B(s))ds in £2(Q, F,P, ®P),
0

e—=0t Jo

where the existence of the limit on the right hand is established in Lemma A.1, [5] under Dalang’s
condition (1.6). Conditioning on the Brownian motion B, it is a mean zero normal random variable

with the variance o
// v(Bs — By)dsdr
0Jo

whose distribution does not depend on the starting point x of the Brownian motion. So we have

E®Ew[/0tW(B(s))ds]n (3.11)

n

WEO [fofo v(Bs — B )dsdr] when n is even ;
0 when n is odd.
The above n-th moment is finite ((6.1), Lemma 6.1 below) for all n = 1,2,---. Consequently, the

quenched moment
n

E, [/OtW(B(s))ds}

exists almost surely. In addition, the bound provided in (6.1) in the Lemma 6.1 below makes the
right hand side of (3.10) well-defined for any A > 0.

14



Taking € = -+ = €3, = ¢ in (3.3), we have
2

/Ooo e M8, . (gn(-,t,))dt = %(%)n% /Ooo exp{ - %t}Ez [/Ot Wg(B(S))ds] ndt,

We now let § — 01 on both sides. Notice that

lim Ex[/ot W(;(B(s))ds]n :ExUOtW(B(s))ds]n in £2(Q, F,P).

6—0t

In addition, by Cauchy-Schwartz and Jensen inequalities

E{Ex[/ot W(g(B(s))ds]nF < Eo ®E[/Ot W(;(B(s))ds} "

s/ pg(y)EO®E{/{:W(y—|—B(s))dsrndy:E0®E[/OtW(B(S))dS]2n

_Eo[// ))dsdrr.

By Lemma 6.1, the right hand side has at most a polynomial increasing rate in ¢. By the dominated
convergence theorem, we have

i, OOO exp{ -~ /\;t} [/ Ws(B(s ))ds} gt = /OOO exp{ -~ /\;t}Ex[/OtW(B(s))ds]ndt
in £2(Q, F,P).

The Stratonovich integrability of g, (-, ¢, ) shall be established in Theorem 3.8 below to make sense
of left hand side of (3.10). By stationarity in x, all we need is the following convergence

lim e_’\tSn,e(gn(-,t,O))dt:/ e S, (gn(+1,0))dt in L2(Q, F,P).
6—0* Jo 0

This is given in Part (ii), Theorem 3.8. O

Corollary 3.4. Assume Dalang’s condition (1.6). Let p > 1 and n > 1 be any integers. Given
)\17"' 7)\p>0;

p

p
/(R+)P dtl..-dtpexp{ —j;)\jtj} Z ]EHSZJ Ql t;,0) ) (3.12)

li++lp=2n j=1

Q)R [ e - 33)

where By(t),- -, Bp(t) are independent d-dimensional Brownian motions starting at 0.

15



Proof. By Theorem 3.3,

P P
/(R+)p dty -+~ dtyexp { - ijtj} S TS (o, 0)

I+ Hlp=2n j=1

= Z H/ AtSl gl tj, ))dt
li++lp=2nj=1
()L o] woon]

I+ +lp=2n *j=1 j=1
1\2n /& Aj tj 2n
=) (I3 [ {3 2 e 32 [ ona]

where the last step follows from Newton’s multi-nominal formula. By the fact that conditioning on

the Brownian motions,
p t;
> / W (B;(s))ds
j=1""9

is normal with zero mean and the variance
t; tr
Z / / — By(r))dsdr
7,k=1

we have

E[jzp;/:j W(Bj(s))ds] " (22[2!! [ Zp: /Otj/otk'y(Bj(s) ~ By(r))dsdr| . (3.13)

Thus, we have proved (3.12). O

Corollary 3.5. (1) For any A\, A2 >0

/ / dtldt26_)\1t1_/\2t2ESn (.gn('a tla 0))Sn (gn('a t27 O)) (3.14)
0 0
. 1N A 1 t . " 2, n
= (Z) R [/O W(Bl(s)ds] [/O W(Bg(s))ds] .
(2) For any € = (€1, ,€,) and € = (€pt1,-* ,€2)
/ / dtrdtse M EES, (g 11,0)) e (g0 (-, £2,0)) (3.15)
0 0

< [T dtdtae RS, (0, 1,0) S, (00 12,0)).
0 0

Proof. (3.14) is a direct consequence of Theorem 3.3. By the definition of Sn,e((gn(~, t, x)) given in

16



ESn,e (gn('a t1, O))Sn,ﬁ’ (gn('v la, 0))
2n

— ]E/ d)2 dl‘l e dl’Qngn(xl, e 7$n7t17 O)gn(l‘nJrla e a$2n7t27 0) H Wek (':L'k‘)
(Rdy2n

k=1
Z/Rd% ...dw2n< T oo ))

Dell, (3,k)eD
X 9n(331> R 77 tlv O)Qn($n+1a cr, X2n, t27 0)
= Y Fhi(t,t),
Dell,

where the second equality follows from (2.14) with g, = W, (x) and Fz?e/ (t1,t2) is given in (3.2).
By (3.3), we see

/ / dtldtze—m—mESn,e (9n(+11,0)) S (g -+ 2, 0))

/\ /\ 2n )\2t Mt
! 2 / / dtldtQ exp L+ 2 }

2
x Eog Z / 51 -+ - dsop, H W(Bv(j)(sj) — Bv(k)(skz)) ]
Dell, [0,t1]2 x[0,t2]2 (jk)ED

For any permutation ¢ on {1,---,2n} with o({1,--- ,n}) ={1,--- ,n} and c({n +1,--- ,2n}) =
i1 2n)

Z /0 s1-- - dsop, H Y(Buy(j)(So(5)) = Buk)(So()))

petr,, Y 0:t1]Z x[0,t2]% (j,k)eD
= Z / dsy---dsop H ’V(Bv(j) (Sj) - Bv(k) (Sk)) )
Detl,, 7 [0:t1]% x[0,22]2 (j.k)ED

Therefore

Z/ dsi--dson [] v(Bug)(s5) — Bogey(si))
Det,, 7 [0:t1]2 x[0,t2]% (j,k)eD

n! Otl ><[0 tg]"

Dell, (4,k)eD

A crucial observation is that

/ dsi--dson [[ v(Bug)(s5) — Boge(se))
[Otl]nX[OtQ]" (j,k)GD

v(g) v(k)
H / / U(j Bv(k)(r)))dsdr .

(4,k)eD

Applying (2.14) conditionally on the Brownian motions to the 2n-dimensional normal vector

n n

(/()tlw(Bl(s))d5>"' v/otlw(Bl(s))ds, /OtzvV(BQ(s))ds,-.. ,/OtQW(Bz(s))ds>

17



the right hand side is equal to
t1 | n ta n
E[/ W(Bl(s))ds} [/ W(Bz(s))ds} .
0 0

/ / dtldtge_)\ltl_AQtQESn’E (gn(-, t1, 0))57%6/ (gn(-, to, 0))
0 Jo

)\1 )\2 )\2751 + )\2t2
= 4 / / dtldtg exp 5 }

><IE0®IE[/O W (Bi(s ))d} [/0 W (Ba(s))ds ]n.

Finally, (3.15) follows from (3.14). O

In summary

3.2 Stratonovich integrability and Fubini’s theorem

Recall that the function FT,(t1,ts) is defined in (3.2).
Lemma 3.6. Under Dalang’s condition (1.6), the limit

lim F (tl,tg) (316)

66—)

exists for any n > 1, t1,t2 > 0 and any pair partition D € 1l,,. Further, the limiting function is
continuous in ti,ts.

Remark 3.7. In view of (2.17), Lemma 3.6 justifies the definition

/ doy--deo ([T (@5 —2n) )gn(@r, - n, 01, @)gn(@ns, - s wan, 12,0)
(R)2n

(3,k)eD

A

= lim d dm‘Qn( H 76 —.%'k >gn($17"' 7xn7t17x)gn(xn+la”' 7$2n7t2a0)~
=0T J(rd)2n (

j,k)eD

Proof. Clearly, F: o D, (t1,t2) is non-negative, non-decreasing and continuous on RT x R,
By (3.5), Lemma 3.1, the limit
o oo
lim / / e_Altl_AQtQFEDE/ (tl, tg)dtldtg
e’—=0 Jo Jo ’
exists for any Ay, Ao > 0.

By continuity theorem for Laplace transform [17, Theorem 5.2.2], therefore, the function FP(t1,ts)
weakly converges to a non-negative, non-decreasing and right continuous function FP(t1,t2) on
(R*)2, ie

lim F (tl,tg) = FD(tl,tQ)

664)

for any continuous point (t1,ts) of FP and

00 oo 00 00
lim / / 6_/\1t1_>\2t2F£/(t1, tQ)dtldtg = / / €—>\1t1—)\2t2FD(t1’ tg)dtldtg . (3.17)
0 0

e,e'—=0 Jo

18



(Actually, Theorem 5.22, [17] is stated for probability measures on (R*)?. The case of general
measures on (RT)? can be derived as in the proof of [13, Theorem 2a, Section 1, Chapter XIII].
Although this theorem only considers measures on R* its extension to (R*)? is routine).

To establish the existence for the limit in (3.16) and therefore to complete the proof, all we need is
to show that FP(t1,ts) is continuous on (R*)?2 so

hm F (tl,tg) = FD(tl,tg), th,tg > 0. (3.18)

65

We will do it by establishing

1i ((tite) — FXL(ty — 61,ta — 6 0. 3.19
61,5330 sup{ (t1,t2) — (t1 — 01,t0 — d2)} = (3.19)

Write >
F€7€/ (t1,t2)

= / dxy--- d$2n< H Vej+er (Tj — xk)) / dsy - --dsap
(Rd)2n [0,t1]7% X [0,t2]7

(4,k)eD

X <G(S17iﬁ1) HG(SZ — 81-1,T] — 5611)

=2

2n
X <G(8n+1,$n+1) I GGsi—sizr,ak — Svk—1>
k=n+2

=& ([0,61]2 x [0,82]2)  (say).
To prove (3.19), all we need is

lim sup e ({[0,11)2 x [0,t2]2 3\ {0, 11 = 81]22 X [0,12 = &1]2}) = 0.

01,02—=0F ¢ €

By the extension G(¢,z) = 0 for ¢t < 0, we can extend & ¢ () from a measure on (R*)2 x (RT)2 to
a measure on (RT)"™ x (RT)" in an obvious way. Then by the relation

{[O,tl]”x[o tQ"}\{Otl—(S] [0 tQ (51] }
([0 tl X { 0 tz \[0 to — ) ( 0 tl 0 t1 — 51]2} X [0,t2]2>
U

U
<[0 tl X { O tg n 1 tg —(52,t2 }) ( 0 tl n 1 [tl —(51,t1]} X [0,t2]2>

the problem is further reduced to

lim sup € ([O,tl]Z % [0, 8] x [to — 4, tQ]) =0 (3.20)
d—=0tF ¢ ¢
and
lim sup & ([o,tl]z—l x [t — 0, t1] X [o,t2]g) —0. (3.21)
d—=0t ¢ ¢
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Due to similarity, we only prove (3.20). By Fubini’s theorem

Eeir (10,112 x [0,42]27 x [t = 6, ]

= dxq--- d$2n—1< Veite - )> / dsy---dsap—1
/(Rd)2n1 H it k [O,tl]ZX[O,tQ}Tl

(4,k)eD’

n 2n—1
X <G(81,$1) H G(s;— s1-1,7 — I‘l—1> <G(Sn+1,$n+1) H G(s;— s1-1, 71 — ﬂ?k—1>

=2 k=n—+2
)

X / dT2n Ve +ean (T2n — Tjo) G(s2n — S2n—1, Tan — T2p—1)dS2n ,
R4 to—0
where 1 < jo < 2n — 1 satisfies (jo,2n) € D and where D’ € II,,_; is given by D' = D\ (jo, 2n).
By Fourier transform and Fubini’s theorem
to

/]Rd dx2n’75j0+€2n (l‘2n - xjo) s G(SQn — S2n—1,T2n — x?n—l)dSQn
to—

to—San—1
= /d A0 Ve +ean (T2n — Tjo) / G(s, Tan — Tan—1)ds
R 0

V(tQ—SQn_l_(S)

- [ uages{ - 2y [0

\/(tngQn_lfé)
X /d exp {zf - (zon — xjo)}G(s, Ton — Top—1)dToy, .
R

Using (2.3), the right hand side is equal to

[ ptagyexo { = LT it (a1~ )} [ N

0V(ta—san—1—9)

X /d exp {i€ - (Ton — Tan—1) }G(S, Tan — Tan—1)dTon
R

to—S2n—1 :
- / p(dg) exp{ S Z S + . ’5|2 + i€ - (xon—1 — xjo)}/ sm(]f\s)ds

0\/(t2—82n71—5) ’g‘
to—San—1 3
< 1(d€) ‘/ sin([€ls) , |
Rd OV tz Son—1— 6) ‘5’

Notice that

/tz—sgn1 sim(]f\s)ds _ cos (0 V (ta — sop—1 — 0)|&| — cos(ta — san—1)[¢|
0

\/(t2—82n71—5) ‘§| |‘£‘2
2 JEl((t2 = s2n1) — OV (tg — s2p1 — 6))
= @Sm 5
to — Sop_ 0OV (tg — 89,1 — 0
X sin €] ((t2 — s2n-1) + . (t2 — s2n—1 ))_

By the bounds 0 < (t2 — s2,-1) — 0V (t2 — s2,—1 —0) < J and |sinf| < |6

e in(lels) 0
[ ds\ /O S| < anasuel < v +2 u(de)

V(ta—san_1—5) (el=ny 1617
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for any N > 0.
In summary, there is a 3() > 0 independent of (e, €’) such that
to
/d dT2n Ve +ean (Tan — Tjy) / G(S2n — 8201, Tan — T2p—1)ds2n < B(0)
R to—0

and that 3(5) — 0 as 6 — 0T. Consequently,

Eeir ([0, 12]2 x [0,42)27 x [t = 6, 2] ) < BO)Acr(t1,12)

where
AE,E/ (tl, tg) = / dx1 -+ drop_1 < H 7€3+€k( xk)) / dsy - dsop—1
@~ (k) (0,42)2 [0,
n 2n—1
X <G(81,l‘1) TG —si1,2— xl—l) <G(5n+1axn+1) I Glsi—si1,m - fEk—1> :
=2 k=n+2

To establish (3.20) and therefore to complete the proof, it suffices to show that

sup AE75/ (tl, tg) < 0. (3.22)

€€/

Indeed, by a computation similar to the one used for (3.4)

/ / /(t, D) dtdt
2n+1 00 5 r
— / / dtdt exp { — t—l_t}]Eo/ dsy - -dsop—1
2 o Jo 2 [0,6] x [0,

x JI 7(Bug)(si) = Buy(si))

(J,k)eD’

for any €,¢’. The above right hand side is finite by the fact (Lemma 6.1) that the moments of
Brownian intersection local times have polynomial increasing rates in time.

Finally, by non-negativity and monotonicity of A¢ ¢ (t,7) in ¢ and ¢, (3.20) follows from the bound

sup Ace(ti,t2) < exp{ti + tz}sup/ / (t, t)dtdt < oo .

66

This completes the proof. [J

Keep in mind that the proof of Theorem 3.3 depends on the Stratonovich integrability of g, (-, ¢, z)
and the £2-convergence of the Laplace transform

/ e_)‘tSm6 (gn(-,t,x))dt ase— 0
0

that are installed in the following:

Theorem 3.8. Under Dalang’s condition (1.6),
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(i) the L2-limit

lim / gn(x1, +  Tp, b <H )dazl ~dxy, (3.23)
(RE)"

€1, en—0F

exists for any n > 1 and (t,2) € Rt x R Consequently, gn(-,t,x) is integrable in the sense
of Definition 2.2 and the limit in (3.23) is Sy (gn(:,t, 2)).

(i) for any X > 0,

lim e S e (gn(-t,x))dt :/ e S, (gn (ot x))dt  in L2(Q, F,P). (3.24)
0

e—0 0

Proof. By Lemma 2.4, all we need is to show

lim ES, 6(gn (e t,a:))SmE/ (gn(‘,t,x)) , (3.25)
e,e/ =0t
exists, where Sy, (gn’e(-,t,x)) is defined in (3.1) and where ¢ = (€541, - , €2,,). We have

Esn,e (gn,e('> t7 x))Sn,e’ (gn('a t, iL'))

2n
- /(Rd)2 dzy - drongn(®1,- -+ @ns 1, 0)gn(Tngr, -+ Ton, 1, 0)E< H WGk(mk)>
' k=1

= > vordron | T vere (@ — @) )gn(@r, oo 2,1, 0)gn (T, - w20, 1, 0)
Rd)2n )

Dell, (4,k)eD

Z D(t1,ta),

Dell,

where the second step follows from (2.14) with g = W, (1) (k = 1,---2n). Therefore, the existence
of the limit in (3.25) follows from Lemma 3.6.

We now come to Part (ii). Notice that

B[ e Snclont i = [T Sl )
— /OO/OO e MRS, (g, (- 1,0)) Sne (gn (- £, 0)) dtydt

_2/ / MOHDES, (gn.e(+111,0)) Sn (gn (-, t2,0)) dtrdt

/ / NOHDES, (ga (-, 11,0)) S (gn (-, t2,0)) dtrdty

2

For the first term

// dtidtae” (t1+t2)ESne(gn('vtla0>)Sn,e(gn('7t2a0))dt1dt2

= > / / D (1, to)dtydty .

Dell,
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The function FP(ty,t2) appearing in (3.18) is identified as

FD(tbtz)Z/(Rd)%dm“-dﬁzn( I @ —56k>

(4,k)eD

X gn(®1, s Ty t,0)gn (Tng1, -+ 5 Ton, t,0).

y (3.17) with A; = Ay = A, therefore,
lim / / dtldt2€_>\(t1+t2)E‘S’n,E (gn('atlv 0))Sn,6 (gn(7t270))dt1dt2

e—0
Z/ / dtidtoe™ Altr+t2) drq d$2n< H v(x xk>

Delly, (R)2m (4,k)eD

X gn(T1, s Ty ty 0)gn (Tnt1, - 5 Ton, t, 0)

(o) o
_ / / dtrdtse OHIES, (o (-, 2, 0))Sn (gn (- £2,0))dt 1z
0 0

where the last step follows from Stratonovich integrability stated in Part (i) and the identity in
(2.20).

Using Part (i),
ESn,e (gn('a i1, 0)) Sn (gn('a ta, O) = el/lglo ESp, (gn('a t1, 0))Sn,e’ (gn(', lo, 0)) .

By the fact that ES,, (gn(-, t1, 0))Sn (gn(~, to, 0)) > 0 and by Fatou’s lemma,

fimint [ [ ddtae OB, (g, 11,0)) S, (901 12,0)
0 0

e—0

> [ =At1+t2) 15m . .
_/0 /0 dtidtse hrgri}%leSnve(gn(,tl,O))Sn(gn(,tg,()))

:/ / dt1dtoe=1tt2) hm ESnE(gn( t1,0))Sn.e (gn (-, t2,0))
o Jo

_ / / dtrdtze  OHIES, (ga(-, 1, 0))Sn (gn (- £2,0))
0 0

where we have used Part (i) in the last two steps.

Summarizing our argument,

00 00 2
%E[/O e—*tsn,e(gn(-,t,o))dt—/o e—Afsn(gn(-,t,o))dt} =0.

This competes the proof. [
We now establish Fubini’s theorem for the multiple Stratonovich integral with the integrand g, (-, ¢, z).

Lemma 3.9. Under Dalang’s condition (1.6), we have

lim +Sn75(gn(~,t,x)):/Rd</O G(t—s,y—ﬂc)Sn_1(gn_1(-,S,y))ds>W51(y)dy (3.26)

€2, ,en—0
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and

lim (/0 G(t— s,y — 2)Sp-1(gn-1(-, s, y))d5> We, (y)dy = Sy (gn(-st,2)), (3.27)

61—)D+ Rd
where the limits are taken in L2(Q, F,P).
Remark 3.10. The identity (3.27) mathematically confirms the relation (2.10).
Proof. Part (i) in Theorem 3.8 shows that

lim Sme(gn(-,t,x)) = Sn(gn(-,t,:c)) in £2(Q, F,P).
e—0t

Therefore, all we need for establishing (3.26) is to prove it with the convergence in £(Q, F,P)
instead. By the Fubini theorem

Sne(gn(-t, ) :/

R4

(/Ot Gt —s,y— 37)&1—1,5(971—1(', s, y))ds) Wel(y)dy,

where
Sp—1(gn-1(-,t,2)) :/ / dsy---dsp—1
(Ré)n=1 J[0,4]27"
n—1 n—1 )
X < H G(Sk — Skp—1,T — xk1)> H W€k+1 (a:k)d:ck

k=1 k=1

with notation € = (e, -+ ,&,). So we have

t .
She (gn(-,t,x)) - /Rd </0 G(t—s,y— x)Sn—l(gn—l('a&y))dS) We, (y)dy

= /Ot ds /Rd [Snfl,é(gnfl('a&y)) - Snfl(gnfl(»s,y))]Wsl (y)G(t — s,y —x)dy.

By the Cauchy-Schwartz inequality

Sne(gn (-1, 7)) —/

Rd

< {E/Ot ds /Rd [Sn—l,é(gn—l(‘, s,y)) — Sn_l(gn_l(',s,y))rG(t — 8,y — x)dy}1/2

E ([ 6= s0=2)8m1 (s Cos)es 1, 01|

1/2

t
x{E/Qm |wawwea—ay—m@}
0 Rd

= {E/Ot dsE {Sn_lg(gn_l(', 5,0)) = Sn—1(gn-1(-, S,O))}Z G(t—s,y— x)dy}1/2

1/2

« {E|W€1(O)|2}1/2{/Otds RdG(t—s,y—x)dy} ,

where the last step follows from the facts that E|[W,, (y)|> = E[W, (0)|* and

Rd

E [Sn—l,é(gn—l(‘u S, y)) —Sn-1 (gn—l('7 S, y))} i =E [Sn—l,é(gn—l(’u S, 0)) — Sn—1 (gn—l(" S, 0))] i .
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Further,

Git—s,y—z)dy=t—s
Rd

We have the bound

Sne(gn(-t, ) —/

R4

E ([ Gt 5.y )1 (g (s 0)ds) v‘vq(y)dy\

;tB/Z{E’Wal(O)P}l/Z{ /(:IE[Sn—lf(g"—l("S’o)) _ Sn_l(gn_l(,j8?0))}2%}1/2‘

By Part (i) of Theorem 3.8 (with n being replaced by n — 1),

lim E[S’n—l,&:(g’n—l<'7370)) - Sn—l(gn—l('7$70):|2 = 07 0 S S S t.

527"'75n_>0+
In addition 9
E [Snfl,é(gnfl('a S, O)) - Snfl (gnfl('a S, O)):|
<E[Sn-1(9n-1(5,0))]" + E[Sn_1(gn-1(-5,0))]”
SE[STL 16(971 1( O))] +E[S (gn—l(‘atvo))]2‘
By dominated convergence we see

lim /;E{Sn_l,g(gn_l(~, s, 0)) - Sn_l(gn_l(', s, 0))]2d5 =0.

€2, En—0F

This proves the (3.26). Finally, (3.27) follows from (3.26) and Theorem 3.8. [J

3.3 Link to Dalang-Mueller-Tribe’s work

The discussion in this sub-section does not contribute to the proof of the main theorems in this
paper. Rather, it helps the interested reader to better understand the true nature of Stratonovich
solution and provide a new representation to the Laplace transform of the deterministic system
(1.7) for possible future investigation.

Let N(t) (t > 0) be a Poisson process with parameter 1 and {74 };>1 be the jumping times of N(t)
with definition 79 = 0. The stochastic process X; (¢ > 0) is defined as follows: First, the random
sequence {X;, };>1 is a random sequence whose finite-dimensional distribution of (X, ,---,X.,)
has the conditional distribution (conditioning on {7y, - ,7,})

< H(Tk - Tk_l)_lG(Tk — Th_1, Xk — a:k_l))dxl ceedzy, .

k=1
Set X7, = Xo = z. The process X; is defined as the linear interpolation of { X7, }x>0.
Dalang, Mueller and Tribe (Theorem 3.2, [11]) prove that the function

N(t
u(t,z) = e'By |ug(t — NG Xrngr H Th — Th—1) Tk)] (3.28)

k=1
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solves the wave equation (1.7), where ug(t,x) appears in (2.1). For the purpose of comparison, we
consider the case when ug(¢,z) = 1 and write

u(t,z) =Y eP{N(t) = n}Eq | [[(7e — 1) f(X7,) [N (t) :n]
n=0 k=1

[e.o]

z%

n
HT’C_T]C 1 Tk)

By the classic fact that conditioning on {N(¢) = n}, the n-dimensional vector (7q,---,7,) is uni-
formly distribution on [0, ¢]7,

u(t,x):Z/Ot” dsl‘--dsn/(Rd) < a (Sk — Sk—1, Tk — l’kl))kl_llf(xk)
n
= cdTpgn(T1, 0 Tyt T 3.29
Z /Rd)n (1 IR (3.29)

with the convention sy = 0 and zp = x. Comparing this with (2.2) and (2.11) we see the determin-
istic root of stochastic model (1.1) in the Stratonovich setting.

N(t):n] .

:1

Similar to (3.10), the same computation leads to

/ eAt/ dﬂ?l "‘d$ngn(x1)"' ,.’L‘n,t,fﬁ) Hf(a"k) (330)
0 (Rd)”

k=1
_ ;;(;)"/OOO exp { - A;t}Ex [/Otf(B(s))ds]ndt.

Summing both sides over n, we obtain the following representation

/Ooo e~ Mu(t, z)dt = ;/OOO exp{ — )\;t}Ex exp { /Ot f(B(s))ds}dt (3.31)

in the sense that finite of one side leads to finite of the other side, and to the equality.

The classic semi-group theory (see, e.g., Section 4.1, [4]) claims an asymptotically linear growth of
the logarithmic exponential moment

logEzexp{/Otf(B(s))ds} (t = o)

for a class of functions f. In this case, the right hand side of (3.31) is finite for large A.

On the other hand, the representation (3.31) unlikely makes sense for the stochastic wave equation
(1.1). Under the assumption in Theorem 1.2, we have ([5])

log E, exp { /OtW(B(s))ds} ~ C(y)t(logt)=s  a.s.

for some constant C'(y) > 0 as t — co. So (3.31) almost surely blows up for any A > 0.
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4 Proof of Theorem 1.1

Proof of Theorem 1.1. To show that the Stratonovich expansion (2.14) converges in £2(Q, F,P), by
the triangle inequality and by the fact that u(¢, x) (if defined) is stationary in x, all we need is

3 {E[sn(gn(.,t,o))]2}1/2 <o, WE>0. (4.1)

n

The procedure starts at Corollary 3.5. By the Cauchy-Schwartz inequality

E®Eo[/0t1W(Bl(s)ds]n[/OtQW(BQ(s))ds]n

<{zom[ [ W<B(8>d5} %}1/2{E®Eo[/t2 W (55 2"}”2
ol 1] - sr] } ([ -] )

Let t > 0 be fixed. Taking A\; = Ay = nt~! in (3.14), Corollary 3.5:
/ / dtidty eXp - *(tl + tz)}E [Si(gn (-, t1, 0))527171 (gn(-,t2,0))]
3n
S ( ') / / dtldtQ exp (tl + tg)}
t1 pt1 1/2 ta pri2 n
{Eo[/ / >>d8dr]} {Eo[/ / )]}
n

(2)

= e {/ e { =gt} (s [ [ 205 ))d“”} )Y

Recall ((1.5), Theorem 1.1, [7]) that under Dalang’s condition (1.6), the limit

1
lim = logEg exp{ // ))dsdr}
t—oo ©

exists and is finite. This means there is a constant C such that

Eo exp{ // ))dsdr} < exp{Ct} .
By the relation

] [ [ - sonasa] < oo (& [ [ 0601~ moas)

for any ¢ > 0, we have the bound that is uniform in ¢ and n:

Eo[ / / ))dsdr]n < i exp{CT} .
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Hence,

[ ot B[]
§(n!)1/2/0 exp{ Z }t"/2dt (n )1/2<n2>n+1r(g+1).

Thus, by the Stirling formula we get the bound

t n!

/000/000 dtidty exp{ — E(h + tz)}E [Sn (gn(-’ tl,O))Sn (gn(',tz, 0))] < CthQn+4‘

By the fact that the moment

E [Sn (gn(’a t1, 0))Sn (gn('7 t2, 0))]

is non-negative and non-decreasing in ¢; and to we have
o0 o0 n
/ / dtldtg exp{ — ;(tl —i—tg)}E [Sn(gn(-,tl,O))Sn(gn(-,tQ,O))] dtldtg
0o Jo

> E [Sn(gn(-,t,O))]Q/t /t dt1dts exp{ — %(tl + tg)}dtldtg

2
= %672711@ [Sn (gn('7 2 0))]2

n
Comparing this with (4.2) we get the bound

cy
<M =12,
n:

E[Sn(gn(-.£.0)]" <

(4.2)

(4.3)

This leads to (4.1) and therefore to the £2-convergence of the Stratonovich expansion in (2.9).

In view of (3.15), the bound (4.3) remains true for E [S ¢ (gn (- 1, 0))]2 for any € = (e, - -

E[Sn,e(gn( t 0))} i2 t2n+2, n=12,---

for any t > 0. Let €, -+ ,€, — 0T on the left hand side. By (3.26), Lemma 3.9,

[/ ( / "Gt sy - x)Sn_l(gn_lc,s,y))ds) W, ()

forany n=1,2---, any £ > 0 and any ¢; > 0.

2

’ En)a i'e'7

(4.4)

To show that {u(¢,x)} is a solution in the sense of Definition 2.1 and therefore to complete the

proof of Part (i) of Theorem 1.1, we only need to show

For any t > 0 and = € R?, the random field V (y e (x — y)u(s,y)ds is Stratonovich
0

integrable, or

i [ ([ Gesa vt )wawir = [ ([ Geste—spatsis)wian

in £L2(Q, F,P).
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(2) Equation (2.1) is satisfied with ug(t,z) = 1.
Because of (4.3) and (4.4), to show (1) and (2) one has only to show that for all fixed n > 1,

™ (fg Gi_s(x — y)Sn_l(gn_l(', s, y))ds)Wa(y)dy converges to S, (gn(-,t,x)) in £2(Q, F,P). This
is done in Lemma 3.9, Equation (3.27).

To prove Part (ii) of Theorem 1.1, all we need is to show that Dalang’s condition is necessary for

E[SQ (gg(-,t, 0))]2 < o0

with any ¢ > 0. Indeed,
2
E[S2(g2(-1,0))]
=) / drydrydzsdas | [ v(z; — 2w > 2(71, 22, t,0)g2(23, 24, ¢,0)
R4)

Delly <D€H2

> /( . dxidxodrsdrsy(xy — x2)y(x3 — x4)g2(21, 22,1, 0)g2(3, 24, 1, 0)
R

2
= </ 7(1"2 - xl)g(l‘la $27t70)d$1d$2)
(R9)2
and

/( o v(x2 — x1)g(21, 22,t,0)dr1dX
R

= dsidss Y(xg — x1)G(s1,21)G(s2 — s1, 22 — x1)dx1dxs
[0,)2 (R4)2

_ /{W< ( 3 G(sl,x)da:) < /R ()G (s —sl,a:)dx>d51d52

<

BN RELIE

Clearly, the finiteness on the right hand side leads to Dalang’s condition (1.6). O

5 Proof of Theorem 1.2

From the expansion (2.9) and the stationarity of the Stratonovich moment in x, a formal algebra
leads to

EuP(t, ) Z > B[S, (0Gt0)=>" > EJ] Sy (9,0

n=01l14+lp=n j=1 n=01[0+-+lp=2n j=1

where the second equality follows from the fact ((2.19)) that
P
E H Slj (gl]'('v t, 0)) =0
j=1
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whenever [; + --- 41, is odd. Moreover, the expansion for EuP(t,x) appears as a positive series.
Consequently EuP(1,z) > 0.

Mathematically, under Dalang’s condition (1.6) the Stratonovich expansion (2.9) converges in
LP(Q, F,P) for any p > 0. Indeed, it is enough to exam this for all even numbers p. This fol-
lows from the estimate

N+m

El > Sul(gn(: tO))‘ < > > Eﬁszj(gzj('atao))

n=N-+1 n:2n>N+1 1 +-+lp=2n j=1

Therefore, the claimed L£P-convergence relies on the fact
o'} p
> > E[[su(e(t0) <o
n=01[01+-+lp=2n j=1

which appears as a direct consequence of (5.1) and (5.3) below.

By (1.8) and (2.5), in addition, one can verify that

> EHSl a1, ( ey IEHSl 9,(-1,0)), Vt>0.  (5.1)
L+ tlp=2n j=1 Lttlp=2n j=1
Therefore, (4.3) can be written as
P
Eu?(t,) Zt4 a)n( Y E[]s, (glj<.,1,o>)) (52)
Ltotlp=2n j=1

foreach p=1,2,---

Proof of Theorem 1.2. First, we claim

1 . 1\3-a , /oMI2\
nh_}rgoﬁlog(n!):)’ < Z EHSl qu; ,1,0)):log<2) pt <4—a> (5.3)

li4-+lp=2n j=1

for each integer p > 1. In next subsections we shall prove the upper bound part of this claim in
(5.14) and the lower bound part in (5.21).

After we established (5.3) the proof of (1.9) is easy and can be seen through the following compu-
tation: From (5.2) and then (5.3) it follows

o0 p
. _4:73 p T —‘IZ—Z (4—a)n .
Jim ¢ 550 loguP(t,x) = lim ¢ log » 't > E]]S,(9,(.1,0) (5.4)

n=0 li++lp=2n j=1

' e o t(4fa)n 1\ 3—a o 2M1/2 4—a\ n
e () () )

3—a 1-a 2MY/2\ =2
= p3—a( >
2 4 — «

)
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where the last step follows from the following elementary fact of the asymptotics of the Mittag-Leffler
function (Lemma A.3, [1]):

lim b~/ log ) o 37 =~ 9>0 (5.5)
n=0 ’

b—oo (TL

with v = 3 — o and with b = ¢4~

The proof for the upper bound of (1.9) is given in (5.7) of Lemma 5.1; and the lower bound is
established in (5.26). O

5.1 Upper bounds of (1.9) and (1.10)

Lemma 5.1. Under the condition in Theorem 1.2, we have the following statements.

(1) for any Ai,--- ,A\p >0 andp=1,2,---

' 1 1 P p
hmsupﬁlogﬁ dtl'--dtpexp{ - Z)\jt]}< Z IEHSZJ. (glj(-,tj,O))> (5.6)
n—oo . (]R+)P j=1 L+ tlp=2n j=1
ia Ad—a~ AjClogh?
<log2M = + ! !
- P
j=1
(2) for anyt >0,
_4ia 3—a i (2M/?\ 30
lim sup p o log Elu(t,0)P < e M . (5.7)
P—00 2 4—«

Proof. The proof starts with the moment representation in Corollary 3.4. On the right hand side
of (3.11), we perform the estimation by Fourier transform

i /Otj/otk v(Bj(s) — By(r))dsdr

k=1
Y s g8
= w(d€ / e's"il%)ds
Jmis| 2 |
2 p b 1Y eng|
= (t ceedt d e 1©8-55(s) 4
(t1 + +p)/Rd'u(§)Z;t1+“'+tptjoe S
p 1 t; 2
< (t; + +tp)th/ u(dg)/ '€ Bi(9)
=1 d tj 0
P 1 tj [t
= (t1 + +tp)zt/ / v(Bj(s) — Bj(r))dsdr
=tiJo Jo
4 20 1 g1
= (t1 + —l—tp)thQ /0/0 v(Bj(s) — Bj(r))dsdr.
j=1



The advantage of the above inequality is to replace the sum of dependent quantities by the sum of
independent ones, where the last step follows from scaling

t; 4 1 p1
/O/OV(Bj(S)Bj(T))deTit]’Q /O/O'y(Bj(s)Bj(r))dsdr, j=1,---,p

and the independence of the Brownian motions.

Combining the above result with (3.14) gives

p
/ dy-dtyexp{ = YAt} > IEHSl a,(+1;,0))
(R*)P j=1 LAetlp=2n  j=1
p

<(3)"5(I3) [y ave{ =55 A0} 0w
xEo[zp:tj? /1/17(Bj(s) —Bj(r))dsdr]n

j=1
(26", 5wt {1 (] [ o]
x /(Rﬂp dty - dty(ty + -+ t,)" exp{ - % Z: A?tj} ﬁlt;?’f . (5.8)

By [7, Theorem 1.1|, we see

A, % log o exp { (/Ot/ot v(B(s) — B(r))dsdr) 1/2}

—9Ta M.

By (1.8) and Brownian scaling,

// B(r))dsdr £ 3 /01/017(3(3)—B(r))dsdr

we can rewrite it as

1/2 .
hm logEoexp {t 4(/ / ))dsdr) }:2404\/1‘

On the other hand, by Taylor’s expansion and the positivity of v, we have

o [/ [ ))d“”r .
<E0exp{t : (// ))dsdr) }
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For any 6 > 0, taking t = On and by Stirling’s formula,

1 n
lim sup — log(n!)~*/?E, [/ / B(r))dsdr
n—oo T
4 —
<—?+log4+24 a_/\/lg_ log9
Picking the minimizer
a 4—q
=9 ia
2M
yields
1 n d—a
lim sup — log(n!) —/2g, [/ / ))dsdr} < 10g24( M ) ’
n—oo T 4—«

Consequently, for any given § > 0 there is Cs > 0 such that

Eo[// ))dsdr] <cd(n!)aﬂ(u+5)24(4/\_Aa)?>n, n=12

Substituting this bound into (5.8) gives

/(R_‘_)pdtl.”dtpexp{_Z/\jtj} Z EHS[ gl t], )

j=1 L4 +Hlp=2n j=

(T (corn()™) x (T )

j=1 lLitetlp=n \j=1
1 p p 2—al
n 2, 2 Y
></R+pdt1---dtp(t1+--'+tp) exp{—§ZAjtj}Htj )
(R¥) j=1 j=1
For each (l,---,l,), we can write the above multiple integral as

n 1 P 9 P 2—ay.
/(R+)pdt1---dtp(t1+---+tp) exp{—QZ:)\jtj}Hth 7
7j=1 7=1
3 n! / g ﬁ k2501 127’:A2
= _ by tp< t; )exp{— .tj}
kll"'kp! (R+)P i J 2j:1 J

R —
n! D2\ k252 2 -«
= 2 kll--.k!H(F> F(kf+ 5 lf+1)‘
k1ot kp=n Prj=1 """

In the sequel, we shall use the Stirling formula of the following form:

n"e " <T'(n+1) < p et pn=1,2 ...
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By using this type of Stirling’s formula and by routine simplification

Il
—

ki4-+kp=nj
I+ tlp=n

where C' > 0 is a constant independent of n and p, and
1 1\-11
9]‘:(*2"‘"“"*) VR j:L...’
AT A2 A7

It is straightforward to check that the Lagrange problem

P _ .
max{ H (xj + yj)wJ <a:j +yj)yye;gj+yj; B4
i Y

2

and y1++yp: n7x1,...’xp’yl,.

has the solution
2—«o

2

zj=0;n and y; = Oin, jJ=1,--

Therefore, since >-7_, 0; = 1

ﬁ <’€j + Z_zalj)kj (k‘j + 25alj>22aljekj+2;‘lj
k. Qfal’ 7
J J

j=1 2
(5
2
1

IN

2—«
a>9jn 4—a Tejne‘l%aejn
2—« J

p
Jj=

7j=1
uniformly over Iy, - ,ly; k1, -+, kp.

Summarizing our steps since (5.9) and noticing

Z 1:<n+p—1>

—1
li4+lp=n p
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/(R+)pdt1-~~dtp(t1+--~—|—tp) exp{—izx

p p
2
s 1T
j=1 j=1
)
p.
+xp =n,
. ,yp > O}
D -

2

(4—a>n 4 -« 22anﬁ9‘12°*9jn 4—a) z"
2 2 -« 117 S\ 2 2 -«

2—a

) i1

Jj=1

0;n



we have the bound

P

/ dy - diyexp{ = > At h > EHS, a,(15,0)) (5.10)
(RF)P =1 Lt tp=2n j=
—1)? Cs); 24\
< vl ( ”;fl ! ) <]1:[1 ‘;J>(2(1+5)(4f‘a) ’ )

Poq ien poo, .
<(a-oxs) e
j=1"17 =
This leads to (5.6) as § > 0 can be made arbitrarily small.

The bound (5.10) can also be used to the proof of (5.7). To see this we can allow p tends to infinity
only along integer points. This does not compromise the claim there by the following interpolation
argument: For any real and large p > 1, let (p/2) be the smallest integer larger than or equal to
p/2. Then, by Hoélder’s inequality we have

[Ehu(t, o>\p}1/ ? < (a2 (t,O)}M .

Thus, it suffices to show (5.7) along the positive integers p and with EuP(¢,0) instead of E|u(t,0)|P.

By monotonicity of gy(-,¢,0) in ¢,

Z ]EHSZ g, ( (-,t,0)) > Z EHSZ (gl ’ mlil tj,0)>

li++lp=2n j=1 li+-+lp=2n j=1
(4—a)n
- & (i, 1)
< Z HSZ gl 7170 )) 1r§nj12ptj )
Lit-+lp=2n j=
where the last step follows from (5.1). Thus,

P

p
/(R+)P dtl-.-dtpexp{ — th} S ET] S (a,(t5,0)

j=1 httlp=2n j=1

P b (4—a)n
> < Z EHSlj(glj(-,l,O))> /(R+)pdt1---dtpexp{—;tj}(lgljlgpt ) )

Lit-tlp=2n j=1

By the fact that given i.i.d. exponential times 7,--- , 7, of parameter 1, 1I<nl£1 7j is an exponential
<i<p
time with parameter p,

p
(4—a)n 0
dty---dt,e A N t; = —ptyd—a)n gy 5.11
Jaoy - toer { =200} (i) =0 @1

=p = (14 (4 - a)n)
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In summary, we have

P
> E]]S,(9,(:1,0) (5.12)
Lttlp=2n j=1
p(4—a)n { Z } Z ﬁ ( )
< / dtl---dtpeXp - tj E Sl. gl-(7'7tj70)
F(l +(4- a)n) (R+)P = o o1 3 \Il;
o 2 1 (d—)n n
(07 (1770 Y e o)
2 p—1 1+
where the second step follows directly from the bound (5.10) with A\ =--- =\, = 1.

Using (5.1) and (5.2) we then have
EuP(t.0) < CCs PZOO n+p—1 2 n!(pt)4-n 91 + )M "
2
u(,)_(2>n:0( p—1 )I‘(1+(4—a)n)<(+) )

CCs 6 \2p = nl(pt)t-—)n ) a\"
S( 2 9-1) %F(1+(4— ) 207+ M =)

a)n

where 6 > 1 is arbitrary, and the second step follows from the estimate

H_n<n+p > Zek<k+p—1>_<£l)g

By the Stirling formula, F(l +(4- a)n) is replaceable by
(n!)4fa(4 - a)(4foc)n )

By the asymptotics of the Mittag-Leffler function (5.5) with v = 3 — a and b = p*~®, and 6 being
4—
replaced by ¢4 (292(1 +9) (/}14_1/2> a), we have

«

lim sup;ff“f%g log Eu”(t,0)
p—00
i—a )(4 a)n ) MY/2\ 4—a\ "
pl;rglop 3= alogz)<20 (1—}—(5)(4 a) )

=(3-— a)t;‘,:—g (292(1 N 5)(1\41/2)401) a |

—

Letting § — 0% and @ — 17 on the right hand side gives (5.7). O

We end this subsection by the following statement: First, taking Ay = --- = X, = 1 in (5.6) leads to
. 1 -
h?rlr;s;p - log o - dty ---dt,exp { — j;tj} <l1+”%:2nE 1;[ Sl gl - t;,0) )>
<log2M 3" . (5.13)
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Second, applying (5.12) to the setting of fixed integer p > 1 yields

lim sup — log(n') ( Z EHSZ gi,(-,1,0) >

n
=00 li4+lp=2n j=1

1\3—a ,  [2MY2\
§1og<§) pt < > . (5.14)

4 — o

5.2 Lower bound for (1.9)

In this subsection we start by the lower bound correspondent to (5.13).

Lemma 5.2. Under the condition in Theorem 1.2, we have

1 p
lﬂgfﬁlog—' (Rﬂpdtl---dtpexp{th} 3y EHSZ a,,(+15,0))
j=1 li4++lp=2n j=1

> log 2M 2 (5.15)

forp:1,2,~-

Proof. Notice

L r©Rutas) = 1. (5.16)

Therefore, we have

EO[ > / ’ / ! — By(r ))dsdr]n > Eo[g /R ol §)f(£)< /0 ' e’f'Bj“’ds)]

7,k=1

> 115??.>§p!gﬁo[4d s [ e<moar)

I+ +lp=2n

=@ > H/d)] (Hfék) dsHexp{—S“;’Héff}.

li++lp=2nj=1

2n
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Taking Ay = --- = A\, = 1 in Corollary 3.4 and inserting the above computation into the obtained
expression yield

p
/(R+)pdtl-~-dtpexp{—ztj} Z EHS[ gl t],o (5.17)

J=1 " litetlp=2n =1

2<;>p(;)3N(277l”§)/(R+ dty---dt exp{ Zt]}

Jj=1

X H/ (d§)<£[1f(§k)>/[ ]]<dsHeXp{ Sk—3k1‘il§&2}

I+ +lp—2n] 1

() s QT s><1jf<gk>)

li+-+lp=2nj=1

00 _ L 2
X / dte_t/ ds H exp { il Sk*l ’ Z & }
0 [ E e i=k

L L

— <;>p+3n(2nﬂ:)! 3 H/ (H f({k)) ] /Ooo e_texp{ - % i&i 2}dt

li+-+lp=2nj=1 k=1

S S I (T e}

114 +lp_2nj 1

JORED H/ (ﬁlf(&:‘k)) k:1{1+\;ik§i2}l.

li++lp=2nj=1

By the computation in [3, (3.7)-(3.9)]

it [ log [ (a9 ( 11 ) II {1+ ;s 2}_1 (519)

k=1 k=1 i=k
log su d g e(n)e(n +§)
= gleonzlil/u%dﬂ( g)f(g)[/ﬂw n¢(1+n\2)(1+\§+n!2)]
A
= logp(f).

For a given § > 0, therefore, there is C5 > 0 such that

/d <Hf§k> {1+\Za

Together with (5.17), by the Stirling formula one has

1 p
linniigfnlog/(R+)pdt1---dtpexp{—th} 3y EHSl a1, (-, 15,0))

j=1 Li+tlp=2n j=1

} zcgl((l—é)p(f))", n=1.2,--

>2((1-0()



Letting § — 07 and taking supremum over all non-negative functions f satisfying (5.16) on the
right hand side, we have

1
hnrggfn1og/(R+)pdt1-..dtpexp{th} Y IEHSl a,(+1;,0))

j=1 " htetlp=2n  j=1

oz su o(n)p(n +§) 2
= los? ||<p£1/Rd )| N TR n\Q)] ‘

Finally, the proof is completed by Theorem 1.5, [3] (with p = =2, 0 = aand |- |~ being replaced
by v(-)) that states

su e(n)e(n +§) 2_ i-a
||mp1/Rd (dg)[ TR 1+|€+n\2)] M (5.19)

This completes the proof (5.15). O

Combining (5.13) with (5.15) yields

1. 1 u
nli_)rgloﬁlogm dtl---dtpexp{—th}< Z EHSZ gl 1,0 ))

(Rt)P j=1 li4+lp=2n j=1

4—a
=log2M ™2 . (5.20)

We point out that we are not able to establish the lower bound correspondent to (5.6) as A1,---, A,
are not equal, although it likely to be true.

Our next goal in this sub-section is to establish the lower bound corresponding to the upper bound
(5.14).

Lemma 5.3. Under the condition in Theorem 1.2, we have

liminfllog(n!)?’_o‘( > EHSZ a, ,1,0)) (5.21)

nee n Lttp=2n j=1
1\ 3—a IML/2\ 4~
> log <7) p4_o‘ M )
2 4—

Proof. We adopt some idea in the proof for the lower bound of Gértner-Ellis large deviations (The-

orem 2.3.6,, p.44, [12]). The crucial observation is the concentration behavior ¢y,--- ,t, = 4_70‘71 (as

n — 00) in a dynamics that creates (5.20). To show it, we define a probability measures on (R™)?
as follows

/Adt1~--dtpexp{—(tl—i----—l-tp)} > EHSI 91, (115, 0))

Li+otlp=2n j=

/(+> dty--dtpexp{ — (b1 +--+t)} > EHS, 91, (-,15,0))
R+)p

L+ Hlp=2n j=1

M (A) =
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for n =1,2,---. Notice that for any 61,---,0, <1,

/ dty -~ dtpexp {01t + -+ + Optp) fun(dty - - - dtp)
(RF)P

/(Rﬂpdtl---dtpexp{—Zp:(l—ﬁj)tj}< > EHSZ i, (-, 15,0 )>

- i=1 bt tpmin i)
- p
[ -Sel( 3 =l meom)
Jj=1 li4-+lp=2n

and the right hand side blows up as long as §; > 1 for any 1 < j < p.
By (5.6) and (5.20), we see

n—oo N

lim sup 1 log/ dty - - - dtyexp {01ty + - - - + Opty) pn(dty - - - dty) (5.22)
(RF)P
< A(01,--,6p)

for any (61,---,0,) € RP, where

4—a & 210g(1—6?)*2
E if .- -- 1
2 1—91 o+ (1—0,)2 01,0 <
A1, ,0p) = J=

00 otherwise .

By the upper bound of Gértner-Ellis theorem (Theorem 2.3.6 (a), p.44, [12])

1
limsup — lo nF)<— inf  A"(ty,--- .t 5.23
msup logn(nF) < = - inf, | A*(h ») (5.23)

for any close F' C (RT)P, where

A*(tr, o oty) = sup {Zet 91,.--,0]0)}, t, oty >0,

-,0p<1

In fact, the statement of Theorem 2.3.6 (a), p.44,[12] requires the equality in (5.22). However, a
careful reading of its proof finds that (5.22) is sufficient for (5.23).

Finding the close form of A*(6,--- ,6,) might not be easy. On the other hand, some properties of
A*(61,--- ,0p) as a rate function exist even in the general context. For example, A*(0y,--- ,0),) is
non-negative, lower semi-continuous and has compact level sets (goodness). What important to our
purpose is that

4- 4—
A*(t1, 1 tp) >0, V(tl,---,tp>7é( e a). (5.24)
p p
Indeed, assume that A*(¢,--- ,t,) = 0 for some (t1,--- ,t,). Then we have that
P p -2 -2
4—a« log(l—&)
0:t; <
Z“— 2 21—91 +(1—6,)2
7=1 7=1
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for any 601,---,60, < 1. For fixed 1 < j < p, taking 6, = 0 for all £ # j, the above inequality gives

4—a  (1-6;)2 (1-0;)?

0t; < log(1—0;)"%=(4—a log(1 —6;)~*
T e L
for any 6; < 1. So we have that
(1—0;)"" 1 -1
t: < (4 —« — log(1 —6; as 0; >0
i<l )(p—1)+(1—9j)‘29j (=% ’
and (- 6,)2
1-0,)"
> (4— Ly -1 :<0.
tj > ( a)(p_1)+(1_0) 9 og(1—0;) as 0; <0
By the fact that
1
lim —log(1 —60)"' =1
lim - log(1 — 6)
we have t; = 4_70‘ (j =1,---,p). This shows the claim (5.24).
By (5.24), the lower semi-continuity and the goodness we have
inf  A*(t1,---,t,) >0
g™ (o)
for any open neighborhood G of (4770‘, cee 477“). For any given small § > 0 taking
Gy = (4—04—57 4—a—|—(5>p
p p

and F' = G§ in (5.23) yields
1
lim sup — log i, (nGY§) < 0

n—oo

Consequently,
P

/ dtl---dtpexp{—th}< Z IEHSZ gl t],0)>
nGs j=1 L tlp=2n j=1
P
N/ dtl--.dtpexp{—ztj}< > IEHSl a1, ( g,o)) (5.25)
(R*)P =1 L+ tlp=2n  j=1
as 1 — 0Q.

When (t1,---,t,) € nGs, it is easy to see that

4—a+6 <4—a+5 ; -
1 min = .
i > D _4—06—61<k<pk’ J ) »D

By the scaling property (5.1) we have

- —a+6
> EHSZ 9, (- 1,0) < > EH51j<glj<'vz_511<nkH<1ptk,0>>

ht+tlp=2n j=1 lLit+lp=2n j=1

4—a+6 . (4—a)n
= (Goog min ) S R[S (o (10).
htotlp=2n  j=1
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Therefore,

/G dt1~--dtpexp{ itj} Z Eﬁslj(gn('atj70))
nGs j=1

J l1+-+lp=2n

=1
L 4—a+ 8\ @—an
{2 Ellseroh(5t)

Li+Hlp=2n j=1

P (4—a)n
fo e =S

=1

D S R ) R () R (RRT I

Li+Hlp=2n j=1

.

where the last step follows from (5.11). Finally, (5.21) follows from the above inequality together
with (5.20), (5.25) and the Stirling formula. [J

5.3 Lower bounds for (1.10)

In this subsection we prove the lower bound part of (1.9):

lim infpiéii3 log Elu(t,0)P > (5.26)
p—00

2 4—«

3-a <2F>

It should be pointed out that the Gartner-Ellis type argument used for the proof of Lemma 5.3
is good only for fixed p. Different from the approaches used thus far, the treatment below is
independent of the Stratonovich moment representation developed in Section 3.

Let H be the Hilbert space given as the closure of the space

{fimiar [ -y < oo}

under the inner product

Faw= [ e =f@g)dady.

The space H may contain generalized functions (distributions). For each integer n > 1, we write
H®™ for the n-th product with inner product

" k=1
Lemma 5.4. Given any real number p > 1,
1 2 - Qn
> - : n :
Ju(t,0)lp 2 exp { = 55 11} DUt 0 (5.28)

foranyt >0 and f € H with f(-) >0
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Proof. Let ¢ > 1 be the conjugate of p. By Hélder’s inequality
[ut, ), = E[u(t, 2) X]

for any random variable X with || X||, = 1. Take

X = exp{ 3 f(x)W(d:c)} q_lexp{ | f(x)W(dx)}
— e { - Gt} en{ [ fewian .
Then for any f € H,

Jutt. 00l > exp { ~ 2115 Eute oy exo { [ f(rc)W(dx)} (5.29
=exp{—g||flli}§{l; ZI,E< )lsn 1(gn( to))}
:exp{—gnfna}g{;’; 22 [ ) sufomi00)}

s oxp{ - gnfua}i{ijfixa( )s o)

where the second equality follows from (2.19), and the second inequality follows from the fact that
all terms are non-negative.

For each 0 <[ <mn, by (2.16) and (2.18)

n+l
E( f(@W(dx)) S (gn—z(',t, 0))
R
2n

=E /(Rd)Qn gnfl(l'l, ce X, L, 0) <k:TIL_Il+1 f((L‘k)> W(dxzy)--- W(d(Egn)

Z/R dX( I @ —m)gn (@1, T l,t0< ﬁ f(xk)>.

Dell, (4,k)eD k=n—I1+1
We now count how many pair partitions D € II,, that make

/(Rd)% (H y(x —xk)gn_l(xl,---,mn_l,t,())< ﬁ f(a:k)) (5.30)

(4,k)eD k=n—I+1

n—l

n—I
= ||f||%{l{ /(Rd)Q(nl> dXdY(}H’Y(% - yk))in(CUh o Tp_y,t,0) (kl_[lf(yk)> } :
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To produce such D, we first partition {n —1+1,--- ,2n} into two disjoint sets A; and Ay such that
#(A1) =n — 1 and #(Az) = 2[. The number of ways to carry out this step is

n+1
(")
Then we use the elements in A; to make n —{ pairs with the numbers 1,--- ,n —1{, there are (n —1)!
ways to do this step. Finally, we pick a pair partltlon Dy on As together with the earlier n — [ pairs
to form a pair partition D € 1I,, —there are (22111), ways to finish this step. By the Fubini theorem, one
can see that the pair partitions D produced in such way satisfy (5.30). By multiplication principle,

there are at least 21! NI
<n§l><n—l>'( LR sk

2 21!
pair partitions that make Equation (5.30) happen.

Write l l
/ dxdy( IT (e — yk)>gn_z(fc1, ey Ty, 1, 0) ( 1T f(yk)>
(Rd)Q(n—l) kel k=1

= <f®(7l*l) ’ gn*l('a t? O)>’H®(nfl) .

In summary,

n-+l
5| ([ rew) snl<gn,<-,t,o>)] > U D) 130D, g ,0) ot
Therefore,
S S k([ o) s o))
n—I\Gn—1\"» L,
n=0 =0 (’I’Z+ l)' l l
zz{zl;nfu (0. g Ot |
n=0 l

=0
_{nongnufu }{i et O |
= esp {8 H 0" 0. 0o

n=0

In view of (5.29), we have completed the proof of the lemma. [J
Proof of (5.26). Replacing f(x) by

folw) = ((p = 1yr) > 057 “f((p— 1)t)ﬁx)

in Lemma 5.4 we get

[e o]

00 > exp { = G LR U™ et O

n=0

Set
1 4—a
tp = (p —_ 1)37O£t370t .
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First notice that
1fpll3 = ((p - )t)3 “[1f 13,

and by time change and homogeneity of v(-) and G(t,x),

o 00
Z<f§)nagn ’H®” = Z agn tpa )>7—[®" .
n=0 n=0

Hence,

latt 0)lp > exp{ = LIRS U, gulr o

n=0
t n
ZeXP{_EprH%L}<f® 7gn('?tp70)>7-l®”7 n:071727"’

Let a > 0 be fixed but arbitrary. Take supremum over ||f||x = a. The action can be taken
alternatively as f is replaced by af and supremum is over ||f|jy = 1:

t
u(t, 0)], > exp{ - Epa?}an sup (&, gl tps 0)) g (5.31)
I lln=1
t d—a
- eXp{ N 5pa2}antp2 ! sup <f®n7gn('7 17 0)>7’[®" )
I £l=1

where the last step follows from the scaling property

sup (f®", gn(-,t,0))yon = e sup {(f®" gn(-,1,0))y@n, VE>0. (5.32)
I Fll=1 [ £ll2=1

Here we should mention that the supremum should be taken over the functions f with ||f|ly =1
and f > 0 where the constraint “f > 0” is inherited from Lemma 5.4. We removed “f > 0” from
the above discussion as g,(-,1,0) > 0 and therefore

sup <f®nagn('ut>0)>7-[®” = sup <f®nﬂgn('vt70)>7-l®"'
I Fllz=1 [lfll=1
f=0

Let 0 < 6 < 1 be fixed but arbitrary. Multiplying (1 —6)6" on the both sides of (5.31) and summing
up both sides over n =0,1,2,---,

lutt, 0)lp > (1~ ) exp { ~ Za }Z ba)" ”Hfs“up: AT g 1, 0)pgen (5.33)

On the other hand,

S oo
/ dte™" sup (f®", gn(-,t,0))yen > sup / dte  {(fO", g (-, t,0)) yen
0 £ ll=1 Ifll#=1/0

2 o 0 (T fT {1+ 26

F(F)(6) = / €% f () da

R4

where
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is the Fourier transform of f and the last step follows from a treatment similar to the one conducted
n (5.17). In view of the scaling identity (5.32), this inequality can be written as

sup <f®n,gn(.’ 17 0)>H®”

|l flle=1
= ([ eftT"dt>l s /(Rd) $ () (lf[lﬂfxm) H {1+ i@f}l
= F<1 44 ; an)_l ||fs||17l-tp=1 /(Rd) pn(de) <kﬁlf(f)(§k)> kHl {1 + ‘ Zﬁg }

By (5.18), (5.19) and the Stirling formula

1 —a 2MI/2\ 2
liminf—log(n!)zLT sup (f®”,gn(-,1,0)>7{®n210g< M > .

n—oo 7 1fll2=1 4-a
Hence,

4 an
hmmf—logz fa)"™ sup (%", gn(-,1,0))yen

Pty i I fllze=1
R ia DIMI/ZN A5\ asey,
> . - '— 2
e ('

_ 1/2 d=a\ 1=
_4 O‘(ea<2M )2)4 — (fa) 5 MY/,

2 4 — o

4 — 4—a
where the second step follows from (5.5) with v = @ and b= tp?

By (5.33), therefore,
1 1 2
linnf ;- log [u(t, 0, = —50° + (6a) 75 MY2.

Letting 8 — 1~ yields
1 1 2
liplgggf 0 log ||u(t, 0)||, > —§a2 +ars M2,

Taking the supremum over a > 0 on the right hand side,

1 3—a (2MY2\ 5=
im inf — > . .
it - tog Ju(r 0}, > 25 (5 (5.34)

By definition of ¢, this is (5.26). O

Remark 5.5. Under an obvious modification, the same proof also leads to (5.34) with fized p > 1
and with t — oo. Consequently, it leads to the lower bound for (1.9) in the special case when p is
an even integer.

6 Appendix

6.1 Moment bounds for Brownian intersection local times

Let B(t), Bi(t), B2(t) be independent d-dimensional Brownian motions.
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Lemma 6.1. Assume Dalang’s condition (1.6). There is a constant C > 0, independent of n and
t, such that

Eo [/Ot/oty(B(s) - B(r))dsdr]n <Cm)*(tve)", n=1,2,-- (6.1)

Eo [/Ot/otfy(Bl(s) — Bg(r))dsdr]n <CmMY2(tve)r, n=1,2,--- (6.2)

Z = (/Ot/otfy(B(s)—B(r))dsdr)lm, £>0.

To prove (6.1) all we need is the bound

Proof. Write

EoZ < nlC™"(VtVH)", n=12, - (6.3)

First, Z; is non-decreasing, almost surely continuous with Zy = 0. From (A.9), [5] Z; is sub-additive:

For any t1,to > 0, there is a random variable Zj, such that Zj, 4 Zy, and Zji, is independent of
{Zs; s <t1}. By (1.3.7), p.21, [4], therefore,

]PO{Zto >a+ b} < IF)O{Zto > CL}PO{ZtO > b}

for any tg,a,b > 0. Thus, for any integer m > 1,

Zt )"
GEOZt

= (eEoZ;)"n / V" IPy{Z; > ebEoZ; }db
0

EoZ = (eEOZt)”EO(

1 oo
= (eEOZt)”{n/ bnildb-i- TZ/ PO{Zt > €bEOZt}db}
0 1
o b—1
< (€EOZt)n{1 + n/ b~ (PO{Zt > €EOZt}> db}-
1
The claimed bound (6.3) follows from the following estimation

(9] b—1 ()
/ pr! (]P’O{Zt > eEOZt}) db < e / " le~bdb = en!
1 0

and the bound ((A.6), Appendix, [5])

EoZ; < (EOZE)1/2 < (C(t\/t2)>1/2.

We now prove (6.2). Let T (z) be a Gaussian noise independent of B, By, By and having covariance
v(+). Conditioning on the Brownian motions

EMW(Bl(S))dS} [/OtW(Bg(s))ds} :/Ot/otfy(Bl(s)—Bg(r))dsdr.

47



In addition, by the Cauchy-Schwartz inequality

E[/OtW(Bl(s))ds] [/OtW(Bg(s))ds]
< {E[/OtW(Bl(s))dsr}l/Q{E[/otW(Bg(s))ds]2}1/2
_ {/Ot/otfy(Bl(s)—Bl(r))dsdr}l/2{/Ot/otfy(Bg(s)—Bg(r))dsdr}l/Q.

/Ot/ot’Y(B1(s) — By(r))dsdr g{ /Ot/ot’Y(B1(s) B Bl(?“))dsdr}l/2

t 1/2
X {// 'y(Bg(s) —BQ(T))deT} )
0J0
By the independence between B; and Bs,

Eo[/ot/ot'y(Bl(s) — Bg(r))dsdr]n < {Eo [/Ot/ot’y(B(s) — B(r))dsdr] n/2}2

< Ep [/Ot/ot'y(B(s) - B(r))dsdr}

Therefore, (6.2) follows from (6.1). O

Hence,

6.2 Hu-Meyer formula

Although Lemma 2.4 gives a way for us to show the existence of a multiple Stratonovich integral
we also need to know what kind general conditions to impose on f so that its multiple Stratonovich
integral S, (f) exists, namely the approximation in (2.13) has a limit in £2(£2, F,P). If the multiple
Stratonovich integral S, (f) exists in £2(Q, F,P), then according to general Ito-Wiener’s chaos
expansion theorem it admits a chaos expansion and it is interesting to find this chaos expansion.
For this we shall establish a Hu-Meyer formula along the line of [15, 16]. If f € H®" is a (generalized)
symmetric function of n-variables such that

I gon = [, ) San,

X 7(x1 - yl) . "7(mn - yn)dxldyl tee dxndyn < 00,

(6.4)

then its multiple It6-Skorohod integral exists and is denoted by
W)= [, fn W) oW ).
R n

where W denotes the Ito-Skorohod stochastic integral. To precisely define H®", we can complete
the set of all symmetric smooth functions with compact supports under the Hilbert norm defined
by (6.4). It is well-known that the Hilbert space H®" contains generalized functions (see e.g. [19]).
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Recall our definition (2.6) that We.(z) = [pa pe(z — y)W(dy) = Ii(pe(x — -)). From [14, Corollary
5.1, Equation 5.3.15|, it follows that the chaos expansion of []}_, We(x) is

n k
H Ws(fk) = Z Z H /]R?d pe(i, — Y)Y — 2)pe(xj, — 2)dydz

k=1 kgn/Q i1<j17"'7ik:<jk /=1
n
In*2k<Ai17j1,"',ik,jk Om=1 pe(xm - ))

k
= > > e —=)

k<n/2i1<j1," ir<jk =1
In—ok(Niy gy i e Om=1 Pe(Tm — ), (6.5)

where

(i) The set of distinct elements i1 < ji,--- i < jk is a subset of {1,2,--- ,n} and the summation

Ei1<j1,--~ ip<j, Is over all such distinct pairs;

(ii) The function Aj, j, ... iy.jr @m—1 Pe(Tm — -) is defined as the symmetrization of the function
H p5<xm - ym)
me[l,n]\{ll,]l,ﬂk,]k}
over the variables (ym; m € [1,n]\ {i1,71, - ,ik,jk}), ie.,
1
Ay i, sinsin Om=1 Pe(Tm — Ym) = (n—2k)! Z H Pe(Tm = Yo(m))
o me[Ln\{i g1, kadk}

where the summation is over all permutations ¢ on [1,n]\ {i1, 1, ,ik, jr - When k =0, in
particular, we follow the natural convention that

1 n
Aiv i, s @m=1 Pe(Tm = Ym) = > 1 peem = voqm)
’ o€, m=1
where ¥, is the permutation group on {1,--- ,n}.
(iii) I—ok(---) is the multiple It6-Wiener (It6-Skorohod) integral with the integration variables

{Wms m e [L,n]\ {ir, j1, -+ yik, Ji b}

With the above chaos expansion (6.5) we see that the chaos expansion of the approximated Stratonovich
integral is

Suctr) = [, st (T Weton) o,

k=1

= Y 3 / flan ’l‘n)<£[l’72s($ie —l‘n))

L . . d
E<n/2i1<ji,,ik<Jk (R)

X Iy, (Aihjl,"' Vs Jk Om=1 Pe(Tm — '))dwl cediy (6.6)
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By the symmetry of f on z1,--- ,x, and with a combinatorial analysis as in [16] the above equation
can be written

| k
Sne(f) = Z mln—ﬂc </(Rd)2n fx1, - @) H’ms(xze—l — T20)

k<n/2 (=1

X H pe(xj —-))dxy -+ -dzy | . (6.7)
j=2k+1

Since the approximated multiple integral can be decomposed to finite sum of multiple It6-Wiener
integrals which are orthogonal, we see that the convergence in £2(£2, F,P) of (2.13) is equivalent to
that each of the multiple [t6-Wiener integrals in (6.7) converges in £2(£2, F,P). Thus, we have the
following theorem which is used to justify (2.18).

Theorem 6.2. Let f € H®™ be deterministic and symmetric. If the trace

k
Te*f(yaker, ) = lim (Rd)nfm,---,xn>éﬂlm<m1—m>
X H pe(z; — y;))day - - - day, (6.8)
j=2k+1

exists in HO"=2) for all k < n/2, then the Stratonovich integral S, (f) exists as an L2(Q, F,P)
limit of Sp(f) as € = 0 and we have the following Hu-Meyer formula:

5.0 = Y. gy (69

k<n/2

Conversely, if Sn-(f) is a Cauchy sequence in L2(, F,P), then the right hand side of (6.8) is a
Cauchy sequence in H®"=2%) for all k < n/2, whose limit is denoted by the left hand side of (6.8)
and S -(f) converges to S, (f) defined by (6.9) in L2(, F,P). Moreover, if Sn.(f) converges to
Sn(f) in L2(Q, F,P), then this convergence also takes place in LP(S), F,P) for any p € [1,00). This
means that Sy (f) is in LP(2, F,P) for any p € [1,00).

Remark 6.3. It is obvious that if f is the symmetrization of f, then by the above definition it is
easy to verify that Sp(f) = Sn(f).

Proof of the theorem. Denote

Indee (Y2h+1," "+ 5 Yn) i—/ f@y,- H’ms Toe—1 — T20) H pe(z ))dzy - dzy, .
(Rt)2n Jj=2k+1

Equation (6.8) means ||gy ke — Tr ¥ f|lyem-2x — 0 as € — 0. By the Ito isometry,

E’In—Qk(gn,k,s) - In—?k(Trkf)|2 = E‘In—Qk(gn,k,s - Trkf)|2

(6.10)
=(n — 2k)!|gnk.c — ﬁkf\\%@(n—%) =0

by (6.8). Equation (6.7) tells that S, (f) converges to Sy (f) given by (6.9).
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Now we assume that S, .(f) is a Cauchy sequence in £2(Q2, F,P). With our notation g, x. we can
write

n!
n = —In— n .
Snelf) 2. 2kl (n — 2k)1 "2 (9n.c)
k<n/2
Thus, by the orthogonality of multiple It6-Wiener integrals,
B[S0 (N) ~ Sue ) = 2 (e B (Lt (k) s ()]
n,e n,e = 2kk!(n—2k‘)! n—2k \9n, ke n—2k \9n ke

k<n/2

n! 2
= <2kk.(n%),> (n = 2k)!|gn.e = Gnker | 3geinmm -
k<n/2 ) )

This can be used to prove the second part of the theorem easily.

Recall that if ' = >, I,,(fn) is the chaos expansion of F, then the second quantization operator
(e.g. [14]) of a number a € [—1,1] is defined as

T(@)F =Y a"I(fa).
n=0

Now for any p > 2, let a = ’/1% and let

_ n—2k n! k
Ft,n,a - k<z/2(1/06) m |:In72k (gn,kﬁ) — In,Qk(TI‘ f) . (611)

Then by the hypercontractivity inequality (e.g. [14, p. 54, Theorem 3.20], we have

(E[Sne(f) —Sul£H))'/? = (BID(@) Fin )P < (B[ el?)?
1/2
n— n!
= Bl k;n/zu/w I 3] L2k (k) — Tk ()| P
B 1/2
<[ T et 8 [ ) — DT )]
= ot @ 22k(k‘)2((n — 2k)')2 n—2k \Gn ke n—2k )

which converges to 0 by (6.10). This proves the theorem. [
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