
1 23

Journal of Theoretical Probability
 
ISSN 0894-9840
Volume 28
Number 2
 
J Theor Probab (2015) 28:721-725
DOI 10.1007/s10959-013-0481-4

The Limit Law of the Iterated Logarithm

Xia Chen



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Theor Probab (2015) 28:721–725
DOI 10.1007/s10959-013-0481-4

The Limit Law of the Iterated Logarithm

Xia Chen

Received: 1 January 2013 / Revised: 8 February 2013 / Published online: 23 February 2013
© Springer Science+Business Media New York 2013

Abstract For the partial sum {Sn} of an i.i.d. sequence with zero mean and unit
variance, it is pointed out that

lim
n→∞(2 log log n)−1/2 max

1≤k≤n

Sk√
k

= 1 a.s.
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1 Theorem

Given a sequence {Xk}k≥1 of i.i.d. random variables with

EX1 = 0 and EX2
1 = 1, (1.1)

Hartman–Wintner’s law of the iterated logarithm states [4] that

lim sup
n→∞

(2n log log n)−1/2Sn = 1 a.s. (1.2)
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where {Sn} is the process of the partial sum given as

Sn = X1 + . . . + Xn n = 1, 2, · · · .

We point out the Ref. [3] for an elegant proof of Hartman–Wintner’s law of the iterated
logarithm.

Hartman–Wintner’s law of the iterated logarithm is also regarded as the limsup law
of the iterated logarithm in the literature. The liminf law of the iterated logarithm was
obtained by Chung [2] who proved that

lim inf
n→∞

√
log log n

n
max
1≤k≤n

|Sk | = π√
8

a.s. (1.3)

under the extra assumption of finite third moment. The gap was closed by Jain and
Pruitt [5] who point out that the assumption (1.1) is sufficient (and necessary) for
Chung’s law of the iterated logarithm. We recommend the Ref. [1] for an extensive
survey on both limsup and liminf laws of the iterated logarithm.

In this short note we establish the limit law of the iterated logarithm.

Theorem 1.1 Under the assumption (1.1),

lim
n→∞(2 log log n)−1/2 max

1≤k≤n

Sk√
k

= 1 a.s.

Proof By the almost sure invariance principle [10], one can construct a possibly larger
probability space which supports both the i.i.d. sequence {Xk} and a linear Brownian
motion B(t) such that

|Sk − B(k)| = o
(√

k log log k
)

a.s. (k → ∞). (1.4)

On the other hand, it is well known that the time-changed Brownian motion

X (t) = B(et )√
et

t ≥ 0 (1.5)

is an Ornstein–Uhlenbeck process. By Proposition 2.1 below,

lim
t→∞(2 log t)−1/2 max

s≤t

B(es)√
es

= 1 a.s.

By variable substitution,

lim
t→∞(2 log log t)−1/2 max

1≤s≤t

B(s)√
s

= 1 a.s.
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Using the classic fact that

sup
k≤s≤k+1

|B(s) − B(k)| = O
(√

log k
)

a.s. (k → ∞)

we have that

lim
n→∞(2 log log n)−1/2 max

1≤k≤n

B(k)√
k

= 1 a.s.

In view of (1.4), we have completed the proof. ��
Remark By a deterministic argument, one can see that Hartman–Wintner’s law of the
iterated logarithm in (1.2) is a direct corollary of Theorem 1.1. In view of the relation

max
1≤k≤n

|Sk |√
k

= max
1≤k≤n

Sk√
k

∨ max
1≤k≤n

−Sk√
k

applying Theorem 1.1 to both {Xk} and {−Xk} on the right hand side leads to

lim
n→∞(2 log log n)−1/2 max

1≤k≤n

|Sk |√
k

= 1 a.s. (1.6)

2 Law of Logarithm for Ornstein–Uhlenbeck Process

A one dimensional Ornstein–Uhlenbeck process {X (t); t ≥ 0} can be defined as a
stationary, centered, and continuous Gaussian process with co-variance function

Cov
(
X (0), X (t)

) = e−t/2 t ≥ 0. (2.1)

By this definition, one can directly verify the representation given in (1.5).
Here we prove the following law of the logarithm for the maximum of Ornstein–

Uhlenbeck process.

Proposition 2.1 The following strong law holds.

lim
t→∞(2 log t)−1/2 max

s≤t
X (s) = 1 a.s. (2.2)

We mention the Refs. [7] and [8] for some similar results in the context of sta-
tionary Gaussian sequence. It is possible that (2.2) can be established by discrete
approximation. We provide a direct proof in the following. By a standard argument
using Borel–Cantelli lemma, all we need is to show that for any ε > 0,

∑
k

P

{
max
s≤2k

X (s) ≥ (1 + ε)

√
2 log 2k

}
< ∞, (2.3)

∑
k

P

{
max
s≤2k

X (s) ≤ (1 − ε)

√
2 log 2k

}
< ∞. (2.4)
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By stationarity,

P

{
max
s≤2k

X (s) ≥ (1 + ε)

√
2 log 2k

}
≤ 2kP

{
max
s≤1

X (s) ≥ (1 + ε)

√
2 log 2k

}
.

By the concentration inequality for Gaussian process (see, e.g., (5.152), Theorem
5.4.3, p. 219, [6]), and by stationarity, there is a u > 0 such that

P

{
max
s≤1

X (s) ≥ (1 + ε)

√
2 log 2k

}
≤ exp

{
− (1 + u) log 2k

}
.

This finishes the proof of (2.3).
To establish (2.4), let δ > 0 be small but fixed. For each t , let N = Nt = [δt] and

let 0 = τ0 < τ1 < · · · < τN = t be an uniform partition of [0, t]. We have that

P

{
max
s≤t

X (s) ≤ (1 − ε)
√
2 log t

}
≤ P

{
max

0≤k≤N
X (τk) ≤ (1 − ε)

√
2 log t

}
. (2.5)

On the other hand, let η0, η1, · · · , ηn be an i.i.d. sequence of standard normal
random variables and write

ζk = (
1 + 2e−t/(2N )

)−1/2
(
ηk + √

2e−t/(4N )η0

)
k = 1, · · · , N .

In view of (2.1), it is straightforward to show that when δ < 2−1(log 2)−1,

Var
(
X (τk)

) = Var (ζk) = 1 and

Cov
(
X (τi ), X (τ j )

) ≤ Cov (ζi , ζ j ) i, j, k = 1, · · · , n.

By Slepian lemma ([9], see also Lemma 5.5.1, [6]),

P

{
max

0≤k≤N
X (τk) ≤ (1 − ε)

√
2 log t

}
≤ P

{
max

0≤k≤N
ζk ≤ (1 − ε)

√
2 log t

}
.

Notice that

max
k≤n

ζk = (
1 + 2e−t/(2N )

)−1/2
(√

2e−t/(4N )η0 + max
k≤n

ηk

)
.

By the triangle inequality

P

{
max
k≤N

X (τk) ≤ (1 − ε)
√
2 log t

}

≤ P

{
max
k≤N

ηk ≤
√
1 + 2e−t/(2N )(1 − 2−1ε)

√
2 log t

}

+P

{
η0 ≤ −ε

2
et/(4N )

√
2 log t

}
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=
(
P

{
η1 ≤

√
1 + 2e−t/(2N )(1 − 2−1ε)

√
2 log t

})N+1

+P

{
η0 ≥ ε

2
et/(4N )

√
2 log t

}
.

Taking δ > 0 sufficiently small, we have

P

{
η0 ≥ ε

2
et/(4N )

√
2 log t

}
≤ exp

{
− log t

}
,

P

{
η1 ≥

√
1 + 2e−t/(2N )(1 − 2−1ε)

√
2 log t

}
≥ exp

{
− (1 − u) log t

}

for large t , where u > 0 is a small number depending only on ε and δ.
As a consequence of the second inequality,

(
P

{
η1 ≤

√
1 + 2e−t/(2N )(1 − 2−1ε)

√
2 log t

})N+1

≤
(
1 − 1

t1−u

)δt ≤ exp
{

− ctu
}

for large t , where c > 0 is independent of t .
In summary of the steps since (2.5), we have completed the proof of (2.4). ��
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