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Abstract

Let Bs be a three dimensional Brownian motion and ω(dx) be an independent
Poisson field on R3. It is proved that for any t > 0, conditionally on ω(·),

E0 exp

{
θ

∫ t

0
V (Bs)ds

} <∞ a.s. if θ < 1/16,

=∞ a.s. if θ > 1/16,
(∗)

where V (x) is the renormalized Poisson potential

V (x) =

∫
R3

1

|x− y|2
[
ω(dy)− dy

]
.

Then the long term behavior of the quenched exponential moment (∗) is deter-
mined for θ ∈ (0, 1/16) in the form of integral tests.

This paper exhibits and builds upon the interrelation between the exponential
moment (∗) and the celebrated Hardy’s inequality∫

R3

f2(x)

|x|2
dx ≤ 4‖∇f‖22, f ∈W 1,2(R3).
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1 Introduction

Consider a particle moving randomly according to a standard d-dimensional Brownian
motion Bs in Rd. Independently, there is a family of obstacles randomly placed in the
space Rd according to a Poisson field ω(dx) (i.e., a Poisson random measure). Assume
that each obstacle has mass 1 and the Poisson field ω(dx) has the Lebesgue measure
dx as its intensity measure. Throughout this paper, “Pz” and “Ez” will respectively
stand for the probability law and expectation relative to Brownian motion Bs with
B0 = z. Notation “P” and “E” will be used for the probability law and expectation,
respectively, relative to Poisson field ω(dx).

Given a shape function K(x) (as known by mathematicians, and a point-mass potential
by physicists) on Rd, the potential associated with the random mass distribution ω(·)
is given by

V (x) =

∫
Rd
K(x− y)ω(dy),

and is called a Poisson potential. The quantity

t−1

∫ t

0

V (Bs) ds

represents the average Poisson potential along a Brownian trajectory. More important
quantities of interest are the respective annealed and quenched exponential moments

E⊗ E0 exp

{
±
∫ t

0

V (Bs) ds

}
and E0 exp

{
±
∫ t

0

V (Bs) ds

}
. (1.1)

Knowledge of their asymptotic behavior at t→∞ is fundamental to our understanding
of parabolic Anderson models (see Corollary 2.4). The reader is referred to [1], [2], [3],
[8], [9], [10], [11], [14], [15], [16], [23], [24], [29], and [30] for the existing literature on
this topic.

In the classical literature on this subject, the function K(x) of the Poisson potential
was assumed to be bounded and/or compactly supported. However, in physics many
point-mass potential functions are unbounded. For example, in scattering theory, power
potentials K(x) = ∓|x|−p (d = 3) play a significant role, see [20], [21]. The parameter
p > 0 is called the index of attraction or repulsion, respectively. When p = 1, we have
Coulomb interaction. K(x) = |x|−4 is referred to as Maxwellian potential, K(x) =
−|x|−4 is important in the study of ionized gases, K(x) = |x|−2 is known as a centrifugal
potential, see [20, Chapters 1-7, 3-6].

Donsker and Varadhan [10], Pastur [23], and Fukushima [13] studied the asymptotics
in (1.1) with the negative signs for the case K(x) = |x|−p. Specifically, in [10] and [23]
the asymptotics of the annealed moment were obtained when p > d + 2 and d < p <
d + 2, respectively. In [13] both annealed and quenched moments are determined for
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d < p < d + 2. In these papers the singularity of K(x) was circumvented by applying
truncations near the origin.

When p ≤ d, the Poisson potential becomes infinite a.s. To deal with this problem, in
the recent paper [6], the renormalized Poisson potential

V (x) =

∫
Rd

1

|x− y|p
[
ω(dy)− dy

]
x ∈ Rd

was introduced; it exists as a random integral if and only if d/2 < p < d, see Corollary
1.3 and physical arguments behind the renormalization in [6]. In the same work, inte-
grabilities associated with the construction of the annealed and quenched exponential
moments

E⊗ E0 exp

{
± θ

∫ t

0

V (Bs) ds

}
and E0 exp

{
± θ

∫ t

0

V (Bs) ds

}
were investigated. In the range d/2 < p < d, the time-integral∫ t

0

V (Bs) ds

is well defined and satisfies the annealed integrability (and therefore quenched integra-
bility as well)

E⊗ E0 exp

{
− θ

∫ t

0

V (Bs) ds

}
<∞

for every θ > 0 and t > 0. We refer the recent papers [5] and [7] for the study on the
asymptotics of quenched and annealed negative exponential moments, respectively.

However, the case of exponential moments with positive coefficient is far more delicate.
By [6, Theorem 1.4], for every θ > 0 and t > 0

E⊗ E0 exp

{
θ

∫ t

0

V (Bs) ds

}
=∞.

On the other hand, by [6, Theorem 1.5] the quenched exponential moment exists for
any θ > 0, t > 0, and p < 2, as we have with probability 1,

E0 exp

{
θ

∫ t

0

V (Bs)ds

} <∞ a.s. if p < 2,

=∞ a.s. if p > 2.
(1.2)

Furthermore, the first author recently observed in [5] that

lim
t→∞

1

t

( log log t

log t

) 2
2−p

logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
(1.3)

=
1

2
p

p
2−p (2− p)

4−p
2−p

( dθσ(d, p)

2 + d− p

) 2
2−p

a.s.− P,
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where σ(d, p) > 0 is the best constant of the inequality∫
Rd

f 2(x)

|x|p
dx ≤ C‖f‖2−p

2 ‖∇f‖p2, f ∈ W 1,2(Rd). (1.4)

The only unanswered case is p = 2 and necessarily d = 3 (recall the constraint
d/2 < p < d); we will call it the critical case. Our results will justify this name.

The present paper is devoted to the study of the quenched exponential moment

E0 exp

{
θ

∫ t

0

V (Bs) ds

}
, θ > 0, t > 0 (1.5)

in the critical case, i.e., when

V (x) =

∫
R3

1

|x− y|2
[
ω(dy)− dy

]
, x ∈ R3. (1.6)

Remark that in physics K(x) = ±|x|−2 (x ∈ R3) is a transition potential. It lies on
the boundary between the classes of regular (p < 2) and singular (p > 2) potentials
separating fundamentally different physical systems, see [12, Section II]. For example,
in nonrelativistic quantum mechanics a particle in an attractive singular potential has
infinite negative energy. The particle in this case "falls" to the center with infinite
velocity. However, if p < 2, the energy is finite, solutions to physical problems are
uniquelly given, and there is no problem with their physical interpretation, see [12,
Sections I–II.A].

It was already noticed in [6, Theorem 1.5] that the quenched exponential moment
in (1.5) is infinite a.s. for θ sufficiently large and all t > 0. A natural question is
whether this is true for all θ > 0. Fortunately, the answer is negative. If so, what is the
critical value θ0 where the phase transition occurs? (It is even not clear that θ0 must be
deterministic.) We prove that θ0 = 1/16. Then we establish the asymptotic behavior of
the quenched exponential moment in (1.5), showing that it is fundamentally different
from (1.3) since the strong law of large numbers does not hold in the critical case.
These results are the consequences of the interrelation with Hardy’s inequality (2.9)
via a chain of asymptotic equivalences sketched in (2.10). In conclusion, the critical
case of p = 2 is substantially different from the other cases. The only continuity
appears in Hardy’s inequality, where a formal substitution of p = 2 in (1.4) gives (2.9).

The paper is organized as follows. In section 2 we present main results and their ap-
plication to the parabolic Anderson model. In section 3, we develop key tools for the
estimations needed in later sections. Some of these tools are interesting for their own
novelty. Slepian-type correlation inequalities for infinite divisible fields (cf. [28]) are
provided (Lemma 3.1) for the proof of (2.12), where the random variables ω(z + Qbδ)
(z ∈ 2δZ3) are correlated as b > 1. An estimation by a chaining maximal inequal-
ity (Lemma 3.2) allows the truncation of the Poisson potential at the proper level.
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Feynman-Kac formula plays a crucial role in the proof of the main results in this pa-
per. A clean and simple minorization bound (Lemma 3.4) for Brownian density killed
upon exit leads to a Feynman-Kac lower bound (Lemma 3.5) adoptable to our setting.
For the Feynman-Kac upper bound (Lemma 3.6) with the random potential V (·), we
use the independence between the Brownian exit time and Brownian exit location from
a ball centered at 0. The lower and upper bounds for the main theorems are proved
in the sections 4 and 5, respectively. The main ingredients in these two sections are
the estimation of the principal eigenvalues of the correspondent initial-boundary value
problems that leads to the relation suggested by (2.10) and, the strong laws for extreme
values of the Poisson field indicated by (2.11)–(2.12). Section 6 is devoted to Hardy’s
inequality and related facts.

2 Main results

From now on we will assume d = 3, p = 2 and that the renormalized Poisson potential
V (x) is given by (1.6), if not otherwise stated.

Theorem 2.1 For every t > 0,

E0 exp

{
θ

∫ t

0

V (Bs)ds

} <∞ a.s. if θ < 1/16,

=∞ a.s. if θ > 1/16.
(2.1)

In view of the limit law (1.3) obtained in the non-critical case, a natural problem is
the asymptotic behaviors in the critical case. Recall that a positive function γ(t) on
R+ is said to be regularly varying at infinity if the limit

lim
t→∞

γ(λt)

γ(t)
= c(λ)

exists for each λ > 0. A regularly varying function γ(t) is said to be slowly varying
at infinity, if c(λ) ≡ 1. From Karamata theory, every regularly varying function γ(t)
has a representation γ(t) = tβl(t), where β is a constant and l(t) is a slowly varying
function.
Throughout, l(t) will stand for a slowly varying function at infinity.

Theorem 2.2 For every θ ∈ (0, 1/16)

lim sup
t→∞

t−
k+1
k−1 l(t)−

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
(2.2)

=


0 a.s. if

∫ ∞
1

dt

t · l(t)
<∞,

∞ a.s. if
∫ ∞

1

dt

t · l(t)
<∞,
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where k = b(8θ)−1c is the integer part of (8θ)−1.

Theorem 2.3 For every θ ∈ (0, 1/16)

lim inf
t→∞

t−
k+1
k−1 l(t)−

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
(2.3)

=


0 a.s. if

∫ ∞
1

1

t
exp

{
− c · l(t)

}
dt =∞ for some c > 0,

∞ a.s. if
∫ ∞

1

1

t
exp

{
− c · l(t)

}
dt <∞ for every c > 0,

where k = b(8θ)−1c is as in Theorem 2.2.

Theorems 2.2–2.3 show rather unexpected behavior of the quenched exponential mo-
ments with regard to θ. Indeed, putting θ into different sub-intervals of the partition(

0,
1

16

)
=
( 1

24
,

1

16

)
∪
∞⋃
k=3

( 1

8(k + 1)
,

1

8k

]
leads to different asymptotic rates. On the other hand, moving θ around within the
same sub-interval does not bring any change to the asymptotic behavior of the system.

Our main results indicates that as far as the strong limit is concerned, there is not
“right” deterministic normalization to the logarithm of the quenched exponential mo-
ment in the critical setting p = 2 and d = 3. Indeed, by Theorems 2.2–2.3, for any
0 < θ < 1/16, and for any positive deterministic function γ(t) regularly varying at
infinity, with probability 1

lim sup
t→∞

γ(t)−1 logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
= 0 or ∞

and

lim inf
t→∞

γ(t)−1 logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
= 0 or ∞.

This pattern sharply contrasts (1.3) observed in the non-critical setting.

Letting l(t) be some specific functions, we get the following results:

lim sup
n→∞

t−
k+1
k−1 (log t)−

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
=∞ a.s.

On the other hand, for any δ > 0

lim sup
n→∞

t−
k+1
k−1

(
(log t)(log log)1+δ

)− 2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
= 0 a.s.
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As for the liminf behavior,

lim inf
n→∞

t−
k+1
k−1 (log log t)

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
= 0 a.s.

On the other hand, for any l(t)� log log t as t→∞,

lim inf
n→∞

t−
k+1
k−1 l(t)

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
=∞ a.s.

Theorem 2.1 provides solution to the parabolic Anderson equation ∂tu(t, x) = κ∆u(t, x) + θV (x)u(t, x)

u(0, x) = 1
(2.4)

where κ > 0 is a constant called diffusion coefficient. Indeed, consider the time-space
field

uθ(t, x) = Ex exp

{
θ

∫ t

0

V (B2κs)ds

}
= Ex exp

{
θ

2κ

∫ 2κt

0

V (Bs)ds

}
. (2.5)

By translation invariance of the Poisson field, for any x ∈ Rd{
uθ(t, x); t ≥ 0

}
d
=
{
uθ(t, 0); t ≥ 0

}
. (2.6)

By Theorem 2.1, uθ(t, x) < ∞ a.s. for every x ∈ Rd and t > 0 when θ < κ/8. The
argument same as the one for Proposition 1.6, [6] concludes that when θ < κ/8, uθ(t, x)
is a mild solution to the equation (2.4) in the sense that∫ t

0

p2κ(t−s)(x− y)|V (y)|uθ(s, y)dyds <∞ x ∈ R3, t > 0

and

uθ(t, x) = 1 + θ

∫ t

0

p2κ(t−s)(x− y)V (y)uθ(s, y)dyds x ∈ R3, t > 0

where pt(x) is the Brownian density.

Further, Theorem 2.2 and Theorem 2.3 lead to the long term property of the stochastic
partial different equation (2.4).

Corollary 2.4 Under d = 3 and p = 2, the random field uθ(t, x) <∞ for all θ < κ/8
and (t, x) ∈ R+ × R3, and uθ(t, x) = ∞ for all θ > κ/8 and (t, x) ∈ R+ × R3. When
θ < κ/8, uθ(t, x) is a mild solution to the equation (2.4) and further, for any x ∈ R3,

lim sup
t→∞

t−
i+1
i−1 l(t)−

2
3(i−1) log uθ(t, x) =


0 a.s. if

∫ ∞
1

dt

t · l(t)
<∞

∞ a.s. if
∫ ∞

1

dt

t · l(t)
=∞

(2.7)
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lim inf
t→∞

t−
i+1
i−1 l(t)

2
3(i−1) log uθ(t, x) (2.8)

=


0 a.s. if

∫ ∞
1

1

t
exp

{
− c · l(t)

}
dt =∞ for some c > 0

∞ a.s. if
∫ ∞

1

1

t
exp

{
− c · l(t)

}
dt <∞ for every c > 0

where i = b(4θ)−1κc is the integer part of (4θ)−1κ.

Given the non-deterministic asymptotic behaviors observed from Theorem 2.2 and
Theorem 2.3, the weak law (if any) becomes an interesting problem. In view of Theorem
2.2 and Theorem 2.3, one might expect that the process

t−
k+1
k−1 logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
converges to a non-degenerated distribution. We leave this problem to future study.

The critical (p = 2) and non-critical (p < 2) settings depend on the environment
in different ways and therefore are treated differently. In the non-critical case, the
quantity

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
is made by letting Brownian particle stay in a slowly shrinking neighborhood that
provides maximal energy from Poisson field among all same-size neighborhoods in a
large ball of the radius (roughly) t. Consequently, the limit in (1.3) depends on the
extreme values of the Poisson potential V (·) over a group of shrinking neighborhoods.

In contrary, the limsup in Theorem 2.2 and the liminf in Theorem 2.3 correspond with
the value∞ to the existence (with a proper asymptotic intensity) of the neighborhoods
in which the number of Poisson obstacles exceeds the fixed level k = [(8θ)−1] within
proper distance, and with the value 0 to the absence of such neighborhoods. The
central piece behind this strategy is the celebrated Hardy’s inequality (Lemma 6.1)
which states that ∫

R3

f 2(x)

|x|2
dx ≤ 4‖∇f‖2

2 f ∈ W 1,2(R3). (2.9)

As a consequence (Lemma 6.2) of Hardy’s inequality,

H(θ) ≡ sup
g∈F3

{
θ

∫
R3

g2(x)

|x|2
dx− 1

2

∫
R3

|∇g(x)|2dx
}

=


0 if θ ≤ 1/8

∞ if θ > 1/8.
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The connection of Theorem 2.2 and Theorem 2.3 to Hardy’s inequality is described
roughly by the following almost sure asymptotic relation:

logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
(2.10)

≈ logE0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; max

0≤s≤t
|Bs| ≤ R

]

≈ t
k+1
k−1 l(t)±

2
3(k−1)

{
o(1) + A(t)H

(
θ max
|z|≤R
z∈2δZ3

ω(z +Qbδ)
)}

where R increases to ∞ and δ > 0 decreases to zero with suitable polynomial rates as
t→∞, where z+Qbδ represents the cubic z+ [−bδ, bδ]3 with b being a fixed constant,
and where A(t) ranges from a constant (in the argument for the lower bound) to
a function increasing to ∞ at a considerable speed (in the argument for the upper
bound).

Our strategy is to let the Brownian particle spend significant portion of the duration
[0, t] in one of the δ-neighborhoods within the distance R. A principle of choosing R
and δ is to make alternation between the behaviors

lim sup
t→∞

max
|z|≤R
z∈2δZ3

ω(z +Qbδ) ≤ (8θ)−1 a.s. (2.11)

lim inf
t→∞

max
|z|≤R
z∈2δZ3

ω(z +Qbδ) ≤ (8θ)−1 a.s. (2.12)

and their opposites.

Comparing to the extreme value problem in the non-critical setting, the strong laws in
(2.11) and (2.12) are much more sensitive to truncation radius R (more precisely, to the
number of the δ-neighborhoods that covers the ball {|x| ≤ R}), as they corresponds to
the polynomial (rather than exponential) decay of the Poissonian tail. To validate the
first step in (2.10) in the argument for the upper bounds, on the other hand, one has to
take R significantly larger than it is in the proof for the lower bounds. The impact of
larger R in (2.11) and (2.12) can be counter-balanced by taking smaller δ, even though
this action leads to a further increase of the number of the δ-neighborhoods. The cost
of this strategy turns out to be a possibly very large function A(t) appearing on the
right hand side of (2.10). An observation unique to the critical setting is the irrelevance
of A(t) to the asymptotic behaviors of the system, as the quantity

H
(
θ max
|z|≤R
z∈2δZ3

ω(z +Qbδ)
)

is equal to zero eventually (under (2.11)) or infinitely often (under (2.12)).
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3 Basic estimates

In this section we give some auxiliary results that will be used in our proofs. We state
them separately for a convenient reference. For future reference, all results in this
section are established in the space Rd for d ≥ 1, except Lemma 3.6 where d = 3.

3.1 Association of infinitely divisible fields

Recall that random variables X1, . . . , Xn are said to be associated if for any bounded
measurable functions f, g : Rn 7→ R non-decreasing (equivalently, non-increasing) in
each coordinate

Cov(f(X), g(X)) ≥ 0. (3.1)

Association is a fairly strong property exhibiting positive dependence.

Consider now a non-negative random measure M on Rd, taking independent values on
disjoint sets such that M(A) is infinitely divisible with the characteristic function

E exp{−uM(A)} = exp
{
−m(A)

∫ ∞
0

(1− e−us) ρ(ds)
}
, u > 0, (3.2)

for every Borel set A ⊂ Rd with m(A) < ∞, where m is a σ-finite measure on Rd

and ρ is a measure on (0,∞) such that
∫∞

0
min{s, 1} ρ(ds) <∞. M can be viewed

as a distribution of obstacles in Rd having random locations and random masses, so
we call it an infinitely divisible random field. M is a Poisson field if m(dx) = dx and
ρ(ds) = δ1(ds). See [25] for more information on infinitely divisible random measures.

Lemma 3.1 Let M be infinitely divisible random field. Then M(A1), . . . ,M(An) are
associated for any Borel sets Aj with m(Aj) < ∞, j = 1, . . . , n. In particular, for all
c1, . . . , cn ∈ R

P(M(A1) ≤ c1, . . . ,M(An) ≤ cn) ≥
n∏
j=1

P(M(Aj) ≤ cj) (3.3)

and

P(M(A1) ≥ c1, . . . ,M(An) ≥ cn) ≥
n∏
j=1

P(M(Aj) ≥ cj). (3.4)

Proof: It follows from (3.2) that X = (M(A1), . . . ,M(An)) has infinitely divisi-
ble distribution without Gaussian part and its Lévy measure is concentrated on Rd

+.
Thus the components of X are associated [26] (see also [27] for more information on
association of infinitely divisible random vectors).

Applying (3.1) recursively for f =
∏n−1

j=1 1(−∞,cj ] and g = 1(−∞,cn] (f =
∏n−1

j=1 1[cj ,∞)

and g = 1[cn,∞), respectively) we obtain (3.3) ((3.4), respectively). �
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3.2 Truncating Poisson potentials

In this subsection we study a family of Poisson potentials generated by a smooth
truncation of the singular potential kernel K(x) = |x|−p, where p ∈ (d/2, d). The
following notation will be used throughout this paper:
α: R+ −→ [0, 1] denotes a fixed smooth function with the following properties: α(λ) =
1 on [0, 1], α(λ) = 0 for λ ≥ 3 and −1 ≤ α′(λ) ≤ 0. Let a > 0 be fixed but arbitrary.
Put

La(x) =
1− α(a−1|x|)

|x|p
and V a,ε(x) =

∫
Rd
La(x− y)

[
ω(εdy)− εdy

]
. (3.5)

Let D ⊂ Rd be a fixed bounded set.

Lemma 3.2 For any θ > 0 and fixed a > 0

E exp
{
θ sup
x∈D
|V a,1(x)|

}
<∞. (3.6)

Further, for given θ > 0 one can take a > 0 large enough so

sup
0<ε<1

E exp
{
θ(log ε−1) sup

x∈D
|V a,ε(x)|

}
<∞. (3.7)

Proof: Due to similarity, we only prove (3.7). Write

Ψ(λ) = eλ − 1− λ λ ∈ R.
We have for θ > 0

E exp
{
± θ(log ε−1)V a,ε(0)

}
= exp

{
ε

∫
Rd

Ψ
(
± θ(log ε−1)La(y)

)
dy

}
≤ exp

{
ε

∫
Rd

Ψ
(
θ(log ε−1)La(y)

)
dy

}
,

where the inequality follows from the fact that Ψ(−λ) ≤ Ψ(λ) for any λ ≥ 0. Therefore,

E exp
{
θ(log ε−1)|V a,ε(0)|

}
≤ 2 exp

{
ε

∫
Rd

Ψ
(
θ(log ε−1)La(y)

)
dy

}
.

By a change of variable,∫
Rd

Ψ
(
θ(log ε−1)La(y)

)
dy = (log ε−1)d/p

∫
Rd

Ψ
(
θLa(log ε−1)−1/p(x)

)
dx

≤ (log ε−1)d/p
∫
{|x|≥a(log ε−1)−1/p}

Ψ
(
θ|x|−p

)
dx

≤ (log ε−1)d/p
{∫

{1∧a(log ε−1)−1/p≤|x|≤1}
+

∫
{|x|≥1}

}
Ψ
(
θ|x|−p

)
dx

≤ (log ε−1)d/p
{
C exp

{
θa−p log ε−1

}
+

∫
{|x|≥1}

Ψ
(
θ|x|−p

)
dx

}
, (3.8)
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where the last step follows from the bound Ψ(λ) ≤ eλ (λ > 0). Since∫
{|x|≥1}

Ψ
(
θ|x|−p

)
dx <∞,

we get for a > θ1/p

sup
0<ε<1

E exp
{
θ(log ε−1)|V a,ε(0)|

}
<∞. (3.9)

Similarly as at the beginning of the proof, for any x, y ∈ D with x 6= y,

E exp

{
θ(log ε−1)

|V a,ε(x)− V a,ε(y)|
|x− y|

}
≤ 2 exp

{
ε

∫
Rd

Ψ

(
θ log ε−1

|x− y|
|La(x− z)− La(y − z)|

)
dz

}
.

By the mean value theorem we obtain for all x, y ∈ Rd

|La(z − x)− La(z − y)| ≤ Ca−1|x− z|−p1(|x− z| > a)|x− y|
+ Ca−1|y − z|−p1(|y − z| > a)|x− y|,

where C = p+ 1. Using this estimate and the convexity of Ψ we get∫
Rd

Ψ

(
θ log ε−1

|x− y|
|La(x− z)− La(y − z)|

)
dz

≤ 1

2

∫
{|x−z|>a}

Ψ
(

2θCa−1 log ε−1|x− z|−p)
)
dz

+
1

2

∫
{|y−z|>a}

Ψ
(

2θCa−1 log ε−1|y − z|−p)
)
dz

= (log ε−1)d/p
∫
{|z|≥a(log ε−1)−1/p}

Ψ
(

2θCa−1|z|−p
)
dz.

By the same estimate as in (3.8) we get

sup
0<ε<1

sup
x 6=y

E exp

{
θ(log ε−1)

|V a,ε(x)− V a,ε(y)|
|x− y|

}
<∞.

By Theorem D.6, p.313, [4] we

sup
0<ε<1

E exp

{
θ(log ε−1) sup

x,y∈D
|V a,ε(x)− V a,ε(y)|

}
<∞. (3.10)

So the desired conclusion follows from (3.9) and (3.10). �

Using above lemma, we derive the following almost sure bounds
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Lemma 3.3 For any a > 0

lim
R→∞

(logR)−1 sup
|x|≤R

|V a,1(x)| = 0 a.s. (3.11)

Further, for any positive sequence εn such that

lim sup
n→∞

εn+1

εn
< 1

and any constants β > 0, the strong law

lim
n→∞

sup
|x|≤ε−βn

|V a,εn(x)| = 0 a.s. (3.12)

holds for sufficiently large n.

Proof: The ball {x ∈ Rd; |x| ≤ R} is covered by roughly CRd unit balls. By
homogeneity of the field V (·), for each δ > 0

P
{

sup
|x|≤R

|V a,1(x)| ≥ δ logR
}
≤ CRdP

{
sup
|x|≤1

|V a,1(x)| ≥ δ logR
}

≤ CR−(θδ−d)E exp
{
θ sup
|x|≤1

|V a,1(x)|
}
.

Take θ sufficiently large so θδ − d ≥ 1. By (3.6) the exponential moment on the right
hand side is finite. Thus,∑

n

P
{

sup
|x|≤2n

|V a,1(x)| ≥ δ log 2n
}
<∞.

Notice that δ > 0 can be arbitrarily small. By Borel-Cantelli lemma

lim
n→∞

(log 2n)−1 sup
|x|≤2n

|V a,1(x)| = 0 a.s.

Hence, (3.11) follows from the fact that sup
|x|≤R

|V a,1(x)| is non-decreasing in R.

We now come to the proof of (3.12). First notice that the ball B(0, ε−βn ) can be covered
by Cε−dβn balls of radius 1. Thus, for each δ > 0

P
{

sup
|x|≤ε−βn

|V a,εn(x)| ≥ δ
}
≤ Cε−dβn P{sup

|x|≤1

|V a,εn(x)| ≥ δ
}

≤ Cεθδ−dβn E exp
{
θ
(

log ε−1
n

)
sup
|x|≤1

|V a,εn(x)|
}
.

Take θ > 0 sufficiently large so θδ − dβ ≥ 1. By (3.7), the exponential moment on the
right hand side is bounded uniformly over n when a > 0 is sufficiently large. Hence,∑

n

P
{

sup
|x|≤ε−βn

|V a,εn(x)| ≥ δ
}
<∞.

Therefore, (3.12) follows from Borel-Cantelli lemma. �
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3.3 Lower bound on Brownian motion before it exits a ball

B(x, r) will denote a ball in Rd with center at x and radius r.

Lemma 3.4 For every R, t > 0 and a Borel set A ⊂ Rd

P0

(
Bt ∈ A, max

0≤s≤t
|Bs| ≤ 2R

)
(3.13)

≥ P0

(
Bt ∈ A ∩B(0, R)

)
P0

(
max
0≤s≤1

|B0
s | ≤ Rt−1/2

)
,

where B0
s is the Brownian bridge in Rd.

Proof: Let B0
s = Bs− sB1 be a Brownian bridge on [0, 1] taking values in Rd and let

Z be independent of Bs standard Gaussian random vector in Rd. Then Xs = B0
s + sZ

is a standard Brownian motion on 0 ≤ s ≤ 1 in Rd. We have by scaling

P(Bt ∈ A, max
0≤s≤t

|Bs| ≤ 2R) = P(t1/2B1 ∈ A, max
0≤s≤1

|Bs| ≤ 2Rt−1/2)

= P(t1/2Z ∈ A, max
0≤s≤1

|B0
s + sZ| ≤ 2Rt−1/2)

≥ P(t1/2Z ∈ A, |Z| ≤ Rt−1/2, max
0≤s≤1

|B0
s | ≤ Rt−1/2)

= P(Bt ∈ A ∩B(0, R))P( max
0≤s≤1

|B0
s | ≤ Rt−1/2),

which proves (3.13). �

3.4 Bounds by Feynman-Kac functionals

Given a bounded open domain D ⊂ Rd, let W 1,2(D) be the Sobolev space over D, de-
fined to be the closure of the inner product space consists of the infinitely differentiable
functions compactly supported in D under the Sobolev norm

‖g‖H =
{
‖g‖2

L2(D) + ‖∇g‖2
L2(D)

}1/2

.

Define

Fd(D) =

{
g ∈ W 1,2(D);

∫
D

g2(x)dx = 1

}
. (3.14)

For any measurable function ζ on D, put

λζ(D) = sup
g∈Fd(D)

{∫
D

ζ(x)g2(x)dx− 1

2

∫
D

|∇g(x)|2dx
}
. (3.15)
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Clearly, λξ(D) ≤ λη(D) and λζ(D) ≤ λζ(D
′) whenever ξ(x) ≤ η(x) (x ∈ D) and

D ⊂ D′.

Let
τD = inf{s ≥ 0; Bs 6∈ D}.

For any r > 0, define Tr = τB(0,r) with B(0, r) = {x ∈ Rd; |x| < r}.

Lemma 3.5 Let R > 0 and let ζ(x) be a function on Rd such thatK = supx∈B(0,2R) ζ(x) <
∞. We have that for any t, t0 > 0 satisfying t0 < t,∫

B(0,R)

Ex

[
exp

{∫ t

0

ζ(Bs)ds

}
;TR ≥ t

]
dx (3.16)

≥ (2πt0)d/2e−t0K exp
{

(t+ t0)λζ
(
B(0, R)

)}
,

E0

[
exp

{∫ t

0

ζ(Bs)ds

}
;T2R ≥ t

]
(3.17)

≥ P0

{
max
0≤s≤1

|B0
s | ≤ Rt

−1/2
0

}
exp

{
− 2t0K −

R2

2t0

}
exp

{
− tλζ

(
B(0, R)

)}
where B0

s (0 ≤ s ≤ 1) is a d-dimensional Brownian bridge.

Proof: By a standard procedure of approximation we may assume that ζ(·) is Hölder
continuous. By Feynman-Kac representation

u(t, x) = Ex

[
exp

{∫ t

0

ζ(Bs)ds

}
dx; TR ≥ t

]
solves the initial-boundary value problem

∂tu(t, x) =
1

2
∆u(t, x) + ζ(x)u(t, x) (t, x) ∈ (0,∞)×B(0, R),

u(0, x) = 1 x ∈ B(0, R),

u(t, x) = 0 t > 0 and |x| = R.

Let λ1 > λ2 ≥ λ3 ≥ · · · be the eigenvalues of the operator (1/2)∆ + ζ in L2
(
B(0, R)

)
with zero boundary condition and initial value 1 in B(0, R) and let ek ∈ L2

(
B(0, R)

)
be an orthogonal basis corresponding to {λk}. By (2.31) in [15],

Ex exp

{∫ t

0

ζ(Bs)ds

}
δx(Bt); TR ≥ t

]
=
∞∑
k=1

etλke2
k(x) ≥ etλ1e2

1(x)
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where δx(·) is the Dirac function on Rd with concentration at x.

Noticing the fact that λ1 = λζ
(
B(0, R)

)
and integrating both sides we have∫

B(0,R)

Ex exp

{∫ t

0

ζ(Bs)ds

}
δx(Bt); TR ≥ t

]
dx ≥ exp

{
tλζ
(
B(0, R)

)}
.

In addition, by Markov property

Ex

[
exp

{∫ t

0

ζ(Bs)ds

}
δx(Bt+1); TR ≥ t

]

≤ et0KEx

[
exp

{∫ t−t0

0

ζ(Bs)ds

}
δx(Bt); TR ≥ t− t0

]

= et0KEx

[
exp

{∫ t−t0

0

ζ(Bs)ds

}
pt0(Bt−t0 − x); TR ≥ t− t0

]

where
pt0(y) =

1

(2πt0)d/2
exp

{
− |y|

2

2t0

}
≤ 1

(2πt0)d/2
y ∈ Rd.

Hence, we have proved that∫
B(0,R)

Ex exp

{∫ t−t0

0

ζ(Bs)ds

}
; TR ≥ t− t0

]
dx (3.18)

≥ (2πt0)d/2e−t0K exp
{
tλζ
(
B(0, R)

)}
.

Replacing t by t+ t0 leads to (3.16).

On the other hand, using Markov property again

E0

[
exp

{∫ t

0

ζ(Bs)ds

}
;T2R ≥ t

]
≥ e−t0KE0

[
exp

{∫ t

t0

ζ(Bs)ds

}
;T2R ≥ t

]

= e−t0K
∫
B(0,2R)

p̃t0(x)Ex

[
exp

{∫ t−t0

0

ζ(Bs)ds

}
;T2R ≥ t− t0

]
dx

≥ e−t0K
∫
B(0,R)

p̃t0(x)Ex

[
exp

{∫ t−t0

0

ζ(Bs)ds

}
;TR ≥ t− t0

]
dx

where p̃t0(x) is the density function of the measure

µt0(A) = P0

{
Bt0 ∈ A, T2R ≥ t0

}
A ⊂ Rd.
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By (3.13),

p̃t0(x) ≥ P0

{
max
0≤s≤1

|B0
s | ≤ Rt

−1/2
0

} 1

(2πt0)d/2
exp

{
− |x|

2

2t0

}
≥ P0

{
max
0≤s≤1

|B0
s | ≤ Rt

−1/2
0

} 1

(2πt0)d/2
exp

{
− R2

2t0

}
x ∈ B(0, R).

Thus, we conclude that

E0

[
exp

{∫ t

0

ζ(Bs)ds

}
;T2R ≥ t

]

≥ e−t0KP0

{
max
0≤s≤1

|B0
s | ≤ Rt

−1/2
0

} 1

(2πt0)d/2
exp

{
− R2

2t0

}
×
∫
B(0,R)

Ex

[
exp

{∫ t−t0

0

ζ(Bs)ds

}
;TR ≥ t− t0

]
dx.

Finally, (3.17) follows from (3.18). �

Lemma 3.6 Let d = 3. For any δ > 0 with {|x| ≤ δ} ⊂ D,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τD ≥ 2t

]

≤ exp
{
θt sup
|x|≤δ/2

|V δ
6
,1(x)|

}
+

6|D|
πδ3

E0 exp
{√

2δT1θ sup
x∈D
|V δ

6
,1(x)|

}
exp

{
tλθV (D)

}
conditioning on the event

{
ω
{
|x| ≤ δ

}
= 0
}
, where |D| is the volume of D and V a,ε(·)

is defined in (3.5).

Proof: Notice that α(λ) = 0 for λ ≥ 3. Thus, on the event {ω(|x| ≤ δ) = 0},∫
R3

α(6δ−1|x|)
|x|2

ω(dy) ≤
∫
{|y|>δ}

1{|y−x|≤δ/2}
|x|2

ω(dy) = 0

whenever |x| ≤ δ/2. Consequently,

V (x) = −Cδ + V δ
6
,1(x) ≤ V δ

6
,1(x)

where
Cδ =

∫
R3

α(6δ−1|x|)
|x|2

dx.

17



For any r < δ/2, therefore∫ Tr∧t

0

V (Bs)ds =

∫ τr∧t

0

V δ
6
,1(Bs)ds ≤ t sup

|x|≤δ
|V δ

6
,1(x)|.

Thus,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τD ≥ 2t

]
(3.19)

≤ E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; Tr ≤ t, τD ≥ 2t

]
+ exp

{
t sup
|x|≤δ
|V δ

6
,1(x)|

}
.

Write τ ′D = inf{t ≥ Tr; Bs 6∈ D}. By Markov property,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; Tr ≤ t, τD ≥ 2t

]

≤ E0

[
exp

{
θTr

(
sup
|x|≤δ
|V δ

6
,1(x)| − Cδ

)}
exp

{
θ

∫ t

Tr

V (Bs)ds

}
; Tr ≤ t, τ ′D ≥ 2t

]

= E0

[
exp

{
θTr

(
sup
|x|≤δ
|V δ

6
,1(x)| − Cδ

)}
u0(t− Tr, BTr); Tr ≤ t

]
,

where

u0(s, x) = Ex

[
exp

{
θ

∫ s

0

V (Bu)du

}
; τD ≥ t+ s

]

≤ Ex

[
exp

{
θ

∫ s

0

V (Bu)du

}
; τD ≥ t

]
≡ u1(s, x) (0 ≤ s ≤ t).

Notice that on {Tr ≤ t}

u1(t− Tr, BTr) ≤ exp
{
− θTr inf

x∈D
V (x)

}
EBTr

[
exp

{
θ

∫ t

0

V (Bu)du

}
; τD ≥ t

]
= exp

{
− θTr inf

x∈D
V (x)

}
u2(t, BTr) (say).

Summarizing our estimate,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; Tr ≤ t, τD ≥ 2t

]

≤ E0

[
exp

{
θTr

(
sup
|x|≤δ
|V δ

6
,1(x)| − Cδ − inf

x∈D
V (x)

)}
u2(t, BTr)

]
.
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Recall the classic facts that Tr and BTr are independent and that BTr is uniformly
distributed on the sphere {|x| = r}. So the right hand side is equal to

E0 exp

{
θTr

(
sup
|x|≤δ
|V δ

6
,1(x)| − Cδ − inf

x∈D
V (x)

)} 1

4πr2

∫
{|x|=r}

u2(t, x)dx.

Using fact that {|x| ≤ δ} ⊂ D and the bound

−V (x) ≤ Cδ − V δ
6
,1(x) ≤ Cδ + |V δ

6
,1(x)|

we have that

E0 exp

{
θTr

(
sup
|x|≤δ
|V δ

6
,1(x)| − Cδ − inf

x∈D
V (x)

)}
≤ E0 exp

{
2θTr sup

x∈D
|V δ

6
,1(x)|

}
≤ E0 exp

{
2θTδ sup

x∈D
|V δ

6
,1(x)|

}
= E0 exp

{√
2δθT1 sup

x∈D
|V δ

6
,1(x)|

}
.

Here we have used the fact that Tr ≤ Tδ/2
d
=
√
δ/2T1.

By (3.19), we conclude that

(4πr2)E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τD ≥ 2t

]
≤ E0 exp

{√
2δθT1 sup

x∈D
|V δ

6
,1(x)|

}∫
{|x|=r}

u2(t, x)dx

+ (4πr2) exp
{
t sup
|x|≤δ
|V δ/6,1(x)|

}
.

Integrating the variable r over [0, δ/2] on the both sides,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τD ≥ 2t

]
≤ 6

πδ3
E0 exp

{√
2δθT1 sup

x∈D
|V δ

6
,1(x)|

}∫
{|x|≤r}

u2(t, x)dx

+ exp
{
t sup
|x|≤δ
|V δ

6
,1(x)|

}
.

Finally, the desired conclusion follows from the bound∫
{|x|≤r}

u2(t, x)dx ≤
∫
D

u2(t, x)dx ≤ |D| exp
{
tλθV (D)

}
where the second step follows from Lemma 4.1 in [5]. �
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4 Lower bounds

We establish the lower bounds requested by Theorem 2.1, Theorem 2.2 and Theorem
2.3. Let t be either fixed (as in Theorem 2.1 or increase to infinity (as in Theorem 2.2
and Theorem 2.3). Let ε → 0 and R → ∞ either as sequences (when t is fixed) or
as functions of t (when t → ∞). The constraint assumed here is that R2ε2/3t−1 ≥ c
eventually for some constant c > 0. Other relations among the parameters introduced
above will be specified later according to the context.

By Brownian scaling,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
= E exp

{
θ

∫ tε−2/3

0

V ε(Bs)ds

}
≥ E0

[
exp

{
θ

∫ tε−2/3

0

V ε(Bs)ds

}
; T2R ≥ tε−2/3

]
,

where
V ε(x) =

∫
R3

1

|y − x|2
[
ω(εdy)− εdy

]
.

Let r > 0 and a > 0 be two large but fixed numbers with r < a. Consider the
decomposition

V ε(x) = V a,ε(x) + Va,ε(x)− εCa
where V a,ε(x) is defined as in (3.5),

Va,ε(x) =

∫
R3

α(a−1|y − x|)
|y − x|2

ω(εdy) and Ca =

∫
R3

α(a−1|x|)
|x|2

dx.

We have

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
(4.1)

≥ exp
{
− θtε−2/3

(
Caε+ sup

x∈B(0,2R)

|V a,ε(x)|
)}

× E0

[
exp

{
θ

∫ tε−2/3

0

Va,ε(Bs)ds

}
; T2R ≥ tε−2/3

]
.

Let δ > 0 be a small but fixed number satisfying r+δ < a. For any z ∈ 2rZ3∩B(0, R−r)
and x ∈ Rd

θVa,ε(x) ≥ θ

∫
{|y−z|≤δ}

α(a−1|y − x|)
|y − x|2

ω(εdy)

≥ θω
(
B(ε1/3z, ε1/3δ)

)α(a−1(|z − x|+ δ)
)

(|z − x|+ δ)2
≡ ζzε (x).
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Consequently,

E0

[
exp

{
θ

∫ tε−2/3

0

Va,ε(Bs)ds

}
; T2R ≥ tε−2/3

]

≥ E0

[
exp

{
θ

∫ tε−2/3

0

ζzε (Bs)ds

}
; T2R ≥ tε−2/3

]

≥ P0

{
max
0≤s≤1

|B0
s | ≤

Rε1/3

δ
√
t

}
exp

{
tε−2/3λζzε

(
B(0, R)

)}
× exp

{
− 2θω

(
B(ε1/3z, ε1/3δ)

)
tε−2/3 − R2ε2/3

2δ2t

}
,

where the last step follows from (3.17) in Lemma 3.5 with t being replaced by tε−2/3

and t0 = δ2tε−2/3, and from the observation

0 ≤ ζzε (x) ≤ δ−2θω
(
B(ε1/3z, ε1/3δ)

)
x ∈ Rd.

Notice that B(z, r) ⊂ B(0, R) and that r + δ < a leads to

ζzε (x) = θω
(
B(ε1/3z, ε1/3δ)

) 1

(|z − x|+ δ)2
x ∈ B(z, r).

By substitution g(x) 7→ g(x− z), therefore,

λζzε
(
B(0, R)

)
≥ λζzε

(
B(z, r)

)
= sup

g∈F3(B(z,r))

{
ω
(
B(ε1/3z, ε1/3δ)

)
θ

∫
B(z,r)

g2(x)

(|x− z|+ δ)2
dx− 1

2

∫
B(z,r)

|∇g(x)|2dx
}

= sup
g∈F3(B(0,r))

{
ω
(
B(ε1/3z, ε1/3δ)

)
θ

∫
B(0,r)

g2(x)

(|x|+ δ)2
dx− 1

2

∫
B(0,r)

|∇g(x)|2dx
}

= Hr,δ

(
ω
(
B(ε1/3z, ε1/3δ)

)
θ
)

where the function Hr,δ(·) is defined as

Hr,δ(θ) = sup
g∈F3(B(0,r))

{
θ

∫
B(0,r)

g2(x)

(|x|+ δ)2
dx− 1

2

∫
B(0,r)

|∇g(x)|2dx
}
.

Summarizing our estimates since (4.1),

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ P0

{
max
0≤s≤1

|B0
s | ≤

Rε1/3

δ
√
t

}
exp

{
− R2ε2/3

2δ2t

}
exp

{
tε−2/3Hr,δ

(
ω
(
B(ε1/3z, ε1/3δ)

)
θ
)}

× exp
{
− θtε−2/3

(
Caε+ sup

x∈B(0,R)

|V a,ε(x)|+ 2ω
(
B(ε1/3z, ε1/3

)}
.
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By the assumption that R2ε2/3/t is eventually bounded from below, there is a constant
γ > 0 such that

P0

{
max
0≤s≤1

|B0
s | ≤

Rε1/3

δ
√
t

}
≥ γ

eventually holds. Taking maximum over z ∈ 2rZ3 ∩B(0, R− r),

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
(4.2)

≥ γ exp
{
− R2ε2/3

2δ2t

}
exp

{
tε−2/3Hr,δ

(
max

z∈2rZ3∩B(0,R−r)
ω
(
B(ε1/3z, ε1/3δ)

)
θ
)}

× exp
{
− θtε−2/3

(
Caε+ sup

x∈B(0,R)

|V a,ε(x)|+ 2 max
z∈2rZ3∩B(0,R−r)

ω
(
B(ε1/3z, ε1/3

)}
.

A version of (4.2) is also needed and is derived as follows: By the Brownian scaling,∫
B(0,ε1/3R)

Ex exp

{∫ t

0

V (Bs)ds

}
dx = ε

∫
B(0,R)

Ex exp

{∫ tε−2/3

0

V ε(Bs)ds

}
dx.

Following the decomposition of V ε(·) the same way as above and then applying (3.16)
(instead of (3.17)) with t0 = 1, we have∫

B(0,ε1/3R)

Ex exp

{∫ t

0

V (Bs)ds

}
dx (4.3)

≥ (2π)d/2ε exp
{
− δ−2 max

z∈2rZ3∩B(0,R−r)
ω
(
B(ε1/3z, ε1/3)

)}
× exp

{
− tε−2/3θ

(
εCa + sup

x∈B(0,R)

|V a,ε(x)|
)}

× exp

{
(1 + tε−2/3)Hr,δ

(
max

z∈2rZ3∩B(0,R−r)
ω
(
B(ε1/3z, ε1/3δ)

)
θ
)}

.

4.1 Lower bound for Theorem 2.1

We show that when θ > 1/16,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
=∞ a.s. ∀t > 0. (4.4)
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Let t be fixed. Taking ε = 2−3n and R = δ22n in (4.2) gives

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
(4.5)

≥ γ exp
{
− 22n

2t

}
exp

{
t22nHr,δ

(
θ max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

))}
× exp

{
− θt22n

{
Ca2

−3n + sup
x∈B(0,δ22n)

|V a,2−3n(x)|

+ 2 max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

))}
.

By (3.12),

lim
n→∞

sup
x∈B(0,δ22n)

|V a,2−3n(x)| = 0 a.s. (4.6)

when a > 0 is sufficiently large.

We now prove that

lim sup
n→∞

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

)
= 2 a.s. (4.7)

By homogeneity and increment independence of the Poisson field, The random variables

ω
(
B(2−nz, 2−nδ)

)
; z ∈ 2rZ3 ∩B(0, δ22n − r)

are i.i.d’s. Hence,

P
{

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

)
≥ 3
}

≤ #
{

2rZ3 ∩B(0, δ22n − r)
}
P
{
ω
(
B(0, 2−nδ)

)
≥ 3
}

≤ C26n
(

(2−nδ)3
)3

= O
(

2−3n
}
.

Thus, ∑
n

P
{

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

)
≥ 3
}
<∞.

By Borel-Cantelli lemma and by the fact that the random variable

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(z, 2−nδ)

)
takes integer-values,

lim sup
n→∞

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

)
≤ 2 a.s.
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On the other hand, write An = B(0, δ22n − r) \B(0, δ22(n−1)).

P
{

max
z∈2rZ3∩An

ω
(
B(2−nz, 2−nδ)

)
≤ 1
}

=

(
1− P

{
ω
(
B(0, 2−nδ)

)
≥ 2
})#{2rZ3∩An}

≤
(

1− cδ32−6n
)#{2rZ3∩An}

≤ exp{−c0δ
3}.

So we have that ∑
n

P
{

max
z∈2rZ3∩An

ω
(
B(2−nz, 2−nδ)

)
≥ 2
}

=∞.

Notice that the sequence

max
z∈2rZ3∩An

ω
(
B(2−nz, 2−nδ)

)
n = 1, 2, · · ·

is an independent sequence. By Borel-Cantelli lemma

lim sup
n→∞

max
z∈2rZ3∩B(0,δ22n−r)

ω
(
B(2−nz, 2−nδ)

)
≥ lim sup

n→∞
max

z∈2rZ3∩An
ω
(
B(2−nz, 2−nδ)

)
≥ 2 a.s.

By the fact that θ > 16−1 and by Lemma 6.2,

lim
δ→0+
r→∞

Hr,δ(2θ) = sup
g∈F3

{
2θ

∫
R3

g2(x)

|x|2
dx− 1

2

∫
R3

|∇g(x)|2dx
}

=∞.

Therefore, one can take δ sufficiently small, and r sufficiently large, so we haveHr,δ(2θ) >
2θ + 2−1t−2. Finally, the requested (4.4) follows from (4.5), (4.6), (4.7). �

4.2 Lower bound for Theorem 2.2

Recall that 0 < θ < 1/16 and k = [(8θ)−1]. We prove

lim sup
t→∞

t−
k+1
k−1 l(t)−

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
=∞ a.s. (4.8)

under the assumption ∫ ∞
1

dt

t · l(t)
=∞. (4.9)
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Taking tn = 2n, ε = εn = t
− 3
k−1

n l(tn)−
1

k−1 and R = Rn = δt
k+1
k−1
n l(tn)

2
3(k−1) in (4.2) gives

E0 exp

{
θ

∫ tn

0

V (Bs)ds

}
(4.10)

≥ γ exp
{
− 1

2
t
k+1
k−1
n l(tn)

2
3(k−1)

}
× exp

{
t
k+1
k−1
n l(tn)

2
3(k−1)Hr,δ

(
θ max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

))}
× exp

{
− θt

k+1
k−1
n l(tn)

2
3(k−1)

(
Caεn + sup

x∈B(0,Rn)

|V a,εn(x)|

+ 2 max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

))}
.

By (3.12),

lim
n→∞

sup
x∈B(0,Rn)

|V a,εn(x)| = 0 a.s. (4.11)

as a > 0 is sufficiently large.

In addition,
P
{

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≥ k + 2

}
≤ Ct

3(k+1)
k−1

n l(tn)
2

(k−1)P
{
ω
(
B(0, ε1/3n δ)

)
≥ k + 2

}
≤ Ct

− 3
k−1

n l(tn)−
k
k−1 .

Consequently, ∑
n

P
{

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≥ k + 2

}
<∞.

By Borel-Cantelli lemma,

lim sup
n→∞

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≤ k + 1 a.s. (4.12)

On the other hand, let An = B(0, Rn − r) \B(0, Rn−1 − r).

P
{

max
z∈2rZ3∩An

ω
(
B(ε1/3n z, ε1/3n δ)

)
≤ k

}
=

(
1− P

{
ω
(
B(0, ε1/3n δ)

)
≥ k + 1

})#{2rZ3∩An}

.
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Hence,
P
{

max
z∈2rZ3∩An

ω
(
B(ε1/3n z, ε1/3n δ)

)
≥ k + 1

}
∼ #{2rZ3 ∩ An}P

{
ω
(
B(0, ε1/3n δ)

)
≥ k + 1

}
≥ c0l(tn)−1,

where c0 > 0 is a constant independent of n. By (4.9),∑
n

l(tn)−1 =∞.

By Borel-Cantelli lemma,

lim sup
n→∞

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
(4.13)

≥ lim sup
n→∞

max
z∈2rZ3∩An

ω
(
B(ε1/3n z, ε1/3n δ)

)
≥ k + 1 a.s.

By (4.10), (4.11), (4.12), (4.13),

lim sup
n→∞

t
− k+1
k−1

n l(tn)−
2

3(k−1) logE0 exp

{
θ

∫ tn

0

V (Bs)ds

}
≥ Hr,δ

(
(k + 1)θ

)
− 2θ(k + 1)− 2−1 a.s.

Notice that (k + 1)θ > 8−1. By Lemma 6.2, letting r → ∞ and δ → 0+ on the right
hand side leads to (4.8). �

4.3 Lower bound for Theorem 2.3

We prove that

lim inf
t→∞

t−
k+1
k−1 l(t)

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
=∞ a.s. (4.14)

under the assumption that∫ ∞
1

1

t
exp

{
− c · l(t)

}
dt <∞ ∀c > 0. (4.15)

This time we use (4.3) instead of (4.2). Taking tn = 2n, ε = εn = t
− 3
k−1

n l(tn)
) 1
k−1 ,
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R = Rn = t
k+1
k−1
n l(tn)−

2
3(k−1) in (4.3) gives∫

B(0,ε
1/3
n Rn)

Ex exp

{∫ tn

0

V (Bs)ds

}
dx (4.16)

≥ (2π)3/2εn exp
{
− δ−2 max

z∈2rZ3∩B(0,Rn−r)
ω
(
B(ε1/3n z, ε1/3n )

)}
× exp

{
− t

k+1
k−1
n l(tn)−

2
3(k−1) θ

(
εCa + sup

x∈B(0,Rn)

|V a,εn(x)|
)}

× exp

{(
1 + t

k+1
k−1
n l(tn)−

2
3(k−1)

)
Hr,δ

(
max

z∈2rZ3∩B(0,Rn−r)
ω
(
B(ε1/3n z, ε1/3n δ)

)
θ
)}

.

We now show that for any δ > 0 and r > 0,

lim inf
n→∞

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≥ k + 1 a.s. (4.17)

Indeed, by independence

P
{

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≤ k

}
=

(
1− P

{
ω
(
B(0, ε1/3n δ)

)
≥ k + 1

})#{2rZ3∩B(0,Rn−r)}

.

By the fact that

P
{
ω
(
B(0, ε1/3n δ)

)
≥ k + 1

}
∼ 1

(k + 1)!

(4

3
πδ3εn

)k+1

=
1

(k + 1)!

(4

3
πδ3
)k+1

t
− 3(k+1)

k−1
n l(tn)

k+1
k−1 ,

there is a constant c = c(k, δ, r) > 0 such that

P
{

max
z∈2rZ3∩B(0,Rn−r)

ω
(
B(ε1/3n z, ε1/3n δ)

)
≤ k

}
≤ exp

{
− c · l(tn)

}
for large n. By (4.15), ∑

n

exp
{
− c · l(tn)

}
<∞.

Hence, (4.17) follows from Borel-Cantelli lemma.

Notice that (4.11) and (4.12) remain true in this setting. By (4.16) and (4.17), therefore,

lim inf
n→∞

t
− k+1
k−1

n l(tn)
2

3(k−1)

∫
B(0,Rnε

1/3
n )

Ex exp

{∫ tn

0

V (Bs)ds

}
dx =∞. (4.18)
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For any large t > 0, let n be such that tn ≤ t ≤ tn+1. Then

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; T

Rnε
1/3
n
≥ t− tn−1

]
.

Notice that for any x ∈ Rd

V (x) =

∫
R3

α(a−1ε
−1/3
n |y − x|)
|y − x|2

ω(dy)− Caε1/3n

+

∫
R3

1− α(a−1ε
−1/3
n |y − x|)

|y − x|2
[
ω(dy)− dy

]
≥ −Caε1/3n + ε−2/3

n V a,εn(ε−1/3
n x).

So we have

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ exp

{
− θtn+1

(
Caε

1/3
n + ε−2/3

n sup
x∈B(0,Rn)

|V a,εn(x)|
)}

× E0

[
exp

{
θ

∫ t

t−tn−1

V (Bs)ds

}
; T

Rnε
1/3
n
≥ t− tn−1

]
.

By Markov property,

E0

[
exp

{
θ

∫ t

t−tn−1

V (Bs)ds

}
; T

Rnε
1/3
n
≥ t− tn−1

]

=

∫
B(0,Rnε

−1/3
n )

p̃t−tn−1(x)Ex exp

{
θ

∫ tn−1

0

V (Bs)ds

}
dx

≥
∫
B(0, Rn−1ε

−1/3
n−1 )

p̃t−tn−1(x)Ex exp

{
θ

∫ tn−1

0

V (Bs)ds

}
dx

where p̃t−tn−1(x) is the density function of the measure

µt−tn−1(A) = P0

{
Bt−tn−1 ∈ A, TRnε1/3n

≥ t− tn−1

}
A ⊂ Rd.

Notice that Rn−1ε
−1/3
n−1 ≤ 2−1Rnε

−1/3
n for large n. By Lemma 3.4,

p̃t−tn−1(x)

≥ P0

{
max
0≤s≤1

|B0
s | ≤ Rnε

1/3
n (t− tn−1)−1/2

}(
2π(t− tn−1)

)−3/2
exp

{
− |x|2

2(t− tn−1)

}
≥ P0

{
max
0≤s≤1

|B0
s | ≤ Rnε

1/3
n t

−1/2
n+1

}(
2πtn+1

)−3/2
exp

{
−
R2
n−1ε

2/3
n−1

2tn−1

}
≥ γ2−3n/2 exp

{
− 1

2
t
k+1
k−1

n−1l(tn−1)
2

3(k−1)

}
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for every x ∈ B(0, Rn−1ε
−1/3
n−1 ), where γ > 0 is a constant independent of t.

Summarizing our computation,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ γ2−3n/2 exp

{
− θtn+1

(
Caε

1/3
n + ε−2/3

n sup
x∈B(0,Rn)

|V a,εn(x)|
)}

× exp
{
− 1

2
t
k+1
k−1

n−1l(tn−1)
2

3(k−1)

}∫
B(0, Rn−1ε

−1/3
n−1 )

Ex exp

{
θ

∫ tn−1

0

V (Bs)ds

}
dx

when tn ≤ t ≤ tn+1 for large n. In view of (4.11) and (4.18), this leads to (4.14). �

5 Upper bounds

In this section we install the upper bounds requested by Theorem 2.1, Theorem 2.2,
and Theorem 2.3. Through this section 0 < θ < 1/16. Recall that k = [(8θ)−1] and
that for any open set D ⊂ R3 and the function ζ(·) on D, λζ(D) is defined by the
variation given in (3.15). For each R > 0, write QR = (−R,R)d.

5.1 Asymptotics for the principal eigenvalues

By 0 < θ < 1/16 we have that k = [(8θ)−1] ≥ 2. Write

Rk(t) =

 t
k
k−2 l(t)

2
3(k−2) when k ≥ 3

t3l(t)2/3 when k = 2.

(5.1)

Lemma 5.1
lim
t→∞

t−
2

k−1 l(t)−
2

3(k−1)λθV
(
QRk(t)

)
= 0 a.s.

under the assumption ∫ ∞
1

dt

t · l(t)
<∞. (5.2)

Proof: We first consider the case k ≥ 3. Let M > 0 be fixed but arbitrary. Write

r(t) = M
(
tl(t)1/3

) 1
(k−1)(k−2) , ε(t) =

(
t3l(t)

)− k
(k−1)(k−2)

δ(t) = ε(t)1/3r(t) = M
(
tl(t)1/3

)− 1
k−2 .
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Decompose V as follows:

V (x) =

∫
R3

α
(
δ(t)−1|y − x|

)
|y − x|2

[
ω(dy)− dy

]
+

∫
R3

1− α
(
δ(t)−1|y − x|

)
|y − x|2

[
ω(dy)− dy

]
.

For the first term∫
R3

α
(
δ(t)−1|y − x|

)
|y − x|2

[
ω(dy)− dy

]
≤
∫
R3

α
(
δ(t)−1|y − x|

)
|y − x|2

ω(dy)

= ε(t)−2/3

∫
R3

α
(
r(t)−1|y − ε(t)−1/3x|

)
|y − ε(t)−1/3x|2

ω(ε(t)dy) = ε(t)−2/3ξr,ε
(
ε(t)−1/3x

)
,

where

ξr,ε(x) = ξr(t),ε(t)(x) =

∫
R3

α
(
r(t)−1|y − x|

)
|y − x|2

ω(ε(t)dy).

As for the second term∫
R3

1− α
(
δ(t)−1|y − x|

)
|y − x|2

[
ω(dy)− dy

]
= a2δ(t)−2

∫
R3

1− α
(
a−1|y − aδ(t)−1x|

)
|y − aδ(t)−1x|2

[
ω(a−3δ(t)3dy)− a−3δ(t)3dy

]
= a2δ(t)−2V a,δ̃(t)

(
aδ(t)−1x

)
where δ̃(t) = a−3δ(t)3, the random field V a,ε(·) is defined in (3.5) and the constant
a > 0 will be specified later.

By triangle inequality and by the substitution g(x) 7→ ε(t)−1/2g
(
xε(t)−1/3

)
,

λθV (QRk(t)) ≤ ε(t)−2/3λθξr,ε(Qε−1/3(t)Rk(t)) + θa2δ−2(t) sup
x∈aδ(t)−1QRk(t)

|V a,δ̃(t)(x)|. (5.3)

By Proposition 1 in [14], there is a non-negative and continuous function Φ(x) on R3

whose support is contained in the 1-neighborhood of the grid 2r(t)Z3, such that

λξr,ε−Φy(Qε−1/3(t)Rk(t)) ≤ max
z∈2r(t)Z3∩Q

2ε−1/3(t)Rk(t)+2r(t)

λξr,ε(z +Qr(t)+1) y ∈ Qr(t)

where Φy(x) = Φ(x+ y). In addition, Φ(x) is periodic with period 2r(t):

Φ(x+ 2r(t)z) = Φ(x); x ∈ R3, z ∈ Z3

and there is a constant K > 0 independent of r(t) and t such that∫
Qr

Φ(x)dx ≤ K

r(t)
.
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By periodicity, therefore,

η(x) ≡ 1(
2r(t)

)3

∫
Qr

Φy(x)dy =
1(

2r(t)
)3

∫
Qr

Φ(y)dy ≤ K

8r(t)4
.

So we have

λξr,ε(Qε−1/3(t)Rk(t)) ≤
K

8r(t)4
+ λξr,ε−η(Qε−1/3(t)Rk(t))

≤ K

8r(t)4
+

1(
2r(t)

)3

∫
Qr(t)

λξr,ε−Φy(Qε−1/3(t)Rk(t))dy

≤ K

8r(t)4
+ max

z∈2r(t)Z3∩Q
2ε−1/3(t)Rk(t)+2r(t)

λξr,ε(z +Qr(t)+1),

where the second step follows from Jensen inequality.

Summarizing the estimate since (5.3),

t−
2

k−1 l(t)−
2

3(k−1)λθV
(
QRk(t)

)
(5.4)

≤ θa2M−2 sup
x∈aδ(t)−1QRk(t)

|V a,δ̃(t)(x)|+ K

8M4

+
(
tl(t)1/3

) 2
(k−1)(k−2) max

z∈2r(t)Z3∩Q
2ε−1/3(t)Rk(t)+2r(t)

λθξr,ε(z +Qr(t)+1).

Take tn = 2n. By (3.12),

lim
n→∞

sup
x∈aδ(tn)−1QRk(tn)

|V a,δ̃(tn)(x)| = 0 a.s. (5.5)

when a is sufficiently large.

We now prove that

P
{

max
z∈2r(tn)Z3∩Q

2ε−1/3(tn)Rk(tn)+2r(tn)

λξr(tn),ε(tn)
(z +Qr(tn)+1) = 0 eventually in n

}
= 1.

(5.6)

Notice that

P
{

max
z∈2r(tn)Z3∩Q

2ε−1/3(tn)Rk(tn)+2r(tn)

λθξr(tn),ε(tn)
(z +Qr(tn)+1) 6= 0

}
≤ #

{
2r(tn)Z3 ∩Q2ε−1/3(tn)Rk(tn)+2r(tn)

}
P
{
λθξr(tn),ε(tn)

(Qr(tn)+1) 6= 0
}
.
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Recall that truncation function α(·) is supported on [0, 3]. For any g ∈ F3(Qr(tn)+1),∫
Qr(tn)+1

ξr(tn),ε(tn)(x)g2(x) dx =

∫
R3

[ ∫
Qrn(t)+1

α(r(tn)−1|y − x|)
|y − x|2

g2(y)dy

]
ω
(
ε(tn)dx

)
=

∫
Q5r(tn)

[ ∫
Qr(tn)+1

α(r(tn)−1|y − x|)
|y − x|2

g2(y)dy

]
ω
(
ε(tn)dx

)
≤ ω(Q5δ(tn)) sup

x∈R3

∫
Qr(tn)+1

g2(y)

|y − x|2
dy

when r(tn) ≥ 1. Therefore,

λθξr(tn),ε(tn)
(Qr(tn)+1) (5.7)

≤ sup
g∈F3(Qr(tn)+1)

{
ω(Q5δ(tn))θ sup

x∈R3

∫
Qr(tn)+1

g2(y)

|y − x|2
dy − 1

2

∫
Qrn(t)+1

|∇g(y)|2dy
}

≤ sup
g∈F3

{
ω(Q5δ(tn))θ sup

x∈R3

∫
R3

g2(y)

|y − x|2
dy − 1

2

∫
R3

|∇g(y)|2dy
}

= sup
x∈R3

sup
g∈F3

{
ω(Q5δ(tn))θ

∫
R3

g2(y)

|y − x|2
dy − 1

2

∫
R3

|∇g(y)|2dy
}

= sup
g∈F3

{
ω(Q5δ(tn))θ

∫
R3

g2(y)

|y|2
dy − 1

2

∫
R3

|∇g(y)|2dy
}
,

where the last step follows from shifting invariance.

Notice that kθ ≤ 8−1. By Lemma 6.2 we obtain the bound

P
{

max
z∈2r(tn)Z3∩Q

2ε−1/3(tn)Rk(tn)+2r(tn)

λθξa,ε(tn)
(z +Qr(tn)+1) 6= 0

}
≤ Ct

3(k+1)
k−2

n l(tn)
3

k−2P
{
ω(Q5δ(tn)) ≥ k + 1

}
≤ Cl(tn)−1.

By (5.2), ∑
n

l(tn)−1 <∞.

Hence, (5.6) follows from Borel-Cantelli lemma.

Since the second term in (5.4) can be arbitrarily small by making M sufficiently large,
by (5.5) and (5.6),

lim sup
n→∞

t
− 2
k−1

n l(tn)−
2

3(k−1)λθV
(
QRk(tn)

)
≤ 0 a.s.

Notice that λθV
(
QRk(t)

)
is non-decreasing in t. We have completed the proof in the

case k ≥ 3.
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The case k = 2 follows from the same argument with

r(t) = M
(
tl(t)1/3

)1/2
, ε(t) =

(
t3l(t)

)−2
,

δ(t) = ε(t)1/3r(t) = M
(
tl(t)1/3

)−3/2
.

�

Write

Sk(t) =

 t
k
k−2 l(t)−

2
3(k−2) when k ≥ 3

t3l(t)−2/3 when k = 2.

(5.8)

Lemma 5.2
lim inf
t→∞

t−
2

k−1 l(t)
2

3(k−1)λθV
(
QSk(t)

)
= 0 a.s.

under the assumption that there is c0 > 0 such that∫ ∞
1

1

t
exp{−cl(t)} dt


=∞ when c < c0

<∞ when c > c0.
(5.9)

Proof: We first consider the case k ≥ 3. Let u > 0 andM > 0 be fixed but arbitrary.
Write

r(t) = M
(
tl(t)−1/3

) 1
(k−1)(k−2) , ε(t) = u−3

(
t3l(t)−1

)− k
(k−1)(k−2)

δ(t) = ε(t)1/3r(t) =
(M
u

)(
tl(t)−1/3

)− 1
k−2 .

Similar to (5.4),

t−
2

k−1 l(t)
2

3(k−1)λθV
(
QSk(t)

)
(5.10)

≤ θa2
( u
M

)2

sup
x∈aδ(t)−1QRk(t)

|V a,δ̃(t)(x)|+ Ku2

8M4

+ u2
(
tl(t)−1/3

) 2
(k−1)(k−2) max

z∈2r(t)Z3∩Q
2ε−1/3(t)Sk(t)+2r(t)

λθξr,ε(z +Qr(t)+1),

where δ̃ = δ̃(t) = a−3δ(t)3, the random field V a,ε(x) is defined in (3.5), and

ξr,ε(x) = ξr(t),ε(t)(x) =

∫
R3

α
(
r(t)−1|y − x|

)
|y − x|2

ω(ε(t)dy).

Same as (5.7),

λθξr,ε(z +Qr(t)+1) ≤ sup
g∈F3

{
ω
(
ε(t)1/3(z +Q5r(t))

)
θ

∫
R3

g2(y)

|y|2
dy − 1

2

∫
R3

|∇g(y)|2dy
}

33



for each z ∈ 2r(t)Zd ∩Q2ε−1/3(t)Sk(t)+2r(t). Thus,

max
z∈2r(t)Z3∩Q

2ε−1/3(t)Sk(t)+2r(t)

λθξr,ε(z +Qr(t)+1)

≤ sup
g∈F3

{
θ
(

max
z∈2r(t)Z3∩Q

2ε−1/3(t)Sk(t)+2r(t)

ω
(
ε(t)1/3(z +Q5r(t))

)) ∫
R3

g2(y)

|y|2
dy

− 1

2

∫
R3

|∇g(y)|2dy
}

= sup
g∈F3

{
θ
(

max
z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t))
)∫

R3

g2(y)

|y|2
dy − 1

2

∫
R3

|∇g(y)|2dy
}
.

By Lemma 6.2, therefore,{
max

z∈2r(t)Z3∩Q
2ε−1/3(t)Sk(t)+2r(t)

λξr,ε(z +Qr(t)+1) = 0
}

(5.11)

⊃
{

max
z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t)) ≤ k
}
.

Unfortunately, the random variables

ω(z +Q5δ(t)) z ∈ 2δ(t)Z3 ∩Q2Sk(t)+2δ(t)

are not independent. So we apply Slepian-type domination (Lemma 3.1):

P
{

max
z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t)) ≤ k
}

≥
(
P
{
ω(Q5δ(t)) ≤ k

})#{2δ(t)Z3∩Q2Sk(t)+2δ(t)}

.

It is straightforward to check that

P
{
ω(Q5δ(t)) ≥ k + 1

}
∼ (10u−1M)3(k+1)

(k + 1)!

(
t3l(t)−1

)− k+1
k−2

(t→∞)

and that

#{2δ(t)Z3 ∩Q2Sk(t)+2δ(t)} ∼
( u
M

)3

t
3(k+1)
k−2 l(t)−

3
k−2 (t→∞).

Hence, there is a constant Ck independent of u and M such that

P
{

max
z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t)) ≤ k
}
≥ exp

{
− Ck

(M
u

)3k

l(t)
}

(5.12)
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for large t. In connection to (5.10), our strategy is to make u2/M4, M/u sufficiently
small, and to make u and M sufficiently large.

Fix a constant c̃ satisfying
k − 1

3k
c0 < c̃ < c0.

Define {tn} as following:

t1 = 1, tn+1 = tn exp
{
c̃l(tn)

}
n = 1, 2, · · · .

By (3.12),

lim
n→∞

sup
x∈Q

ε−1/3(tn)Sk(tn)

|V a,δ̃(tn)(x)| = 0 a.s. (5.13)

for sufficiently large a.

We now prove that

P
{

max
z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t)) ≤ k i.o.
}

= 1 (5.14)

Write
Hn = max

z∈2δ(t)Z3∩Q2Sk(t)+2δ(t)

ω(z +Q5δ(t)),

An = Q2Sk(tn+1)+2δ(tn+1) \Q2Sk(tn)+bδ(tn),

Zn = max
z∈2δ(tn)Z3∩An

ω(z +Q5δ(tn+1)),

Z̃n = max
z∈2δ(tn)Z3∩Q2Sk(tn)+bδ(tn)

ω(z +Q5δ(tn+1)),

where b > 0 is a constant which is large enough to make sure that the random variables
Z1, Z2, · · · are independent.

We have that Hn+1 = max{Zn, Z̃n}. Notice that

P{Z̃n ≥ k + 1} ≤ #{2δ(tn)Z3 ∩Q2Sk(tn)+bδ(tn)}P
{
ω(Q5δ(tn+1)

)
≥ k + 1

}
≤ Ct

3(k+1)
k−1

n l(tn)−
3

k−2 t
− 3(k+1)

k−1

n+1 l(tn+1)
k+1
k−2

= Cl(tn)−
3

k−2 l(tn+1)
k+1
k−2 exp

{
− 3c̃(k + 1)

k − 2
l(tn)

}
.

Since l(t) is slow-varying,

l(tn+1) = l
(
tn exp{c̃l(tn)}

)
≤ l(tn) exp

{
o
(
l(tn)

}
= exp

{
o
(
l(tn)

}
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for large n. Therefore, we obtain the bound

P{Z̃n ≥ k + 1} ≤ C exp
{
− 3kc̃

k − 2
l(tn)

}
(n→∞).

For any c > c0, on the other hand,

∞ >

∫ ∞
1

1

t
exp

{
− cl(t)

}
dt =

∞∑
n=1

∫ tn+1

tn

1

t
exp

{
− cl(t)

}
dt

≥
∞∑
n=1

tn+1 − tn
tn+1

exp
{
− cl(tn+1)

}
≥ δ

∞∑
n=1

exp
{
− cl(tn+1)

}
So we have that ∑

n

P{Z̃n ≥ k + 1} <∞.

By Borel-Cantelli lemma

P{Z̃n ≤ k eventually in n} = 1. (5.15)

By (5.12),

P{Zn ≤ k} ≥ P{Hn+1 ≤ k} ≥ exp
{
− Ck

(M
u

)3k

l(tn+1)
}
.

Pick c1 satisfying c̃ < c1 < c0 and make M/u so small that

Ck

( r
u

)3k

< c1 − c̃

We have

∞ =

∫ ∞
1

1

t
exp

{
− c1l(t)

}
dt =

∞∑
n=1

∫ tn+1

tn

1

t
exp

{
− c1l(t)

}
dt

≤
∞∑
n=1

tn+1 − tn
tn

exp
{
− c1l(tn)

}
≤

∞∑
n=1

exp
{
− (c1 − c̃)l(tn)

}
.

Consequently, ∑
n

P{Zn ≤ k} =∞.

Applying Borel-Cantelli lemma to the independent sequence {Zn} we have

P{Zn ≤ k i.o.} = 1.
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This, together with (5.15), leads to (5.14). By (5.11) and (5.14),

P
{

max
z∈2r(tn)Z3∩Q

2ε−1/3(tn)Sk(tn)+2r(tn)

λξr(tn),ε(tn)
(z +Qr(tn)+1) = 0 i.o.

}
= 1. (5.16)

By (5.10), (5.13), (5.16), and by the fact that u2/M4 can be arbitrarily small,

lim inf
n→∞

t
− 2
k−1

n l(tn)
2

3(k−1)λθV
(
QSk(tn)

)
≤ 0 a.s.

By the fact that the principal eigenvalue λθV (QR) increases in R, we have completed
the proof in the case k ≥ 3.

The case k = 2 follows from the same argument with

r(t) = M
(
tl(t)−1/3

)1/2
, ε(t) = u−3

(
t3l(t)−1

)−2
,

δ(t) = ε(t)1/3r(t) =
(M
u

)(
tl(t)−1/3

)−3/2
.

�

5.2 Upper bound for Theorem 2.1

We prove that when θ < 16−1,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
<∞ a.s. (5.17)

for any t > 0. By Hölder inequality, we may assume that θ > 1
24
.

Let l(t) ≥ 0 be a slow-varying function satisfying (5.2) and recall the notation R2(t) =
t3l(t)2/3. Consider the decomposition

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
= E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQR2(t)

≥ 2t

]

+
∞∑
n=1

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQR2(2

n−1t)
< 2t ≤ τQR2(2

nt)

]
.

Pick p > 1 with pθ < 16−1 and write q = p(p− 1)−1. By Hölder inequality,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQR2(2

n−1t)
< 2t ≤ τQR2(2

nt)

]

≤
(
P0

{
τQR2(2

n−1t)
< 2t

})1/q
{
E0

[
exp

{
pθ

∫ t

0

V (Bs)ds

}
; τQR2(2

nt)
≥ 2t

]}1/p

.
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Let δ > 0 be a small number and condition on the event
{
ω
(
B(0, δ)

)
= 0
}
. Applying

Lemma 3.6,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≤ X(θt) + Y0(t) exp

{
tλθV (QR2(t))

}
(5.18)

+
∞∑
n=1

(
P0

{
τQR2(2

n−1t)
< 2t

})1/q
(
X(pθt) + Yn(t) exp

{
tλpθV (QR2(2nt))

})1/p

,

where
X(t) = exp

{
t sup
|x|≤δ/2

|V δ
6
,1(x)|

}
,

Y0(t) =
48R2(t)3

πδ3
E0 exp

{√
2δθT1 sup

x∈QR2(t)

|V δ
6
,1(x)|

}
and

Yn(t) =
48R2(2nt)3

πδ3
E0 exp

{√
2δpθT1 sup

x∈QR2(2
nt)

|V δ
6
,1(x)|

}
n = 1, 2, · · · .

Using the classical fact that there is a constant C > 0 such that

E0 exp{bT1} ≤ exp{Cb2} ∀b > 0

we have

E0 exp
{√

2δpθT1 sup
x∈QR2(2

nt)

|V δ
6
,1(x)|

}
≤ exp

{
2δC(pθ)2

(
sup

x∈QR2(2
nt)

|V δ
6
,1(x)|

)2
}

= exp
{
o
(

(log(2nt)
)2
)}

a.s. (n→∞)

where the last step follows from (3.11). Consequently,

Yn(t) = exp
{
o
(
n2
)}

a.s. (n→∞). (5.19)

Recall the classic fact that

P0

{
τQR2(2

n−1t)
< 2t

}
= P

{
max
s≤2t
|Bs|∞ ≥ R2(2n−1t)

}
(5.20)

= P
{

max
s≤1
|Bs|∞ ≥ (2t)−1/2R2(2n−1t)

}
≤ exp

{
− C26nt5l(2n−1t)4/3

}
for some constant C > 0 independent of n and t, where | · |∞ is the max-norm in R3.

By Lemma 5.1 with k = 2 and with θ being replaced by pθ,

λpθV (QR2(2nt)) = o
((

2nt
)2
l
(
2nt
)2/3
)
a.s. (n→∞). (5.21)
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Combining (5.19), (5.20), (5.21) we conclude that the right hand side of (5.18) is almost
surely finite. Thus, we have established (5.17) conditioning on the event

{
ω
(
B(0, δ)

)
=

0
}
. Therefore,

P
{
E0 exp

{
θ

∫ t

0

V (Bs)ds

}
<∞

}
≥ P

{
ω
(
B(0, δ)

)
= 0
}

= exp
{
− 4

3
πδ3
}
.

Since δ can be arbitrarily small, we have completed the proof. �

5.3 Upper bound for Theorem 2.2

Consider the decomposition

V (x) = V 1,1(x) +

∫
R3

α(|y − x|)
|y − x|2

ω(dy)−
∫
R3

α(|y|)
|y|2

dy ≥ V 1,1(x)−
∫
R3

α(|y|)
|y|2

dy

where the notation V 1,1(x) comes from (3.5). We have that

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τB(0,t) ≥ t

]

≥ exp

{
− t
(

sup
|x|≤t
|V1,1(x)|+

∫
R3

α(|y|)
|y|2

dy

)}
P0

{
max
s≤t
|Bs| ≤ t

}
.

By (3.11) we have

lim inf
t→∞

(t log t)−1 logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
≥ 0 a.s. (5.22)

To complete the proof of Theorem 2.2, therefore, all we need to show is that under the
assumption (5.2),

lim sup
t→∞

t−
k+1
k−1 l(t)−

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
≤ 0 a.s. (5.23)

conditioning on the event
{
ω
(
B(0, δ)

)
= 0
}
.

In the case 1/24 < θ < 1/16, the bound (5.18) holds when conditioned on
{
ω
(
B(0, δ)

)
= 0
}
.

By Lemma 5.1 with k = 2,

λθV (QR2(t)) = o
(
t2l(t)2/3

)
a.s. (t→∞).
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The bound (5.19) can be replaced by

Yn(t) = exp
{
o
((

log(2nt)
)2
)}

a.s. n = 0, 1, · · · .

Combining these with the bound given in (5.20), (5.21), we have (5.23).
Now we consider the case 0 < θ ≤ 1/24 (so k ≥ 3). The main reason we treat this
setting separately is for it includes the critical cases when θ = (8k)−1, which need some
special care. Similar to (5.18), for any conjugate p, q > 1,

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
≤ X(θt) + Y0(t) exp

{
tλθV (QRk(t))

}
(5.24)

+
∞∑
n=1

(
P0

{
τQRk(2n−1t)

< 2t
})1/q

(
X(pθt) + Yn(t) exp

{
tλpθV (QRk(2nt))

})1/p

,

where

X(t) = exp
{
t sup
|x|≤δ/2

|V δ
6
,1(x)|

}
,

Y0(t) =
48Rk(t)

3

πδ3
E0 exp

{√
2δθT1 sup

x∈QRk(t)
|V δ

6
,1(x)|

}
,

Yn(t) =
48Rk(2

nt)3

πδ3
E0 exp

{√
2δpθT1 sup

x∈QRk(2nt)
|V δ

6
,1(x)|

}
n = 1, 2, · · · .

Similarly to (5.19) and (5.20) we get

Yn(t) = exp
{
o
((

log(2nt)
)2
)}

a.s. n = 0, 1, · · ·

and
P0

{
τQRk(2n−1t)

< 2t
}
≤ exp

{
− C2n(2nt)

k+2
k−2 l(2n−1t)

4
3(k−2)

}
.

Due to the possibility that θ = (8k)−1, we can only make pθ <
(
8(k − 1)

)−1. So we
may make (8k)−1 < pθ <

(
8(k − 1)

)−1. By the monotonicity of λpθV (D) in D,

λpθV (QRk(2nt)) ≤ λpθV (QRk−1(2nt)) = o

((
2nt
) 2
k−2
l
(

2nt
) 2

3(k−2)

)
a.s.

where the second step follows from Lemma 5.1 with k being replaced by k − 1.
Summarizing the bounds we obtained, the infinite series on the right hand side of (5.24)
is asymptotically (as t→∞) and almost surely bounded by

C
∞∑
n=1

exp
{
− C−12n

}
.

We now obtain desired (5.23) applying (5.24) and and the fact that

X(θt) + Y0(t) exp
{
tλθV (QRk(t)) = exp

{
o
(
t
k+1
k−1 l(t)

2
3(k−1)

)}
a.s. (t→∞).

(see Lemma 5.1). The proof is complete. �
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5.4 Upper bound for Theorem 2.3

In view of (5.22), we only need to show

lim inf
t→∞

t−
k+1
k−1 l(t)

2
3(k−1) logE0 exp

{
θ

∫ t

0

V (Bs)ds

}
≤ 0 a.s. (5.25)

conditioning on the event
{
ω
(
B(0, δ)

)
= 0
}
.

We prove (5.25) under the extra assumption that∫ ∞
1

1

t
exp

{
− cl(t)

}
dt <∞

for some large constant c > 0, for otherwise we may consider l̃(t) = log log t + l(t)
instead of l(t). Therefore, (5.9) can be assumed here.

Let Sk(t) be given as in Lemma 5.2. We have that

E0 exp

{
θ

∫ t

0

V (Bs)ds

}
(5.26)

≤ E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQSk(t) ≥ 2t

]

+
(
P0

{
τQSk(t) < 2t

})1/q
(
E0 exp

{
pθ

∫ t

0

V (Bs)ds

})1/p

where p, q > 1 are conjugate numbers.

In the case 1/24 < θ < 1/16 (k = 2), we can make p close to 1 so pθ < 1/16. By the
upper bound in Theorem 2.1 (with θ being replaced by pθ and l(t) = (log t)2)

E0 exp

{
pθ

∫ t

0

V (Bs)ds

}
= exp

{
o
(
t3(log t)4/3

)}
a.s. (t→∞).

By the bound for Gaussian tail,

P0

{
τQS2(t) < 2t

}
≤ exp

{
− Ct−1S2(t)2

}
= exp

{
− Ct5l(t)−4/3

}
.

Hence, the second term on the right hand side of (5.26) is negligible when 1/24 < θ <
1/16.

We now show that the same thing happens in the case when 0 < θ ≤ 1/24 (k ≥ 3). In
this case we can pick p > 1 such that (8k)−1 < pθ <

(
8(k − 1)

)−1. By Theorem 2.2
(with l(t) = (log t)2 and k being replaced by k − 1),

E0 exp

{
pθ

∫ t

0

V (Bs)ds

}
= exp

{
o
(
t

k
k−2 (log t)

4
3(k−2)

)}
a.s. (t→∞).
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So our assertion follows from the Gaussian tail estimate

P0

{
τQS2(t) < 2t

}
≤ exp

{
− Ct−1Sk(t)

2
}

= exp
{
− Ct

2k−1
k−2 l(t)−

4
3(k−2)

}
.

Therefore, the problem (in both k = 2 and k ≥ 3) has been reduced to the proof of

lim inf
t→∞

t−
k+1
k−1 l(t)

2
3(k−1) logE0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQSk(t) ≥ 2t

]
≤ 0 a.s. (5.27)

conditioning on the event
{
ω
(
B(0, δ)

)
= 0
}
.

By Lemma 3.6,

E0

[
exp

{
θ

∫ t

0

V (Bs)ds

}
; τQSk(t) ≥ 2t

]
≤ exp

{
θt sup
|x|≤δ/2

|V δ
6
,1(x)|

}
+

6|QSk(t)|
πδ3

E0 exp
{√

2δT1θ sup
x∈QSk(t)

|V δ
6
,1(x)|

}
exp

{
tλθV (QSk(t))

}
= exp{O(t)}+ exp

{(
o
(

logSk(t)
)2
)}

exp
{
tλθV (QSk(t))

}
a.s. (t→∞)

where the last step follows from (3.11).

The required (5.27) follows from Lemma 5.2. �

6 Hardy inequality

Recall the definition of Fd(D) from (3.14). The family F3 is defined as

F3 = F3(R3) =

{
g ∈ W 1,2(R3);

∫
R3

g2(x)dx = 1

}
.

The essential reason behind the main theorems in this paper is the Hardy’s inequality.
Searching in literature, we have found large amount of follow-up publication (i.e., [17]
and [22]) on this subject, except Hardy’s original paper. For reader’s convenience, we
state Hardy’s inequality for d = 3 in the following lemma and provide a short proof.

Lemma 6.1 For any fε ∈ W 1,2(R3),∫
R3

f 2(x)

|x|2
dx ≤ 4

∫
R3

|∇f(x)|2dx. (6.1)

Further, the number 4 is the best constant in the sense that for any ε > 0 one can find
a function fε ∈ W 1,2(R3) with compact support such that∫

R3

f 2
ε (x)

|x|2
dx > (4− ε)

∫
R3

|∇fε(x)|2dx. (6.2)
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Proof: Write x = (x1, x2, x3). Using integration by parts∫
R3

f 2(x)

|x|2
dx =

∫
R3

xj

[ 2xi
|x|4

f 2(x)− 2

|x|2
f(x)

∂f

∂xj

]
dx j = 1, 2, 3.

Summing over j on the both sides

3

∫
R3

f 2(x)

|x|2
dx = 2

∫
R3

[f 2(x)

|x|2
− ∇f · x
|x|2

f(x)
]
dx.

Thus,∫
R3

f 2(x)

|x|2
dx = −2

∫
R3

∇f · x
|x|

f(x)

|x|
dx ≤ 2

(∫
R3

|∇f · x|2

|x|2
dx

)1/2(∫
R3

f 2(x)

|x|2
dx

)1/2

.

Therefore, ∫
R3

f 2(x)

|x|2
dx ≤ 4

∫
R3

|∇f · x|2

|x|2
dx ≤ 4

∫
R3

|∇f(x)|2dx.

To establish (6.2), for each large M > 0, we define gM ∈ W 1,2(R3) as following:

gM(x) =



M1/2 0 ≤ |x| ≤M−1

|x|−1/2 M−1 < |x| ≤M

2M − |x|
M3/2

M < |x| ≤ 2M

0 |x| > 2M.

It is straightforward to exam that gM is locally supported and∫
R3

g2
M(x)

|x|2
dx =

{
4− 28

(7

3
+

1

2
logM

)−1
}∫

R3

|∇gM(x)|2dx.

For each ε > 0, take M > 0 sufficiently large so

28
(7

3
+

1

2
logM

)−1

< ε

and let fε(x) = gM(x).�

What has been frequently used in this paper is the following version of Hardy’s in-
equality.

Lemma 6.2 For any θ > 0,

sup
g∈F3

{
θ

∫
R3

g2(x)

|x|2
dx− 1

2

∫
R3

|∇g(x)|2dx
}

=

0 if θ ≤ 1/8,

∞ if θ > 1/8.
(6.3)
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Proof: By Hardy’s inequality, the left hand side of (6.3) is non-positive when θ < 1/8.
On the other hand, it is no less than

−1

2
inf
g∈F3

∫
R3

|∇g(x)|2dx

which is equal to zero. Thus, for θ ≤ 1/8,

sup
g∈F3

{
θ

∫
R3

g2(x)

|x|2
dx− 1

2

∫
R3

|∇g(x)|2dx
}

= 0.

Assume θ > 1/8. By the optionality of Hardy’s inequality described in (6.2),

H(θ) ≡ sup
g∈F3

{
θ

∫
R3

g2(x)

|x|2
dx− 1

2

∫
R3

|∇g(x)|2dx
}
> 0.

Given a > 0, the substitution g(x) = a3/2f(ax) leads toH(θ) = a2H(θ). SoM(θ) =∞.
�
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