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Abstract

Given a symmetric random walk in Z
2 with finite second moments,

let Rn be the range of the random walk up to time n. We study

moderate deviations for Rn−ERn and ERn−Rn. We also derive the

corresponding laws of the iterated logarithm.

1 Introduction

Let Xi be symmetric i.i.d. random vectors taking values in Z
2 with mean 0

and finite covariance matrix Γ, set Sn =
∑n

i=1Xi, and suppose that no proper
subgroup of Z

2 supports the random walk Sn. For any random variable Y
we will use the notation

Y = Y − EY.

Let

(1.1) Rn = #{S1, . . . , Sn}

be the range of the random walk up to time n. The purpose of this paper is to
obtain moderate deviation results for Rn and −Rn. For moderate deviations
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of Rn we have the following. Let

(1.2) H(n) =

n∑

k=0

P
0(Sk = 0).

Since the Xi have two moments, by (4.23) below,

H(n) =
n∑

k=0

P
0(Sk = 0) ∼ logn

2π
√

det Γ

and

H(n) −H([n/bn]) =

n∑

k=[n/bn]+1

P
0(Sk = 0) ∼ log bn

2π
√

det Γ
.

Our first main result is the following.

Theorem 1.1 Let {bn} be a positive sequence satisfying bn → ∞ and log bn =
o((logn)1/2) as n → ∞. There are two constants C1, C2 > 0 independent of
the choice of the sequence {bn} such that

−C1 ≤ lim inf
n→∞

b−1
n log P

{
Rn ≥ n

H(n)2
(H(n) −H([n/bn]))

}

≤ lim sup
n→∞

b−1
n log P

{
Rn ≥ n

H(n)2
(H(n) −H([n/bn])

}
≤ −C2.(1.3)

Remark 1.2 The proof will show that C2 in the statement of Theorem 1.1
is equal to the constant L given in Theorem 1.3 in [2]. We believe that C1 is
also equal to L, but we do not have a proof of this fact.

A more precise statement than Theorem 1.1 is possible when the Xi have
slightly more than two moments.

Corollary 1.3 Suppose E[ |Xi|2(log+(|Xi|))
1
2
+δ ] < ∞ for some δ > 0. Let

{bn} be a positive sequence satisfying bn → ∞ and log bn = o((logn)1/2) as
n→ ∞. There are two constants C1, C2 > 0 independent of the choice of the
sequence {bn} such that

−C1 ≤ lim inf
n→∞

b−θn log P

{
Rn ≥ 2θπ

√
det Γ

n

(logn)2
log bn

}

≤ lim sup
n→∞

b−θn log P

{
Rn ≥ 2θπ

√
det Γ

n

(logn)2
log bn

}
≤ −C2(1.4)

for any θ > 0.
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Remark 1.4 The constants C1, C2 are the same as in the statement of
Theorem 1.1. See Remark 1.2.

For bn tending to infinity faster than the rate given in Theorem 1.1, e.g.,
log bn = (log n)2, then we are in the realm of large deviations. For Section 2
for some references to results on large deviations of the range.

For the moderate deviations of −Rn = ERn − Rn we have the following.
Let κ(2, 2) be the smallest A such that

(1.5) ‖f‖4 ≤ A‖∇f‖1/2
2 ‖f‖1/2

2

for all f ∈ C1 with compact support. (This constant appeared in [2].)

Theorem 1.5 Suppose bn → ∞ and bn = o((logn)1/5) as n → ∞. For
λ > 0

lim
n→∞

1

bn
log P

(
− Rn > λ

nbn
(logn)2

)
= −(2π)−2(det Γ)−1/2κ(2, 2)4λ.

Comparing Theorems 1.1 and 1.5, we see that the upper and lower tails of
Rn are quite different. This is similar to the behavior of the distribution of
the self-intersection local time of planar Brownian motion. This is not sur-
prising, since LeGall, [24, Theorem 6.1], shows that Rn, properly normalized,
converges in distribution to the self-intersection local time; see also (2.2).

The moderate deviations of Rn are quite similar in nature to those of −Ln,
where Ln is the number of self-intersections of the random walk Sn; see [4].
Again, [24, Theorem 6.1] gives a partial explanation of this. However the
case of the range is much more difficult than the corresponding results for
intersection local times. The latter case can be represented as a quadratic
functional of the path, which is amenable to the techniques of large deviation
theory, while the range cannot be so represented. This has necessitated the
development of several new tools, see in particular Sections 8 and 9, which
we expect will have further applications in the study of the range of random
walks.

Theorem 1.1 gives rise to the following LIL for Rn.
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Theorem 1.6

(1.6) lim sup
n→∞

Rn

n log log log n/(logn)2
= 2π

√
det Γ, a.s.

This result is an improvement of that in [5]; there it was required that
the Xi be bounded random variables and the constant was not identified.
Theorem 1.1 is a more precise estimate than is needed for Theorem 1.6; this
is why Theorem 1.1 needs to be stated in terms of H(n) while Theorem 1.6
does not.

For an LIL for −Rn we have a different rate.

Theorem 1.7 We have

lim sup
n→∞

−Rn

n log logn/(log n)2
= (2π)−2

√
det Γ κ(2, 2)4, a.s.

The study of the range of a lattice-valued (or Z
d-valued) random walk

has a long history in probability and the results show a strong dependence
on the dimension d. See Section 2 for a brief history of the literature. The
two dimensional case seems to be the most difficult; in one dimension no
renormalization is needed (see [9]), while for d ≥ 3 the tails are sub-Gaussian
and have asymptotically symmetric behavior. In two dimensions, renormal-
ization is needed and the tails have non-symmetric behavior. In this case,
the central limit theorem was proved in 1986 in [24], while the first law of
the iterated logarithm was not proved until a few years ago in [5].

We use results from the paper by Chen [8] in several places. This paper
studies moderate deviations and laws of the iterated logarithm for the joint
range of several independent random walks, that is, the cardinality of the
set of points which are each visited by each of the random walks; see (3.2).
Also related is the paper by Bass and Rosen [6], which is an almost sure
invariance principle for the range. Our results in Theorems 1.1 and 1.5 are
more precise than what can be obtained using [6]. We did not see how to
derive our laws of the iterated logarithm from that paper; moreover in that
paper 2 + δ moments were required.

Acknowledgment: We would like to thank Greg Lawler and Takashi Ku-
magai for helpful discussions and their interest in this paper.
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2 History

Perhaps the first result on the range of random walks is that of Dvoretzky
and Erdös [13]. They proved a strong law of large numbers for the range
of a random walk for a number of cases, including simple random walk in
dimensions 2 and larger:

(2.1)
Rn

ERn
→ 1, a.s.

This strong law was extended by Jain and Pruitt [20] to more general random
walks, in particular, for any recurrent random walk in 2 dimensions. (The
paper [20] improves upon the results in [19].) In each of these papers, the key
is obtaining a good estimate on VarRn. Turning to central limit theorems,
the paper [20] showed that in one dimension for finite variance walks, Rn/ERn

converges in law to the size of the range of one-dimensional Brownian motion
if EX1 = 0 and

Rn − ERn

(VarRn)1/2

converges in law to a standard normal if EX1 6= 0. Jain and Orey [18] showed
the same convergence for strongly transient random walks; in the case of finite
variance with mean 0, this means that the dimension is 5 or larger. Jain and
Pruitt [21] later established the analogous results for dimensions 3 and 4.
In 3 dimensions, the variance of Rn is O(n logn), while in 4 dimensions
the variance is O(n). In both cases, the expectation of the range is O(n).
For random walks without moment conditions and for a weak invariance
principle, see [23]. The central limit theorem for the range in two dimensions
was not accomplished until LeGall [24]. In this paper LeGall proved the
remarkable result that

(2.2)
Rn − ERn

n/(logn)2
→ −4π2γ1,

where the convergence is in law, X1 has the identity as its covariance matrix,
and γ1 is the renormalized self-intersection local time of a planar Brownian
motion. (We will discuss intersection local times in a bit.) The result of
LeGall can be extended to the case where X1 has an arbitrary nondegenerate
covariance matrix in a routine fashion.

5



The central limit theorem for random walks in the domain of attraction
of a stable law was analyzed in [27]. It is noteworthy that in this case the
results depend on the relationship between the dimension and the index of
the stable law.

The law of the iterated logarithm for the range of random walks in 4 or
more was established by Jain and Pruitt [22], where they showed that

lim sup
n→∞

Rn − ERn

(2n log log n)1/2
= 1, a.s.

and that the corresponding lim inf is −1 a.s.

For 2 and 3 dimensions, the law of the iterated logarithm was proved by
Bass and Kumagai [5]. In 3 dimensions

(2.3) lim sup
n→∞

Rn − ERn

(n logn log logn)1/2
(p2/π)

√
det Γ, a.s.,

where Γ is the covariance matrix of X1 and p = P(Sk 6= 0 for all k). The
corresponding lim inf is the negative of this constant. These (and other laws
of the iterated logarithm) are consequences of an invariance principle. In [5]
it was proved that if the random walk is three dimensional, then there exists
a one-dimensional Brownian motion such that

(2.4)
Rn − ERn

(
√

2p2/2π
√

det Γ)
− Bn logn = O(

√
n(logn)15/32).

The law of the iterated logarithm for the range in 2 dimensions was a bit
surprising:

(2.5) lim sup
n→∞

Rn − ERn

n log log log n/(logn)2
= c1, a.s.

provided the random walk had bounded range and where c1 is an unidentified
constant. Among the results in the current paper is that we identify the
constant, we remove the restriction of bounded range, and we determine the
corresponding lim inf.

An almost sure invariance principle for Rn−ERn in 4 or more dimensions
was proved by Hamana [15]. There the result is that there exists a one-
dimensional Brownian motion Bt such that for each λ > 0

(2.6)
Rn − ERn

(VarRn)1/2
− Bn = O(n2/5+λ).
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The almost sure invariance principle for random walks in 2 dimensions is
more complicated. Bass and Rosen [6] showed that if the random walk has
mean 0, has the identity as the covariance matrix, and has 2 + δ moments
for some δ > 0, then for each k

(2.7) (log n)k
[Rn

n
+

k∑

j=1

(−1)j
( log n

2π
+ cX

)−j
γj,n

]
→ 0, a.s.

where Wt is a 2-dimensional Brownian motion, cX is a constant depending
on the random walk, and γj,n is the renormalized self-intersection local time

of order j at time 1 of the Brownian motion W
(n)
t = Wnt/

√
n. The intuition

behind this formula is the following: at time n, if the process hits a point it
has already hit before, then n− Rn increases by 1, and so does the number
of self-intersections of the random walk. If the point that is hit again has
only been hit once before, then the double self-intersections of the random
walk increases by 1, but if this point has been hit a number of times, then
the double self-intersections will go up more than 1, and this has to be
compensated by subtracting off the number of triple self-intersections, and
so on.

Large deviations for the range have been considered by Donsker and
Varadhan [12], by Hamana [16], and by Hamana and Kesten [17]. These
are related to estimates of the type

P(Rn ≥ ϕ(n)) or P(Rn ≤ ϕ(n))

for functions ϕ(n) that grow relative quickly. By contrast, in our paper we
look at

P(Rn − ERn ≥ ϕ(n))

for functions ϕ(n) that grow not quite so quickly. The paper [12] determines

lim
n→∞

nd/(d+α) log Ee−λRn ,

when X1 is in the domain of attraction of a symmetric stable process of index
α. This can be used to obtain information on P(Rn ≤ ϕ(n)). It is shown in
[17] that

lim
n→∞

−1

n
log P(Rn ≥ nx)
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exists, while [16] examines

lim
n→∞

1

n
log EeλRn .

Related to our paper is one by Chen [8], which looks at moderate devia-
tions of the joint range Jn, the cardinality of the set of points that are each
visited by each of p independent random walks.

We will be much briefer concerning the literature of intersection local
times. There are a large number of papers, but we only mention those rele-
vant to this paper. Given two independent Brownian motions Vt,Wt in two
dimensions, formally the intersection local time is the quantity

∫ t

0

∫ t

0

δ0(Vs −Wu) du ds,

which is a measure of how often the two Brownian motions intersect each
other; here δ0 is the delta function. To give a meaning to this, we define the
intersection local time by

(2.8) lim
ε→0

∫ t

0

∫ t

0

pε(Vs −Wu) ds du,

where pε is a suitable approximation to the identity, for example, the density
of a two-dimensional Brownian motion at time ε. If one now wants to define
self-intersection local time of one planar Brownian motion, one cannot simply
replace Vs by Ws. If one does, one gets an identically infinite random process.
Varadhan [30] proved that provided one renormalizes properly, one can get
a finite limit. There are a number of renormalizations possible. We use the
following: let

(2.9) γε(t) =

∫ t

0

∫ u

0

pε(Ws −Wu) ds du,

and let

(2.10) γt = lim
ε→0

[γε(t) − Eγε(t)].

The limit exists almost surely, and is called renormalized self-intersection
local time for planar Brownian motion.
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LeGall [26] proved that

(2.11) Eeλγ1

is finite for all negative λ and for all sufficiently small positive λ and is
infinite for all sufficiently large positive λ. The critical value λ0 at which
the expectation switches from being finite to infinite was found by Bass and
Chen [2]. It turns out that the expectation in (2.11) is finite if λ < κ(2, 2)−4

and infinite if λ > κ(2, 2)−4, where κ(2, 2) is the best constant in a Gagliardo-
Nirenberg inequality; see (1.5).

We mention that our paper [4] has moderate deviations results for the
number of self-intersections of random walks which are similar in form to
those of this paper, although the proofs are different.

3 Overview

Before we outline our methods of proof, let us mention two techniques that
are useful in the study of the range. The first is rewriting the range as a
sum, the second is writing the range of a single random walk in terms of the
joint range of two random walks.

To explain the first technique, let Ty = min{k : Sk = y}, the first time the
random walk hits y. The key observation is that

(3.1) Rn =
∑

y∈Z2

1(Ty≤n).

This equality is simply the fact that the sum on the right is the number of
points that have been hit by time n, which is the same as the range.

From (3.1) one can estimate moments. For example,

ERn =
∑

x∈Z2

P(Tx ≤ n),

and therefore a good estimate of the mean follows from a good estimate on
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P(Ty ≤ n). One can also obtain higher moments in this way. Thus,

ER2
n = E




∑

x∈Z2

∑

y∈Z2

1(Tx≤n)1(Ty≤n)





=
∑

x∈Z2

∑

y∈Z2

P(Tx ≤ n, Ty ≤ n).

Let S, S ′ be two independent random walks. The joint range Jn is the
defined by

(3.2) Jn = # ({S1, . . . , Sn} ∩ {S ′
1, . . . , S

′
n}).

The reason Jn is more manageable than Rn is that if both random walks
start at the same point, then

(3.3) EJn = O
( n

(logn)2

)
, Var JnO

( n2

(log n)4

)
,

while

(3.4) ERn = O
( n

logn

)
, VarRn = O

( n2

(log n)4

)
.

We thus see that the expectation of the range is large compared to the stan-
dard deviation of the range, while the expectation of the joint range is com-
parable to the standard deviation of the joint range. This shows that the
joint range is somewhat less singular than the range.

To exploit this, if n is even we can break {S1, . . . , Sn} into the two sets
{S1, . . . , Sn/2} and {S(n/2)+1, . . . , Sn}, and therefore

Rn = # {S1, . . . , Sn/2} + # {S(n/2)+1, . . . , Sn}(3.5)

− #({S1, . . . , Sn/2} ∩ {S(n/2)+1, . . . , Sn}).

The first two terms are each equal in law to Rn/2 and the third term is equal
in law to Jn/2, where, however, the two independent pieces might not both
start at the same point.

We can repeat by decomposing each of the first two terms on the right
of (3.5) into two pieces, and continue to get a decomposition of the range
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into the sum of joint ranges plus some small leftover terms. We can also do
other decompositions by letting I1, . . . , Im be disjoint subintervals of N =
{1, . . . , n} whose union is N , letting S(Ii) = {Sk : k ∈ Ii}, and writing the
range Rn

(3.6) Rn =
∑

i

#S(Ii) −
∑

i<j

# (S(Ii) ∩ S(Ij)).

We use a number of such decompositions in this paper.

Let us now turn to overviews of some of the proofs in this paper. We first
look at moderate deviations of Rn−ERn, and examine the upper bound. By
LeGall’s central limit theorem (see (2.2)),

An =
Rn − ERn

n/(logn)2

converges in law to a multiple of γ1, the self-intersection local time of planar
Brownian motion. Therefore if we have suitable exponential bounds on An,
then by dominated convergence

(3.7) EeλAn → Eecλγ1 .

One has to be careful in that the right side is finite for some λ but not all
λ. By using a decomposition such as the one described in (3.6), this turns
out to be all we need to get the upper bound on the moderate deviations.
The key to the argument is thus getting appropriate exponential bounds on
An. By a Taylor series expansion of eλx, it is enough to get bounds on the
moments of An. This is done by means of the decompositions in terms of
joint ranges described in (3.6).

Let us now look at the lower bound. We break N = {1, . . . , n} into
subintervals Ii of length approximately bn. Using the Markov property, we
can show that the path of {Sk : 1 ≤ k ≤ n} is reasonably close to a straight
line with a certain probability. The lower bound comes from such paths.
We use the decomposition (3.6). For the paths that we are considering,
S(Ii) ∩ S(Ij) = ∅ if |i − j| > 1. So in (3.6) we have the sum

∑
i #S(Ii),

which is (almost) the sum of i.i.d. random variables and the sum
∑

i # (S(Ii)∩
S(Ii+1)), which can be broken up into the two sums of (almost) i.i.d. random
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variables. Standard techniques for the sums of independent random variables
are then applied. We remark that the quantity

ERn −
∑

i

E[#S(Ii)]

plays an important role in both the upper and lower bound estimates.

Next we give an overview for the moderate deviations of ERn − Rn. The
upper bound is handled by using a decomposition of the form (3.5). We show
that the dominant contribution comes from the intersections of independent
ranges, which has been worked out in [8, Theorem 1]. The lower bound is
more subtle and requires a new approach. We use a smoothed version of the
range, obtained by convolving the indicator function in (3.1) with a smooth
function of compact support. We exploit the regularity of the smoothed range
to obtain its moderate deviations, and then develop estimates to show that
the moderate deviations for the true range can be approximated by those of
the smoothed range.

Lastly, we look at the laws of the iterated logarithms. Here we use a
combination of two ideas. Theorems 1.1 and 1.5 allow us to obtain the laws
of the iterated logarithm along exponential sequences. What remains is to
fill in the gaps, that is, we need estimates on

P(max
i≤n

(Ri − ERi) > λn log log logn/(log n)2)

and the analogous probabilities for maxi≤n(ERi − Ri). We obtain these by
using the technique of metric entropy; this is also know as chaining, and is
based on the method used in the proof of Kolmogorov’s continuity criterion
(cf. [1, I.3.11]).

4 Preliminaries

As usual we set Fn = σ(S1, . . . , Sn). For x ∈ Z
d, let fxn (S) be a functional of

the random walk S which is non-negative and adapted, i.e fxn (S) ∈ Fn. Let θn
be the usual shift operators of Markov process theory, so that Sk ◦θn = Sk+n.
We will say that fxn (S) is a subadditive functional if for any k, n

(4.1) fxn+k(S) ≤ fxn (S) + fxk (S) ◦ θn.
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We will say that fxn (S) is spatially homogeneous if for any n and x, z ∈ Z
d

(4.2) fx−zn (S) = fxn (S + z).

fxn(S) = 1{x∈S[1,n]} is an example of a spatially homogeneous subadditive
functional. Note that the range Rn =

∑
x∈Zd 1{x∈S[1,n]}.

The following Theorem 4.1 is a generalization of Theorem 6 and Corollary
1 of [8].

Theorem 4.1 Let fxn (S) be a spatially homogeneous subadditive functional
of S and for p independent copies S(1), . . . , S(p) of S set

(4.3) Fn =
∑

x∈Zd

p∏

j=1

fxn(S(j)).

Then for any integers n1, · · · , nℓ ≥ 1,

(4.4)
(
EFm

n1+···+nℓ

)1/p ≤
∑

k1+···+kℓ=m
k1,··· ,kℓ≥0

m!

k1! · · ·kℓ!
(
EF k1

n1

)1/p · · ·
(
EF kℓ

nℓ

)1/p
,

and for any θ > 0,

(4.5)

∞∑

m=0

θm

m!

(
EFm

n1+···+nℓ

)1/p ≤
ℓ∏

i=1

∞∑

m=0

θm

m!

(
EFm

ni

)1/p
.

Proof. (4.5) follows immediately from (4.4), and by induction it suffices to
prove (4.4) in the case ℓ = 2. Using the standard notation

‖ψ(x1, . . . , xm)‖Lp((Zd)m) =

( ∑

(x1,...,xm)∈(Zd)m

|ψ(x1, . . . , xm)|p
)1/p

we note that

(4.6)
(
EFm

n

)1/p‖E
( m∏

i=1

fxi
n (S)

)
‖Lp((Zd)m).
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Then by subadditivity

(
EFm

n1+n2

)1/p
(4.7)

‖E
( m∏

i=1

fxi
n1+n2

(S)
)
‖Lp((Zd)m)

≤
∑

A⊆[1,m]

‖E
(∏

i∈A
fxi
n1

(S)
∏

j∈Ac

fxj
n2

(S) ◦ θn1

)
‖Lp((Zd)m).

By the Markov property

(4.8) E
(∏

i∈A
fxi
n1

(S)
∏

j∈Ac

fxj
n2

(S) ◦ θn1

)
= E

(∏

i∈A
fxi
n1

(S)ẼSn1

( ∏

j∈Ac

fxj
n2

(S̃)
))
,

where for ease of notation we have used S̃, Ẽ to denote an independent copy
of S and its expectation operator. Using (4.8) and spatially homogeneity we
have

‖E
(∏

i∈A
fxi
n1

(S)
∏

j∈Ac

fxj
n2

(S) ◦ θn1

)
‖Lp((Zd)m)(4.9)

‖E
(∏

i∈A
fxi
n1

(S)Ẽ
( ∏

j∈Ac

f
xj−Sn1
n2 (S̃)

))
‖Lp((Zd)m)

=
{

E

( ∑

xi,i∈[1,m]

p∏

k=1

∏

i∈A
fxi
n1

(S(k))Ẽ
( ∏

j∈Ac

f
xj−S(k)

n1
n2 (S̃)

))}1/p

=
{

E

(
F |A|
n1

∑

xj ,j∈Ac

p∏

k=1

Ẽ
( ∏

j∈Ac

f
xj−S(k)

n1
n2 (S̃)

))}1/p

and by Holder’s inequality and then spatial homogeneity

∑

xj ,j∈Ac

p∏

k=1

Ẽ
( ∏

j∈Ac

f
xj−S(k)

n1
n2 (S̃)

))
(4.10)

≤
p∏

k=1

‖Ẽ
( ∏

j∈Ac

f
xj−S(k)

n1
n2 (S̃)‖Lp((Zd)|Ac|)

= ‖Ẽ
( ∏

j∈Ac

fxj
n2

(S̃)
))
‖p
Lp((Zd)|A

c|)
=
(
EF |Ac|

n2

)
.
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Thus we have shown that

‖E
(∏

i∈A
fxi
n1

(S)
∏

j∈Ac

fxj
n2

(S) ◦ θn1

)
‖Lp((Zd)m)(4.11)

≤
(
EF |A|

n1

)1/p(
EF |Ac|

n2

)1/p
.

This proves (6.20) in the case l = 2 and hence our lemma now follows.

Remark 4.2 There is a variation of the lemma which is useful. For a fixed
integer t > 0, let F ′

n = Ftn. Let now fxn(S), be adapted to F ′
n, i.e. fxn (S) ∈ F ′

n

for all n, and additive with respect to F ′
n, i.e. for any k, n

(4.12) fxn+k(S) = fxn (S) + fxk (S) ◦ θtn.

We assume as before that fxn(S) is spatially homogeneous. The same proof
shows that Theorem 4.1 continues to hold.

Remark 4.3 Let E
y1,...,yp(·) denote expectations with respect to the inde-

pendent random walks S(1), . . . , S(p) started at y1, . . . , yp respectively. It
follows by an argument similar to that of (4.11) that

(4.13) sup
y1,...,yp

E
y1,...,yp (Fm

n ) = E(Fm
n ).

In more detail, by Holder’s inequality and spatial homogeneity

sup
y1,...,yp

E
y1,...,yp (Fm

n ) = ‖
p∏

j=1

E
( m∏

i=1

fxi
n (S + yj)

)
‖L1((Zd)m)(4.14)

≤
p∏

j=1

‖E
( m∏

i=1

fxi
n (S + yj)

)
‖Lp((Zd)m)

= ‖E
( m∏

i=1

fxi
n (S)

)
‖p
Lp((Zd)m)

= E(Fm
n ).
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Set

(4.15) ϕ(u) = E
(
eiu·X1

)
.

It follows from our assumptions that ϕ(u) ∈ C2, ∂
∂ui
ϕ(0) = 0 and ∂2

∂ui∂uj
ϕ(0) =

−E
(
X

(i)
1 X

(j)
1

)
where X1 = (X

(1)
1 , X

(2)
1 ), so that for some δ > 0

(4.16) ϕ(u) = 1 − E
(
(u ·X1)

2
)
/2 + o(|u|2), |u| ≤ δ.

Then for some c1 > 0 and δ > 0 sufficiently small

(4.17) |ϕ(u)| ≤ e−c1|u|
2

, |u| ≤ δ.

Strong aperiodicity implies that |ϕ(u)| < 1 for u 6= 0 and u ∈ [−π, π]2.
In particular, we can find b0 < 1 such that |ϕ(u)| ≤ b0 for δ ≤ |u| and
u ∈ [−π, π]2. But clearly we can choose c2 > 0 so that b0 ≤ e−c2|u|

2
for

u ∈ [−π, π]2. Setting c = min(c1, c2) > 0 we then have

(4.18) |ϕ(u)| ≤ e−c|u|
2

, u ∈ [−π, π]2.

Then with C = [−π, π]2

lim
n→∞

nP(Sn = 0) = lim
n→∞

n

2π

∫

C

(ϕ(u))n du(4.19)

= lim
n→∞

1

2π

∫
√
nC

(ϕ(u/
√
n))n du.

By (4.16) we see that (ϕ(u/
√
n))n → exp(−u · Γu/2) on |u| ≤ δ

√
n, and by

(4.18) we can apply the dominated convergence theorem to obtain
(4.20)

lim
n→∞

1

2π

∫

|u|≤√
nδ

(ϕ(u/
√
n))n du =

1

2π

∫

R2

exp(−u · Γu/2) du =
1

2π
√

det Γ
.

On the other hand, by the above, for some b0 < 1

(4.21) lim sup
n→∞

1

2π

∣∣∣
∫
√
nδ<|u|≤√

nπ

(ϕ(u/
√
n))n du

∣∣∣ ≤ 1

2π

∫
√
nC

bn0 du = 0.

Thus

(4.22) lim
n→∞

nP(Sn = 0) =
1

2π
√

det Γ
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and it follows from this that

(4.23) H(n) =

n∑

k=0

P
0(Sk = 0) ∼ logn

2π
√

det Γ

and

(4.24) H(n) −H(m) ∼ log(n/m)

2π
√

det Γ

as n and m tend to infinity.

We write S(I) for {Sk : k ∈ I}. Let S(i), i = 1, . . . , p be p independent
copies of S. Let

Jn = #
{
S(1)[1, n] ∩ · · · ∩ S(p)[1, n]

}
n = 1, 2, · · · .

This can be written as

(4.25) Jn =
∑

y∈Z2

p∏

k=1

1{y∈S(k)[1,n]}

and therefore

(4.26) E(Jn) =
∑

y∈Z2

(P(y ∈ S[1, n]))p .

E(Jn) can be bounded as follows. First write the obvious bound

∑

y∈Z2

(
E

(
1{y∈S[1,n]}

2n∑

i=1

1{Siy}

))p

(4.27)

≤
∑

y∈Z2

(
E

(
2n∑

i=1

1{Si=y}

))p

.

Applying the Markov property at Ty, the first hitting time of y, we see that

E

(
1{y∈S[1,n]}

2n∑

i=1

1{Si=y}

)
≥ P(y ∈ S[1, n])H(n).(4.28)
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Hence from (4.26)-(4.28)

E(Jn)Hp(n) ≤
∑

y∈Z2

(
E

(
2n∑

i=1

1{Si=y}

))p

(4.29)

=
∑

y∈Z2

2n∑

i1,...,ip=1

1

(2π)p

∫

(T2)p

ei(
Pp

j=1 uj)·y
p∏

j=1

(ϕ(uj))
ij duj

=
2n∑

i1,...,ip=1

1

(2π)p−1

∫

(T2)p−1

(ϕ(−
p−1∑

j=1

uj))
ip

p−1∏

j=1

(ϕ(uj))
ij duj

where the last step used Fourier inversion for up. By (4.18) we thus have

(4.30) E(Jn)Hp(n) ≤
2n∑

i1,...,ip=1

1

(2π)p−1

∫

(R2)p−1

e−cip|
Pp−1

j=1 uj |2
p−1∏

j=1

e−cij |uj |2 duj.

Let

(4.31) Fj = e−cip|
Pp−1

m=1 um|2
p−1∏

l=1,l 6=j
e−cil|ul|2, 1 ≤ j ≤ p− 1

and

(4.32) Fp =

p−1∏

l=1

e−cil|ul|2.

Then we can write (4.30) as

(4.33) E(Jn)Hp(n) ≤
2n∑

i1,...,ip=1

1

(2π)p−1

∫

(R2)p−1

p∏

j=1

F
1/(p−1)
j

p−1∏

l=1

dul.

Then by the multiple Holder inequality

(4.34) E(Jn)Hp(n) ≤ C

2n∑

i1,...,ip=1

p∏

j=1

‖F 1/(p−1)
j ‖p.

18



It is easy to obtain the bounds

‖F 1/(p−1)
j ‖p ≤ Ci−1/p

p

p−1∏

l=1,l 6=j
i
−1/p
l , 1 ≤ j ≤ p− 1(4.35)

‖F 1/(p−1)
p ‖p ≤ C

p−1∏

l=1

i
−1/p
l(4.36)

so that

(4.37) E(Jn)Hp(n) ≤ C

2n∑

i1,...,ip=1

p∏

j=1

i
−(p−1)/p
j = C

(
2n∑

i=1

i−(p−1)/p

)p

≤ Cn.

Thus we have

(4.38) E(Jn) ≤
Cn

(logn)p
, n = 1, · · ·

for some C <∞.

We next note using (4.25) that

E(Jkn) =
∑

y1,...,yk∈Z2

(
E

(
k∏

i=1

1{yi∈S[1,n]}

))p

(4.39)

=
∑

y1,...,yk∈Z2

(
∑

π

P

(
Tyπ(1)

≤ Tyπ(2)
≤ · · · ≤ Tyπ(k)

≤ n
))p

where the inner sum is over all permutations π of {1, . . . , k}. Then by
Holder’s inequality

E(Jkn)(4.40)

≤ (k!)(p−1)
∑

y1,...,yk∈Z2

∑

π

(
P

(
Tyπ(1)

≤ Tyπ(2)
≤ · · · ≤ Tyπ(k)

≤ n
))p

= (k!)p
∑

y1,...,yk∈Z2

(P (Ty1 ≤ Ty2 ≤ · · · ≤ Tyk
≤ n))p .
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Applying the Markov property at time Tyk−1
we obtain

∑

y1,...,yk∈Z2

(P (Ty1 ≤ Ty2 ≤ · · · ≤ Tyk
≤ n))p(4.41)

≤
∑

y1,...,yk−1∈Z2

(
P
(
Ty1 ≤ Ty2 ≤ · · · ≤ Tyk−1

≤ n
))p ∑

yk∈Z2

(Pyk−1 (Tyk
≤ n))p

=
∑

y1,...,yk−1∈Z2

(
P
(
Ty1 ≤ Ty2 ≤ · · · ≤ Tyk−1

≤ n
))p

E(Jn).

By induction we get

(4.42) E(Jkn) ≤ (k!)p(EJn)
k, k = 0, 1, · · · .

The following Lemma, which is Lemma 1 in [3], is used in the next section.

Lemma 4.4 Let 0 < p ≤ 1 and let {Yk(ζ)}k≥1 be a family (indexed by ζ) of
sequences of i.i.d. real valued random functions such that E(Yk(ζ)) = 0 and

(4.43) lim
θ→0

sup
ζ
Eeθ|Y1(ζ)|p = 1.

Then for some λ > 0,

(4.44) sup
n,ζ

E exp
{
λ
∣∣∣

n∑

k=1

Yk(ζ)/
√
n
∣∣∣
p}

<∞.

Proof. Let ψp(x) = ex
p − 1 for large x and linear near the origin so that

ψp(x) is convex. We use ‖ · ‖ψp to denote the norm of the Orlicz space Lψp

with Young’s function ψp. The assumption (4.43) of our Lemma implies that
for some M <∞

(4.45) sup
ζ

‖Y1(ζ)‖ψp ≤M.

By Theorem 6.21 of [28], if ξk are i.i.d. copies of a mean zero random variable
ξ1 ∈ Lψp then for some constant Kp depending only on p

∥∥∥∥∥

n∑

k=1

ξk

∥∥∥∥∥
ψp

≤ Kp

(∥∥∥∥∥

n∑

k=1

ξk

∥∥∥∥∥
L1

+

∥∥∥∥max
1≤k≤n

|ξk|
∥∥∥∥
ψp

)
.

20



Using Prop 4.3.1 of [14], for some constant Cp depending only on p

∥∥∥∥max
1≤k≤n

|ξk|
∥∥∥∥
ψp

≤ Cp(log n)‖ξ1‖ψp.

Since the ξk are i.i.d. and mean zero

‖
n∑

k=1

ξk‖L1 ≤ ‖
n∑

k=1

ξk‖L2 ≤
√
n‖ξ1‖L2 .

Thus we have
∥∥∥∥∥

n∑

k=1

ξk/
√
n

∥∥∥∥∥
ψp

≤ Dp

(
‖ξ1‖L2 +

log n√
n
‖ξ1‖ψp

)

for some constant Dp depending only on p. Our Lemma follows immediately
from this.

5 Moments of the range

In this section we first give an estimate for the expectation of the range. The
next result is contained in [27, Theorem 6.9].

Lemma 5.1

(5.1) ERn =
n

H(n)
+

1

2π
√

det Γ

n

H(n)2
(1 + o(1)),

where H is defined in (1.2).

Proof: Let

(5.2) un = P(Sn = 0), rn = P(T0 > n)

where T0 = min{n ≥ 1 : Sn = 0}. Then

(5.3) ERn =

n∑

i=0

ri.
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By considering the last visit to 0 before time n we see that

(5.4)
n∑

i=0

uirn−i = 1.

Since ri is non-increasing this shows that

(5.5) rn ≤
(

n∑

i=0

ui

)−1

=
1

H(n)
.

We next obtain a lower bound for rn. Fix ǫ > 0. Then by (5.4)

(5.6)




[ǫn]∑

i=0

ui


 rn ≥ 1 −

n+[ǫn]∑

i=[ǫn]+1

uirn+[ǫn]−i = 1 −
n−1∑

i=0

un+[ǫn]−iri,

and therefore, using also (5.5),

(5.7) rn ≥ 1

H([ǫn])
− 1

H([ǫn])

n−1∑

i=0

un+[ǫn]−i
1

H(i)
.

By (4.23) we see that H(n) is slowly varying and therefore so is 1/H(n).
Consequently for any δ > 0 small, and using (4.22) we see that for some
C <∞ independent of δ

(5.8)

δn∑

i=0

un+[ǫn]−i
1

H(i)
≤ cn−1

δn∑

i=0

1

H(i)
≤ Cδ

H(n)
.

Using this and the slow variation of 1/H(n) we find that

(5.9)

n−1∑

i=0

un+[ǫn]−i
1

H(i)
∼ 1

H(n)

n−1∑

i=0

un+[ǫn]−i ∼
H(n+ [ǫn]) −H([ǫn])

H(n)
.

Thus by (5.7)

(5.10) rn ≥ 1

H([ǫn])
− H(n + [ǫn]) −H([ǫn])

H([ǫn])H(n)
+ o

(
1

H2(n)

)
.
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By (4.24)

(5.11)
1

H([ǫn])
− 1

H(n)
=

1

2π
√

det Γ

log ǫ−1

H2(n)
+ o

(
1

H2(n)

)
.

Using (4.23) and (4.24) this shows that

rn ≥ 1

H(n)
+

1

2π
√

det Γ

(log ǫ−1 − log(1 + ǫ)ǫ−1)

H2(n)
+ o

(
1

H2(n)

)
(5.12)

=
1

H(n)
− 1

2π
√

det Γ

log(1 + ǫ)

H2(n)
+ o

(
1

H2(n)

)
.

Since ǫ > 0 is arbitrary we have shown that

(5.13) rn =
1

H(n)
+ o

(
1

H2(n)

)
.

Then by (5.3) and the slow variation of 1/H(n)

(5.14) ERn =

n∑

i=0

1

H(i)
+ o

(
n

H2(n)

)
.

We have

(5.15)
n∑

i=0

1

H(i)
=
n + 1

H(n)
+

n∑

i=0

H(n) −H(i)

H(i)H(n)

and using (4.22) and then the slow variation of 1/H(n)
(5.16)
n∑

i=0

H(n) −H(i)

H(i)
=

n∑

j=1

uj

j−1∑

i=0

1

H(i)
∼ 1

2π
√

det Γ

n∑

i=0

1

H(i)
∼ 1

2π
√

det Γ

n

H(n)

and together with (5.14) and (5.15) this completes the proof of (5.1).

Throughout this paper we will mostly be concerned with random walks
that have only second moments. The exception is the following proposition,
which supposes slightly more than two moments, and Corollary 1.3.
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Proposition 5.2 Suppose {Xi} is a sequence of i.i.d. mean zero random
vectors taking values in Z

2 with

(5.17) E

(
|X|2(log+ |X|) 1

2
+δ
)
<∞

for some δ > 0 and nondegenerate covariance matrix Γ. Let Sn =
∑n

i=1Xi

and suppose Sn is strongly aperiodic. Then

(5.18) P(Sn = 0) =
1

2πn
√

det Γ
+O

( 1

n(log n)(1+δ)/2

)
.

Proof. Let ϕ be the characteristic function of Xi, let x · y denote the inner
product in R

2, let Q(u) = u · Γu, and let C = [−π, π]2. We observe that

|1 − ϕ(u) −Q(u)|(5.19)

= |E
(
1 − eiu·X + iu ·X + (1/2)(iu ·X)2

)
|

≤ c1|u|3E
(
1{|X|≤1/|u|}|X|3

)
+ c1|u|2E

(
1{|X|>1/|u|}|X|2

)

and consequently for any fixed M > 0

|1 − ϕ(u/
√
n) −Q(u/

√
n)|

(5.20)

≤ c2

(
1

n3/2

)
E
(
1{|u||X|≤√

n}(|u||X|)3
)

+ c2

(
1

n

)
E
(
1{|u||X|>√

n}(|u||X|)2
)

≤ c3
1

n3/2
+ c3

(
1

n3/2

)
E
(
1{M<|u||X|≤√

n}(|u||X|)3
)

+ c3

(
1

n

)
E
(
1{|u||X|>√

n}(|u||X|)2
)
.

Choose M so that x/(log x)1/2+δ is monotone increasing on x ≥ M , and
therefore

E(1{M<|u||X|≤√
n}(|u||X|)3)

(5.21)

≤ E

(
1{M<|u||X|≤√

n}(|u||X|)2(log(|u||X|))1/2+δ |u||X|
(log(|u||X|))1/2+δ

)

≤
( √

n

(log(
√
n))1/2+δ

)
E
(
1{M<|u||X|≤√

n}(|u||X|)2(log(|u||X|))1/2+δ
)
.

24



Also

E(1{|u||X|>√
n}(|u||X|)2)(5.22)

≤
(

1

(log(
√
n))1/2+δ

)
E
(
1{|u||X|>√

n}(|u||X|)2(log(|u||X|))1/2+δ
)
.

(5.20) then implies that

|1 − ϕ(u/
√
n) −Q(u/

√
n)| ≤ c

|u|2|(log(|u|))1/2+δ|
n(log(n))1/2+δ

.(5.23)

Following the proof in Spitzer [29], pp. 76–77,

2πnP(Sn = 0) = (2π)−1/2n

∫

C

(ϕ(u))ndu

= (2π)−1

∫
√
nC

ϕ(u/
√
n)ndu

= I0 + I1(n,An) + I2(n,An) + I3(n,An, r) + I4(n, r),

where

I0 = (2π)−1

∫

R2

e−Q(u)/2du = (detQ)−1/2,

I1(n,An) = (2π)−1

∫

|u|≤An

[ϕ(u/
√
n)n − e−Q(u)/2] du,

I2(n,An) = −(2π)−1

∫

|u|>An

e−Q(u)/2du,

I3(n,An, r) = (2π)−1

∫

An<|u|<r√n
ϕ(u/

√
n)n du,

I4(n, r) = (2π)−1

∫

|u|≥r√n,u∈√nC
ϕ(u/

√
n)n du.

Since X has second moments, a Taylor expansion shows that

ϕ(u) = 1 − Q(u)

2
+ o(|u|2),

and hence we can choose r such that |ϕ(u/
√
n)n| ≤ e−Q(u)/4 if |u| ≤ r

√
n.

By the strong aperiodicity there exists γ > 0 such that |ϕ(u/
√
n)| ≤ 1− γ if
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|u| > r
√
n and u ∈ √

nC. Set An = c4
√

log log n. We have

|I4(n, r)| ≤ (2π)−1

∫

u∈√nC
(1 − γ)ndu = O(n−p)

for every positive integer p. Next

|I3(n,An, r)| ≤
∫

|u|>c4
√

log logn

e−Q(u)/4du = O((logn)−2)

for c4 large and similarly we have the same bound for |I2(n,An)|. To estimate
I1(n,An) we use the inequality |an − bn| ≤ n|a − b| if |a|, |b| ≤ 1 with a =
ϕ(u/

√
n) and b = e−Q(u)/2n. Using (5.23) and the analogous expansion for

e−Q(u)/2n we have

|ϕ(u/
√
n)n − e−Q(u)/2| ≤ n|ϕ(u/

√
n) − e−Q(u)/2n|

≤ c5n
|u|2|(log(|u|))1/2+δ|
n(log(n))1/2+δ

= c5
|u|2|(log(|u|))1/2+δ|

(log(n))1/2+δ
.

Integrating this over the set {|u| ≤ An}, we see

|I1(n,An)| = O((log logn)2+δ/2/(logn)1/2+δ) = O(1/(logn)(1+δ)/2).

Summing I0 through I4, we obtain

2πnP(Sn = 0) = (det Γ)−1/2 +O(1/(logn)(1+δ)/2).

We now apply Theorem 4.1 to establish some sharp exponential estimates
for the range and intersection of ranges. Aside from their intrinsic interest,
they will be used to estimate the tail probabilities in our first main theorem.

We write S(I) for {Sk : k ∈ I}. Let S(i), i = 1, . . . , p be p independent
copies of S. Taking fxn (S) = 1{x∈S[1,n]} in Theorem 4.1 yields Corollary 1 of
[8]: for any integers a ≥ 1, n1, · · ·na ≥ 1,

(5.24)
(
EJmn1+···+na

)1/p ≤
∑

k1+···+ka=m
k1,··· ,ka≥0

m!

k1! · · ·ka!
(
EJk1n1

)1/p · · ·
(
EJka

na

)1/p
,
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where
Jn = #

{
S(1)[1, n] ∩ · · · ∩ S(p)[1, n]

}
n = 1, 2, · · · .

In the next Theorem we deduce from this the exponential integrability
of Jn, which was established in [5] in the special case p = 2 and under the
condition that S had bounded increments.

Theorem 5.3 Assume that the planar random walk S has finite second mo-
ments and zero mean. There exists θ > 0 such that

(5.25) sup
n

sup
y1,··· ,yp

E
(y1,··· ,yp) exp

{
θ
((logn)p

n

)1/(p−1)

J1/(p−1)
n

}
<∞.

Proof. The proof of (5.25) is a modification of the approach used in Lemma
1 of [8]. We begin by showing that there is a constant C > 0 such that

(5.26) sup
n

EJmn ≤ Cm(m!)p−1
( n

(log n)p

)m
, m, n = 1, 2, · · · .

We first consider the case m ≤ (log n)(p−1)/p. Write l(n,m) = [n/m] + 1.
Then by (5.24) and (4.38),

(
EJmn

)1/p ≤
∑

k1+···+km=m
k1,··· ,km≥0

m!

k1! · · · km!

(
EJk1l(n,m)

)1/p · · ·
(
EJkm

l(n,m)

)1/p

≤
∑

k1+···+km=m
k1,··· ,km≥0

m!

k1! · · · km!
k1! · · · km!

(
EJl(n,m)

)k1/p · · ·
(
EJl(n,m)

)km/p

=

(
2m− 1

m

)
m!
(

EJl(n,m)

)m/p
≤
(

2m− 1

m

)
m!Cm

( (n/m)

(log n)p

)m/p

≤
(

2m

m

)
(m!)

p−1
p Cm

( n

(log n)p

)m/p
,

where the second inequality follows from (4.42) and the third from (4.38)
using the fact that m = O(logn) so that log n = O(log(n/m)). Hence,
taking p-th powers we obtain

EJmn ≤
(

2m

m

)p
Cpm(m!)p−1

( n

(log n)p

)m
,
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and (5.26) for the case of m ≤ (log n)(p−1)/p follows from the fact

(
2m

m

)
≤ 4m.

For the case m > (logn)(p−1)/p, notice from the definition of Jn that
Jn ≤ n. So we have

EJmn ≤ nm = (log n)pm
( n

(logn)p

)m
≤ m(p−1)m

( n

(logn)p

)m

≤ (m!)p−1Cm
( n

(log n)p

)m
,

where the last step follows from Stirling’s formula. This completes the proof
of (5.26).

We next note that

E
(y1,··· ,yp)Jmn =

∑

x1,··· ,xm∈Z2

p∏

j=1

E

m∏

k=1

1{xk+yj∈S[1,n]}

≤
p∏

j=1

{ ∑

x1,··· ,xm∈Z2

[
E

m∏

k=1

1{xk+yj∈S[1,n]}

]p}1/p

=
∑

x1,··· ,xm∈Z2

[
E

m∏

k=1

1{xk∈S[1,n]}

]p
= EJmn

where the third step follows by translation invariance. Using Hölder’s in-
equality we now see that

((log n)p

n

)m/(p−1)

sup
y1,··· ,yp

E
(y1,··· ,yp)

(
Jm/(p−1)
n

)
(5.27)

≤
((logn)p

n

)m/(p−1)

sup
y1,··· ,yp

{
E

(y1,··· ,yp)
(
Jmn

)}1/(p−1)

≤
((logn)p

n

)m/(p−1) {
E

(
Jmn

)}1/(p−1)

≤ Cmm!.

Our theorem then follows from a Taylor expansion.
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Remark. Theorem 5.3 is sharp in the sense that (5.25) does not hold if
θ is too large. Indeed, by [24], for any m = 1, 2, · · · ,

(log n)pm

nm
EJmn −→ (2π)pm det(Γ)m/2Eα

(
[0, 1]p

)m

as n → ∞, where α
(
[0, 1]p

)
is the Brownian intersection local time formally

defined by

α
(
[0, 1]p

)
=

∫

Rd

[ p∏

j=1

∫ 1

0

δx
(
Wj(s)

)
ds

]
dx,

and by Theorem 2.1 in [7]

E exp
{
θα
(
[0, 1]p

)(p−1)−1
}

= ∞

for large θ. The following theorem is sharp in the same sense.

Theorem 5.4 Assume that the planar random walk S has finite second mo-
ments and zero mean. Then there exists θ > 0 such that

(5.28) sup
n

E exp
{
θ
(log n)2

n
|Rn|

}
<∞.

Proof. We first consider the case where n is replaced by 2n. Let

N = [2(log 2)−1 logn]

so that 2N ∼ n2 and note that

#
{
S[1, 2n]

}
=

2N∑

k=1

#
{
S((k − 1)2n−N , k2n−N ]

}
(5.29)

−
N∑

j=1

2j−1∑

k=1

#
{
S
(
(2k − 2)2n−j, (2k − 1)2n−j

]
∩ S
(
(2k − 1)2n−j, (2k)2n−j

]}
.

Setting
βk = #

{
S((k − 1)2n−N , k2n−N ]

}

and

αj,k = #
{
S
(
(2k − 2)2n−j, (2k − 1)2n−j

]
∩ S
(
(2k − 1)2n−j, (2k)2n−j

]}

29



leads to the decomposition

R2n =

2N∑

k=1

βk −
N∑

j=1

2j−1∑

k=1

αj,k.

We will need the following lemma which is [8, Lemma 3].

Lemma 5.5

(5.30) sup
n

E exp
{
λ

log n

n
#
{
S[1, n]

}}
<∞

for all λ > 0.

Proof of Lemma 5.5: We first claim that for any a, b > 0 and any integer
n ≥ 1

P

{
#{S[1, n]} ≥ a + b

}
≤ P

{
#{S[1, n]} ≥ a

}
P

{
#{S[1, n]} ≥ b

}
.

Notice that #{S[1, n]} takes integer values. So we may assume that a and b
are integers for otherwise we can use [a], [b] and [a + b] instead. Define

τ = inf{k ≥ 1; #{S[1, k]} ≥ a}.

Then

P

{
#{S[1, n]} ≥ a+ b

}
= P

{
#{S[1, n]} ≥ a+ b, τ ≤ n

}

=

n∑

k=1

P

{
#{S[1, n]} − #{S[1, k]} ≥ b, τ = k

}

≤
n∑

k=1

P

{
#{S[k + 1, n]} ≥ b, τ = k

}

=
n∑

k=1

P{τ = k}P

{
#{S[1, n− k]} ≥ b

}

≤ P

{
#{S[1, n]} ≥ b

}
.

To prove (5.30), let C > 0 be a constant such that

P

{
#{S[1, n]} ≥ C

n

log n

}
≤ e−2
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for all n ≥ 1. We have that

P

{
#{S[1, n]} ≥ Cm

n

log n

}
≤
(

P

{
#{S[1, n]} ≥ C

n

log n

})m

≤ e−2m

for all n ≥ 1. Consequently,

sup
n

E exp
{
λ

logn

n
#{S[1, n]}

}
<∞

for λ ≤ C−1. For λ > C−1, one can take δ > 0 such that λ < C−1[δ−1].

Write kn = [δ]. By subadditivity

E exp
{
λ

log n

n
#{S[1, n]}

}

≤
(

E exp
{
λ

logn

n
#{S[1, kn]}

})[δ−1]+1

≤
(

E exp
{
C−1 log kn

kn
#{S[1, kn]}

})[δ−1]+1

.

In particular, it follows from (5.30) that

sup
n

E exp
{
λ

log 2n−N

2n−N
|β1|
}
<∞.

Notice that β1, · · · , β2N is an i.i.d. sequence with Eβ1 = 0. By Lemma 4.4,
there is a θ > 0 such that

sup
n

E exp
{
θ2−N/2

log 2n−N

2n−N

∣∣∣
2N∑

k=1

βk

∣∣∣
}
<∞.

By the choice of N one can see that there is a c > 0 independent of n such
that

2−N/2
log 2n−N

2n−N
≥ c

(log 2n)2

2n
.

So there is some θ > 0 such that

sup
n

E exp
{
θ
(log 2n)2

2n

∣∣∣
2N∑

k=1

βk

∣∣∣
}
<∞.
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We need to show that for some θ > 0,

(5.31) sup
n

E exp

{
θ
(log 2n)2

2n

∣∣∣
N∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
}
<∞.

Set

(5.32) J̃n = #
{
S[1, n] ∩ S ′[1, n]

}
n = 1, 2, · · · ,

where S ′ is an independent copy of the random walk S. In our notation,
for each 1 ≤ j ≤ N , {αj,1, · · · , αj,2j−1} is an i.i.d. sequence with the same

distribution as J̃2n−j . By Theorem 5.3 (with p = 2), there is a δ > 0 such
that

sup
n

sup
j≤N

E exp
{
δ
(log 2n−j)2

2n−j
∣∣αj,1

∣∣
}
<∞.

By Lemma 4.4 again, there is a θ̄ > 0 such that

sup
n

sup
j≤N

E exp

{
θ̄2−j/2

(log 2n)2

2n−j

∣∣∣
2j−1∑

k=1

αj,k

∣∣∣
}
<∞.

Hence for some θ > 0

C(θ) ≡ sup
n

sup
j≤N

E exp

{
θ2j/2

(log 2n)2

2n

∣∣∣
2j−1∑

k=1

αj,k

∣∣∣
}
<∞.

Write

λN =

N∏

j=1

(
1 − 2−j/2

)
and λ∞ =

∞∏

j=1

(
1 − 2−j/2

)
.
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Using Hölder’s inequality with 1/p = 1 − 2−N/2, 1/q = 2−N/2 we have

E exp

{
λNθ

(log 2n)2

2n

∣∣∣
N∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
}

≤
(

E exp

{
λN−1θ

(log 2n)2

2n

∣∣∣
N−1∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
})1−2−N/2

×
(

E exp

{
λNθ2

N/2 (log 2n)2

2n

∣∣∣
2N−1∑

k=1

αN,k

∣∣∣
})2−N/2

≤ E exp

{
λN−1θ

(log 2n)2

2n

∣∣∣
N−1∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
}
· C(θ)2−N/2

since λN < 1. Repeating this procedure,

E exp

{
λNθ

(log 2n)2

2n

∣∣∣
N∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
}

≤ C(θ)2−1/2+···+2−N/2 ≤ C(θ)2−1/2(1−2−1/2)−1

.

So we have

sup
n

E exp

{
λ∞θ

(log 2n)2

2n

∣∣∣
N∑

j=1

2j−1∑

k=1

αj,k

∣∣∣
}

≤ C(θ)2−1/2(1−2−1/2)−1

.

We have proved (5.31) and therefore (5.28) when n is the power of 2. We

now prove Theorem 5.4 for general n. Given an integer n ≥ 2, we have the
following unique representation:

n = 2m1 + 2m2 + · · ·+ 2ml

where m1 > m2 > · · ·ml ≥ 0 are integers. Write

n0 = 0 and ni = 2m1 + · · ·+ 2mi i = 1, · · · , l.
Then

#
{
S[1, n]

}
=

l∑

i=1

#
{
S(ni−1, ni]

}
−

l−1∑

i=1

#
{
S(ni−1, ni] ∩ S(ni, n]

}

=

l∑

i=1

Bi −
l−1∑

i=1

Ai.
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Write
l∑

i=1

Bi =
∑

i

′
Bi +

∑

i

′′
Bi

where
∑

i
′ is the summation over i with 2mi ≥ √

n and
∑

i
′′ is the summation

over i with 2mi <
√
n. We also define the products

∏
i
′ and

∏
i
′′ in a similar

manner. Then

E exp
{
θ
(logn)2

n

∣∣∣
∑

i

′
(Bi − EBi)

∣∣∣
}

≤
∏

i

′
(

E exp
{
θ
(logn)2

n
2−mi

(∑

j

′
2mj

)
|R2mi |

})2mi

(
P

j
′2mj

)−1

≤
∏

i

′
(

E exp
{

4θ
(log 2mi)2

2mi
|R2mi |

})2mi

(
P

j
′2mj

)−1

≤ sup
m

E exp
{

4θ
(log 2m)2

2m
|R2m |

}
.

Assume that the set {1 ≤ i ≤ l; 2mi <
√
n} is non-empty. We have

∑

i

′′
2mi ≤ 2

√
n.

So we have
(logn)2

n
≤ 1√

n
≤ 2
(∑

i

′′
2mi

)−1

.
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Hence

E exp
{
θ
(log n)2

n

∣∣∣
∑

i

′′
(Bi − EBi)

∣∣∣
}

≤
∏

i

′′
(

E exp
{
θ
(log n)2

n
2−mi

(∑

j

′′
2mj

)
|R2mi |

})2mi

(
P

j
′′2mj

)−1

≤
∏

i

′′
(

E exp
{

2θ
1

2mi
|R2mi |

})2mi

(
P

j
′′2mj

)−1

≤ sup
m

E exp
{

2θ
1

2m
|R2m |

}
.

By the Cauchy-Schwarz inequality and what we have proved in the previous
step, there exists θ > 0 such that

E exp
{
θ
(log n)2

n

∣∣∣
l∑

i=1

(Bi − EBi)
∣∣∣
}

is bounded uniformly in n. By the fact that

(5.33) n− ni = 2mi+1 + · · ·+ 2ml ≤ 2mi

we have

(5.34) Ai
d
= #

{
S[1, 2mi] ∩ S ′[1, n− ni]

}
≤ J2mi .

By (4.38) there is a constant C > 0 independent of n such that

l−1∑

i=1

EAi ≤
l−1∑

i=1

EJ2mi ≤ C

l∑

i=1

2mi

m2
i

(5.35)

≤ C
∑

mi<l/2

2mi

m2
i

+ C

l∑

mi≥l/2

2mi

m2
i

≤ C2l/2 + C
n

(logn)2

≤ C
n

(log n)2
.
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It remains to show that

(5.36) sup
n

E exp
{
θ
(log n)2

n

l−1∑

i=1

Ai

}
<∞.

Using (5.35) this follows from (5.25), (with p = 2), and the same argument
used for B1 − EB1, · · · , Bl − EBl.

In view of the remark prior to Theorem 5.4, the next result shows that
Rn has a non-symmetric tail behavior.

Theorem 5.6 Under the assumptions of Theorem 5.4,

(5.37) sup
n

E exp
{
θ
(log n)2

n
Rn

}
<∞

for all θ > 0.

Proof. By Theorem 5.4, (5.37) holds for some θ0 > 0. For θ > θ0, take an
integer m ≥ 1 such that m−1θ < θ0. It is easy to see that it suffices to prove

(5.38) sup
n

E exp
{
θ
(log n)2

mn
Rnm

}
<∞.

Set ζjn = #{S((j − 1)n, jn]}. By the facts that

Rnm ≤
m∑

j=1

ζjn +
( m∑

j=1

Eζjn

)
− ERnm

and that by (4.23) and (4.24),

( m∑

j=1

Eζjn

)
− ERmn = mERn − ERmn

=
mn

H(n)
+O

( mn

H(n)2

)
− mn

H(mn)
+O

( mn

H(mn)2

)

=
mn

H(n)H(mn)
(H(mn) −H(n)) +O

( n

(log n)2

)

= O
( n

(logn)2

)
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as n→ ∞ (note m is fixed), there is a constant Cm,θ > 0 depending only on
m and θ such that

E exp
{
θ
(log n)2

mn
Rnm

}
≤ Cm

(
E exp

{
θ
(logn)2

mn
Rn

})m
.

So we have (5.38).

6 Moderate deviations for Rn − ERn

We can now prove Theorem 1.1.

Proof. We first prove the upper bound. Let t > 0 and write K = [t−1bn].
Divide [1, n] into K disjoint subintervals, each of length [n/K] or [n/K] + 1.
Call the ith subinterval Ii. Let Ei = #{S(Ii)}. Then

Rn ≤
K∑

j=1

Ej +
( K∑

j=1

EEj

)
− ERn

From (5.1) we have

K∑

j=1

EEj − ERn

(6.1)

= K
n/K

H([n/K])
− n

H(n)
+

1

2π
√

det Γ

{
K

n/K

H2([n/K])
− n

H2(n)

}
+ o
( n

H2(n)

)

=
n(H(n) −H([n/K]))

H2(n)

{
1 +

H(n) −H([n/K])

H([n/K])

}

+
n

H2(n)

{H2(n) −H2([n/K])

H2([n/K])

}
+ o
( n

H2(n)

)
,

where the error term can be taken to be independent of {bn}. (This is where
the hypothesis log bn = o((logn)1/2) is used.) Since

H(n) −H([n/K]) =
n∑

k=[n/K]+1

P{Sk = 0} ∼ logK

2π
√

det Γ
,
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we have

(6.2)

K∑

j=1

EEj − ERn =
n(H(n) −H([n/K]))

H2(n)
+ o
( n

H2(n)

)
.

Hence for any λ > 0,

P

{
Rn ≥ n

H2(n)

(
H(n) −H([n/bn])

)}

≤ exp
{
− λbn

(
H(n) −H([n/bn])

)}
E exp

{
λ
H2(n)bn

n
Rn

}

≤ exp
{
− λbn

(
H([n/K]) −H([n/bn])

)
+ o(bn)

}

×
(

E exp
{
λ
H2(n)bn

n
E1

})K
.

Notice that

lim
n→∞

(
H([n/K]) −H([n/bn])

)
=

log t

2π
√

det Γ

and that by [24, Theorem 6.1] or (2.2),

H2(n)bn
n

E1
d−→ − 2πt

2π
√

det Γ
γ1,

where γt is the renormalized self-intersection local time of a planar Brownian
motion. By Theorem 5.6 and the dominated convergence theorem,

E exp
{
λ
H2(n)bn

n
E1

}
−→ E exp

{
− λ

2πt

2π
√

det Γ
γ1

}

Consequently,

lim sup
n→∞

b−1
n log P

{
Rn ≥ n

H2(n)

(
H(n) −H([n/bn])

)}
(6.3)

≤ −λ log t

2π
√

det Γ
+

1

t
log E exp

{
− λ

2πt

2π
√

det Γ
γ1

}

=
λ

2π
√

det Γ
log

λ

2π
√

det Γ

+
1

t
log E exp

{
− λt

2π
√

det Γ
log

λt

2π
√

det Γ
− λ

2πt

2π
√

det Γ
γ1

}
.
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The limit

(6.4) C ≡ lim
t→∞

1

t
log E exp

{
− t log t− 2πtγ1

}

exists. Indeed, for any s, t > 0,

γs+t = γt + γ′s +

∫ t

0

∫ s+t

t

δ0(Wu −Wv)du dv − E

∫ t

0

∫ s+t

t

δ0(Wu −Wv)dv du

≥ γt + γ′s − E

∫ t

0

∫ s+t

t

δ0(Wu −Wv)du dv

where

γ′s =

∫ ∫

t≤u<v≤s+t
δ0(Wu −Wv)du dv − E

∫ ∫

t≤u<v≤s+t
δ0(Wu −Wv)du dv

has the same distribution as γs and is independent of γt. Notice that

E

∫ t

0

∫ s+t

t

δ0(Wu −Wv)dv du =

∫ t

0

∫ s+t

t

1

2π

1

v − u
dv du

=
1

2π

[
(s+ t) log(s+ t) − s log s− t log t

]

Summarizing what we have,

E exp
{
− (s+ t) log(s+ t) − 2πγs+t

}

≤ E exp
{
− s log s− 2πγs

}
E exp

{
− t log t− 2πγt

}
.

Therefore, the limit

lim
t→∞

1

t
log E exp

{
− t log t− 2πγt

}

exists. The existence of (6.4) follows since by scaling γt
d
= tγ1.

Set
L = exp(−1 − C).

Letting t→ ∞ in (6.3) gives

lim sup
n→∞

b−1
n log P

{
Rn ≥ n

H2(n)

(
H(n) −H([n/bn])

)}

≤ λ

2π
√

det Γ
log

λ

2π
√

det Γ
+ C

λ

2π
√

det Γ
.
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Taking
λ

2π
√

det Γ
= exp

{
− 1 − C

}

then yields

lim sup
n→∞

b−1
n log P

{
Rn ≥ n

H2(n)

(
H(n) −H([n/bn])

)}

≤ − exp
{
− 1 − C

}
= −L.

We now prove the lower bound. The proof is similar to that of Proposition
4.4 of [5]. Fix n and let K = [bn]. Let M = [n/bn]. Let Ij be the interval
(mj , mj+1], where the mj are integers such that m0 = 0, mK = n, and
mj+1 −mj is equal to either M or M + 1.

Let e be a vector of length
√
M and let B(x, r) be the ball of radius r

about x. Set

Ej = #{S(Ij)}, Hj = #{S(Ij) ∩ S(Ij−1)}.

Let

(6.5) Aj = {Smj+1
∈ B((j + 1)e, 1

8

√
M)} ∩ {S(Ij) ⊂ B((j + 1

2
)e,

√
M)}

and

(6.6) Bj = {Ej(logM)2/M ≥ −c1}

where we will select c1 in a moment. By the central limit theorem, we know
P
Smj−1 (Aj) ≥ c2 on the event Aj−1 if n is large. By [24, Theorem 6.1] or

(2.2), P
Smj−1 (Aj ∩ Bj) > c2/2 on the event Aj−1 if we take c1 sufficiently

large. If we let

F =
K−1⋂

j=0

(Aj ∩Bj),

then by the Markov property applied K − 1 times we have

(6.7) P(F ) ≥ (c2/2)K−1.
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On the set F we have that S(Ij) is disjoint from S(Ii) if |i− j| > 1, and
so on F

(6.8) Rn =
K∑

j=1

Ej +
(( K∑

j=1

EEj

)
− ERn

)
−

K∑

j=1

Hj.

On the set F the event Bj holds for each j, and so

(6.9)
K∑

j=1

Ej ≥ − c1KM

(logM)2
≥ − c3n

(log n)2
.

As in (6.2),

(6.10)
( K∑

j=1

EEj

)
− ERn =

n(H(n) −H([n/K]))

H(n)2
+ o
( n

H(n)2

)

if n is large.

Let Λ > 0 be chosen in a moment. Let

C1 =




∑

{j odd}
Hj ≥

nΛ

(logn)2



 , C2 =




∑

{j even}
Hj ≥

nΛ

(log n)2



 .

Set G = F ∩ Cc
1 ∩ Cc

2. For j odd the Hj are independent, and by Theorem
5.3 with p = 2

P(C1) = P

( ∑

{j odd}

Hj

M/(logM)2
≥ c4KΛ

)

≤ e−c4c5KΛ
Eec5(

P
Hj)(logM)2/M

≤ e−c4c5KΛcK6 ,

where c4, c5, c6 do not depend on Λ and without loss of generality we may
assume c6 > 1. Choose Λ large so that e−c4c5Λ ≤ c−2

6 . When n is large, K will
be large, and then P(C1) ≤ P(F )/3. We have a similar estimate for P(C2),
so

P(G) ≥ (c2/2)K−1/3.
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Set vn = H(n) −H([n/bn]). On the event G

(6.11)
K∑

j=1

Hj ≤ 2
nΛ

(logn)2
,

and so combining (6.9), (6.10), and (6.11), on the event G

(6.12) Rn ≥
(
1 − c7

vn

)
nvn/H(n)2.

Therefore

(6.13) P

(
Rn ≥

(
1 − c7

vn

)
nvn/H(n)2

)
≥ c8c

bn
9 .

Define b′n by v′n = H(n) − H([n/b′n]) = vn + c7. If we apply (6.13) with bn
replaced by b′n, we have

P(Rn ≥nvn/H(n)2)

= P

(
Rn ≥

(
1 − c7

v′n

)
nv′n/H(n)2

)

≥ c8c
b′n
9 .

We now take the logarithms of both sides, divide by bn, and use the fact that
the ratio bn/b

′
n is bounded above and below by positive constants to obtain

the lower bound.

Proof of Corollary 1.3: Assume first that Sn is strongly aperiodic. We
have by Proposition 5.2 that

(6.14) P(Sn = 0) =
1

2πn
√

det Γ
+O

( 1

n(log n)1/2

)
.

Then, if γ denotes Euler’s constant

(6.15)
n∑

k=1

1

k
= logn + γ +O

(1

n

)

and

(6.16)
n∑

k=3

1

k(log k)1/2
≤
∫ n

2

dx

x(log x)1/2
≤ c1(logn)1/2
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so that

H(n) =
n∑

k=0

P
0(Sk = 0) = 1 +

1

2π
√

det Γ

n∑

k=1

(
1

k
+O

( 1

k(log k)1/2

))
(6.17)

=
1

2π
√

det Γ

(
log n+ γ +O

(
(log n)1/2

))

=
log n

2π
√

det Γ

(
1 +O

( 1

(logn)1/2

))
.

Similarly

(6.18)
n∑

k=[n/bn]+1

1

k(log k)1/2
≤ c2

(
(log n)1/2 − (log(n/bn))

1/2
)
.

To evaluate this note that

(log(n/bn))
1/2 = (logn− log bn)

1/2(6.19)

= (logn)1/2(1 − log bn/ logn)1/2

= (logn)1/2(1 +O(log bn/ logn))

= (logn)1/2 +O(log bn/(logn)1/2)

by our assumption that log bn = o((log n)1/2). It follows that

H(n) −H([n/bn]) =
1

2π
√

det Γ

n∑

k=[n/bn]+1

(
1

k
+O

( 1

k(log k)1/2

))
(6.20)

=
1

2π
√

det Γ

(
log bn +O

( log bn
(log n)1/2

))

=
log bn

2π
√

det Γ

(
1 +O

( 1

(log n)1/2

))
.

We then have that

n

H(n)2
(H(n) −H([n/bn]))(6.21)

= 2π
√

det Γ
n log bn
(logn)2

(
1 +O

( 1

(logn)1/2

))

= 2π
√

det Γ
n log bn
(logn)2

(1 + an),
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where we use the last equality to define an. Let

(6.22) 1 + ân = (1 + an)
−1 = 1 +O

( 1

(log n)1/2

)
.

Then if we set

(6.23) b̂n =: b1+ban
n = b(1+an)−1

n

we see from (6.21) that

(6.24)
n

H(n)2
(H(n) −H([n/ b̂n])) = 2π

√
det Γ

n log bn
(log n)2

.

Also, log b̂n = (1 + ân) log bn = o((logn)1/2), so that Theorem 1.1 applies to

b̂n, and indeed to b̂θn for any θ > 0.

Note that

b̂θn = b
θ

 
1+O

(
1

(log n)1/2

)!

n(6.25)

= bθn exp

(
O
( log bn

(log n)1/2

))

= bθn(1 + o(1n))

by our assumption that log bn = o((log n)1/2). Hence by (6.24) and (6.25)

b̂−θn logP

{
Rn ≥ θn

H(n)2
(H(n) −H([n/b̂n]))

}
(6.26)

= (1 + o(1n))b
−θ
n log P

{
Rn ≥ 2πθ

√
det Γ

n log bn
(logn)2

}

Together with Proposition 5.2, Theorem 1.1 applied to b̂θn proves the corol-
lary in the strongly aperiodic case. The modifications to handle the case
where Sn is not strongly aperiodic are very similar to those in Section 2 of
[27].
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7 Moderate deviations for ERn −Rn

To avoid difficulties connected with subdividing time intervals, it is more
convenient to look at the continuous time analogue of Sn. We let T1, T2, . . .
be i.i.d. exponential random variables with parameter 1 that are independent
of the sequence Sn. Define Zt = Sn if

∑n
i=1 Ti ≤ t <

∑n+1
i=1 Ti. Zt is a Lévy

process that waits an exponential length of time, then jumps according to X1,
and then repeats the procedure. Define Nt = n if

∑n
i=1 Ti ≤ t <

∑n+1
i=1 Ti.

Note that Nt is a Poisson process with ENt = t and that Zt = SNt . We write
|Z[a, b]| for the cardinality of {Zs : s ∈ [a, b]}.

Theorems 5.3 and 5.4 have the following analogues for continuous time
processes. We omit the proofs, which are almost identical to the proofs given
for the discrete time random walks.

Lemma 7.1 Let Z1(t), · · · , Zp(t) be independent copies of Z(t). There is
C > 0 such that

(7.1) sup
y1,··· ,yp

E
(y1,··· ,yp)

∣∣∣Z1[0, t] ∩ · · · ∩ Zp[0, t]
∣∣∣
m

≤ Cm(m!)p−1
( t

(log t)p

)m
.

Consequently, there is θ > 0 such that
(7.2)

sup
t

sup
y1,··· ,yp

E
(y1,··· ,yp) exp

{
θ
((log t)p

t

∣∣∣Z1[0, t] ∩ · · · ∩ Zp[0, t]
∣∣∣
)(p−1)−1

}
<∞.

Lemma 7.2 There is θ > 0 such that

(7.3) sup
t

E exp
{
θ
(log t)2

t

∣∣E|Z[0, t]| − |Z[0, t]|
∣∣
}
<∞.

Consequently

(7.4) lim sup
t→∞

1

bt
log P

{∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣ ≥ λ

tbt
(log t)2

}
≤ −θλ.

We will prove Theorem 1.5 by first proving the following analogue for Zt.

45



Theorem 7.3 For any λ > 0 and for any bt satisfying bt → ∞ and bt =

o
(
(log t)1/5

)
as t→ ∞, we have

lim
t→∞

1

bt
log P

{∣∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣∣ ≥ λ

tbt
(log t)2

}
(7.5)

= −(2π)−2 det(Γ)−1/2κ(2, 2)−4λ.

The next proposition shows that Theorem 1.5 follows from Theorem 7.3
and Theorem 1.1.

Proposition 7.4 For any ε > 0,

(7.6) lim
n→∞

1

bn
log P

{∣∣∣|Z[0, n]| − |S[0, n]|
∣∣∣ ≥ ε

nbn
(logn)2

}
= −∞.

Remark 7.5 Our proof actually gives a stronger result, but this is all we
need.

Proof. Observe that if n > m, then

(7.7)
∣∣∣E|S[0, n]| − E|S[0, m]|

∣∣∣ ≤ E|S[m,n]| = E|S[0, n−m]| ≤ n−m.

Consequently,
∣∣∣E|Z[0, n]| − E|S[0, n]|

∣∣∣ =
∣∣∣E|S[0, Nn]| − E|S[0, n]|

∣∣∣(7.8)

≤ E|Nn − n| ≤ C
√
n.

Hence, it suffices to show that for any ε > 0

(7.9) lim
n→∞

1

bn
log P

{∣∣∣|Z[0, n]| − |S[0, n]|
∣∣∣ ≥ ε

√
nb

3/2
n

logn

}
= −∞.

Let M > 0 be fixed. On the event {|Nn − n| ≤M
√
nbn}

∣∣∣|Z[0, n]| − |S[0, n]|
∣∣∣ ≤

∣∣S
[
Nn ∧ n,Nn ∨ n

]∣∣(7.10)

d
=
∣∣S
[
0, Nn ∨ n−Nn ∧ n

]∣∣ ≤
∣∣S
[
0, 2M

√
nbn
]∣∣.
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So we have

P

{∣∣∣|Z[0, n]| − |S[0, n]|
∣∣∣ ≥ ε

√
nb

3/2
n

log n

}

≤ P

{∣∣S
[
0, 2M

√
nbn
]∣∣ ≥ ε

√
nb

3/2
n

logn

}
+ P

{
|Nn − n| ≥M

√
nbn
}
.(7.11)

It follows from (5.30) that

(7.12) sup
n

E exp
{
θ

log n√
nbn

S
[
0, 2M

√
nbn
]}

<∞, θ > 0.

By the Chebyshev inequality one can see that

(7.13) lim
n→∞

1

bn
log P

{∣∣S
[
0, 2M

√
nbn
]∣∣ ≥ ε

√
nb

3/2
n

log n

}
= −∞.

We recall the classical moderate deviation principle ([11], Theorem 3.7.1).
Let ξk be a sequence of i.i.d. such that Eξ1 = 0 and Eeλ|ξ1| < ∞ for some
λ > 0. Then the partial sum Tn = ξ1 + · · ·+ ξn obeys the following moderate
deviation principle. For any closed set F ⊂ R

lim sup
n→∞

1

bn
log P{Tn/

√
nbn ∈ F} ≤ − inf

x∈F

x2

2σ2
;

for any open set G ⊂ R

lim inf
n→∞

1

bn
log P{Tn/

√
nbn ∈ G} ≥ − inf

x∈G

x2

2σ2

where σ2 = Eξ2
1 .

Applying that here,

(7.14) lim
n→∞

1

bn
log P

{
|Nn − n| ≥M

√
nbn
}

= −M
2

2
.

Thus,

(7.15) lim sup
n→∞

1

bn
log P

{∣∣∣|Z[0, n]| − |S[0, n]|
∣∣∣ ≥ ε

√
nb

3/2
n

logn

}
≤ −M

2

2
.

Letting M → ∞ proves the proposition.

Thus we we need to prove Theorem 7.3. We recall the Gärtner-Ellis the-
orem ([11, Theorem 2.3.6]).
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Theorem 7.6 (Gärtner-Ellis) Let Yn be a sequence of random variables
and bn be a positive sequence such that bn −→ ∞ and such that the limit

lim
n→∞

1

bn
log E exp

{
θbnYn

}
= Λ(θ)

exists for all θ ∈ R. Assume that Λ(θ) is differentiable and that Λ′(θ) −→ ∞
as θ → ±∞. Then for any closed set F ⊂ R

lim sup
n→∞

1

bn
log P{Yn ∈ F} ≤ − inf

x∈F
Λ∗(λ)

and for any open set G ⊂ R

lim inf
n→∞

1

bn
log P{Yn ∈ G} ≥ − inf

x∈G
Λ∗(λ)

where
Λ∗(λ) sup

θ∈R

{θλ− Λ(θ)}.

Thus to prove Theorem 7.3 it suffices to prove

lim
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)

∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣
1/2
}

(7.16)

= (θπ)2
√

det(Γ)κ(2, 2)4.

Let h(x) be a smooth symmetric probability density on R
2 with compact

support and write hε(x) = ε−2h(ε−1x). We have

(7.17) Λε(t) ≡
∑

x∈Z2

hε

( x√
t

)
∼ t, t→ ∞.

The following lemma describing exponential asymptotics for the smoothed
range will be proved in Section 8.

Lemma 7.7 Let

(7.18) At(ε) ≡ Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2

.
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For any θ > 0,

lim
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t) |At(ε)|1/2

}
(7.19)

= sup
g∈F

{
2πθ
√

det(Γ)

(∫

R2

|(g2 ∗ hε)(x)|2dx
)1/2

−1

2

∫

R2

〈∇g(x),Γ∇g(x)|2dx
}
.

where
F = {g ∈W 1,2(R2); ||g||2 = 1}.

Furthermore, for any N = 0, 1, . . . and any ǫ > 0,

lim
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)

×
(

Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,2−N t]

hε

(√bt
t
(x− y)

)]2)1/2}

≤ 2−N+2π2θ2
√

det(Γ)κ(2, 2)4.(7.20)

The following lemma on exponential approximation will be proved in Sec-
tion 9. In this lemma Z ′ denotes an independent copy of Z.

Lemma 7.8 Let

B
(j)
t (ε) ≡ Λε

( t
bt

)−2

×
∑

x∈Z2

[ ∑

y∈Z[0,2−jt]

hε

(√bt
t
(x− y)

)][ ∑

y′∈Z′[0,2−jt]

hε

(√bt
t
(x− y′)

)]
.(7.21)

Then for any θ > 0 and any j = 0, 1, . . .,

lim sup
ε→0

lim sup
t→∞

1

bt

log E exp
{
θ

√
bt
t
(log t)

∣∣ |Z[0, 2−jt] ∩ Z ′[0, 2−jt]| − B
(j)
t (ε)

∣∣1/2
}

= 0.(7.22)
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These lemmas will be the key to proving Theorem 7.3. Before proving this
theorem, we present a simple lemma which will be used several times in the
proof of Theorem 7.3.

Lemma 7.9 Let l ≥ 2 be a fixed integer and let {ξ1(ρ); ρ > 0}, · · · , {ξl(ρ); ρ >
0} be l independent non-negative stochastic processes.

(a) If there is a constant C1 > 0 such that for any 1 ≤ j ≤ l,

(7.23) lim sup
ρ→0+

ρ log P
{
ξj(ρ) ≥ λ

}
≤ −C1λ, λ > 0,

then

(7.24) lim sup
ρ→0+

ρ log P

{
ξ1(ρ) + · · · + ξl(ρ) ≥ λ

}
≤ −C1λ, λ > 0.

(b) If there is a constant C2 > 0 such that for any 1 ≤ j ≤ l,

(7.25) lim sup
ρ→0+

ρ log E exp
{
ρ−1θ

√
ξj(ρ)

}
≤ C2θ

2, θ > 0,

then

(7.26) lim sup
ρ→0+

ρ log E exp
{
ρ−1θ

√
ξ1(ρ) + · · ·+ ξl(ρ)

}
≤ C2θ

2, θ > 0.

Proof. . Clearly, part (a) needs only to be proved in the case l = 2. Given
0 < δ < λ, let 0 = a0 < a1 < · · · < aN = λ be a partition of [0, λ] such that
ak − ak−1 < δ. Then

P
{
ξ1(ρ) + ξ2(ρ) ≥ λ

}
≤

N∑

k=1

P
{
ξ1(ρ) ∈ [ak−1, ak]

}
P
{
ξ2(ρ) ≥ λ− ak

}

≤
N∑

k=1

P
{
ξ1(ρ) ≥ ak−1

}
P
{
ξ2(ρ) ≥ λ− ak

}
.(7.27)

Hence

lim sup
ρ→0+

ρ log P
{
ξ1(ρ) + ξ2(ρ) ≥ λ

}
(7.28)

≤ max
1≤k≤N

{
− C1ak−1 − C1(λ− ak)

}
≤ −C1(λ− δ).
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Letting δ → 0+ proves part (a).

We now prove part (b). By Chebyshev’s inequality, for any λ > 0

(7.29) lim sup
ρ→0+

ρ log P
{
ξj(ρ) ≥ λ

}
≤ − sup

θ>0
{θ
√
λ− C2θ

2} = − λ

4C2
.

By part (a)

(7.30) lim sup
ρ→0+

ρ log P

{
ξ1(ρ) + · · ·+ ξl(ρ) ≥ λ

}
≤ − λ

4C2
, λ > 0.

In addition, by the triangle inequality and by independence,

(7.31) E exp
{
ρ−1θ

√
ξ1(ρ) + · · ·+ ξl(ρ)

}
≤

l∏

j=1

E exp
{
ρ−1θ

√
ξj(ρ)

}
.

So by assumption, for any θ > 0,

(7.32) lim sup
ρ→0+

ρ log E exp
{
ρ−1θ

√
ξ1(ρ) + · · · + ξl(ρ)

}
<∞.

We will need the following Lemma. See [11, Section 4.3] for a proof.

Lemma 7.10 (Varadhan’s integral lemma) Let Yn be a sequence of ran-
dom variables and let bn be a positive sequence such that bn −→ ∞. Let I:
R −→ [0,∞] be a good rate function (which means that I(x) −→ ∞ as
|x| → ∞, and that I(·) is lower semi-continuous).

(1). Assume that Yn satisfies the upper bound of the large deviation prin-
ciple: For any closed set F ⊂ R

lim sup
n→∞

1

bn
log P{Yn ∈ F} ≤ − inf

x∈F
I(x)

and also the uniform exponential integrability

lim
M→∞

lim sup
n→∞

1

bn
log E

[
exp exp

{
bnϕ(Yn)

}
1{ϕ(Yn)≥M}

]
= −∞.

Then for any upper semi-continuous function ϕ on R,

lim sup
n→∞

1

bn
log E exp

{
θbnϕ(Yn)

}
≤ sup

x∈R

{ϕ(x) − I(x)}.
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(2) Assume that Yn satisfies the lower bound of the large deviation prin-
ciple: For any open set G ⊂ R

lim sup
n→∞

1

bn
log P{Yn ∈ G} ≥ − inf

x∈G
I(x).

Then for any lower semi-continuous function ϕ on R,

lim inf
n→∞

1

bn
log E exp

{
θbnϕ(Yn)

}
≥ sup

x∈R

{ϕ(x) − I(x)}.

(3) Assume that Yn satisfies the upper and lower bounds of the large de-
viation principle, uniform exponential integrability and that ϕ is continuous.
Then

lim
n→∞

1

bn
log E exp

{
θbnϕ(Yn)

}
= sup

x∈R

{ϕ(x) − I(x)}.

We apply part (1) of Varadhan’s integral lemma to our setting by iden-
tifying bn with ρ−1 and Yn with ξ1(ρ) + · · · + ξl(ρ). By Hölder’s inequality,
(7.32) implies uniform exponential integrability. All we need to check now is
that (7.30) leads to the upper bound of the large deviation principle in the
form given in Varadhan’s lemma. Let 0 < a < b < ∞ be fixed and write

Y (ρ) = ξ1(ρ) + · · ·+ ξl(ρ), I(λ) = λ
4C2

. Note that

P{Y (ρ) ≥ a} ≥ P{Y (ρ) ∈ (a, b)}.

By (7.30),

lim sup
ρ→0+

ρ log P{Y (ρ) ∈ (a, b)} ≤ −I(a) = − inf
λ∈(a,b)

I(λ).

Since F is compact, for any given δ > 0, F can be covered by finitely many
open intervals with diameters less than δ. Let F δ be the union of these open
intervals. Then we have

lim sup
ρ→0+

ρ log P{Y (ρ) ∈ F} ≤ − inf
λ∈F δ

I(λ).
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Letting δ → 0+ on the right hand side proves that

lim sup
ρ→0+

ρ log P{Y (ρ) ∈ F} ≤ − inf
λ∈F

I(λ).

To extend the above upper bound to general F , notice that for any b > 0

P{Y (ρ) ∈ F} ≤ P{Y (ρ) ∈ Fb} + P{Y (ρ) ≥ b}
where Fb = F ∩ [0, b]. Then

lim sup
ρ→0+

ρ log P{Y (ρ) ∈ F} ≤ max
{
− inf

λ∈Fb

I(λ), −I(b)
}

≤ max
{
− inf

λ∈F
I(λ), −I(b)

}
.

Letting b→ ∞ on the right hand side gives the desired upper bound:

lim sup
ρ→0+

ρ log E exp
{
ρ−1θ

√
ξ1(ρ) + · · · + ξl(ρ)

}
(7.33)

≤ sup
λ>0

{
θ
√
λ− λ

4C2

}
= C2θ

2.

Proof of Theorem 7.3: We begin with the decomposition

∣∣Z[0, t]
∣∣ =

2N∑

k=1

∣∣∣∣Z
[k − 1

2N
t,

k

2N
t
]∣∣∣∣

−
N∑

j=1

2j−1∑

k=1

∣∣∣∣Z
[2k − 2

2j
t,

2k − 1

2j
t
]
∩ Z

[2k − 1

2j
t,

2k

2j
t
]∣∣∣∣(7.34)

=: It − Jt.

We first establish the upper bound. Let ε > 0 be fixed. Since

(7.35) E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣ = (EIt − It) + Jt − EJt ≤ (EIt − It) + Jt,

it follows that

P

{∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣ ≥ λtbt/(log t)2

}
(7.36)

≤ P

{∣∣EIt − It
∣∣ ≥ εtbt/(log t)2

}
+ P

{
Jt ≥ (λ− ε)tbt/(log t)2

}
.
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Notice that

(7.37)
∣∣EIt − It

∣∣ ≤
2N∑

k=1

∣∣∣∣∣E
∣∣∣∣Z
[k − 1

2N
t,

k

2N
t
]∣∣∣∣−

∣∣∣∣Z
[k − 1

2N
t,

k

2N
t
]∣∣∣∣

∣∣∣∣∣.

Replacing t by 2−N t, λ by 2Nλ and bt by b̃t =: b2N t in (7.4) we obtain
(7.38)

lim sup
t→∞

1

bt
log P

{∣∣∣E
∣∣Z[0, 2−N t]

∣∣−
∣∣Z[0, 2−N t]

∣∣
∣∣∣ ≥ λ

tbt
(log t)2

}
≤ −2NCλ.

Hence by Lemma 7.9,

(7.39) lim sup
t→∞

1

bt
log P

{∣∣EIt − It
∣∣ ≥ εtbt

(log t)2

}
≤ −εC2N .

By the triangle inequality,

(7.40) P

{
Jt ≥

(λ− ε)tbt
(log t)2

}
≤

N∑

j=1

P

{ 2j−1∑

k=1

ξj,k ≥ 2−j
(λ− ε)tbt
(log t)2

}

where for each 1 ≤ j ≤ N ,
(7.41)

ξj,k(t) =

∣∣∣∣Z
[2k − 2

2j
t,

2k − 1

2j
t
]
∩ Z

[2k − 1

2j
t,

2k

2j
t
]∣∣∣∣, k = 1, · · · , 2j−1,

forms an i.i.d. sequence with the same distribution as

(7.42) |Z[0, 2−jt] ∩ Z ′[0, 2−jt]|.

By [8, Theorem 1]

lim
n→∞

1

bn
log P

{
#{S(1)[1, n] ∩ S(2)[1, n]} ≥ λ

n

(logn)2
bn

}

= −(2π)−2 det(Γ)−
1
2κ(2, 2)−4λ

where κ(2, 2) is the best constant of the following Gagliardo-Nirenberg in-
equality

||f ||4 ≤ C||∇f ||
1
2
2 ||f ||1/22 , f ∈W 1,2(R2).
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The same result holds if the random walks are replaced by the lattice valued
Lévy processes so that (with 2−jt instead of t), for any λ > 0,

lim
t→∞

1

bt
log P

{
|Z[0, 2−jt] ∩ Z ′[0, 2−jt]| ≥ λtbt

(log t)2

}

= −2j(2π)−2 det(Γ)−1/2κ(2, 2)−4λ.(7.43)

Therefore, by Lemma 7.9,

(7.44) lim
t→∞

1

bt
log P

{ 2j−1∑

k=1

ξj,k ≥
λtbt

(log t)2

}
= −2j(2π)−2 det(Γ)−1/2κ(2, 2)−4λ.

In particular,

lim
t→∞

1

bt
log P

{ 2j−1∑

k=1

ξj,k ≥ 2−j
(λ− ε)tbt
(log t)2

}

= −(2π)−2 det(Γ)−1/2κ(2, 2)−4 (λ− ε)(7.45)

and therefore by (7.40)

(7.46) lim
t→∞

1

bt
log P

{
Jt ≥

(λ− ε)tbt
(log t)2

}
= −(2π)−2 det(Γ)−1/2κ(2, 2)−4 (λ−ε).

Combining (7.36), (7.39) and (7.46) and letting ε → 0 we obtain

lim sup
t→∞

1

bt
log P

{∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣ ≥ λtbt

(log t)2

}

≤ −(2π)−2 det(Γ)−1/2κ(2, 2)−4λ.(7.47)

Using Lemma 7.10

lim supt→∞
1
bt

log E exp

{
θ
√

bt
t
(log t)

∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣
1/2
}

(7.48)

≤ supλ>0

{
θλ1/2 − (2π)−2 det(Γ)−1/2κ(2, 2)−4λ

}

= (θπ)2
√

det(Γ)κ(2, 2)4.

(The uniform exponential integrability is provided by Lemma 7.2.)
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We now prove the lower bound. Using induction on N , one can see that

At(ε) =: Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2

≤ Λε

( t
bt

)−2
2N∑

k=1

∑

x∈Z2

[ ∑

y∈Z
[

k−1

2N t, k

2N t
]
hε

(√bt
t
(x− y)

)]2

+2Λε

( t
bt

)−2
N∑

j=1

2j−1∑

k=1

∑

x∈Z2

[ ∑

y∈Z
[

2k−2

2j t, 2k−1

2j t
]
hε

(√bt
t
(x− y)

)]

×
[ ∑

y′∈Z
[

2k−1

2j t, 2k

2j t

]
hε

(√bt
t
(x− y′)

)]

=: It(ε) + 2Jt(ε).(7.49)

Therefore, with It, Jt given by (7.34)

E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣ = (EIt − It) + Jt − EJt(7.50)

≥ (EIt − It) + Jt(ε) − |Jt − Jt(ε)| − EJt

≥ (EIt − It) − 1
2
It(ε) − |Jt − Jt(ε)| − EJt +

1
2
At(ε).

We will see that the dominant contribution to the lower bound comes from
At(ε). By the last display we see that

(7.51)
1

2
At(ε) ≤

∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣∣∣+|EIt−It|+
1

2
It(ε)+|Jt−Jt(ε)|+EJt.

and consequently

∣∣∣∣
1

2
At(ε)

∣∣∣∣
1/2

≤
∣∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣∣
1/2

+ |EIt − It|1/2

+

∣∣∣∣
1

2
It(ε)

∣∣∣∣
1/2

+ |Jt − Jt(ε)|1/2 + |EJt|1/2.(7.52)

Notice that it follows from (7.1) that

(7.53) EJt ≤ CN
t

(log t)2
.

56



If p̄ is such that p−1 + p̄−1 = 1, then by the generalized Hölder inequality

with f = θ
√

bt
t

log t we have

∥∥∥∥ exp
f

p

∣∣1
2
At(ε)

∣∣1/2
∥∥∥∥

1

≤ eCN

√
bt

∥∥∥∥ exp
f

p

∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣∣∣1/2
∥∥∥∥
p

·
∥∥∥∥ exp

f

p
|EIt − It|1/2

∥∥∥∥
3p̄

·
∥∥∥∥ exp

f

p

∣∣1
2
It(ε)

∣∣1/2
∥∥∥∥

3p̄

·
∥∥∥∥ exp

f

p
|Jt − Jt(ε)|1/2

∥∥∥∥
3p̄

(7.54)

Taking the p-th power and noting that p̄/p = 1/(p−1), this can be rewritten
as

E exp

{
θ

√
bt
t
(log t)

∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣
1/2
}

(7.55)

≥ e−CN

√
bt

[
E exp

{ 3θ

p− 1

√
bt
t
(log t)|EIt − It|1/2

}]− p−1
3

×
[
E exp

{ 3θ

p− 1

√
bt
t
(log t)It(ε)

1/2
}]− p−1

3

×
[
E exp

{ 3θ

p− 1

√
bt
t
(log t)|Jt − Jt(ε)|1/2

}]− p−1
3

×
[
E exp

{
θ

2p

√
bt
t
(log t)|At(ε)|1/2

}]p
.

By Lemma 7.7

lim
t→∞

1

bt
log E exp

{
θ

2p

√
bt
t
(log t)|At(ε)|1/2

}
(7.56)

= sup
g∈F

{
πθ

p

√
det(Γ)

(∫

R2

|(g2 ∗ hε)(x)|2dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.

This will give the main contribution to (7.55). We now bound the other
factors in (7.55).
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Using Lemma 7.9 together with (7.48) (with t replaced by 2−N t, θ by

2−N/2θ, and bt by b̃t =: b2N t) we can prove that for any θ > 0,

(7.57) lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|EIt − It|1/2

}
≤ 2−NCθ2.

Using (7.20) and Lemma 7.9, we see that

(7.58) lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)It(ε)

1/2
}
≤ 2−NCθ2,

where C > 0 does not depend on ε. Notice that

(7.59) |Jt − Jt(ε)| ≤
N∑

j=1

2j−1∑

k=1

|Kj,k(ε)|,

where

Kj,k(ε)

∣∣∣∣Z
[2k − 2

2j
t,

2k − 1

2j
t
]
∩ Z

[2k − 1

2j
t,

2k

2j
t
]∣∣∣∣

− Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z
[

2k−2

2j t, 2k−1

2j t
]
hε

(√bt
t
(x− y)

)]

×
[ ∑

y′∈Z
[

2k−1

2j t, 2k

2j t
]
hε

(√bt
t
(x− y′)

)]
.

(7.60)

For each 1 ≤ j ≤ N , Kj,1(ε), · · · , Kj,2N−1(ε) forms an i.i.d sequence with the

same distribution as B
(j)
t (ε). It then follows from Lemma 7.8 and Hölder’s

inequality that

(7.61) lim sup
ε→0

lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|Jt − Jt(ε)|1/2

}
= 0.
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Hence

lim inf
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)

∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣
1/2
}

≥ −2−N+1C
p− 1

3

( 3θ

p− 1

)2

− p− 1

3
lim sup
t→∞

1

bt
log E exp

{ 3θ

p− 1

√
bt
t

log t|Jt − Jt(ε)|1/2
}

+ p sup
g∈F

{
πθ

p

√
det(Γ)

(∫

R2

|(g2 ∗ hε)(x)|2dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.

Take limits on the right hand side in the following order: let ε → 0+, (using
(7.61)), N → ∞, and then p→ 1+. We obtain

lim inf
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)

∣∣∣E
∣∣Z[0, t]

∣∣−
∣∣Z[0, t]

∣∣
∣∣∣
1/2
}

(7.62)

≥ sup
g∈F

{
πθ
√

det(Γ)

(∫

R2

|g(x)|4dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}

= (πθ)2
√

det(Γ) sup
f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}

= (πθ)2
√

det(Γ)κ(2, 2)4,

where the second step follows from the substitution g(x) =
√

| det(A)|f(Ax)
with the 2 × 2 matrix A satisfying

(7.63) AτΓA = (πθ)2
√

det(Γ)I2×2

(I2×2 is the 2 × 2 identity matrix), and where the last step follows from the
identity

(7.64) sup
f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}

= κ(2, 2)4

which is a special form of Lemma A.2 in [7]. Here we give a proof.
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For any f ∈ F ,

(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx

≤ κ(2, 2)2

(∫

R2

|∇f(x)|2dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx

≤ sup
θ>0

{κ(2, 2)2θ − 1

2
θ2}κ(2, 2)4

so that

sup
f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}

≤ κ(2, 2)4.

On the other hand, for any C < κ(2, 2), there is a g(x) on R
2 such that

||g||4 > C||∇g||1/22 ||g||1/22 .

By homogeneity, we may assume that ||g|2 = 1. Given λ > 0, let f(x) =
λg(λx). Then ||f ||2 = 1, ||∇f ||2 = λ||∇g||2 and

||f ||4 = λ1/2||g||4 ≥ C
(
λ||∇g||2

)1/2

.

Hence,

sup
f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}

≥ C2λ||∇g||2 −
1

2

(
λ||∇g||2

)2

.

Since λ > 0 is arbitrary,

sup
f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}

≥ sup
θ>0

{C2θ − 1

2
θ2}C4.

This completes the proof of (7.64).
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8 Exponential asymptotics for the smoothed

range

In order to prove Lemma 7.7 we first obtain a weak convergence result.

Let β > 0 and write

(8.1) At,β(ε) =: Λε(t)
−2
∑

x∈Z2

[ ∑

y∈Z[0,βt]

hε

(x− y√
t

)]2

and

(8.2) Bt,β(ε) =: Λε(t)
−2
∑

x∈Z2

[ ∑

y∈Z[0,βt]

hε

(x− y√
t

)][ ∑

y′∈Z′[0,βt]

hε

(x− y′√
t

)]
.

Let W (t),W ′(t) be independent planar Brownian motions, each with co-
variance matrix Γ and write

(8.3) αε([0, t]
2) =

∫ t

0

∫ t

0

(hε ∗ hε)(W (s) −W ′(r)
)
dr ds

and

(8.4) α([0, t]2) = lim
ε→0

αε([0, t]
2).

Lemma 8.1

(log t)2

t

[∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣− Bt,β(ε)

]
(8.5)

d−→ (2π)2 det(Γ)
[
α([0, β]2) − αε([0, β]2)

]

and

(8.6)
(log t)2

t
At,β(ε)

d−→ (2π)2 det(Γ)

∫

R2

(∫ β

0

hε
(
W (s) − x)ds

)2

dx.

as t→ ∞.
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Proof. To prove (8.5), we consider the following result given on p.697 of

[27]: if Z(t)(s) =: Z(ts)√
t

then

(
Z(t)(·),(Z ′)(t)(·), (log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

d−→
(
W (·),W ′(·), (2π)2 det(Γ)α([0, β]2)

)
(8.7)

in the Skorokhod topology as t → ∞. Actually, the proof in [27] is for the
discrete time random walk, but a similar proof works for Z.

Let M > 0 be fixed for a moment. Notice that

(8.8) pt,ε(x) ≡ Λε(t)
−1hε

( x√
t

)
, x ∈ Z

2,

defines a probability density on Z
2 and that

(8.9) p̂t,ε

( λ√
t

)
= Λε(t)

−1
∑

x∈Z2

hε

( x√
t

)
exp

{
iλ · x√

t

}
−→ ĥε(λ)

uniformly on [−M,M ]2 as t→ ∞. Consequently the family

(8.10) ψt(x, y) =

∫

[−M,M ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2
[ ∫ β

0

eiλ·x(s)ds

][ ∫ β

0

e−iλ·y(s
′)ds′

]
dλ

are convergent continuous functionals onD
(
[0, β],R2

)
⊗D

(
[0, β],R2

)
. There-
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fore
(

1

t2

∫

[−M,M ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2

[ ∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds

][ ∫ βt

0

exp
{
− iλ · Z

′(s′)√
t

}
ds′
]
dλ,

(log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

=

(∫

[−M,M ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2

[ ∫ β

0

exp
{
iλ · Z(t)(s)

}
ds

][ ∫ β

0

exp
{
− iλ · (Z ′)(t)(s′)

}
ds′
]
dλ,

(log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

d−→
(∫

[−M,M ]2
|ĥε(λ)|2

[ ∫ β

0

eiλ·W (s)ds

][ ∫ β

0

e−iλ·W
′(s′)ds′

]
dλ,

(2π)2 det(Γ)α([0, β]2)

)
.(8.11)

It follows from (5.30) that

(8.12) sup
t

E exp
{
θ
log t

t
|Z[0, t]|

}
<∞

for all θ > 0. We will show that uniformly in λ ∈ [−M,M ]2

lim
t→∞

1

t2
E

∣∣∣∣
∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds

− log t

2π
√

det(Γ)

∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}∣∣∣∣
2

= 0.(8.13)

Using the inequality

|AA′ − BB′| ≤ |A(B − B′)| + |(A−B)B′|,

the Cauchy-Schwarz inequality and (8.12), we see from (8.13) that uniformly
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in λ ∈ [−M,M ]2

lim
t→∞

1

t2
E

∣∣∣∣
[ ∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds

][ ∫ βt

0

exp
{
− iλ · Z

′(s′)√
t

}
ds′
]

−
(

log t

2π
√

det(Γ)

)2 [ ∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}]
(8.14)

[ ∑

x∈Z′[0,βt]

exp
{
iλ · x

′
√
t

}]∣∣∣∣

= 0.

Together with (8.11) this shows that
(( log t

2πt

)2
∫

[−M,M ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2

[ ∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}][ ∑

x′∈Z′[0,βt]

exp
{
− iλ · x

′
√
t

}]
dλ,

(log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

d−→
(

det(Γ)

∫

[−M,M ]2
|ĥε(λ)|2

[ ∫ β

0

eiλ·W (s)ds

][ ∫ β

0

e−iλ·W
′(s′)ds′

]
dλ,

(2π)2 det(Γ)α([0, β]2)

)
.(8.15)

Notice by (8.9) that for any δ > 0, one can take M > 0 sufficiently large
so that

(8.16)
∣∣∣p̂t,ε

( λ√
t

)∣∣∣ < δ, λ ∈ [−
√
tπ,

√
tπ]2 \ [M,M ]2,

if t is sufficiently large. Consequently

Ht =:

∣∣∣∣
∫

[−
√
tπ,

√
tπ]2\[−M,M ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2
[ ∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}]
(8.17)

×
[ ∑

x′∈Z′[0,βt]

exp
{
− iλ · x

′
√
t

}]
dλ

∣∣∣∣

≤ (2π)2δt
∣∣Z[0, βt] ∩ Z ′[0, βt]

∣∣.
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It follows from (7.1) that
(
log t/(2πt)

)2

Ht → 0 in L1 uniformly in large t as

M → ∞. Therefore, using (8.15) and the fact that ĥ ∈ L2, we obtain

(( log t

2πt

)2
∫

[−
√
tπ,

√
tπ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2
[ ∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}]

×
[ ∑

x′∈Z′[0,βt]

exp
{
− iλ · x

′
√
t

}]
dλ,

(log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

d−→
(

det(Γ)

∫

R2

|ĥε(λ)|2
[ ∫ β

0

eiλ·W (s)ds

][ ∫ β

0

e−iλ·W
′(s′)ds′

]
dλ,

(2π)2 det(Γ)α([0, β]2)

)
.(8.18)

Note that

Bt,β(ε) =
∑

x∈Z2

[ ∑

y∈Z[0,βt]

Λε(t)
−1hε

(x− y√
t

)][ ∑

y′∈Z′[0,βt]

Λε(t)
−1hε

(x− y′√
t

)]

=
∑

y∈Z[0,βt]

∑

y′∈Z′[0,βt]

[∑

x∈Z2

pt,ε(x− y)pt,ε(x− y′)

]
.(8.19)

It then follows from Parseval’s identity that

(2π)2t Bt,β(ε).(8.20)

= t

∫

[−π,π]2
|p̂t,ε(λ)|2

[ ∑

y∈Z[0,βt]

eiλ·y
][ ∑

y′∈Z′[0,βt]

e−iλ·y
′

]
dλ

=

∫

[−
√
tπ,

√
tπ]2

∣∣∣p̂t,ε
( λ√

t

)∣∣∣
2

[ ∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}][ ∑

y′∈Z′[0,βt]

exp
{
− iλ · y

′
√
t

}]
dλ.

Similarly, using the fact that hε is symmetric so that ĥε(λ) is real

(8.21)

∫

R2

|ĥε(λ)|2
[ ∫ β

0

eiλ·W (s)ds

][ ∫ β

0

e−iλ·W
′(s′)ds′

]
dλ = αε([0, β]2).
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Thus, we have proved
(

(log t)2

t
Bt,β(ε),

(log t)2

t

∣∣Z[0, βt] ∩ Z ′[0, βt]
∣∣
)

(8.22)

d−→
(
(2π)2 det(Γ)αε([0, β]2), (2π)2 det(Γ)α([0, β]2)

)
.

(8.5) follows from this.

Thus to complete the proof of (8.5) it only remains to show (8.13) uni-
formly in λ ∈ [−M,M ]2. We will show that for any δ > 0 we can find δ′ > 0
and t0 <∞ such that

(8.23)
1

t2
E

∣∣∣∣
∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds−

∫ βt

0

exp
{
iγ · Z(s)√

t

}
ds

∣∣∣∣
2

< δ

and

(8.24)
( log t

t

)2

E

∣∣∣∣
∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}
−

∑

x∈Z[0,βt]

exp
{
iγ · x√

t

}∣∣∣∣
2

< δ

for all t ≥ t0 and |λ − γ| ≤ δ′. We then cover [−M,M ]2 by a finite number
of discs B(λk, δ

′) of radius δ′ centered at λk, k = 1, . . . , N . Define τ(λ) = λk
where k is the smallest integer with λ ∈ B(λk, δ

′). It follows from [8, (4.11)]
that for a planar random walk Sn satisfying the assumptions of Theorem 1.5
and a bounded continuous function f on R

d,

1

n2
E

[ n∑

k=1

f
( Sk√

n

)
− log n

2π
√

det(Γ)

∑

x∈S[1,n]

f
( x√

n

)]2

−→ 0

as n → ∞. This treatment used in [8] can be easily modified so the result
can be extended to the Lévy process setting. Thus,

1

t2
E

[ ∫ t

0

f
(Z(s)√

t

)
ds− log t

2π
√

det(Γ)

∑

x∈Z[0,t]

f
( x√

t

)]2

−→ 0.

In particular, we can choose t1 <∞ such that for all t ≥ t1 and k = 1, . . . , N ,
(8.25)

1

t2
E

∣∣∣∣
∫ βt

0

exp
{
iλk ·

Z(s)√
t

}
ds− log t

2π
√

det(Γ)

∑

x∈Z[0,βt]

exp
{
iλk ·

x√
t

}∣∣∣∣
2

≤ δ.
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Hence, uniformly in λ ∈ [−M,M ]2 we have that for all t ≥ t0 ∨ t1
(8.26)

1

t2
E

∣∣∣∣
∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds− log t

2π
√

det(Γ)

∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}∣∣∣∣
2

≤ 3δ

proving that (8.13) holds uniformly in λ ∈ [−M,M ]2.

(8.23) actually holds uniformly in t. To see this note that

1

t2
E

∣∣∣∣
∫ βt

0

exp
{
iλ · Z(s)√

t

}
ds−

∫ βt

0

exp
{
iγ · Z(s)√

t

}
ds

∣∣∣∣
2

(8.27)

≤ 1

t2
E

∣∣∣∣
∫ βt

0

|λ− γ| |Z(s)|√
t
ds

∣∣∣∣
2

|λ− γ|2
t3

E

∫ βt

0

∫ βt

0

|Z(s)||Z(r)| ds dr

≤ C
|λ− γ|2

t3

∫ βt

0

∫ βt

0

s1/2r1/2 ds dr ≤ C ′|λ− γ|2.

As for (8.24),

E

∣∣∣∣
∑

x∈Z[0,βt]

exp
{
iλ · x√

t

}
−

∑

x∈Z[0,βt]

exp
{
iγ · x√

t

}∣∣∣∣
2

(8.28)

≤ 4E

{
|Z[0, βt]|21{sups≤βt |Z(s)|≥C

√
t}

}

+|λ− γ|2E




∣∣∣
∑

x∈Z[0,βt]

|x|√
t

∣∣∣
2

1{sups≤βt |Z(s)|≤C
√
t}





≤ 4E

{
|Z[0, βt]|21{sups≤βt |Z(s)|≥C

√
t}

}
+ C2|λ− γ|2E|Z[0, βt]|2

and by (8.12)

4E

{
|Z[0, βt]|21{sups≤βt |Z(s)|≥C

√
t}

}
+ C2|λ− γ|2E|Z[0, βt]|2(8.29)

≤ 4

{
E(|Z[0, βt]|4)P (sup

s≤βt
|Z(s)| ≥ C

√
t)

}1/2

+ C2|λ− γ|2E|Z[0, βt]|2

≤
(

ct

log t

)2
(

4

{
P (sup

s≤βt
|Z(s)| ≥ C

√
t)

}1/2

+ C2|λ− γ|2
)
.
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Taking C large and then choosing δ′ > 0 sufficiently small completes the
proof of (8.24) and hence of (8.5).

We now prove (8.6). Using the facts that Λε(t) ∼ t, that

1

t

∑

x∈Z2

[ ∑

y∈Z[0,βt]

hε

(x− y√
t

)]2

−
∫

R2

[ ∑

y∈Z[0,βt]

hε

(
x− y√

t

)]2

dx

= o(1)|Z[0, βt]|2,(8.30)

(where the boundedness and continuity of hε is used), and (8.12) we need
only show that

( log t

t

)2
∫

R2

[ ∑

y∈Z[0,βt]

hε

(
x− y√

t

)]2

dx(8.31)

d−→ (2π)2 det(Γ)

∫

R2

(∫ β

0

hε
(
W (s) − x)ds

)2

dx.

By the Parseval identity,

∫

R2

[ ∑

y∈Z[0,βt]

hε

(
x− y√

t

)]2

dx(8.32)

= (2π)−2

∫

R2

∣∣∣∣
∫

R2

eiλ·x
∑

y∈Z[0,βt]

hε

(
x− y√

t

)
dx

∣∣∣∣
2

dλ

= (2π)−2

∫

R2

∣∣∣∣
∫

R2

hε(x)e
iλ·xdx

∣∣∣∣
2∣∣∣∣

∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}∣∣∣∣
2

dλ

=

∫

R2

∣∣ĥε(λ)
∣∣2∣∣ ∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}∣∣2 dλ.

Let M > 0 be fixed and λ1, · · · , λN and τ be defined as above. By [8,
Theorem 7],

log t

t

( ∑

y∈Z[0,βt]

exp
{
iλ1 ·

y√
t

}
, · · · ,

∑

y∈Z[0,βt]

exp
{
iλN · y√

t

})
(8.33)

d−→ (2π)
√

det(Γ)

(∫ β

0

eiλ1·W (s)ds, · · · ,
∫ β

0

eiλN ·W (s)ds

)
.
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In particular,

( log t

t

)2
∫

[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∑

y∈Z[0,βt]

exp
{
iτ(λ) · y√

t

}∣∣∣∣
2

dλ(8.34)

=

N∑

k=1

∫

Bk

|ĥε(λ)|2
∣∣∣∣
log t

t

∑

y∈Z[0,βt]

exp
{
iλk ·

y√
t

}∣∣∣∣
2

dλ

d−→ (2π)2 det(Γ)

N∑

k=1

∫

Bk

|ĥε(λ)|2
∣∣∣∣
∫ β

0

eiλk ·W (s)ds

∣∣∣∣
2

dλ

= (2π)2 det(Γ)

∫

[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∫ β

0

eiτ(λ)·W (s)ds

∣∣∣∣
2

dλ.

Notice that the right hand side of (8.34) converges to

(8.35) (2π)2 det(Γ)

∫

[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∫ β

0

eiλ·W (s)ds

∣∣∣∣
2

dλ

as N → ∞. Applying (8.24) to the left hand side of (8.34) gives

( log t

t

)2
∫

[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}∣∣∣∣
2

dλ(8.36)

d−→ (2π)2 det(Γ)

∫

[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∫ β

0

eiλ·W (s)ds

∣∣∣∣
2

dλ.

As M → ∞, the right hand side of (8.36) converges to

(2π)2 det(Γ)

∫

R2

|ĥε(λ)|2
∣∣∣∣
∫ β

0

eiλ·W (s)ds

∣∣∣∣
2

dλ(8.37)

= det(Γ)

∫

R2

(∫ β

0

hǫ
(
W (s) − x

)
ds

)2

dx

by Parseval’s identity. Note

H ′
t,M =:

∫

R2\[−M,M ]2
|ĥε(λ)|2

∣∣∣∣
∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}∣∣∣∣
2

dλ(8.38)

≤
∣∣Z[0, βt]

∣∣2
∫

R2\[−M,M ]2
|ĥε(λ)|2dλ.
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It follows from (8.12) and the fact that ĥε ∈ L2 that
(

log t
2πt

)2

H ′
t,M → 0 in

L1 as M → ∞ uniformly in t. Therefore, using the last three displays, we
obtain

( log t

t

)2
∫

R2

|ĥε(λ)|2
∣∣∣∣
∑

y∈Z[0,βt]

exp
{
iλ · y√

t

}∣∣∣∣
2

dλ(8.39)

d−→ det(Γ)

∫

R2

(∫ β

0

hǫ
(
W (s) − x

)
ds

)2

dx.

Proof of Lemma 7.7: Let T > 0 be fixed for the moment. Write
γt = t/[T−1bt]. We have

E exp

{
θ

√
bt
t
(log t)

(
Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2)1/2}

≤
[
E exp

{
θ

√
bt
t
(log t)

×
(

Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,γt]

hε

(√bt
t
(x− y)

)]2)1/2}][T−1bt]

.(8.40)

We obtain from Lemma 8.1 (with t being replaced by t/bt and β = T )

bt
t
(log t)2Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,γt]

hε

(√bt
t
(x− y)

)]2

d−→ (2π)2 det(Γ)

∫

R2

(∫ T

0

hε
(
W (s) − x)ds

)2

dx, t→ ∞.(8.41)
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In addition,

bt
t
(log t)2Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,γt]

hε

(√bt
t
(x− y)

)]2

≤ bt
t
(log t)2Λε

( t
bt

)−2

||h||∞|Z[0, γt]|
∑

x∈Z2

y∈Z[0,γt]

hε

(√bt
t
(x− y)

)

=
bt
t
(log t)2Λε

( t
bt

)−2

||h||∞|Z[0, γt]|2
∑

x∈Z2

hε

(√bt
t
x
)

≤ C
(bt
t

)2

(log t)2|Z[0, γt]|2,(8.42)

where in the last step we used (7.17). (8.12) together with (8.41) then implies
that

E exp

{
θ
√

bt
t
Λε

(
t
bt

)−1

(log t)

(∑
x∈Z2

[∑
y∈Z[0,γt]

hε

(√
bt
t
(x− y)

)]2)1/2}

−→ E exp

{
2πθ
√

det(Γ)

(∫
R2

(∫ T
0
hε
(
W (s) − x)ds

)2

dx

)1/2}
.(8.43)

Combining (8.40) and (8.43) we see that

lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|At(ε)|1/2

}
(8.44)

≤ 1

T
log E exp

{
2πθ
√

det(Γ)

(∫

R2

(∫ T

0

hε
(
W (s) − x)ds

)2

dx

)1/2}
.

Then the upper bound for (7.19) follows from the fact that

lim
T→∞

1

T
log E exp

{
2πθ
√

det(Γ)

(∫

R2

(∫ T

0

hε
(
W (s) − x)ds

)2

dx

)1/2}

= sup
g∈F

{
2πθ
√

det(Γ)

(∫

R2

|(g2 ∗ hε)(x)|2dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.
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This is [10, Theorem 7]. (Or see the earlier [7, Theorem 3.1], which uses a
slightly different smoothing).

We now prove the lower bound for (7.19). Let f be a smooth function on
R

2 with compact support and

(8.45) ||f ||2 =

(∫

R2

|f(x)|2dx
)1/2

= 1.

We can write
√
bt
t

(∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2)1/2

(8.46)

=

√
bt
t

(∫

R2

[ ∑

y∈Z[0,t]

hε

(√bt
t
([x] − y)

)]2

dx

)1/2

=

(∫

R2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(
[√ t

bt
x
]
− y)

)]2

dx

)1/2

.

Hence by the Cauchy-Schwarz inequality,
√
bt
t

(∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2)1/2

=

(∫

R2

[ ∑

y∈Z[0,t]

hε

(√bt
t

[√ t

bt
x
]
−
√
bt
t
y
)]2

dx

)1/2

≥
∫

R2

f(x)
∑

y∈Z[0,t]

hε

(√bt
t

[√ t

bt
x
]
−
√
bt
t
y
)
dx

=

∫

R2

f(x)
∑

y∈Z[0,t]

hε

(
x−

√
bt
t
y
)
dx+O(1)|Z[0, t]|, t→ ∞,(8.47)

where O(1) is bounded by a constant. In view of (4.12), recalling that
√
bt
t
|At(ε)|1/2 ∼

bt
t

√
bt
t

(∑

x∈Z2

[ ∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

)]2)1/2

,

and using Hölder’s inequality one can see that the term O(1)|Z[0, t]| does
not contribute anything to (7.19).
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By [8, Theorem 8],

lim inf
t→∞

1

bt
log E exp

{
θ
bt log t

t

∑

y∈Z[0,t]

(f ∗ hε)
(√bt

t
y
)}

(8.48)

≥ sup
g∈F

{
2πθ
√

det(Γ)

∫

R2

(f ∗ hε)(x)g2(x)dx− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}

= sup
g∈F

{
2πθ
√

det(Γ)

∫

R2

f(x)(g2 ∗ hε)(x)dx−
1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.

We see from (8.47) and (8.48) that

lim inf
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|At(ε)|1/2

}
(8.49)

≥ sup
g∈F

{
2πθ
√

det(Γ)

∫

R2

f(x)(g2 ∗ hε)(x)dx

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.

Taking the supremum over f on the right gives

lim inf
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|At(ε)|1/2

}
(8.50)

≥ sup
g∈F

{
2πθ
√

det(Γ)

(∫

R2

|(g2 ∗ hε)(x)|2dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉dx
}
.

This completes the proof of (7.19).

To prove (7.20), in (7.19) we replace t by 2−N t, θ by 2−N/2θ, bt by b̃t =: b2N t
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and ε by 2N/2ε to find that

lim
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)

(8.51)

×
(

Λε

( t
bt

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,2−N t]

hε

(√bt
t
(x− y)

)]2)1/2}

lim
t→∞

1

b̃2−N t

log E exp

{
2−N/2θ

√
b̃2−N t

2−N t
(log t)

×
(

Λ2N/2ε

(2−N t

b̃2−N t

)−2 ∑

x∈Z2

[ ∑

y∈Z[0,2−N t]

h2N/2ε

(
√
b̃2−N t

2−N t
(x− y)

)]2)1/2}

= sup
g∈F

{
2π2−N/2θ

√
det(Γ)

(∫

R2

|(g2 ∗ h2N/2ε)(x)|2dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉2dx
}

≤ sup
g∈F

{
2π2−N/2θ

√
det(Γ)

(∫

R2

|g(x)|4dx
)1/2

− 1

2

∫

R2

〈∇g(x),Γ∇g(x)〉2dx
}
.

=
(
2π2−N/2θ

)2√
det(Γ) sup

f∈F

{(∫

R2

|f(x)|4dx
)1/2

− 1

2

∫

R2

|∇f(x)|2dx
}
.

= 2−N+2π2θ2
√

det(Γ)κ(2, 2)4,

where the third step follows from Jensen’s inequality, the fourth step follows
from the substitution g(x) =

√
| det(A)|f(Ax) with the 2 × 2 matrix A

satisfying

AτΓA =
(
2π2−N/2θ

)2√
det(Γ)I2×2,

and the last step follows from Lemma 7.2 in [7].
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9 Exponential approximation

Let t1, · · · , ta ≥ 0 and write

(9.1) ∆1 = [0, t1], and ∆k =

[ k−1∑

j=1

tj ,

k∑

j=1

tj

]
k = 2, · · · , a.

Let p(x) be a positive symmetric function on Z
2 with

∑
x∈Z2 p(x) = 1 and

define

(9.2) L =
a∑

j,k=1

[∣∣Z(∆j) ∩ Z ′(∆k)
∣∣−

∑

x∈Z2

p(x)
∣∣Z(∆j) ∩

(
Z ′(∆k) + x

)∣∣
]
,

and

Lj =
∣∣Z[0, tj] ∩ Z ′[0, tj]

∣∣(9.3)

−
∑

x∈Z2

p(x)
∣∣Z[0, tj] ∩

(
Z ′[0, tj] + x

)∣∣, j = 1, · · · , a.

Lemma 9.1 For any m ≥ 1,

(9.4) ELm ≥ 0

and

(9.5)
{

ELm
}1/2

≤
∑

k1+···+ka=m
k1,··· ,ka≥0

m!

k1! · · ·ka!
{

E|L1|k1
}1/2

· · ·
{

E|La|ka

}1/2

.

Consequently, for any θ > 0

(9.6)

∞∑

m=0

θm

m!

{
ELm

}1/2

≤
a∏

j=1

∞∑

m=0

θm

m!

{
E|Lj |m

}1/2

.

Proof. Write

(9.7) p̂(λ) =
∑

x∈Z2

p(x)eiλ·x.

75



We note that

(9.8) |p̂(λ)| ≤ p̂(0) = 1.

Notice also that
(9.9)

L =
1

(2π)2

∫

[−π,π]2

[
1 − p̂(λ)

][ a∑

j=1

∑

x∈Z(∆j)

eiλ·x
][ a∑

j′=1

∑

x′∈Z′(∆j′ )

e−iλ·x
′
]
dλ.

We therefore have

ELm =
1

(2π)2m

∫

([−π,π]2)m

∣∣∣∣E
m∏

k=1

a∑

j=1

∑

xk∈Z(∆j)

eiλk ·xk

∣∣∣∣
2( m∏

k=1

[
1 − p̂(λk)

]
dλk

)

=
1

(2π)2m

∫

([−π,π]2)m

∣∣∣∣
a∑

l1,··· ,lm=1

E

(
Hl1(λ1) · · ·Hlm(λm)

)∣∣∣∣
2

( m∏

k=1

[
1 − p̂(λk)

]
dλk

)
,(9.10)

where

(9.11) Hj(λ) =
∑

x∈Z(∆j)

eiλ·x.

This proves (9.4) and implies that

{
ELm

}1/2

(9.12)

≤ 1

(2π)m

a∑

l1,··· ,lm=1

{∫

([−π,π]2)m

∣∣∣E
(
Hl1(λ1) · · ·Hlm(λm)

)∣∣∣
2

( m∏

k=1

[
1 − p̂(λk)

]
dλk

)}1/2

.

Note that for any k > j we can write

(9.13) Hk(λ) =
∑

x∈Z(∆k)

eiλ·x = eiλ·Z(tj)H
(j)
k (λ),
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where

(9.14) H
(j)
k (λ) =

∑

x∈Z(∆k)−Z(tj )

eiλ·x

is independent of Ftj .

Let 1 ≤ l1, · · · , lm ≤ a be fixed and let kj =
∑m

i=1 δ(li, j) be the number
of l’s which are equal to j, for each 1 ≤ j ≤ a. Then using independence

∫

([−π,π]2)m

∣∣∣E
(
Hl1(λ1) · · ·Hlm(λm)

)∣∣∣
2( m∏

k=1

[
1 − p̂(λk)

]
dλk

)
(9.15)

=

∫

([−π,π]2)m

∣∣∣E
a∏

j=1

(
Hj(λj,1) · · ·Hj(λj,kj

)
)∣∣∣

2( a∏

j=1

kj∏

l=1

[
1 − p̂(λj,l)

]
dλj,l

)

=

∫

([−π,π]2)m

∣∣∣E
[

exp
{
i
( a∑

j=2

kj∑

l=1

λj,l

)
· Z(t1)

}
×
(
H1(λ1,1) · · ·H1(λ1,k1)

)]

E

( a∏

j=2

(
H

(1)
j (λj,1) · · ·H(1)

j (λj,kj
)
)∣∣∣

2( a∏

j=1

kj∏

l=1

[
1 − p̂(λj,l)

]
dλj,l

)

=

∫

([−π,π]2)m−k1

∣∣∣E
( a∏

j=2

(
H

(1)
j (λj,1) · · ·H(1)

j (λj,kj
)
)∣∣∣

2

F (λ2,1, · · · , λ2,k2; · · · ;λa,1, · · · , λa,ka)
( a∏

j=2

kj∏

l=1

[
1 − p̂(λj,l)

]
dλj,l

)
,

where

F (λ2,1, · · · , λ2,k2; · · · ;λa,1, · · · , λa,ka)

(9.16)

=

∫

([−π,π]2)k1

∣∣∣∣∣E
[

exp
{
i
( a∑

j=2

kj∑

l=1

λj,l

)
· Z(t1)

}
×
(
H1(λ1,1) · · ·H1(λ1,k1)

)]∣∣∣∣∣

2

( k1∏

l=1

[
1 − p̂(λ1,l)

]
dλ1,l

)
.
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Notice that by symmetry

(9.17) E

[
exp

{
i
( a∑

j=2

kj∑

l=1

λj,l

)
· Z(t1)

}(
H1(λ1,1) · · ·H1(λ1,k1)

)]

is real valued. Hence if Z ′ denotes an independent copy of Z, and H ′
1 is

obtained from H1 by replacing Z by Z ′,

F (λ2,1, · · · , λ2,k2; · · · ;λa,1, · · · , λa,ka)(9.18)

=

∫

([−π,π]2)k1

E

[
exp

{
i
( a∑

j=2

kj∑

l=1

λj,l

)
·
(
Z(t1) + Z ′(t1)

)}

×
k1∏

l=1

(
H1(λ1,l)H

′
1(λ1,l)

)]( k1∏

l=1

[
1 − p̂(λ1,l)

]
dλ1,l

)

= E

[
exp

{
i
( a∑

j=2

kj∑

l=1

λj,l

)
·
(
Z(t1) + Z ′(t1)

)}

×
∫

([−π,π]2)k1

k1∏

l=1

(
H1(λ1,l)H

′
1(λ1,l)

)]( k1∏

l=1

[
1 − p̂(λ1,l)

]
dλ1,l

)
.

By the fact that

∫

([−π,π]2)k1

k1∏

l=1

(
H1(λ1,l)H

′
1(λ1,l)

)( k1∏

l=1

[
1 − p̂(λ1,l)

]
dλ1,l

)
(9.19)

=

[ ∫

[−π,π]2

[
1 − p̂(λ)

]
H1(λ)H ′

1(λ) dλ

]k1
= (2π)2k1Lk11 ,

we have proved that

∫

([−π,π]2)m

∣∣∣E
(
Hl1(λ1) · · ·Hlm(λm)

)∣∣∣
2( m∏

k=1

[
1 − p̂(λk)

]
dλk

)

≤ (2π)2k1E|L1|k1
∫

([−π,π]2)m−k1

∣∣∣E
( a∏

j=2

(
H

(1)
j (λj,1) · · ·H(1)

j (λj,kj
)
)∣∣∣

2

( a∏

j=2

kj∏

l=1

[
1 − p̂(λj,l)

]
dλj,l

)
.(9.20)
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Repeating the above procedure,
∫

([−π,π]2)m

∣∣∣E
(
Hl1(λ1) · · ·Hlm(λm)

)∣∣∣
2( m∏

k=1

[
1 − p̂(λk)

]
dλk

)

≤
a∏

j=1

{
(2π)2kjE|Lj |kj

}
= (2π)2m

a∏

j=1

E|Lj |kj .(9.21)

Our Lemma now follows from (9.12).

Proof of Lemma 7.8: Define

(9.22) qt,ε(x) = Λε

( t
bt

)−2 ∑

z∈Z2

hε

(√bt
t
(x− z)

)
hε

(√bt
t
z
)
, x ∈ Z

2.

Then qt,ε(x) is a probability density on Z
2. We claim that

(9.23) B
(0)
t (ε) =

∑

x∈Z2

qt,ε(x)
∣∣Z[0, t] ∩

(
x+ Z ′[0, t]

)∣∣.

This follows from the fact that

∑

x∈Z2

∑

y∈Z[0,t]

hε

(√bt
t
(x− y)

) ∑

y′∈Z′[0,t]

hε

(√bt
t
(x− y′)

)
(9.24)

=
∑

x∈Z2

∑

y′∈Z′[0,t]

hε

(√bt
t
x
)∑

y∈Z2

hε

(√bt
t
(x+ y′ − y)

)
1{y∈Z[0,t]}

=
∑

x∈Z2

∑

y′∈Z′[0,t]

hε

(√bt
t
x
)∑

y∈Z2

hε

(√bt
t
(x− y)

)
1{y+y′∈Z[0,t]}

=
∑

y∈Z2

∑

x∈Z2

hε

(√bt
t
x
)
hε

(√bt
t
(x− y)

)∣∣Z ′[0, t] ∩
(
Z[0, t] − y

)∣∣

and

(9.25)
∣∣Z ′[0, t] ∩

(
Z[0, t] − y

)∣∣ =
∣∣Z[0, t] ∩

(
Z ′[0, t] + y

)∣∣.

Write γt = t/[bt] and ∆j = [(j − 1)γt, jγt], j = 1, · · · , [bt]. Note that
∑[bt]

j=1

∣∣Z(∆j) ∩ Z ′[0, t]
∣∣−∑1≤j<k≤[bt]

∣∣Z(∆j) ∩ Z(∆k) ∩ Z ′[0, t]
∣∣

≤
∣∣Z[0, t] ∩ Z ′[0, t]

∣∣ ≤∑[bt]
j=1

∣∣Z(∆j) ∩ Z ′[0, t]
∣∣(9.26)
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and similarly

[bt]∑

j=1

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩

(
x+ Z ′[0, t]

)∣∣(9.27)

−
∑

1≤j<k≤[bt]

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩ Z(∆k) ∩

(
x+ Z ′[0, t]

)∣∣

≤
∑

x∈Z2

qt,ε(x)
∣∣Z[0, t] ∩

(
x+ Z ′[0, t]

)∣∣

≤
[bt]∑

j=1

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩

(
x+ Z ′[0, t]

)∣∣.

Hence,

∣∣∣∣
∣∣Z[0, t] ∩ Z ′[0, t]

∣∣−
∑

x∈Z2

qt,ε(x)
∣∣Z[0, t] ∩

(
x+ Z ′[0, t]

)∣∣
∣∣∣∣

≤
∣∣∣∣

[bt]∑

j=1

[∣∣Z(∆j) ∩ Z ′[0, t]
∣∣−

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩

(
x+ Z ′[0, t]

)∣∣
]∣∣∣∣

+
∑

1≤j<k≤[bt]

∣∣Z(∆j) ∩ Z(∆k) ∩ Z ′[0, t]
∣∣

+
∑

1≤j<k≤[bt]

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩ Z(∆k) ∩

(
x+ Z ′[0, t]

)∣∣.(9.28)

We first take care of the last two terms. This is the easy step. Write

η(t, ε) =
∑

1≤j<k≤[bt]

∣∣Z(∆j) ∩ Z(∆k) ∩ Z ′[0, t]
∣∣(9.29)

+
∑

1≤j<k≤[bt]

∑

x∈Z2

qt,ε(x)
∣∣Z(∆j) ∩ Z(∆k) ∩

(
x+ Z ′[0, t]

)∣∣.

It follows from (7.2) that

(9.30) sup
t,j,k,x

E exp

{
c
(log t)3/2

√
t

∣∣Z(∆j) ∩ Z(∆k) ∩
(
x+ Z ′[0, t]

)∣∣1/2
}
<∞.
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for some c > 0. Hence, if bt = o
(
(log t)1/5

)
, then for any θ > 0 we can find

t0 <∞ such that

sup
t≥t0

E exp

{
θ

√
bt
t
(log t)η(t, ε)1/2

}(9.31)

≤ sup
t≥t0

sup
j,k,x

E exp

{
θ

√
bt
t
(log t)b2t

∣∣Z(∆j) ∩ Z(∆k) ∩
(
x+ Z ′[0, t]

)∣∣1/2
}

<∞.

Hence

(9.32) lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)η(t, ε)1/2

}
= 0.

To handle the first term on the right hand side of (9.28) set

(9.33) ξ(t, ε) =

[bt]∑

j=1

[∣∣Z(∆j)∩Z ′[0, t]
∣∣−
∑

x∈Z2

qt,ε(x)
∣∣Z(∆j)∩

(
x+Z ′[0, t]

)∣∣
]
.

Using Fubini, independence and then the Cauchy-Schwarz inequality we have

∣∣Eξm(t, ε)
∣∣ =

(9.34)

(2π)−2m

∣∣∣∣E
∫

([−π,π]2)m

( m∏

k=1

[
1 − q̂t,ε(λk)

])

×
[ m∏

k=1

∑

x′k∈Z′[0,t]

eiλk ·x′k
][ m∏

k=1

[bn]∑

j=1

∑

xk∈Z(∆j)

e−iλk·xk

]
dλ1 · · · dλm

∣∣∣∣

≤ (2π)−2m

{∫

([−π,π]2)m

( m∏

k=1

[
1 − q̂t,ε(λk)

])∣∣∣∣E
m∏

k=1

∑

xk∈Z[0,t]

eiλk ·xk

∣∣∣∣
2

dλ1 · · · dλm
}1/2

×
{∫

([−π,π]2)m

( m∏

k=1

[
1 − q̂t,ε(λk)

])∣∣∣∣E
m∏

k=1

[bt]∑

j=1

∑

xk∈Z(∆j)

eiλk ·xk

∣∣∣∣
2

dλ1 · · · dλm
}1/2

≤
{

E|Z[0, t] ∩ Z ′[0, t]|m
}1/2{

Eζm(t, ε)
}1/2

,
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where

(9.35) ζ(t, ε) =

[bt]∑

j,k=1

[∣∣Z(∆j)∩Z ′(∆k)
∣∣−
∑

x∈Z2

qt,ε(x)
∣∣Z(∆j)∩

(
x+Z ′(∆k)

)∣∣
]

and we have used the fact that 1 − q̂t,ε(λ) ≤ 1 in the last step. Note that in
the notation of (9.2), ζ(t, ε) = L with p(x) = qt,ε(x), so that by (9.4), for all
m ≥ 1

(9.36) Eζm(t, ε) ≥ 0.

Let δ > 0 be fixed for a while. By Cauchy-Schwarz and then (9.34)

E cosh
{
θ

√
bt
t
(log t)|ξ(t, ε)|1/2

}
(9.37)

=
∞∑

m=0

θ2m

(2m)!

(√bt
t
(log t)

)2m

E|ξm(t, ε)|

≤
∞∑

m=0

θ2m

(2m)!

(√bt
t
(log t)

)2m{
Eξ2m(t, ε)

}1/2

≤
{ ∞∑

m=0

(δθ)2m

(2m)!

(√bt
t
(log t)

)2m{
E|Z[0, t] ∩ Z ′[0, t]|2m

}1/2
}1/2

×
{ ∞∑

m=0

(δ−1θ)2m

(2m)!

(√bt
t
(log t)

)2m{
Eζ2m(t, ε)

}1/2
}1/2

≤
{ ∞∑

m=0

(δθ)m

m!

(√bt
t
(log t)

)m{
E|Z[0, t] ∩ Z ′[0, t]|m

}1/2
}1/2

×
{ ∞∑

m=0

(δ−1θ)m

m!

(√bt
t
(log t)

)m{
Eζm(t, ε)

}1/2
}1/2

,

where in the last step we used (9.36) and the fact that |Z[0, t]∩Z ′[0, t]| ≥ 0.

By [8, (2.11)], there is a C > 0 independent of δ and θ such that
(9.38)

lim
t→∞

1

bt
log

∞∑

m=0

(δθ)m

m!

(√bt
t
(log t)

)m{
E|Z[0, t] ∩ Z ′[0, t]|m

}1/2

= C(δθ)2.
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In addition, by Lemma 9.1

∑∞
m=0

(δ−1θ)m

m!

(√
bt
t
(log t)

)m{
Eζm(t, ε)

}1/2

(9.39)

≤
{∑∞

m=0
(δ−1θ)m

m!

(√
bt
t
(log t)

)m{
E|β(t, ε)|m

}1/2
}[bt]

,

where

(9.40) β(t, ε) =
∣∣Z[0, γt] ∩ Z ′[0, γt]

∣∣−
∑

x∈Z2

qt,ε(x)
∣∣Z[0, γt] ∩

(
x+ Z ′[0, γt])

∣∣.

Recall that qt,ε(x) is defined by (9.22) and γt = t/[bt]. As in the proof of
(9.23) we can check that

∑

x∈Z2

qt,ε(x)
∣∣Z[0, γt] ∩

(
x+ Z ′[0, γt])

∣∣ = Bγt,1,

see (8.2). By Lemma 8.1 (with t replaced by γt),

(9.41)
bt(log t)2

t
β(t, ε)

d−→ (2π)2 det(Γ)
[
α([0, 1]2) − αε([0, 1]2)

]
.

By Lemma 7.1 (with p = 2),

(9.42) E|β(t, ε)|m ≤ 2 sup
x

E
(0,x)|Z[0, γt]∩Z ′[0, γt]|m ≤ m!Cm

( t
bt

(log t)−2
)m
.

Hence,

limt→∞
∑∞

m=0
(δ−1θ)m

m!

(√
bt
t
(log t)

)m{
E|β(t, ε)|m

}1/2

(9.43)

=
∑∞

m=0
(δ−1θ)m

m!

(
(2π)

√
det(Γ)

)m{
E

∣∣∣α([0, 1]2) − αε([0, 1]2)
∣∣∣
m}1/2

.

So by (9.39) we have

lim supt→∞
1
bt

log
∑∞

m=0
(δ−1θ)m

m!

(√
bt
t
(log t)

)m{
Eζm(t, ε)

}1/2

(9.44)

≤ log
∑∞

m=0
(δ−1θ)m

m!

(
(2π)

√
det(Γ)

)m{
E

∣∣∣α([0, 1]2) − αε([0, 1]2)
∣∣∣
m}1/2

.
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By [25, Theorem 1, p.183],

(9.45) E

∣∣∣α([0, 1]2) − αε([0, 1]2)
∣∣∣
m

−→ 0 as ε → 0+,

for all m ≥ 1. In addition, by [7, (1.12)], there is a constant C > 0 such that

(9.46) E

∣∣∣α([0, 1]2) − αε([0, 1]2)
∣∣∣
m

≤ Eαm([0, 1]2) ≤ m!Cm

for all m ≥ 1. By dominated convergence, therefore,

(9.47)
∞∑

m=0

(δ−1θ)m

m!

(
(2π)

√
det(Γ)

)m{
E

∣∣∣α([0, 1]2) − αε([0, 1]2)
∣∣∣
m}1/2

−→ 1

as ε→ 0+. (Alternatively, this follows immediately from [10, (6.29)]). Thus

(9.48) lim
ε→0+

lim sup
t→∞

1

bt
log

∞∑

m=0

(δ−1θ)m

m!

(√bt
t
(log t)

)m{
Eζm(t, ε)

}1/2

= 0.

Summarizing what we have,

(9.49) lim sup
ε→0+

lim sup
t→∞

1

bt
log E cosh

{
θ

√
bt
t
(log t)|ξ(t, ε)|1/2

}
≤ C(δθ)2.

Letting δ → 0+ gives

(9.50) lim sup
ε→0+

lim sup
t→∞

1

bt
log E cosh

{
θ

√
bt
t
(log t)|ξ(t, ε)|1/2

}
= 0.

Since exp(x) ≤ 2 cosh(x) we see from (9.50) that

(9.51) lim sup
ε→0+

lim sup
t→∞

1

bt
log E exp

{
θ

√
bt
t
(log t)|ξ(t, ε)|1/2

}
= 0.

By (9.28) and (9.23) we have thus completed the proof of Lemma 7.8 when

j = 0. If in (7.22) with j = 0 we replace t by 2−jt, θ by 2−j/2θ, bt by b̃t =: b2jt

and ε by 2j/2ε, we obtain (7.22) for any j (compare the proof of (7.20)).
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10 Laws of the iterated logarithm

We first prove some lemmas in preparation for the proof of Theorem 1.6.
Define

ϕ̃j =
j

H(j)
, G̃j = (Rj − ϕ̃j)

(logn)2

n
,

and K = [log logn] + 1.

Lemma 10.1 There exists a constant c1 such that if A and B are positive
integers and C = A+B, then

|ϕ̃C − ϕ̃A − ϕ̃B| ≤ c1
(A ∧B)1/2

C1/2(logC)2
.

Proof. The cases when A or B equal 1 are easy, so we suppose A,B > 1.
Write

ϕ̃C − ϕ̃A − ϕ̃B =
C

H(C)

[
− A

C

H(C) −H(A)

H(A)
− B

C

H(C) −H(B)

H(B)
.
]

By (4.23) and (4.24), the right hand side is bounded in absolute value by

c2
C

logC

[
− A

C

logC − logA

logA
− B

C

logC − logB

logB

]
.

We now follow Lemma 4.2 of [5]. If 2 ≤ A ≤ C1/2, then logA ≥ 1
3

and

0 ≤ A

C

logC − logA

logA
≤ 3
(A
C

)1/2 1

logC

(logC)2

C1/4
≤ c3

logC

(A
C

)1/2

.

If C1/2 ≤ A ≤ C/2, then

0 ≤ A

C

logC − logA

logA
≤ 2

A

C

log(C/A)

logC
≤ c4

logC

(A
C

)1/2

.

If A ≥ C/2, then

0 ≤ A

C

logC − logA

logA
≤ c5

logA
| log(1 − (B/C))| ≤ c4

logC

(B
C

)1/2

.

We similarly bound (B/C)((logC − logB)/logB).
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Lemma 10.2 There exists λ0 such that if λ ≥ λ0, then

P(max
m≤n

Rm > λn log log logn/(log n)2) ≤ (log n)−2.

Proof. We first prove that there exists M > 0 not depending on n such that

(10.1) P

(
max
1≤j≤n

G̃j > M

)
≤ 1/2.

Let θj be the usual shift operators. Since Rn − Rm ≤ Rn−m ◦ θm, then by
Lemma 10.1

(10.2) G̃n − G̃m ≤ G̃n−m ◦ θm + c1

(m
n

∧ n−m

n

)1/2

.

By the Markov property, (5.1) and Theorem 5.4,

(10.3) E[(G̃j ◦ θm)2] = E
SmG̃2

j = EG̃2
j ≤ c2(j/n)2

( log n

log j

)4

≤ c3(j/n)3/2.

In particular

(10.4) EG̃2
j ≤ c3(j/n)3/2.

For each k let kj be the largest element of {[mn/2j ] : m ≤ 2j} that is less
than or equal to k. We have

G̃k = G̃k0 + (G̃k1 − G̃k0) + (G̃k2 − G̃k1) + · · · ,

where the sum is a finite sum. If maxk≤n G̃k ≥ M , then for some j ≥ 0

(10.5) G̃[(m+1)n/2j ] − G̃[mn/2j ] >
M

40(j + 1)2
for some m ≤ 2j.

Let I(m, j) = [(m+ 1)n/2j] − [mn/2j ]. If m ≤ 2j/8, then by (10.4)

P

(
G̃[(m+1)n/2j ] − G̃[mn/2j ] >

M

40(j + 1)2

)

≤ 3200(j + 1)4

M2
(EG̃2

[(m+1)n/2j ] + EG̃2
[mn/2j ])

≤ c4(j + 1)4(m/2j)3/2/M2

≤ c5/(2
5j/4M2).
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If m > 2j/8, then using (10.2)

G̃[(m+1)n/2j ] − G̃[mn/2j ] ≤ G̃I(m,j) ◦ θ[mn/2j ] + c1(m+ 1)−1/2

≤ G̃I(m,j) ◦ θ[mn/2j ] +
M

80(j + 1)2

if M is large enough. In this case, using (10.3),

P(G̃[(m+1)n/2j ] − G̃[mn/2j ] >
M

40(j + 1)2
)

≤ P(G̃I(m,j) ◦ θ[mn/2j ] >
M

80(j + 1)2
)

≤ c6
(j + 1)4

M2

1

23j/2

≤ c7/(2
5j/4M2).

We thus have

P(max
j≤n

G̃j > M) ≤
∞∑

j=0

2j∑

m=1

P(G̃[(m+1)n/2j ] − G̃[mn/2j ] >
M

40(j + 1)2
)

≤
∞∑

j=0

c8
2j

M2

1

25j/4

≤ c8
M2

≤ 1

2

if M is large enough.

We next prove there exists c9 and c10 such that

(10.6) E

[
exp

(
c9 max

1≤j≤n
G̃j

)]
≤ c10.

Note that by (10.2), we have

(10.7) G̃n − G̃m ≤ G̃n−m ◦ θm + c11.

Now, choose c12 large so that c12/2 > c11 and

(10.8) P( max
1≤j≤n

G̃j > (c12/2) − c11) < 1/2 for all n ≥ 1,
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which is possible by (10.1). Let Tk = min{j : G̃j > c12k}. Then

P(max
j≤n

G̃j > c12(k + 1)) = P(Tk+1 ≤ n)

≤ P(Tk ≤ n, max
Tk≤j≤n

(G̃j − G̃Tk
) > c12/2)

= E[P( max
Tk≤j≤n

(G̃j − G̃Tk
) > c12/2|FTk

);Tk ≤ n]

≤ E[P(max
j≤n

G̃j > (c12/2) − c11);Tk ≤ n]

≤ 1

2
P(Tk ≤ n),

where the second inequality follows by (10.7) and the third inequality by
(10.8). By induction we obtain P(Tk ≤ n) ≤ 2−n, which yields (10.6).

Let
Cj = max

[jn/K]≤i<[(j+1)n/K]
[Ri −R[jn/K] − ζϕ̃i−[jn/K]]

and

Dj =
Cj

(n/K)/(log(n/K))2
,

where ζ = 2π
√

det Γ. By (10.6) there exist c13, c14 such that Eec13Dj ≤ c14.
Moreover, the Dj are independent. Let

eK,n = |ϕ̃n −Kϕ̃[n/K]|/(n/(logn)2).

An elementary computation shows that

eK,n ≤ c15 logK.

Since

max
m≤n

(Rm − ζϕ̃m)

n/(log n)2
≤ c16

K

K∑

j=1

Dj + ζeK,n
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for A ≥ 2c15ζ , we have

P(max
m≤n

Rm − ζϕ̃m
n/(log n)2

> A logK) ≤ P(
c16
K

K∑

j=1

Dj > A logK − ζeK,n)

≤ P(
K∑

j=1

Dj > AK(logK)/(2c16))

≤ e−c15AK(logK)/(2c16)
Eec15

P
Dj

≤ e−c17AK(logK)/2cK17
≤ e−c17AK(logK)/2

if K is large enough.

So
P(max

m≤n
G̃m > A log log logn) ≤ (log n)−2

if A is large enough. By (5.1) and (4.23), we see that

max
m≤n

|Rm − (Rm − ϕ̃m)| ≤ c18
n

(logn)2
= o(n log log log n/(logn)2),

and our result now follows immediately.

Proof of Theorem 1.6: Let ξ = 2π
√

det Γ. We begin with the upper
bound. Let η, ε > 0 be small and let q > 1 be very close to 1. Let ti = [qi].
If

Ai =
{
Rti ≥ (1 + η)ξti log log log ti/(log ti)

2
}
,

then it follows from Theorem 1.1 that
∑

i P(Ai) < ∞, and so by Borel-
Cantelli, P(Ai i.o.) = 0.

Next, if λ is sufficiently large,

(10.9) P(max
m≤n

Rm > λn log log logn/(log n)2) ≤ (log n)−2;

by Lemma 10.2. Let

Bi =

{
max

ti≤k≤ti+1

[Rk − Rti ] > εti log log log ti/ log2 ti

}
.
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By subadditivity Rk −Rti ≤ Rk−ti ◦ θti , where θti is the usual shift operator
of Markov theory. By Lemma 10.1

(10.10) ERk − ERti ≥ ERk−ti − c
ti

log2 ti
.

So by the Markov property, and using the fact that the P
x law of Rk−ti does

not depend on x, for i large

P(Bi)(10.11)

= P( max
ti≤k≤ti+1

[Rk − Rti − (ERk − ERti)] > εti log log log ti/ log2 ti)

≤ P( max
ti≤k≤ti+1

[Rk −Rti − ERk−ti ] + c
ti

log2 ti
> εti log log log ti/ log2 ti)

≤ P
Sti ( max

ti≤k≤ti+1

[Rk−ti] > εti log log log ti/ log2 ti − c
ti

log2 ti
)

≤ P( max
k≤ti+1−ti

Rk ≥ ε
2
ti log log log ti/(log ti)

2).

If q is sufficiently small, then
∑

i P(Bi) will be summable by (10.9). So with
probability one, for i large enough

max
k≤ti+1

Rk ≤ ((1 + η)ξ + ε)qti log log log ti/(log ti)
2.

Since η and ε are arbitrary, and we can take q as close to 1 as we like, this
implies the upper bound.

Let η > 0, ti = [exp(i1+
η
2 )], Vi = #S((ti, ti+1]), and set

Ci =
{
V i > (1 − η)ξ(ti+1 − ti) log log log(ti+1 − ti)/(log(ti+1 − ti))

2
}
.

Note that the events Ci are independent. By Theorem 1.1 and Borel-Cantelli,
P(Ci i.o.) = 1. Note

(ti+1 − ti) log log log(ti+1 − ti)

(log(ti+1 − ti))2
=
ti+1 log log log ti+1

(log ti+1)2

(
1 + o(1)

)
.

Also

|Vi − Rti+1
| + |EVi − ERti+1

| ≤ 2ti = o
(ti+1 log log log ti+1

(log ti+1)2

)
.
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Therefore with probability one, infinitely often

Rti+1
>
(
1 − η

2

)
ξti+1 log log log ti+1/(log ti+1).

This proves the lower bound.

We now turn to the LIL for −Rn. First we prove

Lemma 10.3 Let ε > 0. There exists q0(ε) such that if 1 < q < q0(ε), then

P( max
[q−1n]≤k≤n

(Rn −Rk) > εn log log n/(log n)2) ≤ 1

(log n)2

for n large.

Proof. Let

Gk = (Rn − Rk)
(log n)2

n
.

Let

Ai =

{
[q−1n] +

[nℓ
2i

]
: ℓ ∈ Z+

}
∩ [0, n], i ≤ log2 n+ 1.

Given k, let ki = max{j ∈ Ai : j ≤ k}. We write

Gk = Gk1 + (Gk2 −Gk1) + (Gk3 −Gk2) + · · · ,

where the sum is actually a finite one. If Gk > ε log logn for some [q−1n] ≤
k ≤ n, then either

(10.12) G[q−1n] >
ε
2
log log n

or for some i there exist consecutive elements ℓ,m of Ai such that

(10.13) Gm −Gℓ >
ε

10i2
log logn.

By subadditivity Rn − Rk ≤ Rn−k ◦ θk for k ≤ n, while by Lemma 10.1

ERn − ERk ≥ ERn−k − c1(1 − q−1)1/2 n

(logn)2
.

91



Then setting k = [q−1n],

P(G[q−1n] >
ε
2
log log n)

= P

(
(Rn − Rk)

(log n)2

n
− (ERn − ERk)

(logn)2

n
> ε

2
log logn

)

≤ P
Sk

(
Rn−k

(log n)2

n
− ERn−k

(logn)2

n
+ c1(1 − q−1)1/2 > ε

2
log logn

)
.

Using the fact that the P
x law of Rn−k does not depend on x, this is the same

as

P

( Rn−k
(n− k)/(log(n− k))2

>
n

n− k

(log(n− k))

(log n)2

(
ε
2
log log n−c1(1−q−1)1/2

))
.

If q > 1 is close enough to 1 and n is large enough, by Theorem 1.5 this is
bounded by

(10.14) c2 exp
(
− c3

ε

2

1

1 − q−1
log log n

)
≤ 1

2(log n)2
.

This bounds the probability of the event described in (10.12).

Similarly, Rm − Rℓ ≤ Rm−ℓ ◦ θℓ and by Lemma 10.1

ERm − ERℓ ≥ ERm−ℓ − c1

(m− ℓ

n

)1/2 n

(log n)2
.

So if ℓ and m are consecutive elements of Ai, similarly to (10.14) we obtain
(10.15)

P

(
Gm −Gℓ ≥

ε

10i2
log logn

)
≤ P

( Rm−ℓ
n/(log n)2

≥ ε

10i2
log logn− c12

−i/2
)
.

For n large, c12
−i/2 ≤ ε

20i2
log log n for all i and n/(m−ℓ) = 2i, so by Theorem

1.5 the left hand side of (10.15) is less than

P

( Rm−ℓ
(m− ℓ)/(log(m− ℓ))2

≥ ε

40i2
n

m− ℓ
log log n

)
≤ c2 exp

(
−c3

log log n

40i2
2i
)
.

There are at most 2i+1 such pairs ℓ,m, so

wi := P(for some consecutive elements ℓ,m ∈ Ai : Gm −Gℓ >
ε

10i2
log log n)

≤ c22
i+1 exp

(
− c3

log logn

40i2
2i
)
.
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Since c32
i/40i2 > 2(i+ 1) log 2 for i large, then for n large enough

wi ≤ c2 exp
(
− c3

2i log logn

40i2

)
.

So then ∞∑

i=1

wi ≤
1

2(logn)2

for large n, and this bounds the event that for some i there exist consecutive
elements ℓ,m of Ai such that (10.13) holds. Combining with the bound for
(10.12), the result follows.

Proof of Theorem 1.7: Let

Θ = (2π)2 det(Γ)−1/2κ(2, 2)−4.

Upper bound. Let η, ε > 0 and choose q ∈ (1, q0(ε)) where q0(ε) is as in
Lemma 10.3. Let ti = [qi]. If

Ai =

{
−Rti > (1 + η)Θ−1 ti log log ti

(log ti)2

}
,

then by Theorem 1.5,
∑

i P(Ai) <∞, and hence by Borel-Cantelli, P(Ai i.o.)
= 0. Let

Bi =

{
max

ti≤k≤ti+1

(Rti+1
−Rk) > ε

ti+1 log log ti+1

(log ti+1)2

}
.

By Lemma 10.3,
∑

i P(Bi) <∞, and again P(Bi i.o.) = 0. So with probabil-
ity one, for k large we have ti ≤ k ≤ ti+1 for some i large, and then

−Rk = −Rti+1
+ (Rti+1

−Rk)

≤ Θ−1(1 + η)
ti+1 log log ti+1

(log ti+1)2
+ ε

ti+1 log log ti+1

(log ti+1)2

≤ q(Θ−1(1 + 2η) + 2ε)
k log log k

(log k)2
.

Since ε, η can be made as small as we like and we can take q as close to 1 as
we like, this gives the upper bound.
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Lower bound. Let η > 0, ti = [exp(i1+
η
2 )], Vi = #S((ti, ti+1]). Let

Ci =

{
−V i ≥ Θ−1(1 − η)

(ti+1 − ti) log log(ti+1 − ti)

(log(ti+1 − ti))2

}
.

By Theorem 1.5,
∑

i P(Ci) = ∞. The Ci are independent, and so by Borel-
Cantelli, P(Ci i.o.) = 1.

Since Rti+1
≤ Vi +Rti and ERti+1

≥ EVi, then

−Rti+1
≥ −V i −Rti .

Now

Rti ≤ ti = o
(ti+1 log log ti+1

(log ti+1)2

)

and
(ti+1 − ti) log log(ti+1 − ti)

(log(ti+1 − ti))2
∼ ti+1 log log ti+1

(log ti+1)2
,

so

−Rti+1
≥ Θ−1(1 − 2η)

ti+1 log log ti+1

(log ti+1)2
, i.o.

This implies the lower bound.
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Math. Phys. 104 (1986) 471–507.

25. J.-F. LeGall. Some properties of planar Brownian motion, Ecole d’été de
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