
METHODS AND APPLICATIONS OF ANALYSIS. c© 2002 International Press
Vol. 9, No. 3, pp. 377–392, September 2002 003

LIMITING BEHAVIORS FOR BROWNIAN MOTION REFLECTED

ON BROWNIAN MOTION ∗

XIA CHEN† AND WENBO V. LI‡

Abstract. Suppose that g(t) and Wt are independent Brownian motions starting from g(0) =
W0 = 0. Consider the Brownian motion Yt reflected on g(t), obtained from Wt by the means of
the Skorohod lemma. The upper and lower limiting behaviors of Yt are presented. The upper tail
estimate on exit time is computed via principal eigenvalue.

1. Introduction. Brownian motion reflected on Brownian motion appeared in
recent papers by Soucaliuc, Toth and Werner (2000), Burdzy, Chen and Sylvester
(2000) and Burdzy and Nualart (2002) in their study of reflected Bronian motion and
corresponding heat equation in domains with space-time boundaries. In this paper,
we study the upper and lower limiting behaviors of Brownian Motion reflected on
Brownian Motion. Our starting point is the following beautiful result of Burdzy and
Nualart (2002).

Suppose that g(t) and Wt are independent real Brownian motions starting from
g(0) = W0 = 0. Consider the Brownian motion Yt reflected on g(t), obtained from
Wt by the mean of the Skorohod lemma. Here g should be thought of as a “fixed
Brownian path.” Then

−Yt = (Wt + Ct)/
√

2, t ≥ 0

where Ct is a 3-dimensional Bessel process independent of Wt and starting from 0. A
process with the same distribution as {(Wt + Ct)/

√
2, t ≥ 0} is called a BMB-process

in Burdzy and Nualart (2002) and many useful properties are given.
The main goal of this paper is to present some “global” results for BMB-process

and a natural generalization. Namely

Theorem 1.1. Let X(t), X(0) = 0, be a d-dimensional (d ≥ 1) Bessel process
independent of W . Then

lim sup
t→∞

1√
t log log t

(
W (t) + X(t)

)
= 2 a.s. (1.1)

lim inf
t→∞

1√
t log log t

(
W (t) + X(t)

)
= −

√
2 a.s. (1.2)

and for d 6= 2

lim inf
t→∞

√
log log t

t
sup
s≤t

∣∣W (s) + X(s)
∣∣ =

π

2
a.s. (1.3)

In particular, we have for Yt, Brownian motion reflected on Brownian motion,

lim inf
t→∞

1√
t log log t

Y (t) = −
√

2 a.s. (1.4)
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lim sup
t→∞

1√
t log log t

Y (t) = 1 a.s. (1.5)

and

lim inf
t→∞

√
log log t

t
sup
s≤t

∣∣Y (s)
∣∣ =

π√
8

a.s. (1.6)

It is interesting to see that the behaviors in (1.4) and (1.6) for Y is exactly the
same as those for W . Furthermore, due to the time reversibility, their behaviors near
time zero are also the same.

Next we outline some of the tools we used. As it can be seen in the next section,
the main part of this work is to estimate the upper tail of the exit time from a suitable
domain. The approach we follow is to reduce our problem to the principal eigenvalue
of the Markov process (W (t), X(t)) killed upon the exit from the domain. This ap-
proach has been effectively utilized by Donsker and Varadhan (1975-1983) in their
fundamental work on Large deviations for Markov processes and its applications, and
by Pinsky (1985, 1995) and Rémillard (1994) in various problems involving estimates
of exponential type. In Donsker and Varadhan (1975), the principal eigenvalue is rep-
resented in terms of the I-function in large deviation theory. In Berestycki, Nirenberg
and Varadhan (1994), the existence of the principal eigenvalue is discussed in general
setting. Our results require exact evaluation of the principal eigenvalue, which is be-
yond the general theory. Fortunately, the generators we deal with are self-adjoint, in
which case the principal eigenvalue can be written as a computable quadratic vari-
ation. Some techniques we use here are partially inspired by the work of Rémillard
(1994). To be more precise, we state our main probability estimate.

Theorem 1.2. Let W and X be given as in Theorem 1.1. Then for d 6= 2,

lim
t→∞

1

t
log P

{
sup
s≤t

|W (s) − X(s)| ≤ 1
}

= −π2

4
. (1.7)

Note that sups≤t |W (s) − X(s)| and sups≤t |W (s) + X(s)| have the same distri-
bution and we use minus sign for convenience in our proofs. Furthermore, as it can
be seen in the next section, we have the variation formula in the case d = 2, but could
not evaluate it explicitly. We strongly believe that both (1.3) and (1.7) hold for d = 2.

There are two ways to view the estimate in (1.7). The first can be stated as

lim
t→∞

1

t
log P

{
τΓ ≥ t

}
= −π2

4
(1.8)

where τΓ is the first exit time of (d + 1)-dimensional Brownian motion from the
unbounded domain

Γ = {(x, y) ∈ R
d × R : −1 < y − |x|2 < 1}. (1.9)

In this setup, the generator is the half Laplacian on R
d+1 and the domain is the part

between two parallel right corns. Our approaches detailed in the next section work in
this setting as d = 1. Other related interesting problems and techniques on the first
exit times of higher dimensional Brownian motion from unbounded domains can be
found in Bañuelos, DeBlassie and Smits (2001), Li (2002).
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The second way can be stated as

lim
t→∞

1

t
log P

{
τG ≥ t

}
= −π2

4
(1.10)

where τG is the first exit time of the diffusion process (X(t),W (t)) from the unbounded
domain

G = {(x, y) ∈ R
+ × R : |y − x| < 1}. (1.11)

As d ≥ 2, the generator is

Lf(x, y) =
1

2
4f(x, y) +

d − 1

2x

∂

∂x
f(x, y), (x, y) ∈ R

+ × R. (1.12)

These are two ways we handle the problem in the next section.
Next we make some simple observations. We assume throughout this paper that

W (t),Wj(t), j = 1, 2, · · · d are independent standard Brownian motions and thus we
can use the representation

X(t) =




d∑

j=1

Wj(t)
2




1/2

= |Bd(t)|2

where Bd(t) = (W1(t), · · · ,Wd(t)) ∈ R
d is the standard d-dimensional Brownian

motion. It is well known and follows from rotation invariant that as process,

{(W (t),W1(t)) : t ≥ 0} =

{(
W (t) + W1(t)√

2
,
W (t) − W1(t)√

2

)
: t ≥ 0

}

in law and thus as process,

{W (t) + |W1(t)| : t ≥ 0} = {
√

2 max(W (t),W1(t)) : t ≥ 0}

in law by using 2max(a, b) = a + b + |a − b|. This allows us to obtain the following
sharp lower bound in the case d = 1:

P

(
sup

0≤s≤t
|W (s) + |W1(s)|| ≤ 1

)

= P

(√
2 sup

0≤s≤t
|max(W (s),W1(s))| ≤ 1

)

≥ P

(
−1 ≤

√
2W (s) ≤ 1,

√
2W1(s) ≤ 1∀0 ≤ s ≤ t

)

= P

(√
2 sup

0≤s≤t
|W (s)| ≤ 1

)
· P

(√
2 sup

0≤s≤t
W1(s) ≤ 1

)
.

For d ≥ 1, an easy upper and lower bounds for the probability estimate in Theorem
1.2 can be found by using the well known estimates

lim
t→∞

1

t
log P

(
sup

0≤s≤t
X(s) ≤ 1

)
= −j2

ν/2 (1.13)

where jν is the smallest positive zero of the Bessel function Jν , ν = (d − 2)/2, and
j−1/2 = π/2. The above estimate can be obtained either from the exact distribu-
tion result due to Ciesielski and Taylor (1962) or from a general principle eigenvalue
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approach detailed in Donsker and Varadhan (1976). Now by using the simple fact
that

P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
≤ P

(
sup

0≤s≤t
|W (s)| ≤ 1

)

via Anderson’s inequality, and

P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
≥ P

(
sup

0≤s≤t
|W (s)| ≤ λ

)
· P

(
sup

0≤s≤t
|X(s)| ≤ 1 − λ

)

for λ = j
2/3
−1/2/(j

2/3
−1/2 + j

2/3
ν ), we have

−(j
2/3
−1/2 + j2/3

ν )3/2 ≤ lim
t→∞

1

t
log P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
≤ −j2

−1/2/2 = −π2/8.

In particular, combining the above estimate with Theroem 1.2, we see that for −1 <
ν < −1/2, jν ≥ (21/3 − 1)3/2J−1/2 = (21/3 − 1)3/2π/2.

Finally, we mention the following heuristic argument which is suggestive but seems
impossible to produce a rigorous upper or lower bound. We observe that for fixed
s ≥ 0,

W (s) + X(s) = W (s) + sup
|x|2=1

d∑

j=1

xjWj(s) = sup
|x|2=1


W (s) +

d∑

j=1

xjWj(s)




and for fixed x ∈ R
d with |x|2 = 1,

W (s) +

d∑

j=1

xjWj(s) =
√

1 + |x|22Ŵ (s) =
√

2Ŵ (s)

in distribution where Ŵ is a standard Brownian motion. Jointly, our Theorem 1.2
implies

lim
t→∞

1

t
log P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
= lim

t→∞

1

t
log P

(
sup

0≤s≤t
|
√

2W (s)| ≤ 1

)
= −π2

4

where the last equality follows from (1.13).
The rest of the paper is organized as follows. In Section 2, we present the proof

of Theorem 1.2 viewed as the large deviations of the first exit time of the diffusion
process (X(t),W (t)) from the unbounded domain G in the case d ≥ 2, and the
diffusion process (W1(t),W (t)) from the unbounded domain Γ in the case d = 1.
They are necessary for the proofs of Theorem 1.1 and important in their own. In
Section 3, we give the proof of Theorem 1.1 which also requires some large deviation
estimates.

2. The first exit time and principal eigenvalue. Recall that G is given in
(1.11). We now prove that

lim
t→∞

1

t
log P

{
max
s≤t

|W (s) − X(s)| < 1
}

= −1

2
inf

|f |π=1, f∈C∞
0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy

(2.1)
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where, by the notations we shall introduce below, C∞
0 (G) is the class of continuous

functions f(x, y) on Ḡ which are infinitely differentiable and f(x, y) = 0 if y−x = ±1.
We first deal with the case d ≥ 2. Consider the diffusion process (X(t),W (t))

with state space R+ × R and generator given in (1.12). It is easy to see that as a
linear operator on the Hilbert space L2(R+ × R, π), L is self adjoint, where π is the
measure on R+ × R given by

π(dx, dy) = xd−1dxdy

and

< Lf, f >π= −1

2

∫

R+×R

|∇f(x, y)|2xd−1dxdy

if f is smooth enough. Write

|f |π =

(∫

R+×R

f2(x, y)xd−1dxdy

)1/2

.

For an open domain D (with respect to the relative Euclidian topology on R+×R)
in the space R+ × R we define

τD = inf{t ≥ 0; (X(t),W (t)) 6∈ D}.

Define the semigroup Tt (t ≥ 0) by

Ttf(x, y) = E (x,y)

(
f(X(t),W (t))I{τD≥t}

)
.

Note that P(x,y){τD = 0} = 0 for each (x, y) ∈ D. We have T0 = id. Let C∞
0 (D) be the

class of of functions f continuous on D̄, infinitely differentiable in D and f(∂D) = 0.
Notice that R+ × R is a whole space in our setting. In other words a open set D
in R+ × R may contain the vertical line segment {(x, y); x = 0 and − 1 < y < 1},
in which case the line segment should not be viewed as a part of ∂D. By a trivial
extension, all functions f in C∞

0 (D) can be viewed as the functions defined on R+×R

with f = 0 outside D. For each f ∈ C∞
0 (D),

f(XτD∧t,WτD∧t) −
∫ τD∧t

0

Lf(X(s),W (s))ds

is a martingale. Hence, using the fact that f(∂D) = 0,

1

t

(
Ttf(x, y) − f(x, y)

)
=

1

t

∫ t

0

E (x,y)

(
Lf(X(s),W (s))I{τD≥s}

)
ds −→ Lf(x, y)

as t → 0 and (x, y) ∈ D. Thus the generator LD of Tt coincides with L on C∞
0 (D).

Since C∞
0 (D) is a core we have Tt = etLD on C∞

0 (D).
To prove the lower bound we need only to show

lim inf
t→∞

1

t
log P

{
sup
s≤t

|W (s) − X(s)| < 1
}
≥ −1

2

∫

G

|∇f(x, y)|2xd−1dxdy (2.2)

for every f ∈ C∞
0 (G) with |f |π = 1 and K = support(f) ⊂ G being compact.
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We fix an open domain D in R+ × R with compact closure such that K ⊂ D ⊂
D̄ ⊂ G. and (0, 0) ∈ D. Let pD

(
t; (x, y)

)
be the density (with respect to the Lebesgue

measure) of the measure

µ(A) = P{τD ≥ t; (X(t),W (t)) ∈ A}.

Then combining results of Azencott (1984) and Leandre (1987, e.g. Theorem 11.3),
we have
inf(x,y)∈K pD

(
to; (x, y)

)
> 0 for some to > 0, see also Stroock and Varadhan (1979).

By Markov property, for t ≥ to, and every f as above

P{τD ≥ t} = E (0,0)

[
I{τD≥to}P(X(to),W (to)){τD ≥ t − to}

]

=

∫
P(x,y){τD ≥ t − to}pD

(
to, (x, y)

)
dxdy

≥ |f |−1
∞ sup{xd−1; (x, y) ∈ K}−1 inf

(x,y)∈K
pD

(
to, (x, y)

) ∫
f(x, y)P(x,y){τD ≥ t − to}xd−1dxdy

≥ |f |−2
∞ sup{xd−1; (x, y) ∈ K}−1 inf

(x,y)∈K
pD

(
to, (x, y)

) ∫
fTt−to

fxd−1dxdy

= c

∫
fe(t−to)LDfxd−1dxdy = c < f, e(t−to)LDf >π

where the third step follows from

P(x,y){τD ≥ t − to} = E (x,y)

(
I{τD≥t−to}

)

≥ |f |−1
∞ E (x,y)

(
f(Xt,Wt)I{τD≥t−to}

)
= |f |−1

∞ Tt−to
f(x, y)

and the constant c does not depend on t.
We now consider the spectral structure of the self adjoint operator LD. By

Jensen’s inequality

< f, e(t−to)LDf >π=

∫ 0

−∞

e(t−to)λEf (dλ) ≥ exp
{

(t − to)

∫ 0

−∞

λEf (dλ)
}

= exp
{

(t − to) < LDf, f >π

}
= exp

{
− (t − to)

1

2

∫

G

|∇f(x, y)|2xd−1dxdy
}

Here we have used the fact that the spectral measure Ef (dλ) is a probability measure
due to

∫ 0

−∞

Ef (dλ) = |f |2π = 1.

Hence (2.1) holds.

On the other hand, using the fact that P
{

maxs≤t X(s) ≥ t2} ≤ e−δt2 for any
δ > 0 and t large, we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s) − X(s)| < 1
}
≤ lim sup

t→∞

1

t
log P

{
τDt

≥ t
}

where Dt = {(x, y) ∈ R+ × R : 0 ≤ x < t2 and |y − x| < 1}.
Next we observe

P
{
τDt

≥ t
}

= E (0,0)

[
I{τDt

≥1}P(X(1),W (1)){τDt
≥ t − 1}

]
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≤ E (0,0)

[
I{((X(1),W (1))∈Dt}P(X(1),W (1)){τDt

≥ t − 1}
]

= C

∫

Dt

P(x,y){τDt
≥ t − 1}xd−1 exp

{
− x2 + y2

2

}
dxdy

≤ C

∫

Dt

P(x,y){τDt
≥ t − 1}xd−1dxdy.

Given ε > 0, let Dε
t be the ε-neighborhood of Dt in R+×R and choose a f0 ∈ C∞

0 (Dε
t)

such that f0 ≥ 0 is bounded and f0 ≥ 1 in Dt. Then
∫

Dt

P(x,y){τDt
≥ t − 1}xd−1dxdy

≤
∫

Dt

f0(x, y)E (x,y)

[
f0

(
X(t − 1),W (t − 1)

)
I{τDt

≥t−1}

]
xd−1dxdy

≤
∫

Dε

t

f0(x, y)E (x,y)

[
f0

(
X(t − 1),W (t − 1)

)
I{τDε

t
≥t−1}

]
xd−1dxdy

= < f0, e
(t−1)LDε

t f0 >π≤ |f0|2π exp
{

(t − 1) sup
|f |π=1, f∈C∞

0 (Dε

t
)

< f,LDε

t
f >π

}

≤ C1t
2 exp

{
− (t − 1)

1

2
inf

|f |π=1, f∈C∞
0 (Dε

t
)

∫

Dε

t

|∇f(x, y)|2xd−1dxdy
}

≤ C1t
2 exp

{
− (t − 1)

1

2
inf

|f |π=1, f∈C∞
0 (Gε)

∫

Gε

|∇f(x, y)|2xd−1dxdy
}
.

Hence we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s) − X(s)| < 1
}

≤ −1

2
inf

|f |π=1, f∈C∞
0 (Gε)

∫

Gε

|∇f(x, y)|2xd−1dxdy.

Letting ε −→ 0 we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}
≤ −1

2
inf

|f |π=1, f∈C∞
0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy.

(2.3)

Therefore, (2.1) follows from (2.2) and (2.3).

The case d = 1 is slightly different since the operator given by (1.12) is no longer
the generator of (X(t),W (t)) (p.416, Revuz-Yor (1991)). In this case one can write
X(t) = |W1(t)| where W1(t) is another 1-dimensional Brownian motion independent
of W (t). Notice that the two dimensional Brownian motion (W1(t),W (t)) has (1/2)∆
as its generator. By the argument we proceed in the case d ≥ 2,

lim
t→∞

1

t
log P

{
max
s≤t

|W (s) − X(s)| < 1
}

= −1

2
inf

|f |π=1, f∈C∞
0 (Γ)

∫

Γ

|∇f(x, y)|2dxdy

where Γ is given by (1.9) (with d = 1, of course). A simple argument shows that the
infimum can be taken only for those f ∈ C∞

0 (G1) satisfying f(−x, y) = f(x, y) for all
(x, y) ∈ Γ. Therefore,

inf
|f |π=1, f∈C∞

0 (G1)

∫

Γ

|∇f(x, y)|2dxdy = inf
|f |π=1, f∈C∞

0 (G)

∫

G

|∇f(x, y)|2dxdy
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Hence (2.1) remains valid in the case d = 1.

It remains to show that

inf
|f |π=1, f∈C∞

0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy =
π2

2
. (2.4)

Given a ε > 0, we take

fε(x, y) = Cεe
−εx cos

π

2
(y − x)

where the constant Cε > 0 is determined by |fε|π = 1. One can easily check that

∫

G

|∇fε(x, y)|2xd−1dxdy =
π2

2
+ ε2

by using |fε|2π = 1. Since ε is arbitrary, we have proved

inf
|f |π=1, f∈C∞

0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy ≤ π2

2
. (2.5)

On the other hand, by the substitution g(x, y) = x(d−1)/2f(x, y) we have that for
each f ∈ C∞

0 (G),

|∇f(x, y)|2 = x−(d−1)|∇g(x, y)|2+(d − 1)2

4
x−(d+1)g2(x, y)−(d−1)x−dg(x, y)

∂

∂x
g(x, y).

For d ≥ 3, we have by definition of g that limx→0+ x−1g2(x, y) = 0. Note that

∫

G

x−1g(x, y)
∂

∂x
g(x, y)dxdy

=

∫ 1

−1

dy

∫ y+1

0

x−1g(x, y)
∂

∂x
g(x, y)dx +

∫ ∞

1

dy

∫ y+1

y−1

x−1g(x, y)
∂

∂x
g(x, y)dx.

By using integration by parts we see that

∫ y+1

0

x−1g(x, y)
∂

∂x
g(x, y)dx

=
1

2
x−1g2(x, y)

∣∣∣
x=y+1

x=0
+

1

2

∫ y+1

0

x−2g2(x, y)dx

=
1

2

∫ y+1

0

x−2g2(x, y)dx.

Similarly,

∫ y+1

y−1

x−1g(x, y)
∂

∂x
g(x, y)dx =

1

2

∫ y+1

y−1

x−2g2(x, y)dx.

Therefore,

∫

G

x−1g(x, y)
∂

∂x
g(x, y)dxdy =

1

2

∫

G

x−2g2(x, y)dxdy.
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Combining above calculation together, we have
∫

G

|∇f(x, y)|2xd−1dxdy

=

∫

G

|∇g(x, y)|2dxdy +
(d − 1)2

4

∫

G

x−2g2(x, y)dxdy − (d − 1)

∫

G

x−1g(x, y)
∂

∂x
g(x, y)dxdy

=

∫

G

|∇g(x, y)|2dxdy +
( (d − 1)2

4
− d − 1

2

) ∫

G

x−2g2(x, y)dxdy.

And thus for d ≥ 3,
∫

G

|∇f(x, y)|2xd−1dxdy ≥
∫

G

|∇g(x, y)|2dxdy.

Hence we obtain

inf
|f |π=1, f∈C∞

0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy

≥ inf
{ ∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫

G

g2(x, y)dxdy = 1
}

. (2.6)

In the case d = 1, (2.6) is automatically holds with equality.
Next we consider the problem over a larger domain with some symmetry. Let

G̃ = {(x, y) ∈ R2; |y − x| < 1}. By symmetry between x and y,

inf
{ ∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫

G

g2(x, y)dxdy = 1
}

= inf
{ ∫

G̃

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G̃) and

∫

G̃

g2(x, y)dxdy = 1
}

≥ 2 inf
{ ∫

G̃

( ∂

∂x
g(x, y)

)2

dxdy; g ∈ C∞
0 (G̃) and

∫

G̃

g2(x, y)dxdy = 1
}

= 2 inf
{ ∫ ∞

−∞

dy

∫ y+1

y−1

( ∂

∂x
g(x, y)

)2

dx; g ∈ C∞
0 (G̃) and

∫

G̃

g2(x, y)dxdy = 1
}

(2.7)

where the first equality in (2.7) needs to be justified. Let

G′ = {(x, y) ∈ R2; (−x,−y) ∈ G}.

Then for each g ∈ C∞
0 (G̃)

∫

G̃

|∇g(x, y)|2dxdy

=

∫

G

|∇g(x, y)|2dxdy +

∫

G′

|∇g(x, y)|2dxdy

=

∫

G

|∇g(x, y)|2dxdy +

∫

G

|∇ḡ(x, y)|2dxdy

where ḡ(x, y) = g(−x,−y). Clearly, ḡ ∈ C∞
0 (G). Let

λG = inf
{ ∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫

G

g2(x, y)dxdy = 1
}

.
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Then
∫

G

|∇g(x, y)|2dxdy ≥ λG

∫

G

g2(x, y)dxdy

for every g ∈ C∞
0 (G). Therefore,

∫

G̃

|∇g(x, y)|2dxdy ≥ λG

{ ∫

G

g2(x, y)dxdy +

∫

G

ḡ2(x, y)dxdy

}

= λG

{ ∫

G

g2(x, y)dxdy +

∫

G′

g2(x, y)dxdy

}
= λG

if
∫

G̃
g2(x, y)dxdy = 1.

On the other hand, if g ∈ C∞
0 (G) and

∫
G

g2(x, y)dxdy = 1 satisfies

∫

G

|∇g(x, y)|2dxdy < ε + λG

we define g̃(x, y) ∈ C∞
0 (G̃) by g̃(x, y) = g(x, y)/

√
2 if (x, y) ∈ G and g̃(x, y) =

g(−x,−y)/
√

2 if (x, y) ∈ G′. Then
∫

G̃

g2(x, y)dxdy = 1

and
∫

G̃

|∇g̃(x, y)|2dxdy =

∫

G

|∇g(x, y)|2dxdy < ε + λG.

So

inf
{ ∫

G̃

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G̃) and

∫

G̃

g2(x, y)dxdy = 1
}
≤ λG

and we finish the justification of (2.7).
Back to the estimate of the lower bound for (2.4). We start with a well known

variational identity (see, c.f., Strassen (1964))

inf
{ ∫ 1

−1

|h′(x)|2dx; h ∈ C∞
0 (−1, 1) and

∫ 1

−1

|h(x)|2dx = 1
}

=
π2

4
.

Under a simple substitution, this gives that for any y ∈ R and any h ∈ C∞
0 (y−1, y+1),

∫ y+1

y−1

|h′(x)|2dx ≥ π2

4

∫ y+1

y−1

|h(x)|2dx.

Hence we have that for any g ∈ C∞
0 (G̃) with

∫
G̃

g2(x, y)dxdy = 1,

∫ ∞

−∞

dy

∫ y+1

y−1

( ∂

∂x
g(x, y)

)2

dx ≥ π2

4

∫ ∞

−∞

dy

∫ y+1

y−1

g2(x, y)dx =
π2

4
.

In view of (2.7),

inf
|f |π=1, f∈C∞

0 (G)

∫

G

|∇f(x, y)|2xd−1dxdy ≥ π2

2
. (2.8)
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Finally, (2.4) follows from (2.5) and (2.8) and we finish the proof of Theorem 1.2.

We end this section with the following comment: From the proof of (2.8) one can
see that except the case d = 1, the infimum can not be reached. This may suggest
that the following eigenvalue problem

1

2
4f(x, y) +

d − 1

2x

∂

∂x
f(x, y) = −π2

2
f(x, y) (x, y) ∈ G and f(∂G) = 0

does not have a solution which is reasonably smooth in G (Recall that G contains the
line segment x = 0 with −1 < y < 1) unless d = 1, in which case the function

f(x, y) = cos
π

2
(y − x)

solves the equation. In the case d = 5, one can see that the function

f(x, y) = x−1 cos
π

2
(y − x)

solves above eigenvalue problem but f fails to be continuous at x = 0 with −1 < y < 1.

3. Limiting behaviors. Let Bd(t) be a d-dimensional Brownian motion inde-

pendent of W (t). Since X
d
= |Bd|2, we replace X(t) by |Bd(t)|2 in this section.

We first prove (1.3). By Theorem 1.2 and Borel-Cantelli Lemma, one can easily
show that

lim inf
t→∞

√
log log t

t
max
s≤t

∣∣W (s) + |Bd(s)|2
∣∣ ≥ π

2
a.s.

On the other hand, let tk = kk and let λ > π/2 be fixed. By Theorem 1.2,

P
{

max
tk≤s≤tk+1

∣∣(W (s) − W (tk)
)

+ |Bd(s) − Bd(tk)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}

= P
{

max
s≤tk+1−tk

∣∣W (s) + |Bd(s)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}

≥ P
{

max
s≤1

∣∣W (s) + |Bd(s)|2
∣∣ ≤ λ

√
1

log log tk+1

}

= exp
{
− π2

4(λ2 + o(1))
log log tk+1

}
.

Consequently

∑

k

P
{

max
tk≤s≤tk+1

∣∣(W (s) − W (tk)
)

+ |Bd(s) − Bd(tk)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}
= ∞.

Thus it follows from Borel-Cantelli lemma that,

lim inf
k→∞

√
log log tk+1

tk+1
max

tk≤s≤tk+1

∣∣(W (s) − W (tk)
)

+ |Bd(s) − Bd(tk)|
∣∣ ≤ λ a.s.
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Letting λ −→ π/2 yields

lim inf
k→∞

√
log log tk+1

tk+1
max

tk≤s≤tk+1

∣∣(W (s) − W (tk)
)

+ |Bd(s) − Bd(tk)|
∣∣ ≤ π

2
a.s.

Next note that

√
2tk log log tk = o

(√
tk+1

log log tk+1

)

and thus by the standard laws of iterated logarithm,

lim
k→∞

√
log log tk+1

tk+1
max
s≤tk

|W (s)| = 0 a.s.

and

lim
k→∞

√
log log tk+1

tk+1
max
s≤tk

|Bd(s)|2 = 0 a.s.

Therefore the upper bound of (1.3) in Theorem 1.1 follows from

max
s≤tk+1

∣∣W (s) + |Bd(s)|2
∣∣

≤ max
tk≤s≤tk+1

∣∣(W (s) − W (tk)
)

+ |Bd(s) − Bd(tk)|2
∣∣ + max

s≤tk

|W (s)| + max
s≤tk

|Bd(s)|2.

We finished the proof of (1.3) in Theorem 1.1.
To prove (1.1) and (1.2) in Theorem 1.1, we need some upper tail estimates. First

we show that

lim
λ→∞

λ−2 log P

{
max
t≤1

(
W (t) + |Bd(t)|2

)
≥ λ

}

= lim
λ→∞

λ−2 log P

{
W (1) + |Bd(1)|2 ≥ λ

}
= −1

4
(3.1)

and

lim
λ→∞

λ−2 log P

{
max
t≤1

(
− W (t) − |Bd(t)|2

)
≥ λ

}

= lim
λ→∞

λ−2 log P

{
− W (1) − |Bd(1)|2 ≥ λ

}
= −1

2
. (3.2)

Consider (W,Bd) as a Gaussian random element in C
{
[0, 1],Rd+1

}
. It follows

from standard large deviation estimate,

lim
λ→∞

λ−2 log P
{
λ−1(W,Bd) ∈ F

}
≤ − inf

(x,y)∈F
I(x, y)

for each close set F ∈ C
{
[0, 1],Rd+1

}
and

lim
λ→∞

λ−2 log P
{
λ−1(W,Bd) ∈ G

}
≥ − inf

(x,y)∈G
I(x, y)

for each open set G ∈ C
{
[0, 1],Rd+1

}
, where

I(x, y) =
1

2

∫ 1

0

{
|ẏ(t)|2 +

d∑

j=1

|ẋj(t)|2
}

.
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Thus by contraction principle we only need to show

inf
maxt≤1

(
y(t)+|x(t)|2

)
=1

I(x, y) = inf
y(1)+|x(1)|2=1

I(x, y) =
1

4
(3.3)

and

inf
maxt≤1

(
−y(t)−|x(t)|2

)
=1

I(x, y) = inf
−y(1)−|x(1)|2=1

I(x, y) =
1

2
. (3.4)

Note that

max
t≤1

(
y(t) + |x(t)|2

)
≤ max

t≤1

√
2
(
|y(t)|2 +

d∑

j=1

|xj(t)|2
)1/2

≤ 2
√

I(x, y).

On the other hand,

y(1) + |x(1)|2 = 2
√

I(x, y)

by taking y(t) = x1(t) = · · · = xd(t) = ct for some positive constant. Hence (3.3)
holds.

Similarly, we have

−y(1) − ||x(1)|| ≤ −y(t) ≤
( ∫ 1

0

|ẏ(t)|2
)1/2

≤
√

I(x, y)

and,

−y(1) − ||x(1)|| =
√

I(x, y)

by taking y(t) = −ct and x1(t) = · · · = xd(t) = 0. Hence (3.4) holds.

For any r > 1, the upper bounds in (3.1) gives that

∑

k

P

{
max
s≤rk

(
W (s) + |Bd(s)|2

)
≥ (2 + ε)

√
rk log log rk

}
< ∞

for any r > 1. So Borel-Cantelli Lemma gives that

lim sup
k→∞

1√
rk log log rk

max
s≤rk

(
W (s) + |Bd(s)|2

)
≤ 2 a.s.

By making r > 1 arbitrarily close to 1 we obtain the upper bound of (1.1) by a
standard deterministic estimate. Notice that the obvious relation W (t)+X(t) ≥ W (t)
and the law of the iterated logarithm for Brownian motions give the lower bounds for
(1.2). By the lower bounds in (3.1) and (3.2), given ε > 0,

∑

k

P

{(
W (rk+1)−W (rk)

)
+ |Bd(r

k+1)−Bd(r
k)|2 ≥ (2− ε)

√
rk+1 log log rk+1

}
= ∞

∑

k

P

{(
W (rk+1)−W (rk)

)
+|Bd(r

k+1)−Bd(r
k)|2 ≤ −(

√
2−ε)

√
rk+1 log log rk+1

}
= ∞



390 X. CHEN AND W. V. LI

for sufficiently large r > 1. By independence and Borel-Cantelli Lemma,

lim sup
k→∞

1√
rk+1 log log rk+1

[(
W (rk+1)−W (rk)

)
+ |Bd(r

k+1)−Bd(r
k)|2

]
≥ 2−ε a.s.

lim inf
k→∞

1√
rk+1 log log rk+1

[(
W (rk+1)−W (rk)

)
+|Bd(r

k+1)−Bd(r
k)|2

]
≤ −

√
2+ε a.s.

From the classic law of the iterated logarithm,

lim sup
k→∞

1√
rk+1 log log rk+1

(
|W (rk)| + |Bd(r

k)|2
)
≤ 2

√
2r−1/2

Since r > 1 can be arbitrarily large and ε > 0 can be arbitrarily small, we have the
lower bound of (1.1) and the upper bound of (1.2).
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