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Abstract

This paper concerns the parabolic Anderson equation
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generated by a (d + 1)-dimensional fractional noise with the Hurst parameter H =
(Ho, Hy,- -+, Hy) with special interest in the setting that some of Hy,--- , Hy are less
than half. In the recent work [9], the case of the spatial roughness has been investigated.
To put the last piece of the puzzle in place, this work investigates the case when Hy <
1/2 with the concern on solvability, Feynman-Kac’s moment formula and intermittency
of the system.
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1 Introduction

In this paper we consider the parabolic Anderson equation

%(zﬁ,x) = %Au(t, o)+ OWH(t z) ou(t,z) (t,x) € RY x R?

u(0,z) = up(x) r € R?
with the fractional Gaussian noise

. g+ H
WH(t, z) = m(t,xl, < xq)  where z = (21, ,x4) (1.2)

given as the formal derivative of a fractional Brownian sheet WH(¢, z) ((t,z) € RT x R9)
with the Hurst index H = (Hy, Hy,--- , Hq) (0 < Hy,--- Hy < 1) that is defined as a mean
zero Gaussian field with the covariance function

E{WH (s, 0)WH(t,y) | = Qols. Q. v) (13)
where .
QO(Sat) = RHO(S’t) and Q(ZB,Z/) = HRHJ (xﬁyj)
and

1
Rig (u,0) = S{ |l 4+ o — ju— v} wveR j=0.1d

In (1.1), # > 0 is a given constant and the notation “¢” represents the Wick product. For
simplicity we assume the bounded initial condition

0 < inf wp(z) < sup up(z) < 0. (1.4)
zeR? z€Rd

The fractional Gaussian noise appears to be one of the most interesting Gaussian noises
partially because it presents a full spectrum of very different behaviors along the change
of Hurst parameter H. The parabolic Anderson equation of fractional Gaussian noise has
been extensively investigated. The case when Hy,--- , Hy > 1/2 is fully understood as far
as question of existence/uniqueness is concerned. We cite the references [3], [6], [7], [8]. [10],
[13], [17], [15], [20] and [23] for an incomplete list. In this case, the Dalang’s condition

d
d—) H;<1 (1.5)
j=1

gives the precise criteria as when the system (1.1) is solvable.

A recent development in literature (see, e.g.,[2], [13], [9], [11], [14], [18], [21] and [22])) is to
consider the case when the fractional noise WH is rough, i.e., H; < 1/2 for some 0 < j < d.



In [9], the author shows (Theorem 1.2 and 1.3, |9]) that for Hy > 1/2, the parabolic Anderson
equation (1.1) admits a unique solution (in the sense detailed later) under the condition

{d—H<1

4(1 — Ho) +2(d — H) + (d. — 2H.) < 4. (1.6)

Here and elsewhere in the paper, we adopt the notations

d
Jo={1<j<d Hj<1/2}, d.=#{L}, H=) H; and H.=>» H,.

j=1 je.

The last missing piece of the puzzle in the setting of fractional Gaussian noise is the case
when Hy < 1/2, i.e., the noise WH is rough in time. It forms the main topic of this work.
The relevant papers that the author is aware of are [4], 9], [14] and [19]. Theorem 1.2 in the
recent paper by Deya [14] includes the setting of rough time in (1 4 1)-dimension. It should
be pointed that the solution in [14] is defined in a way different from ours. As evidence, it is
not hard to see that Deya’s formulation (Theorem 1.2, [14]) for solvability is very different
from the one given in this paper (see (1.19) below). When the time-space derivative WH is
replaced by time-derivative noise OWH /dt, the time is allowed to be rough, as claimed in
[4]. Finally, Proposition 4.4 in [19] and Proposition 1.4 in [9] suggest a possibility of rough
time in our regime. On the other hand, there has not been any conclusion showing that WH
is allowed to be rough while the equation (1.1) remains solvable in the sense of Definition
1.1 below.

To clarify what we mean by solving the equation (1.1), we introduce the following definition.

Definition 1.1 An adapted random field {u(t,z); (t,z) € R* x R4} is a solution to the
equation (1.1), if for any (t,z) € RT x RY, u(t,z) € L2(Q, A, P), the process
{pe=s(@ = y)uls, y)1pa(s); (s,y) € RT x R}

is Skorokhod integrable with respect to the Gaussian differential W (s, dy), and u(t,z) sat-
isfies

u(t, z) = pe * uo(x) + /O/Rd Pe-s(@ = y)uls,y) W (0s,0y)  (t,z) €ERT xR (1.7)

where ps(y) ((s,y) € RT x R?) is the Brownian semi-group and the stochastic integral ap-
pearing on the right hand side is the Skorokhod integral.

We point the references [17] or [19] for the background of the Skorokhod integration and
some other material on Malliavin calculus needed in this paper.

Once the equation (1.1) is solved, it is expected that the solution yields the Feynman-Kac
moment representation

Eu™(t, z) (1.8)

exp {92 > /Ot/ot Yo(s — 7)v(Bj(s) — Bk(r))drds} f[luo(Bj(t))

1<j<k<m

=E,




for € R? and m = 2,3,---, where “E,” denotes the expectation with respect to the
independent d-dimensional Brownian motions Bi(t), - - , By, (t) with B;(0) = --- = B,,(0) =
x and yo(+) and ~y(+) are time and space covariance functions of the generalized Gaussian field
WH determined by the relation

Cov (WH(S, ), WH(t, y)) = (s —t)y(z—y) (s,2),(y) € RT x R% (1.9)

When Hy > 1/2, the time covariance ~,(-) is explicitly given as

Yo(u) = Ho(2Ho — 1)|u| =250 as Hy > 3
(1.10)
Yo(u) = do(u) as Hy=3 (ueR).

For the reason that the function Hy(2H, — 1)u|=(3=2H0) is no longer non-negative definite
as Hy < 1/2, it can not be chosen as a covariance function. The way to extend the above
expressions to the setting Hy < 1/2 relies on the Fourier transform

['(2Hy + 1) sinH,
2m

o) = / M0 (dA) with jio(d)) = A[1-2Ho ) (1.11)
R

partially for the fact that (1.10) and (1.11) are consistent as Hy > 1/2. When extended to
the setting Hy < 1/2, the constant

['(2Hy + 1)sinmH,
2T

appearing in (1.11) is identified by the constraint

/01/01%<5 ~ )dsdr = 1, (1.12)

11 1 2
/ / Yo(s — r)dsdr = / / eNds
0Jo r|Jo

fio(dA)
and the identity (6.2), Lemma 6.1 in Appendix below.

the relation

It should be pointed out that when Hy < 1/2, the above Fourier transform is not point-wisely
defined. Instead, 7o(+) is given as generalized function defined by the linear form

F(QHO -+ 1) sin 7THO
2m

(o, ) = / AR E@) VY ¢ € S(R)

on the Schwartz space S(R) of rapidly decreasing functions on R, where F(v) is the Fourier
transform of :

F)(A) = /Reuuw(u)du A eR.



As Hy < 1/2, ~(+) is no longer non-negative in any reasonable sense, for the function |A|!~2H°
is not non-negative definite. A simple but heuristic way to show it is to take ¥ = 1:

/”yo(u)du = (7,1) = / IN[1=2H0 55 (A)dA = |0]'—2Ho = 0,
R R

Similarly, with possible roughness in space, v(+) is formally given as

o) = [ eSeutde) with p(a9) = Cu( [Tl *)de zemt (113

j=1
where we adopt the notation £ = (£, ,&;) and
d :
['(2H; + 1)sinmH,
Cy = J L
" ]1;[1 2m

In literature po(dA) and p(d€) are called spectral measures of vo(+) and ~(+), respectively.

Since 7(+) exists as a generalized function in this paper, we seek a more comprehensive way
to re-write the Feynman-Kac moment representation. Given two independent d-dimensional
Brownian motion B; and B;, set

t ~
Q(B.B) = Hy [ p(de) [ {70720 4 (¢ = )02} 610D g (1.14)
Rd 0

Ho(l o 2H0) / /t/t [ezf.Bs i ei§~B,-] [e—ig.és . e—z‘g.é,.]
e d dsd
+ 2 d,u( é) o Jo |S—T|2_2H0 sar

R
whenever the integrals on the right hand side are properly defined.

Theorem 1.2 Let 1/4 < Hy < 1/2. Under the assumption
A(1 = 2Hy) +2(d — H) + (dy — 2H,) < 2 (1.15)

the parabolic Anderson equation (1.1) admits a unique solution u(t,z) in the sense of Defi-
nition 1.1. Further, we have the Feynman-Kac moment representation

FEu™(t,z) = E, | exp {92 > QB Bk)} [[uw(B;®)| (tz) e R xR*  (1.16)
1<j<k<m j=1
form =23,---, where By,--- , B, are independent d-dimensional Brownian motions with
By(0)=---= B, (0) = .

One of the major ingredients of this paper is to establish the decomposition
¢t
// Yo(s — T)'V(Bs — Br)drds (1.17)
0Jo
t ~
= HO/ M(df)/ {37(1—2Ho) +(t— 8)7(172H0)}6i§-(33733)d8
R4 0

H(1—20 t pt [pi&Bs _ ,itBy| [p—i&Bs _ ,—i& By
+ —0( o) / w(d§) // [e c } [e ‘ ]dsdr
2 R 0Jo

|8 _ T’2_2H0




for two independent d-dimensional Brownian motions B and B. Consequently, (1.8) and
(1.16) are consistent.

Recall (Theorem 1.2 and 1.3, [9]) that when Hy > 1/2, the parabolic Anderson equation
(1.1) admits a unique solution under the assumption (1.6). Together with Theorem 1.2,
a complete picture emerges on the solvability for the parabolic Anderson equation with
fractional Gaussian noise. On the other hand, by the moment representation (1.8) (with
m = 2) and the square integrability requirement in Definition 1.1, a necessary condition for
solvability is

t ot
Eq exp {«92 /0/0 Yo(s — r)y(Bs — Br)dsdr} <oo Vt>0. (1.18)

Evidence suggests that this does not happen without (1.6) when Hy > 1/2 or without (1.15)
when Hy < 1/2. In the special case when d = 1, Hy = 1/2 and H < 1/2, for instance, it is
proved (p.75, [12]) that a condition necessary for

E, Uol/ol 5o(s — 1)y (B — ES)dsdrr _E, {/017(35 - Es)dsr < o0

is H > 1/4, which is the second part in (1.6). The argument used there strongly (but not
conclusively) suggests that the conditions

A(1— Hy) +2(d — H) + (d, — 2H,) <4 and 4(1 —2Hy) + 2(d — H) + (d, — 2H,) < 2

might be necessary for

E, UOI/OI%(S — )y(B,s — Er)dsdrr < oo

in the settings Hy > 1/2 and Hy < 1/2, respectively.

As for the necessity of “d — H < 1”7 in (1.6), we consider the case of non-rough fractional
noise with Hy > 1/2 for simplicity. Given A > 0

Eo exp {)\ /01/01 Yo(s — r)y(B, — Er)dsdr}

> exp {)\7(26) /01/01 Yo(s — r)dsdr} <IP0{ max |B,| < 6})2

= exp {)\C(H)E_Q(d_H)} exp { —2(1+ 0(1))C’de_2} (e = 07)

where C'(H) > 0 depends only on H, Cy > 0 is the universal constant appearing in the small
ball probability for d-dimensional Brownian motions, and we used (1.12) in the last step. As
¢ — 07, the right hand side tends to infinity for all A > 0 as d — H > 1, and for large A > 0
as d — H = 1. By the Brownian scaling and by the time-space homogeneities of ~y(-) and
v(+), therefore, (1.18) is impossible when d — H > 1.



Solvable

N[

N

e
—_

Applying the criteria (1.6) and (1.15) to the (1 + 1)-dimension (i.e., the case when d = 1,
H = (Hy, H)), we obtain “the domain of solvability”

( 1 1
Hy > 3 and H > 3 . automatically solvable
1 1 , 3
H02§andH<§: solvable1fHO+H>Z—l

(1.19)
solvable if 4Hy + H > 2

DN | —

1
H0<§cde2

1 5
Hy < 3 and H < solvable if 2Hy + H > 1

\

and its graphic illustration.

The next problem is on the intermittency of the solution. Recall (Theorem 1.5, [9]) that
when Hy > 1/2, for any m > 2,

lim ¢ =@ log Bu™(t, ) = i (H)§ (1.20)

t—o00

with 0 < k,,(H) < oo under the assumption (1.6). Notice that 2£°(§f§;i > 1, =1 and
< 1 for Hy > 1/2, = 1/2 and < 1/2, respectively. Does it suggest a sub-linear growth
for logEu™(t,z) as Hy < 1/2? The following partial result for m = 2 (known as weak
intermittency in literature) tells a different story.

Theorem 1.3 Under the assumption of Theorem 1.2, there is a constant x(H) > 0 depend-
ing only on H = (Hy,--- , Hy) such that

1 2
lim ;logEuQ(t,x) = I{)(H)QQHOjH—d. (1.21)

t—o00

7



For any m > 2, Theorem 1.3 and the Feynman-Kac moment representation (1.16) suggest
the pattern of intermittency described by the limit

1 2
lim —log Eu™(t,x) = mm(H)QQHofH*d m=23,--- (1.22)

t—oo t

in the setting of Hy < 1/2. Establishing (1.22) with &,,(H) being identified will be an
interesting problem. In addition, the high moment asymptotics

logEu™(t,x) (m — o0)

and related behaviors of the system need to be investigated. The comparison between (1.20)
and (1.21) indicates a substantially new moment asymptotic behavior for Hy < 1/2. We
leave this pursue to the future study.

We now highlight some of the new ideas we introduce and new challenges we face in this
paper. By a procedure through It6-Wiener expansion (briefly reviewed in section 2), solving
(1.1) and investigating its intermittency become, respectively, the exponential integrability
and exponential asymptotics for the conditional covariance formally represented as

COV(/WHSBtS /WHth s)ds
/ (d€) // Yo(s —r)e 7”5 (B:=Br) g5y
Rd

By Taylor expansion, the exponential integrability is installed by sufficiently sharp bounds
for the n-moment (n = 1,2, --+) of the Brownian Hamiltonian given on the right hand side,
which usually contain the factorial multiple (n!)?™ (see (4.20) below for the ultimate bounds
in our setting). To ensure the requested exponential integrability, it is important to have
p(H) < 1. Taking the risk of technicality and ignoring the fact that the time covariance 7(+)
exists only as generalized function, we conduct the formal computation

E, { / (d€) / / Yo(s — r)e€Boe ’5'§Tdsdr}
]Rd

= / ,u(d{)/ (H%(Sk — Tk)) (Eoneié"”Bsk) (EoHe_ié""B%)dsdr
(Rd)n [07t}2n k=1 k=1 k=1

for any n = 1,2,---. Here and elsewhere in the paper, we adopt the simplified notations

B B> (1.23)

p(dé) = u(d&y) - - u(dy,), ds=dsy---ds, and dr =dry---dr,

in the context whenever it becomes obvious. To handle the Brownian expectations on the
right hand side, a treatment frequently appearing in this work (and in literature as well) is
the time re-arrangement. Write

0,t]2 ={(s1,--,sn) €[0,8]"; 51 <--- < sp}.



By permutation invariance, the n-moment is equal to

n! / p(dg) / ( Yo(sk — Tk)) (Eo H Gigk'BSk) <Eo H €_i§’“'BTk> dsdr.
(R [0,£]2 x[0,8]™ \ 1.4 k=1 E—1

On [0,¢]2,
E, Heisk-Bsk = Egexp {ZZ (Z§k> (B, — Bs“)}
k=1 k=1  j=k
1 n n 2
:exp{—§Z’Z§k‘ (sk_sk—l)} (80:0).
k=1 j=k
So we have

t prt _ n
Eq {/ wu(dg) // Yo(s — r)eié'Bse_iE'B*dsdr}
R 0o
= n!/ p(deg) / exp { 5 Z ’ ng (sp — Skl)} (EO Helék'Brk>dsdr.
(Ret)m [0,£) x[0,¢]™ 2 k=1 j=k k=1

From the above computation, we see that the factorial n! appears as the cost for s-time-
permutation. By a trick of time-exponentiation, the actual cost for this job is less than n!.
Should we pay another n! for getting the r-expectation evaluated? First, doing so would rule
out any chance for the needed exponential integrability in the setting Hy < 1/2 regardless
how Hy,---, Hy are restricted. Second, the proposed payment is some what un-necessary
as most of the mass concentrates near the diagonal {s = r}'. To a degree, therefore, re-
arranging “s; < --- < s,,” already puts extra weight on the same order “ry < --- <r,”. The
challenge is how to carry out this idea mathematically.

This is a long existing problem even for the setting Hy > 1/2. In most publications in
literature, the choice is often between the double permutation and the adoption of the
obvious bound

0 < Eg H e kB <
k=1
This compromised treatment may still allow for the needed exponential integrability in some

cases when Hy > 1/2 but often brings some extra restriction for solvability of (1.1). When
Hy < 1/2, the above bound is completely in-applicable as 7y(-) is sign-switching.

In the recent paper [9], a new idea has been developed for Hy > 1/2 which effectively lowers
the cost of n! by replacing the double time-integrals by a “S-multiple” but “time-free” integral
with § ~ 2H,. On the other hand, the setback in Hy < 1/2 (Proposition 1.4, [9]) indicates
a much more drastic measure is needed.

A major step in this work is the covariance decomposition given in Theorem 3.1 below which
has been re-written in (1.17). In the decomposition (1.17), the first term is in a form of single

For comparison, we list the easy case Hy = 1/2 in which yo(-) = o(+), double time-integral in (1.23)
becomes a single time-integral and one permutation takes care of the computation.



time-integral to which only one time-rearrangement is needed for computing its n-moment.
To bound the moment of the second term, we can lower the cost of n! by using the Holder
continuity of the Brownian motions, a property that had not been made relevant to this type
of the problems in which it was widely believed that Brownian motions typically take small
values.

The new type of Brownian Hamiltonians appearing in the decomposition of (1.17) poses
a new challenge when it comes to the problem of intermittency such as the one stated in
Theorem 1.3. As the first term in the decomposition (1.17) is asymptotically negligible
(Lemma 5.1), the main challenge is on the handling of the second term. A key observation
(Lemma 5.2) is that the double integral of the second term is indeed one-dimensional (as far
as the large t-behavior is concerned) due to high concentration of the mass near diagonal.
This fact allows us to develop a strategy in connection to the spectral representation of
the self-adjoint operators in establishing the limit in Theorem 1.3. To fully understand the
intermittency in the case Hy < 1/2, new ideas have to be developed in future study for the
Brownian Hamiltonians appearing in the decomposition of Theorem 3.1.

Theorem 3.1 is partially inspired by a recent development in [4] where the time-space deriva-
tive WH is replaced by the time-derivative OW*™ /0t with Hy < 1/2. In Theorem 2.2, [4] (in
connection to (2.6), [4]), the covariance decomposition

Cov (/ WH(ds, b;_,) / WH(ds, b,_ s)) (1.24)

/ { (1-2Ho) 8)_(1_2H0)}Q(bs,l~?s)
(bs, bs) — Q(bs, b
+H0 1— 2H0 // Q 2 ( > T)de’/’

s — r|2 2H,

is established for every pair of deterministic -Holder continuous function by and b, (s € [0,1])
with SH 4+ Hy > 1, where Q(x,y) is the space covariance function of the fractional Brownian
sheet WH(¢, x) given in (1.3). We point also to [25] for its application in the intermittency
for the parabolic Anderson equation with time-derivative Gaussian noise.

By Theorem 3.1, on the other hand, (1.23) can be re-written formally as

Cov (/ WH(s, B,_,) / WH(s, By, ds‘B B) (1.25)

= HO/ {s (1-2Ho) 3)’(1’2}1")}7(35 — B,)ds
(B — Er)
+H0 1—2HQ // ’5—7"’2 2H, dsdr.

Here we recall that v(x,y) = v(z — ) is the space covariance of WH(¢,z). The striking
similarity between (1.24) and (1.25) suggests a general formula for covariance of the Gaussian
integrals with rough time component. The ideas developed in connection to (1.24) and (1.25)
may lead to a better understand of the parabolic Anderson equation with the general rough
Gaussian noise.

10



Despite of the similarity in formulation, the tool for covariance decomposition in this paper is
drastically different from the one developed in [4] where the proof is essentially analytic. Our
argument is probabilistic and largely relies on the distributional properties of the Brownian
motions.

The rest of the paper is organized as following: In section 2, a brief review of the treatment of
[to-Wiener expansion that re-formulates Theorem 1.2 and Theorem 1.3 into the problems on
exponential integrability and exponential asymptotics for the Brownian Hamiltonian given in
(1.23). Section 3 is devoted to the covariance decomposition (Theorem 3.1). The main topics
in section 4 and section 5 are, respectively, the exponential integrability and exponential
asymptotic surrounding the covariance decomposition developed in Theorem 3.1.

2 Solution in It6-Wiener chaos expansion

In this section, we reduce the problem of solvability and Feynman-Kac moment representa-
tion to the problem on the exponential integrability for the Brownian Hamiltonian appearing
in (1.23). The material presented in this section is essentially known (see, e.g., [17]). For
the reader’s convienience, it is briefly reviewed here without proof.

[terating the mild equation (1.7) infinitely many times, we have formally expand the solution
u(t, ) (if exists) into the form

u(t,r) =Y Li(falt,x) (tz) eRT xR (2.1)

where for each n, I,(f,(-,¢,2)) is given as a n-multiple Skorokhod integral with the sym-
metrified integrand

fn(shxla"' 78n7mn;t7'x) (22)

1
= mpt—sa(n) (:U - $a(n)) ( H psg(k+1)—sg(k) (za(k+1) - xo(k))) (psg(l) * UO)($J(1))1[O,t]” (3)
) k=1

n—1

and integration element 6WH (451, dx1) - - - OWH (05, dz,,), where o denotes the permutation
on {1,---,n} determined by the order 0 < s,(1) < -+ < So(n) < t. By the L2-orthogonality
of the expansion,

Eu’(t,2) = !l fa(t,2)|[5en  (t2) € R x RY. (2.3)
n=0
A careful computation shows that for each n > 0,

1ot ) B = B | [ [ ot = (8= Bo)aras | wa(Bo)us(B0) |

11



where the notation [E, stands for the expectation with respect to two independent Brownian
motions B and B with By = By = z; v(-) and () for the covariance functions given in
(1.11) and (1.13), respectively. In connection to (2.3),

Eu?(t,z) = E, (2.4)

exp {92 /O t /0 (s — 1 (Bls) — B(r))drds}uO(B(t))uo(B(t)) |

With the bounded initial condition (1.2), the above heuristic derivation can be made into a
mathematical statement that the parabolic Anderson equation (1.1) has a (unique) solution
in the sense of Definition 1.1, provided

t pt
Eo exp {C’// Yo(s — )y (Bs — BT)drds} <oo VC,t>0. (2.5)
0Jo

Notice that (2.4) is the Feynman-Kac moment representation (1.8) with m = 2. In general,
the Ito-Wiener chaos expansion in (2.1) morally supports the symbolic expression

) Yt

where the Brownian motion B, is independent of W, By a formal use of Fubini theorem
(known also Replica in literature)

t 2 t
u(t,z) =E, exp{@/o WH (s, B,_)ds — %Var (/0 WH(s, B,_,)ds

Eu™(t,z) =E®E,

exp {9 Em: /Ot WH (s, B,(t — s))ds

0?
_gjl\/'ar</ WHSB(t—S ds|B )}HU/O

0° L
=E, exp{EVar <X_:/o WH(s, Bj(t — s))ds|By, - - - ,Bm>
0 & y -
_Sjl\/ar(/W (s, Bj(t —s))ds|B )}1;[

By variance decomposition,

Var (2/{: WH (s, B,(t — s))ds|By, - - - ,Bm>
= Zm:\/ar (/t WH (s, B,(t — s))ds Bj)
+2 > cov(/ WH(s, B,(t — s))ds, /OtWH(s,Bk(t—s))ds

1<j<k<m

B, Bk)

12



and

cov(/ WH (s, B,(t — s))ds, /WHsBk(t—s))ds

// Yo(s — r)v(B;(s) — Bk(r))drds

we have the Feynman-Kac moment representation given in (1.8). The above argument
can be made mathematically rigorous, provided that the exponential integrability given in
(2.5) holds. Under the assumption in Theorem 1.2, (1.8) and (1.16) are equivalent, as a
consequence of Theorem 3.1.

B]ka>

According to the above discussion, the proof of Theorem 1.2 is reduced to the establishment
of the exponential integrability given in (2.5).

Without a proper assumption, the Brownian time-integral in (2.5) does not have to make
sense as Yo(-) (and possibly 7(-)) exists only as generalized function in our setting. It is
defined as the £2(Q, A, Py)-limit

t prt t prt
// Yo(s —7)y(Bs — B,)drds = lim // Yon(s = )y (Bs — By)drds (2.6)
0Jo M,N=oo Jo Jo

for a sequence of “reasonable” and pointwise-defined vy n(-) and ~,(-), whenever the limit
exists.

In view of (1.11) and (1.13), for instance, we may choose

o () = /{_NM @) and qurle) = [ €, 2.7

[_M’M}d

By straightforward computation, the random sequence

t pt
QM,N = // ’YO,N(S - 7”)’YM (Bs - Br)drds
0Jo

can be rewritten as

t pt _
QM,N:/ MO(d)\>M(d§)// eiA(S_"')eig'(Bs—Br)drds
[7N7N}><[7M7M}d 0J0

and satisfies

Eo [QM/,N/ - QM,N} "

= / 11(de) ’ / (EoHGi(’\’“s’“’L&“'B(S’“)))dS
([-N",N']x[—M', M)\ [-N,N]| x [— M, M]d)" 0,t]"

k=1

2

for any n > 1, N’ > N and M’ > M. Therefore, the random integrals linked by equality

t pt _ topt ‘ ~
// Yo(s — r)v(Bs — B,)drds = / o (dX)p(d§) // M8 (BBl grgs  (2.8)
0Jo R+1 0Jo
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are well-defined as the limits in (2.6) and live in £"(Q2, A, Py) for all n > 1 if and only if

df ' / (]E e esk+Er-B(s) ))dS
/(Rd+1 0,t]” " H

k=1

2
<oo n=1,2---. (2.9)

In this case

E, [/Ot/ot vo(s — )y (Bs — ET)drds] ' (2.10)

n 2

= / Mo(A)u(df)‘ / (EOHeiwswfk-B(sk)))ds
(Rd+1)n (0,4

k=1

n=1,2---.

By Taylor expansion, the exponential integrability in (2.5) or the existence/uniqueness of
the parabolic Anderson equation (1.1) relies on the bound for the high dimensional integral
on the right hand side of (2.10). In Proposition 1.4, [9], the bound

/ df ‘/ < Z()\ksk+£k )dS
(Rd+1 [O t]n

k=1
< (n!)(de)Jr(ZfZHO Cntn(QHoJrH d) n— 1’ 2, .

2

(2.11)

is established under the assumption in Theorem 1.2 for a constant C' > 0 independent of ¢
and n. Consequently, the Brownian Hamiltonians in (2.8) are well-defined and have all finite
positive moments. On the other hand, the bound in (2.11) is insufficient for the needed
exponential integrability (2.5) as (d — H) + (2 — 2Hy) > 2 —2Hy > 1 when Hy < 1/2.
Substantial improvement has to be made in order to establish (2.5).

3 Covariance decomposition
The requested improvement is based on the following theorem.

Theorem 3.1 Under the assumption of Theorem 1.2,

t pt -
/Rom p,g(d)\)u(df)/o/o M) i (Ba=Br) g5 (3.1)

t o~
= ]—]0/ ,u(d{)/ {S—(1—2H0) + (t— S)—(1—2Ho)}€i£-(Bs—BS)dS
]R‘i
H 1-— 2H Zf Bs _ & Br —i¢- By, _ _—it-B,
0( : / (d€) // H ‘ ]dsdr a.s.
Rd

T|2 2Hg

for every t > 0, where By and B, are independent Brownian motions starting at 0.

Further, two integrals on the right hand side are well-defined and have all finite positive
moments.

14



Proof: For N > 0, consider the decomposition

t pt _
[ vt [ [ e,
[~ N,N] xR 0J0
t pt _

= / fio(dN) pu(d€) / / M=) i (Bs=Bs) g5

[~ N,N]xRd 0J0

1 ot . , - -
- 5/[ NN MO(CD\)M(CZ@/O/O MmN [gi8 By _ i€ Br][pmi8Bs _ =i By
—N,N]x
L e

“/Rd () / / (/ Z8‘%&@))[@638—eiéBrne—iéﬁs_e—iaa]dms.

In view of (1.11),

N _iXs _ _iX(s—t) T(2H, + V) sinwHy, [N .
e e + 1)sinm sgn (
/ () — H2He D 0/ [eits — o) S8R

_N ) 21 _ |/\|2HO
: N N
_ ['(2H, + 1) sinHy / 6ZA/\Ssgn()\)d)\ +/ JiA(t—s) SB1 ()\)dA
2mi -N [ A2 -N | A2
_ I'(2Hy + 1) sinmH, /N sin(/\s)d)\ N /N sin(\(t — 8))d)\ ‘
T 0 )\2H0 0 )\QHO

With integration by parts,

N T'(2Hy + 1) sinwH, [V
/ e”‘(s_r),uo(d)\) = (2Ho +1)sinwHy / A2Ho cos( (s — 7)) dA
_N T 0
D(2Hy + 1) sinTHy [ 1 op.sin(N(s—7)) 1—2H, [~ sin(A|s —7r])
frnd N 0 - d)\
T (s —r) ls—7r| Jo A2Ho

Summarizing our computation,

t pt B
/ No(d/\)ﬂ(dg)// e & (Bs=Br) gl (3.2)
[—N,N]xR4 0Jo

_ T(2Hy + 1) sin7H, BN s N i ~
_ (2Ho + )SH”T 0{/ (d{)/ (/ 51;12(2\ >d)\ / Sm(i\(tho ))d)\) ot (Bs—Bs) 4

0 0 0
_ i€-Bs __ ,i€-By|[,—i&-Bs _ ,—i&-By
2H0/ (de) // / sin )\|s r])d)\ e e’ Prle e ]drds
R Ho |s — 7]

Y / / SN —1) [Z‘E‘Bs—G%Brne—iﬁ-és_e—ffér]drds}.
S—’l“
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Consider the further decompositions

L[N sin(As) Msin(A(t - s)) i6-(Bo—B
/Rdu(dg)/o (/ o A /0 o7 d)\) C(BemBe)ds (3.3)
([ 580) 1oy
0

sin A (1 * sinA B
- [ mag) / (s [ Saman s (o= o0 [ SEan) et B,
R4 Ns N(t—s)

(Als — i€Bs _ oi€-Br][g=it-Bs _ o—i&-Br
u(de) " sin( |5 )L e s (3.4)
Ho |s — 7|
s1n>\ t [ei§~Bs . ei&BrHe—z{ﬁS - e—igﬁ}]

= dA\ d. drd

(/ ) / ) [ f BT e

t pt % gin A [ei§~BS . ei&-Br][e—if-Es _ 6—i§~§r]

— d d. d\ drds.

[y [y [ ([ S R rds

For any even n > 2, write
t  gsin A\ *  sin A "
E, / de / ( (1=2Ho) / d\ + (t — s)~(1=2Ho) / d>\> (Bs— Bs)ds}

|: R4 ( ) Ns AZHo ( ) N(t—s) A2Ho

(RE)™ 0" \ 2 k=1

By the fact that

and

o0 : )\
on(s) = 5~(1-20) /N S;;HO A\ —0 (N — o0),

by the bound |py(s)| < Cs~(172H0) and by the fact (Lemma 4.1 in the next section)

/ Mdf (H{k12Ho —S) 12H0 )(EHZS sp— ék)ds
(Rd)n [0,¢]™
=E, {/ u(df)/ {3*(1*2}10) + (t — s)(leO)}eif'(BsBs)dsl < 00

Rd 0

the second term in (3.3) converges to zero in L"(Py) as N — co. Consequently,

lo | p(de) / t ( / ! 51;(2 Jin+ /O ; Sm%;}[))cu) ie(Bs=Ba)gs  (3.5)

N—o0

0

in all positive moments.
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Similarly, using Lemma 4.2 in the next section one can show that the second term in (3.4)
converges to zero in L™"(Py) as N — oo and therefore,

. sin )\‘3 _ 7-‘) [eiE'Bs _ ei&Br][e—i&ES . e—zg-ér]
]\}gr(l)o [Rd Hids) // (/ \2Ho d)‘) s — 7] drds (3.6)

sin A Z£ Bs __ eiﬁ-BrHe—z‘gés _ e—i&éT]
- (/0 )\2H0d)‘) /Rd (d€) // s — P2 drds

in all positive moments.

Combining (3.2), (3.5) and (3.6) together, in view of Lemma 3.2 below,

t pt -
/ o (dX)p(d€) // e M) gi& (Bs=Br) gl 5
R+1 0Jo

T'(2H, 1) sin mH, * gj
_ (2Hy + 1)sin7 0(/ Sln)\d)\>
0

T )\QH()

t ~
X {/ u(dﬁ)/ {S—(I—QH()) 4 (t _ 8)—(1—2H0)}6i§.(BS_BS)d8
R4 0

1—2H, t pt [eingS B 62‘5~BT][6—1'5.§S _ e—ig.ér]
d drd .S.
+— /Rdu( f)/o/o 5= 172 rds e a.s

Finally, the identity (3.1) follows from
['(2Hy + 1) sinmH, /°° sin A
0

- o A = Ho

which is established in (6.1), Lemma 6.1 in Appendeix below. [

Lemma 3.2 In the assumption of Theorem 1.2,

lim N2 /Rd p(ds) /Ot/Ot W[e’f& — e”f'BT][e’if'Es - e’ié'gr]drds =0 (3.7)

N—oo

wm all positive moments.

Proof: Write

e / / e R R

t pt N . ~
:/ p(deg) // </ e"’\(sr)d)\> [ei6Bs — 8 Br)[emi6Bs _ o= Br] g s
Rd 0Jo -N

and notice

t pt _ e
/]Rd p(dg) /0/0 (/Rei’\(s_r)d/\) [e’f'BS — e_if'B"][e_if'Bs — e_ZE'B"]drds
t pt _ o
= / p(d€) // bo(s — 1)[eBs — e7 6 Br|[e7 B — 7 Brdrds = 0.
Rd 0Jo
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We have
/ p(de) / / Sl 5‘”[Z‘f'Bs—e—iéBr][e—iéés—e—iﬁﬁr]drds (3.8)
(s—r)

/ d)\,u dg // iA(s—r [ i§-Bs —1§BT][ ZEBS . _ZEBT]d’I”dS
[~ N,N]exRd
2/ d)\u df // IX(s—T) Z§BS zf (Bs— BT d?"dS
[~ N,N]exRd
-2 / dpu(d€) / / M8 i (Bs=Bo) g s
[~ N,N]exRd 0Jo

Let n > 2 be an arbitrary but fixed even natural number. For the first term on the right
hand side,

t ot B n
N(I—QHO)nEo |:/ d/\,u(dﬁ) // eik(s—r)eig.BSeiﬁ-(Bs—Br)de8:|
[— N,N]exRd 0o

_ N(1—2H0)n/ d)\u(df) ( H BZ(Ak5k+§k -B(sk) )dS
([=N,N]exRd)n [0,¢]™

T(2Hy + 1) sintHy\ " “
< (R m(dA)u(df)] [o( oL etoverecne s
™ ([-N,N]e xRd)n [0,¢]™

2

2

— 0 (N — o)

where the last step follows from (2.11).

As for the second term on the right hand side of (3.8), by a computation similar to the
treatment for the first term in (3.2),

t pt ~
N(1‘2H0)/ dAu(df)// Mo B =Bs) gy s
[~ N,N]exRd 0Jo

=2 [ atde) [ (o) + ol = )} B

=2 /R ulde) /NN _1 {Un(s) + en(t — )} P By
2 /R pldg) / . {Un(s) + tn(t — 5) }eS BB
2/Rdu(dé)/ {Un(s) + Gt — )} BBy

with

Un(s) = N1=2Ho / SIA
Ns A

It is easy to see that the sequence
{n(s) + Nt —5) }l_n-1-n-1(5)
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is uniformly bounded and converges to zero pointwisely on s € [0,¢] as N — oco. Hence,

Eq { / n(de) / o {Un(s) +vnl(t - s>}ei€'<35‘§“ds] '

N*l

= - _ - i€k (Bsy —Bs),)
/(Rd)n p(dg) /[_N_l,t_N_l]n <k1 {¥n(sk) + Un(t sk)}) <E0 H e >d5

k=1
— 0 (N — )

as ((4.1), [9])
/ ,u(df)/ (EO H eig’“'(Bsk_ésk)>ds < O (ph)d-HnHH1=d) o,
(R)n (0,¢]™ k=1
We now use the bound [{¢x(s) + ¢ (t — s)| < ON'2Ho on [0, N7 U [t — N71, ¢]. First,

| [ uta) | " () + ) By :

< Cm N(1—2Ho) / M(dé‘) (EO H eiék-(Bskésk)> ds
k=1

(RE)™ [0,N—H]"

< Cn(n!)d—HNn(l—QHo)N—n(H+1—d) —5 0 (N — OO)

where the second step follows from (4.1), [9] with ¢t = N~!, and the last step follows from

the fact that 1 — 2Hy < H 4+ 1 — d in the assumption (1.6).

Similarly,
t ~ n
Eo {/ M(df)/ {¥n(s) +Un(t - S)}ezg-(BsBs)ds}
R? t—N-1
M(df)/ (Eo Hei§k~(Bsk_§sk))d8
! [tiN_17t}n k':].
— CnNn(1—2HO) /

. ;sk

< CmNn(l—2H0) / M(df) <EO H €i§k~(Bsk —Esk)) ds
k=1

(Ré)™ [0,N—1]

< CmNn(l—QHo)/
a (R?)

() exp { -

(t— N_l)}/ (EoHeig’“'(BSk_ESk))ds
[0,N =] k=1

where the second step follows from the independence of the Brownian increment. As we have

seen, the right hand side goes to 0 as N — oc.

Summarizing our computation since (3.8), we have proved (3.7). O

4 Moment bounds in Theorem 3.1

In connection to the decomposition in (3.1), set

t ~
‘Ct = / N(dé')/ {S—(l—QHo) + (t _ s)—(l—QHO)}eig.(BS_BS)dS
R4 0

19
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ng _ @i&Br ] [ —i¢-Bs _ e-ig.fa}]
M, = /Rd (d¢) // T dsdr. (4.2)

In this section we provide the moment bounds for £; and M, that are sufficient for (2.5)
(and therefore for Theorem 1.2). First we establish

Lemma 4.1 Under the assumption of theorem 1.2
EoL] < (n!)d-H+0=2Ho)onyn@HotH=d) 4 ~ 0 p =12 ... (4.3)

where C' > 0 1s a constant in dependent of t and n.

Proof: By the Brownian scaling and homogeneity of the space covariance,
L, L PHotH—dp, (4.4)
All we need is to prove (4.3) with ¢t = 1, i.e.,
EoL} < (p!)d-H+a=2Ho)on 1y — 1 9 ... (4.5)

In the rest of the paper, we use the same notation “C” for possibly different positive constants
that are independent of n and t.

Notice that _
{B,— B,; s>0}<{V2B,; s>0}.

ol [ ntde) / (2t e (5B g |
R4
:/ (df)/ (HS’:U—QHO)> (Eoei\/ﬁéBsk)dS
Rd)n [Ot}” kel
o () e
wr L

n

< nl/ / <H Sk — Sk 1) (1- 2Ho)) (E elfiBsk)ds
(Rd)n (0,42

We have

where (and elsewhere) we adopt the notations that so = 0 and
0,2 = {(s1,--- ,80) €[0,¢]"; s1<--- <8}

and the last step follows from permutation invariance.

By independent Brownian increment, for any (si,--- ,s,) € [0,]

E, He“ffBSk—Eoexp{Z\/_Z<Z£J>' se = Bsi_ 1)}
:exp{—Z‘jZkfj (sk—sk_l)}.

k=1

20



Hence,

t - n
EO{/ u(df)/ S_(l_QHO)eif‘(Bs—Bs)dS]
R4 0

<ot [ty [ (L= s e |
®y 0412 —

k=1

2
(sp — skl)}) ds
By Lemma 2.2.7, [7], therefore,

/Oooe’on{ / ) / A ig.(Bsés)dsrdt (4.6)

o f L[ e[S
dg)H{H‘Zgj } " < nlc"
k=1 =k

where the last step follows from Lemma 3.2, [9] and the fact that

=nll'(2 — 2H0)"/

(Ré)™

2(d—H)+ (d. —2H,)

2Hy, > 5

under the assumption in Theorem 1.2.

Similarly, with the convention s,,1 =t

t - n
Eo {/ u(dg)/ (t — s)—(l—QHo)ez‘a(Bs—Bs)dS}
R4 0
n n n 9
< n!/ ,U(dQ/ (H(Sk+1 — Sk)(12H0)> exp{ — ‘ &l (s — 3k1)}d8.
(RI)n [0,] £

k=1 =1 j=k

We have

/000 _tEO{/RdM(dS) /t(t—s)—(HHo) z'a(Bs—Es)dS} ndt (4.7)
el el 0

— nIT(2 — 2H,)" {1+)Z§] } 2{1+(;gj
t}d)( ~(m2Ho)e tdt)

x(/ooo eXp{—‘ij

= nIT(2 — 2H,)" /Rd de{H‘Z@

k=1

2 } —2Hy

} < nlC".
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Combining (4.6) and (4.7)
t
/ e "EoLldt < n!C™.
0

On the other hand, by (4.4),
t e8]
/ e "EoLldt = Eoﬁ?/ e frCGHTI=D gy — T (n(2Hy + H — d) + 1)Eo L.
0 0
Finally, the bound (4.5) follows from Stirling formula. [J

Lemma 4.2 Under the assumption of Theorem 1.2, for any > 1—2H, there is a constant
C > 0 such that

EoMP < (n!)d-D+280mn@HotH=d) ¢~ p =12 ... . (4.8)

Proof: By (1.15) we may make

1 2(d—H d, — H,
1—2H0<B<§— ( )Z( ).

(4.9)

Notice that

= —ngs_ —ig.ér}
Mt_Q/Rd (d€) // B PSR dsdr (4.10)

and
M, L PHotH=d p g, (4.11)

All we need is the bound

d LY e, [eiié'és_eﬂéér}d d n< I\ (d—H)+28 -m 419
Ba| [ utae) [ [ et asar | < (112

forn=1,2,---.

By Fubini theorem,

5 —25 ‘Bs _ e—ig.é,,} n
EO{/Rd (d€) // s 5 = 1] 27o dsdr}

— p(de / < IS Bsk> { / ( |sp, — Tk|(22HO)>
/(Rd)n [0,1]7 H [0,1]™ IH
% (Eo H [efisk-Bsk _ eigk-Brder}dS
k=1

co o [ (1) [ (o)
(Re)™ (0,1]™ H [0,1]™ g

& - (B B)

><<E0H ip 2R sk T )dr}ds
k=1

sin
2
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where the inequality follows from

‘efif,k-Bsk _ o—xBr,

gk : (BSk B Brk)
5 .

Further, pick 1 —2Hy < 3, < 8. By the fact that 28 < 1, |sin(-)| < |sin(-)|?? < |- %,

n n ) Bs . Br
/ ( s — Tk|_(2_2HO)) (]Eo H ‘ sin Sk (B ) )dr
n 2
0.1 N\ g—y k=1
n n n 283
< (5" ( TP I st — @250 ) (Bo [[ By, — Boel) d
=3 k k k 0 Sk Tk r

n

1\ ) |B, — B,| 26n n —((2—=2Ho)—p1)
<(3) (e )z sw (BB (Ts-n) ar
k=1 8,7‘6[0,1} [071}11 k=1

= 2|sin

B
|s —r|2
S#ET
n 28n
B, — B
< Cm(H |€k|26>E0 sup (’S—Bﬂ)
k=1 s,r€[0,1] |5 — 7«|ﬁ
S#ET

where the last step follows from that fact that

n —((2—2Ho)—p1) n 1
/ (H ‘Sk — Tk’) dr = H/ |5k _ T‘*((2*2H0)*/31)dr <o
[0,1] k=170

k=1

for a C' > 0 independent of sy, - ,s,, as (2 —2Hy) — f; < 1.

Summarizing our computation

1 p1 on [e—igés _e—ifﬁr] n
Eo[ /R () /0 /O e dsdr} (4.13)

n |Bs — By 2 - 28 - i€ B
< C ]EO sup & / /L(dé) H |£k| 2 / EO H e’k Psi | ds
sref01] \ |s — |2 (R el [0,1]" Pty

S#ET
Bs . Br 26n I n
= C"E, sup (‘—ﬁ') E, {/ M(d£)|§|2ﬁ/ ezf.Bst} ]
s,r€[0,1] |3 — r|ﬁ R4 0
S#ET
For any ¢ > 0,

t 1
26 i&Bs 7, 4 41—(d—H)—B 28 i€-Bs
/Rdu(dara / ¢ s L ¢ /Rdu(dowar / P s (4.14)

23



and

EO{ [ maoyer [ Zstds}

Rd

— d 25) (E - iﬁk'Bsk>d
iy (f < |§k| /Dtn okl_[l@ S

| 28 - i€ Bsy, | 4

! /(Rd)n < ‘fk’ [0,2]% ( 0H€ ) ’

) [, (=10
!/(Rd)n <ﬁ\£ !w)ﬁe {—%‘;é}' Q(Sk—skl)}-

k=1

/0 h e_tEO[ / p(dg)[€]? / t eiéBsdsrdt

:n!/(Rd)n( ( ’fk‘QB)H/ eXp{ ;‘gﬁj
:n!/(Rd)n (de) (H,g |26> 1{1+2)Z§J }

Set mp = ;& (k= 1,---,n). By the fact that 0 < 23 < 1 and with the convention
Th+1 = 0

H|§k|25_H|77k M1 [ H (k> + e ]*)

< ZH e[ < QHZH{ §|77k:|2}2ﬂ < 2n3nﬁ {1 + %|7ik|2}2/8

I k=1 k=1 k=1

I
S

Therefore,

2
t}dt

where the summation is over all possible maps I: {1,--- ,n} —— {0,1,2} and the last follows
from the fact that #(1) < 3".

Therefore, we have the bound

o0 t n
/ e_tEo{ / p(de)e*? / eif'BSds} dt
0
—(1-28)
< nlC™ < nlcm
< nlC /(Rd)n {1+2‘Z§j } <nlC

where the last step follows from Lemma 3.2, [9] and the fact (from (4.9)) that

2d — H) + (d, — 2H.)
> .

1—-28>
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On the other hand, in view of (4.14)

/0 h e 'R, [ /R ) p(dg)[€]? /0 t eig'BSds} ndt

1 n ')
—F d 28 i§~BSd —t n(2Ho+H—d)d
o[/Rdu(om e } | e t
=T'(n(2Hy, + H — d))E { d 2ﬂ/leiﬁ’38dsr
= T(n(2y+ 1 = D)o [ w(ale [ .

By Stirling formula

1 n
E, { / (dg)|€ / ei@Bsds] < (nl)-m+BCm. (4.15)
Rd 0
Consider the Banach space C%/([0 1] of the functions f on [0, 1] satisfying the Hélder
continuity
_ [f(s) = f(r)]
£ 131/ c20) = b s —rpen =
S#ET

By the fact that £5,/(268) < 1/2, Bs (s € [0,1]) is 81/(2/)-Holder continuous and therefore
can be viewed as a mean-zero Gaussian random variable taking values in C#/(29[0,1]. By
the Gaussian integrability (see, e.g., Corollary 3.2, [24]), there is a constant ¢ > 0 such that

‘Bs - Br‘2 2
Eqexps ¢ s;l[g)l] m = Ko exp {C||B||61/(26)} < 0.
7879,17

Consequently, there is a constant C' > 0 such that

Bs - BT "
Eo sup (|—5|> < (mH)V2C™ n=1,2, -
s,re;io,l] |5 — 7’|%

In particular, we have the bound

Bs . Br 26n
Ey sup (%) < (n)C™ n=1,2,---. (4.16)
s,re?i(],l] |3 — T|ﬁ

Finally, the desired bound (4.12) follows from (4.13), (4.15) and (4.16). O

Notice that (d— H)+ (1 —2Hy) < 1 under the assumption in Theorem 1.2. Applying Taylor
expansion in Lemma 4.1,

Eoexp{CL} <00 C,t>0. (4.17)
By the fact that (d — H) + 25 < 1 under (4.9), by Lemma 4.2

Egexp {CM;} <o C,t>0 (4.18)
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under the assumption in Theorem 1.2.

By the covariance decomposition in Theorem 3.1,

t pt ~
Eg exp{C’/ ,uo(d)\)u(dﬁ)// ei’\(S_T)eié'(Bs_B’")drds} < 00. (4.19)
Ri+1 0Jo
Equivalently, we have (2.5) which is sufficient for validating Theorem 1.2.

Remark 4.3 With the covariance decomposition in Theorem 3.1, the bounds we establish
in this section substantially improve (2.11) obtained in [9] and more significantly, are sharp
enough for the exponential integrability given in (4.19). On the other hand, they are not
optimal. For the sake of possible link to the future investigation, we confirm the conjecture
made in [9] stating that

/ uo(A)u(dﬁ)‘ / (Eo Hei“’”“g’f'B(Sk”)ds
(Rd+l)n [O,t]"

k=1
S (n!)(d—H)+(1—2H0)Cntn(2H0+H—d) n = 17 27 e

2

(4.20)

Indeed, according to the development for moment asymptotics in the next section

1 t prt ) ) _
lim —log [Eq exp { / po(dA) p(d§) // e“(s_’")e’é(Bs_BT)drds} < 00.
t—oo t Rd-+1 0J0o

By (2.10), in addition,

Eol / 10 (d\) () / / e“(“)eiﬁ"Bsé”drds] >0 n=12-.
Rd+1 0 J0

Consequently,

1 norno ) . n

TEO[ / fio(dA) p(dg) / / GM(S_T’)elg'(BS_BT)drds}

n Ra+1 0 Jo

= Eo exp{/ Ho(d)\)u(df)// ei’\(s_r)eig'(Bs_ET)drds} <Ccm
Rd+1 0 Jo

for some constant C' > 0 independent of n = 1,2, ---. By the Brownian scaling, on the other

hand,
EO{ / fio(dX)u(d€) / / e““‘”eié(Bs—ﬁﬂdrds]
Rd+1 0 JO

1 pl - n
_ nn(2H0+H—d)EO |:/ Mo(d)\),u(df) / / ei)\(s—r)ei&(Bs—Br)drdS}
Rd+1 0J0

— pn(2Ho+H—d) / MO(A)M(dﬁ)’ / <Eo H ei(A’“S’“H’“’B(S’“))) ds
(Re+1)n [0,1]"

k=1
where the last step follows from (2.10). By a standard use of Stirling formula, we have (4.20)
in the case t = 1. Finally, (4.20) with the full generality follows from scaling. O

2
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5 Moment asymptotics in Theorem 1.3

In this section we prove Theorem 1.3. By the Feynman-Kac moment representation in (1.16)
with m = 2 and by the initial condition given in (1.4), a simple argument reduces proof to
the setting ug(x) = 1, in which

Hy(1— H,
Eu?(t, z) = Eqexp {HQHOEt + 92¥Mt} (5.1)
where £; and M, are defined in (4.1) and (4.2).
Lemma 5.1 For any C' >0
2Ho+H—d
limsupt™ @0 log By exp {C’|£t|} < 00. (5.2)

t—o00

Proof: Given the conjugate number p,q > 1, by Holder inequality

EO eXp{ / (d&)/ 1 2H0) ’Lf'(BS—BS)dS}
/2 | ~
Baesp {Cp [ utag) [ 507055
R4 0

1/q
Eo exp{ / (dg)/ —(1=2Hy) ;i (Bs— Bs)ds} ‘
t/2
Notice that

t/2 ~ _ "
/ 1(de) / §—(1=2Ho) i€ (Bo—By) g 4 <1>2H°+H ’ / p(dg) / ~(1-2Hy) i€ (Ba=B2) g
R4 0 2 Rl 0

Taking p = 22HotH=d Jeads to

. eXp{ / &) / S iﬁ'(BS_BS)dS} (5.3)
R
< Byexp {Cy [ uta) [ s pa)
t/2

For any integer n > 1

t _ n
R4 t/2

n 1 2H0) n . B
— [ ) ( ) (EO esz«Bsk—Bsu)ds
/<Rd>" /2.0 H g

1/p

n

9\ n(1-2Hy) S-2H) , m )
< (%) / u(de ( Sk) (Eo ezgk-<Bsk-Bsk>) i
t (Rd)™ ( ) [0,¢]™ H ’g

k=1

2\ n(1-2Hyg) t B n
= G)" | [ e [ ecesia]
t R 0
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By Taylor expansion,

t ~
Eoexp{Cq/ u(df)/ s‘(l‘QHfJ)eiﬁ'(Bs—Bs)ds} (5.4)
R4 t

/2

2\ 1-2Hp o _
SEOGXP{CQ(Z) / u(di)/ e’“BS—Bs)ds}
R4 0

2Hg+H—d
:Eoexp{0q21_2H°/ u(df)/
R4 0

t 1—(d—H)
where the last step follows from the Brownian scaling.

ez'a(Bs—Bs)dS}

Given t1,ty > 0, by Markov property

t1+to i
Eoexp{cq21-2ﬂo [ ey [ eié~<Bs—Bs>ds}
R4 0

t1 B
< Egexp {0q21—2H0 [ o) [ eié~<Bs—Bs>ds}
R4 0

to _
x sup B, z) exp{0q21‘2H° / 11(de) / elﬁ'(Bs—Bﬁds}
((E,fi) Rd 0

where “E(, 7" is the Brownian expectation with By =  and B, = i.

In addition, the moment representation shows that

tz 5 n t2 B n
Ba| [ i) [ s ms] <l [ utae) [Tesmpia

for every n = 1,2,---. Applying the Taylor’s expansion leads to the same comparison in
exponential moment. Consequently,

t1+t2 B
Baesp { oz [ gy [ et Bas)
R4 0
t1 B
< Booxp { o2t [ utag) [ s
R4 0
to B
XEO@XP{CC]21_2HO/ N(df)/ eié'(BS_BS)ds}.
R4 0

Therefore, the argument by sub-additivity leads to

1 t _
lim ;log]Eo exp {C’q21_2H0/ ,u(dg)/ e’g'(Bs_Bs)ds} < 00. (5.5)
Rd 0

t—o00

Applying this to (5.4) and noticing 250(1{1;7 >0,
2Ho+H—d ¢ . ~
limsupt_%ngo eXp{Cq/ ,u(dg)/ S—(1—2Ho)ez§~(Bs—Bs)dS} < 0. (5.6)
t—o00 Rl t/2
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Combining this with (5.3), we conclude

_ t , i
lim sup tjﬁo(ﬁff)d log Eq exp {C/ N(dﬁ)/ 5(12H°)e’5'(3535)ds} < 0. (5.7)
R4 0

t—o0

Using Holder inequality again

t ~
Eoexp{ / (d{)/( )~ (1—2H0)6i£~(Bs—Bs)dS}
R4
/2 ‘ ~
E exp {pC/ u(d{)/ (t—s)—(1—2Ho)ezé(Bs—Bs)ds}]
R4 0

¢ i 1/q
Eq exp {qc uag) [ (o s>—<1—2Ho>ei€'<Bs—Bs>ds} |
R4 t/2

By a procedure similar to the proof of (5.6)

2Hy+H—d ) -
limsupt ) log £y exp {pC’/ (d€) / (t — s)(12H°)e’£'(BsBS)ds} < 00.

t—o0

1/p

In addition, write

t ~
[ utde) [ (090 etg,
R /2

t

:/ M(dg)eig.(Bt/z—Bt/Q) /2(% _ S)_(1—2Ho)eig.{(B(t/QH_s—Bt/2)—(l§(t/2)+s—§t/2)}dS'
R4 0

By the independence of the Brownian increment, one can directly check that forn =1,2,---,

3 ~ n
[ [ utae) [ (1= o0ty
R4 t/2

t2 4 ' i n
<E| [ ntag) [ G- mec e s
Rd 0
Consequently,

t ~
Eq exp {qC’/ N(df)/ (t—s)_(l_QHO)eif'(Bs_Bs)ds}
R4 t

/2
t/2 ¢ ‘ }
< Egexp {qC/ ,u,(dg)/ (_ _ 5)‘(1—2H0)615'(Bs—35)d5}
R4 0 2

1\ 2Ho+H—d t ' i
o {qc 3) [ ) [e- s>—<1—2Ho>ezﬁ-<BS—Bs>ds}.
R 0

Taking ¢ = 22Ho+tH=4 giyeg

t ~
Eq exp {0/ M(df)/(t—S)_(l_QHO)e’f'(BS_BS)ds}
R4 0

t/2 ‘ )
< Egexp {pC’ M(dg) / (t _ S)_(l_zHo)ezE'(BS_Bs)ds},
R4 0
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Summarizing the discussion, we have

2H)+H—d

t -
limsupt™ =@ log Eqexp {pC/ u(dﬁ)/ (t — s)(12H°)ei5'(BsBs)ds} <oo. (5.8)
Rd 0

t—o0
Combining (5.7) and (5.8),
2Hg+H—d

limsupt =0@-H logEjexp {C’Lt} < 00.

t—o0

This can be easily strengthened into (5.2) as the relation

E, exp{C|£t|} < 2Eq exp {C’Et}. (5.9)

Indeed, by Taylor expansion and by the fact that EgL} > 0 for n =,1,2,- - -,

Eo exp { - Cﬁt} -y ﬂcnmoaf < Z; %CHEOL,? — Egexp {Cﬁt}.

n
n=0
O

Notice that 250(2?1;? < 1l as Hy < 1/2. A standard argument of exponential approximation
by Hoélder inequality shows that £; in (5.1) does not make contribution to the asymptics
stated in Theorem 1.3. By the scaling in (4.11), all we need is to show there is a constant

co(H) > 0 such that

!
Jim = log Eg exp {M,} = c(H). (5.10)

which leads to (1.21) with

Lemma 5.2 For any C' > 0,

1
limsup;log]EO exp{C/\/lt} < 0. (5.11)

t—o00

Proof: For any bounded set D C R™ x RT, set

i€ Bs _ i€Br efiéés . 67i§-§T
M(D) = /R plde) /D [ i g (5.12)

|s — r[2-2Ho

In this notation, M; = M([0,¢]?). Notice that for n =1,2,---,

E (D) = - . —(2—2Hy)
or0)= [ ptae) [ (TLise— o)

30

2

Eo H (e P — P | dsdr. (5.13)
k=1




In particular, EgM™(D) is monotonic in D. Consequently,
Eoexp {CM(D)} <Egexp {CM(D")} DcCD. (5.14)

Therefore, it suffices to show that

hmsup%logEo exp {CM([0,4N]?) } < oo. (5.15)

N—oo

Consider the decomposition
[0,4N]> C {(5,m)[0<s<1, 0<r<1+s}U{(s,7)]1 <s<4N, |r —s| <1}
U{(s,7)]1 <s<4AN, 1+s<r<4AN}U{(s,7)[1 <r <4N, 1+7r<s<4N}
= DO U Dl U D2 U D3 (SaY).
So we have
Eqexp {CM([0,4N]?) } < Egexp {CM (Do U Dy U Dy U Ds)}
ZEoeXP{C<M(D0)+M(D1)+M(D2)+M(D3)>}~

Notice that Dy is independent of N and by (4.18) and (5.14), M(Dy) exponential integrable.
Notice also that M (Ds) < M (D3). By Hélder inequality, all we need is to show

hmsup%logEo exp{CM(D;)} <oco j=1,2. (5.16)
N—o0
Write
AN-1 AN-1
= J{nk<s<k+1, [r—s[ <1} = | (G
k=1 k=1
and
AN-1 N-1 N-1 N-1 N-1
M(Dy) =Y M(Gy) =D M(Gar) + > M(Gapsr) + Y M(Gary2) + Y M(Glais)
k=1 k=1 k=0 k=0 k=0
By Markov property,
N-1 N-1
E, eXp{C M(G4k)} < (SupE(xx) exp{C./\/l Gl)}>
k=1 (357
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Notice that for each n =1,2,-- -,

E(xj;)./\/ln(Gl)

0 (-]
(Rd)n n

X {Eo H —i6(@+Byy) _ 6_i§'(5:+B’"k))}dsdr
k=1

o (f o)) )

k=1 k=1

n

E, H (e€ (e TBar) — it (e Bry))

2

X dsdr

n n 2
< / p(dg) / <H sk — rk!‘(2‘2H°>) ‘EO [ (e 5o — el letBy | dsdy
(R)m GT \ k=1 k=1
= ]E()Mn(Gl) Vo, 7 € R
We have
sup E(; 5) exp {C/\/l } < Egexp {C/\/l } < 00. (5.17)
(z,%)
Hence,
N-1
hjrvn_)solip N log E exp {C Z M G4k)} < o0.

The same conclusion can be extended to all four summations in the decomposition of M(Dy).
By Holder inequality we have proved (5.16) for j = 1.

We now exam (5.16) for j = 2.

[e76Bs — i€ Br] [e—is-és _ e—z’afa}}
D,) = d dsd
M(Dy) /Rd p(d€) /D2 s — r[2~2Ho sar

d A d A
= [0 ], e ) [

g [ i) [
_/Rdﬂ( 5)/[)2 s — r|2—2Ho $ T_/Rdﬂ( 5)/[)2 s — r|2—2Ho sar.

The last two terms on the right hand side are identical in law. Similar to (5.9),
eif'(Bs—Er)
Eo €xXp {C ,u(dﬁ) /D2 mde’l“ }

R4
E C d it (PP dsd
<2 _ .
= oexp{ /Rd w( 5)/2 s — P2 s r}
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To establish (5.16) for j = 2, therefore, all we need is to show

lim sup 1 logEgexp < C d e S_~TF)[ dsd 0 5.18

1N—>Soo N 08 F0 € { /]Rdlu( §) /Dg |<‘5_7"|2_2 0 r} 7 ( )

lim sup —1 logEgexp < C d —ei&v( b dsd 00 5.19
W 7 < .

1N—)Soo N o8R0 ¢ { /Rd ( g) /DQ ’S ,'n|272 0 § r} ’ ( )

lim sup —1 logEg exp s C' d —eié( T ~T:[ dsd 0 5.20
< . .

1N—>Soo N 08 Fo € { /]Rdlu( §) /Dg |<‘5_7"|2_2 0 r} ( )

To prove (5.18), notice that for any n =1,2,---

Y

elg(Bg_g"“) n
Eo [/Rd p(dg) /D2 —|s — dsdr}
:/ M(df)/ dS(E H i Bsk)/
(Rd)n [0,4N]n [514+1,4N] XX [sn-+1,4N]

x (ﬁ(rk—sk) - QHO))( He Sk B%)dfr

k=1

< > T(ZQHO)dT) / L df ( ek BSk>
(/1 (Ré)n ( 0,4N]" H
4N ) n
= C"E, {/ p(dg) / €Z§'Bsds}
R4 0

where the inequality is costed by the actions of replacing the second Eq-expectation by 1,
and the integration domain [s; + 1,4N] X -+ X [s, + 1,4N] by [s1 +1,00) X -+ X [s,, + 1, 00);
and the last step is supported by the fact that 2 — 2H, > 1.

By (5.5) (with a travail notation adjustment) and the fact that B — B < /2B,

1 b
lim — log £ exp{ / (df)/ Zé'BSds} < 00
t—oo t Rd

which leads to (5.18).

The same computation leads to

't Be ) ! AP S
E d —dsd < C"E d BT Ps)dg| .
0[/Rd“( O [, o= ] =¢ °UM“< of ]

So we have (5.19).
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As for (5.20),

]E d e’f'(Br*ET) d d n
Ol/RdM< f)/[)zm sr}

= ,Udf/ dT(E eig’v'(BTké%)>
/(Rd)" () [14N]" OH

k=1

X (ry — sk)(22H°)>ds

[e's] 4N B n
< (/ s_(Q_QHO)ds) Eo[/ ,u(df)/ eiﬁ'(B"_B")dr} :
1 R 0

So (5.20) follows from (5.5). O

To complete the proof of Theorem 1.3, we prove that the limit in (5.10) exists and is positive.
For any ¢ > 0, define the linear operator T; on £2(R??) as

Tif (2,7) = Biasy | exp {M}f (B B)| [ € L2®R*).
The idea is to show that the limit

1
lim L logsup(f, T, f) = co(H) (5.21)
t—o0 t feF

exists and is positive for a sub-class F of £2(R??). The unfortunate fact is that the family
{T;; t > 0} does not have semi-group structure (i.e., the structure defined by Ty, = T;0Ty).
In the following we try to capture some useful properties of T} that allows our technique get
through.

First, we claim that for each ¢t > 0, T} is bounded, i.e., there is a constant C; > 0 such that

/ [Tif (2, 2)?deds < C, | f*x,2)dzdz [ € L2(R*). (5.22)
R2d

R2d
Indeed,
B 2
[ msarast = [ (s [er M1 B)]) s
R2d R2d

2 (B 0], o

< (Eoexp{2Mt}>/d]EOf2(x+Bt,j—l—§t)dmdi
RQ

where the last step follows from the relation (5.17) (with G4 being replaced by [0, ¢]?). Hence,
(5.22) follows from

/ Eof(x + By, &+ By)dadi =Ko | f*(x+ By, @+ By)dadi = | f*(z, #)dzdi.
R2d

R2d R2d
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Next, we claim that for each t > 0, T} is self-adjoint:

(9. Tof) = (Thg. f)  [.g € L*(R*). (5.23)

To simply our notation in the following argument, we denote M, as M, (B, E)

<g,th>=/Rng

(m,f)Eo[exp {/\/lt(x+B,j+é)}f(x—kBt,i—l—Et)}dxdf
:EO{/ g(x,j)exp{./\/lt(quB,i—l—E)}f(x+Bt,£+§t)dxdj}
R2d

— EO{ / g(x — By, — B;)exp {M,(x — B, + B, & — B, + B) } (=, f)dzdf}
R2d

= f(z, T)Eg [exp {My(x— B+ B, #— DB, + E)}g(x — By, & — Et)}dxdi

R2d
where the third step follows from translation invariance.

Notice that
Mt(l'—Bt+B, j—Bt‘i‘é)

t ot [eig-(ﬁBrBt) _ eiﬁ-(erBTth)} [efig-(jJrESfEt) _ efig-(gwérét}
:/ p(de) // dsdr
R4

|s — r[2-2Ho
/ @) // zf (x+Bi—s—Bi) _ if-(ac—f—Bt,T—Bt)} [e—ig-(erBt,s—Bt) _ €—i§~(§:+Bt,T—Bt] e
e |s — r[2-2Ho
= My(z+ 3,5+ )
where

ﬁs:Btfs_Bt and Bszétfs_ét (OSSSt)

are two independent Brownian motions with Gy = Bo =0 and §; = —B;, Bt = —§t under
E¢. Summarizing our computation,

In connection to (5.21), set
= {1 @.®) = @@, 1Tl =1, T2 0, 1flega V11 lle= ey < o0}
For any D C [0,]?, it is straightforward to check that

[ 1 DB { MDY (51, B) o (5.24)

n

- /() ) [ (TLis i)

k=1

<Z§k> (Eof (B,) ﬁ i€B., _ eié-BTk])

k=1

2

dsdr
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forany n=1,2,--- and f € F, where

FHE) = [ fla)e*rde &eR™
R4
By Taylor expansion, the quantity

F(2,#) B [exp {M(D)}£(B,, Et)} drdF

R2d

is monotonic in D. Taking D = [0,¢]* in (5.24) one can also see that

sup(f,Tif) >1 Vt>0. (5.25)
feFr
We now prove that
<faTmtof>2<faﬂ0f>m fEFa t0>07 m:274767"" (526)

Indeed, by the relation

m = U j — Do, jto)* C [0,mto]*

and monotonicity

Fs T f) > / f (@B [exp (M(D,)} (B, Et)] dzds.
R
In addition, by Markov property one can check that
B | exp {M(Dy) }f(Bi, B) | dedi = T3 f (2, )

Thus,
<f7Tmtof> 2 <f7T;€Tgn >

By the spectral theory for self-adjoint operator on Hilbert space, there is a measure ps(d\)
on R such that

15 (R) = || f|2aqgaay = 1 and <f77%f§:=%A;Auf(dA)

Further,
(LT = [ Ang(an),

Notice that the function p(A) = A is convex on R when m is even. Since pf(d)) is a
probability measure, by Jensen’s inequality,

[z ([ ausan)” = 5,0
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Combining our argument, we have proved (5.26).

By (5.26) and by the monotonicity of the quadratic function (f, T} f) in ¢ for any f € F,

1 1
liminf — log sup(f, T} f) > — log sup(f, Ty, f)- (5.27)
twoo 1 7 reF to  fer

Taking limsup on the right hand side over t; — oo leads to the existence of the limit in
(5.21) with ¢y(H) being a possibly extended real number. Further, taking ¢y = 1 in (5.27),

co(H) > logsup(f,T1f) >0
feF

where the last step follows from (5.25) with ¢ = 1.

Finally, we prove that (5.10) holds with the same ¢o(H) which automatically leads to ¢y(H) <
oo according to Lemma 5.2.

Given f € F,
(f.Tof) = /R (@, BB | exp { M} (Br, By | drdi

< [ fll 2o @m2ay /2d f(@, ) Ep z) exp { M, }dudE
R

<N Fll e ey 1/ 1| 2oy Eo exp { M §
where the last step follows from (5.17) (with G; being replaced by [0, ¢]?).
By (5.26) and monotonicity,

1 1
litminfglogEo exp {M,} > t—log(f, Ti.f) feF.
— 00 0
Taking the supremum over f and then letting £y — oo on the right hand side,
1
lim inf — log Eq exp {/\/lt} > co(H). (5.28)
t—oco
On the other hand,
Eq exp {M([l, t]Q)} = / p1(z, T)E g z) exp {Mt,l}daf;di
R2d
where py(z, (%) is the density of (By, B;). Notice that
/ p1(z, T)E(; 7) exp {/\/lt_l }da:df
R2d\[—t2,t2]2d
< Egexp {Mt—l} p1(z, T)dzxdz

RQd\ [7752 7tQ}Qd

_ po{ max{|Bi|w, | Bi|o} > tQ}EO exp {M;_}.
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Further, write
/ p1(z, T)E(; z) exp {/\/lt,l }dxd:i
[—t2,t2}2d

= / s p1(z, T)E, 5 [exp {Mt—l}l[_t27t2]2(3t’Et)}dxdj
[7t 7t ]

+

/ P1 (.T, .f)E(Ij) [exp {Mt—l } 1R2d\[_t27t2]2d(Bt, Et)} dxdx
[—t2,t2]2d

IN

(27T)*d /[‘_t2 s E(z@) [exp {./\/lt,1 } 1[,t2’t2]2d (Bt, Et):| dxdz

1/2

1/2 -
+ (EO exp {2MH}> (]P’O{ max{| By|oo, | Bil oo > t?})
Notice that f;(2, %) = (2t) 2*1|_s2 210 (2)1[_s2 270 (Z) is in F. Summarizing our estimate,

Eo exp {M([lv t]z)} < (2t)2d ?2_2(]07 th>

1/2 ~ 1/2
+ (IEO exp {2/\/1,5,1}) (]P’O{ max{|Bi|oo, | Bt|oo > tQ})
+IP’0{ max{|Bi|w, | Biloc} > tQ}EO exp {M,_,}.

By (5.21), by Lemma 5.2 and by the Gaussian tail,

lim sup % log Eg exp {M([1,1]*)}. < co(H).

t—o00

Given the conjugate numbers p,q > 1

Eoexp {p~'M,} < (EO exp { M([1, t]2)}>1/p (Eg exp {(p — 1)~ M(0, 1]2)}>1/q.

So we have )
lim sup n log Eq exp {p’lMt} < pleo(H).

t—o0
By scaling,
S
p_lMt < /\/ltp where t, =tp 2HotH-d,
By variable substitution

1 1
lim sup i log Eg exp {M([0,1]*)} < p~'pTo+i=dcy(H).

t—o00

Letting p — 17 on the right hand side leads to the upper bound for (5.10). O
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6 Appendix
Here we establish two identities on gamma functions that have been used in this paper.

Lemma 6.1 For any 0 < Hy < 1,

* sin A wH,
d\ = 6.1
/0 A2Ho ['(2Hy + 1) sin(Hom)’ (6.1)
1 2
. 27
iAs 1-2H,
ds| |\ od)\ = . 6.2
/R /0 emds) A T(2H, + 1) sin(Hor) (6.2)
Proof: To prove (6.1), we begin with Hankel’s representation ([16])
1—‘ o
(’Z) — / )\Z—le—s/\d)\
s% 0
with z # 0,—1,—2,--- and |arg(s)| < w. Here we point out the gamma function I'(z) can

be extended analytically into C\ {0, —1,—2,--- } by the limit (eq. 6.1.2. [1])

1 .on?

Taking s = —i and z = 1 — 2H, in Hankel’s representation gives
1 - 2H0 o BM
exp {i———m }T(1 - 2Hy) = i

Comparing the imaginary part,

 sin A /1 —=2H,
/0 2o d)\ = sin ( 5 07r>F(1 — 2Hy) = cos(mH)I'(1 — 2H)).

Recall Euler’s reflection formula (eq. 6.1.17, [1])

™

r'z)ra—z)= 4.
()1 =2) sin(7z) i
Taking z = 2H,,
/°° sin )\d)\ _ mcos(mHy) T B T
o A2Ho T T(2Hy)sin(2mHy)  20(2H,)sin(rHy)  T'(2H, + 1) sin(7Hy)

where the last step follows from the fact that T'(2Hy + 1) = 2H,T'(2H,).
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As for (6.2)

2

=1y p-2oay

1 2
/ e™ods| |N['T2Hod) = / :
0 R Z)\

/
sin?(\/2) > sin%(\/2)
& [A2HoH d\ = 8/0 \2Ho+1 dA

4 [ 1 d . 4 2 ° sin A
= — _ 2 e —
Ho/o AZH()(CM sin?()\/ ))d)\ Ho/o A

2 T 27

" HyT(2H, + 1)sin(nHy)  T(2H, + 1) sin(r Ho)

where the fourth equality follows from integration by parts and the sixth equality from (6.1).
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