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Abstract
In this note, we establish the bounds

cε
2
3 ≤ P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ ε

}
≤ Cε

2
3

for the mutual intersection local time of two independent 1-dimensional Brownian
motions B and B̃.
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1 Introduction

Intersection local times (including self-intersection local time and mutual intersection
local time) of stochastic processes are a fundamental concept in stochastic analysis,
which also play an important role in the study of the quantum field theory, stochastic
partial differential equations and models of polymers. Our goal in this note is to
establish the small deviation for the mutual intersection local time

∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr , t > 0
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driven by two independent 1-dimensional Brownian motions Bs and B̃s with B0 =
B̃0 = 0, where δ0(·) is the Dirac delta function on R (see, e.g., [1, Chapter 2] for
the detailed construction of intersection local times). The mutual intersection local
time measures the intensity of path intersection between two independent Brownian
trajectories. The following is the main result of this paper.

Theorem 1.1 There exists constants 0 < c ≤ C < ∞ such that for small ε > 0,

cε
2
3 ≤ P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ ε

}
≤ Cε

2
3 . (1.1)

The small deviation (or, small ball probability) is an interesting subject for stochastic
models. An interested reader is referred to [5] for a survey of general development
in this direction. The goal is to find the decay rate of the probability P{‖G‖ ≤ ε}
as ε → 0+, where G(·) is a stochastic process or a random field that is properly
embedded in a Banach space endowed with the norm ‖ · ‖. In our setting,

∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr =

∫ ∞

−∞
L(1, x)L̃(1, x)dx

�= ‖G‖,

where L(t, x) and L̃(t, x) ((t, x) ∈ R
+ × R) are local times of B an B̃, respectively;

and the random field G(x) = L(1, x)L̃(1, x) (x ∈ R) is embedded in the space
L1(R). Due to technical limitations, the random fields G(·) in the literature of small
ball probability are predominantly Gaussian. Theorem 1.1 represents a rare setting for
the non-Gaussian situation. Another similar example of the non-Gaussian is the small
deviation for the self-intersection local time (see (1.3) below).

In addition, this work is also motivated by a practical matter arising from the area
of stochastic partial differential equations: The integrability

E

[ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr

]−p

< ∞ for some p > 0, (1.2)

plays an important rule when studying the regularity of the probability distribution for
the solution of 1-dimensional parabolic Anderson equation (driven by a space-white
Gaussian noise) in [7]. For possible quantification of the smoothness of the solution
density in the future, it might be desirable to find the critical value of p. The following
result is a direct consequence of (1.1):

Corollary 1.2 The negative-moment-integrability (1.2) holds if and only if p < 2
3 .

The large and small deviations are two research subjects concerning the probabilities
of the rare events representing two extreme behaviors of the stochastic system: the
random variable takes unusually large values and the random variable takes unusually
small values. For the purpose of comparison in terms of large and small deviations,
we introduce the self-intersection local time

∫ t

0

∫ t

0
δ0(Bs − Br )dsdr , t > 0.
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By Theorem 1.1 in [2] (m = 1, p = 2 for self-intersection, and m = 2, p =
1 for mutual intersection), we have the large deviations for both self and mutual
intersections:

lim
ε→0+ ε2 log P

{ ∫ 1

0

∫ 1

0
δ0(Bs − Br )dsdr ≥ ε−1

}
= −3

2
;

lim
ε→0+ ε2 log P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≥ ε−1

}
= −3.

It is noticeable that the large deviations for two different types of intersections take
the forms close to each other. The story behind is the following deterministic relation:

∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr =

∫ ∞

−∞
L(1, x)L̃(1, x)dx ≤ 1

2

∫ ∞

−∞
L2(1, x)dx

+ 1

2

∫ ∞

−∞
L̃2(1, x)dx

= 1

2

∫ 1

0

∫ 1

0
δ0(Bs − Br )dsdr + 1

2

∫ 1

0

∫ 1

0
δ0(B̃s − B̃r )dsdr

where L(t, x) and L̃(t, x) are, respectively, the local times of Bt and B̃t . In the game
of large deviations, the Brownian trajectories that make mutual intersection large are
those that make L(1, ·) and L̃(1, ·) close to each other so that “≤” is replaced by “≈”
in the above deterministic relation.

The small ball probability for the self-intersection local time [6] takes the form

lim
ε→0+ ε2 log P

{∫ 1

0

∫ 1

0
δ0(Bs − Br )dsdr ≤ ε

}
= −c (1.3)

with constant c > 0. A striking difference between (1.3) and (1.1) lies in the disparity
between exponential decay and power decay. The typical paths that the Brownian
motion takes for maximizing self-avoiding are the ones that are close to straight lines,
i.e., Bt ≈ cε−1t, t ∈ [0, 1]. For the mutual intersection local time, the small deviation
means a totally different game: Two independent Brownian paths tend to avoidmeeting
each other right after they set out from the same starting point.

In the following, we outline the idea in our proof: By the Brownian scaling property
and the relation δ0(λx) = λ−1δ0(x) for any λ > 0, we have

∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr

d= t3/2
∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr , ∀t > 0, (1.4)

where “
d=” means equality in distribution. Therefore, the proof of (1.1) is reduced to

establishing the following bound

c
1

t
≤ P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ a

}
≤ C

1

t
(1.5)

123



    5 Page 4 of 19 Journal of Theoretical Probability             (2025) 38:5 

for large t and for some fixed constants c,C, a > 0 which are independent of t .
In the proof of the lower bound, we separate the Brownian paths B[1, t] and B̃[1, t]

into two disjoint and distanced half-lines in a way that leads to B[0, t] ∩ B̃[1, t] = ∅
and B[1, t] ∩ B̃[0, t] = ∅. Consequently, the only unavoidable intersections are the
ones happening on the time square [0, 1]2.

In other words, the strategy lies in the comparison between the probability of “low
intersection” and the probability of “no intersection”. Indeed, the steps taken in (2.2)
below morally suggests the relation

P{low intersection on [0, t]2} ≥ cP{no intersection on [1, t]2}. (1.6)

Since the probability on the right-hand side is not hard to compute (only for 1-
dimensional Brownian motions, of course), the proof of the lower bound (see Sect. 2)
is the easier one, in comparison with the proof of the upper bound (see Sect. 3). As for
the upper bound, the real challenge is to fill the gap between “low intersection” and
“no intersection” suggested by (1.6).

We end the discussion with a remark on the possible multi-dimensional extensions
in the future. It is well-known that the mutual intersection local time between two
independent d-dimensional Brownian motions exists for d = 1, 2, 3. Therefore, it
makes sense to raise the same question in these dimensions. In view of the heuristic
comparison (1.6),1 it brings the famous theorem of intersection exponent by Lawler,
Schramm and Werner (Theorem 1.1, [4]) in which it claims that when d = 2, the
right-hand side of (1.6) is of the order t−(5/8)+o(1) as t → ∞. When d = 2, noting
that

∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr

d= t
∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr , ∀t > 0,

we conjecture that

P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ ε

}
= ε(5/8)+o(1), (ε → 0+). (1.7)

2 Lower Bound

In this section, all we need is to prove the lower bound in (1.5) with a = 1, i.e.,

P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ 1

}
≥ c

t
(2.1)

1 We believe it remains morally true in multi-dimensional settings.
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for large t . First, we claim that for t > 1,

P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ 1

}

≥ P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ 1, min

0≤s≤1
Bs ≥ −1, max

0≤s≤1
B̃s ≤ 1,

min
1≤s≤t

Bs > 1, max
1≤s≤t

B̃s < −1

}

= E

[
1A · PB1

{
min

0≤s≤t−1
Bs > 1

}
PB̃1

{
max

0≤s≤t−1
B̃s < −1

}]
,

(2.2)

where

A =
{∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ 1, min

0≤s≤1
Bs ≥ −1, max

0≤s≤1
B̃s ≤ 1

}
,

and the last step follows from the Markov property and the independence between B
and B̃.

Indeed, the first step is justified by the fact that on the event

{
min
0≤s≤1

Bs ≥ −1, max
0≤s≤1

B̃s ≤ 1, min
1≤s≤t

Bs > 1, max
1≤s≤t

B̃s < −1
}
,

B[0, t] ∩ B̃[1, t] = ∅ and B[1, t] ∩ B̃[0, t] = ∅ which leads to

∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr =

∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr .

On {B1 ≥ 2}, by (2.5) in Lemma 2.1 we have

PB1

{
min

0≤s≤t−1
Bs > 1

}
≥ P

{
1 + min

0≤s≤t−1
Bs > 0

}

= P

{
|Bt−1| ≤ 1

}
∼ 1√

2π t
(t → ∞),

(2.3)

and similarly, using (2.6) in Lemma 2.1 we conclude that on {B̃1 ≤ −2},

PB̃1

{
max

0≤s≤t−1
B̃s < −1

}
≥ P{|Bt−1| ≤ 1} ∼ 1√

2π t
(t → ∞). (2.4)
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Combining (2.2), (2.3) and (2.4), we get that when t is sufficiently large, there exists
a constant c > 0 such that

P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ 1

}

≥ c

t
P

{ ∫ 1

0

∫ 1

0
δ0(Bs − B̃r )dsdr ≤ 1, min

0≤s≤1
Bs ≥ −1, B1 ≥ 2,

max
0≤s≤1

B̃s ≤ 1, B̃1 ≤ −2

}
,

where the probability on the right-hand side is clearly positive. The desired lower
bound (2.1) is proved.

Lemma 2.1 For any x > 0 and t > 0, we have

P{x + Bs > 0; ∀s ≤ t} = P{|Bt | ≤ x}, (2.5)

and

P{−x + Bs < 0; ∀s ≤ t} = P{|Bt | ≤ x}. (2.6)

Proof Denote χx
�= inf{s ≥ 0; Bs = x}. Then,

P{x + Bs > 0; ∀s ≤ t} = P{χ−x ≥ t} = P{χx ≥ t}
= P

{
max
0≤s≤t

Bs ≤ x
}

= P{|Bt | ≤ x},

where the last equality follows from the reflection principle max
0≤s≤t

Bs
d= |Bt |. This

yields (2.5). Equation (2.6) can be obtained by replacing B by −B in (2.5).

3 Upper Bound

In this section, we prove the upper bound of (1.5) which can be slightly rephrased as

P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ a

}
= O

(1
t

)
(t → ∞) (3.1)

for some constant a > 0. We shall specify the constant a > 0 later.
As we mentioned earlier, the central piece of the proof is to compare the “low

intersection” probability in (3.1) with the probability of “no intersection” in a direc-
tion opposite to the one in (1.6). More precisely, we compare the probability of low
intersection for B and B̃ with the probability of no intersection for two independent
simple random walks. We refer to (3.25) and (3.31) below for the implementation of
this idea.
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To this end, we generate two independent simple random walks {Sk, k ≥ 0} and
{S̃k, k ≥ 0} by Brownian motions in a way that the trajectory {Sk; 0 ≤ k ≤ n} is
intimately close to the Brownian path {Bs; 0 ≤ t ≤ τn} up to the stopping time τn
that is given below (same thing is expected between S̃k and B̃t ):

We first define a sequence of stopping times {τk}k≥0 related to the Brownianmotion
Bt :

τ0 = 0; τk = inf{t ≥ τk−1; |Bt − Bτk−1 | = 1} for k = 1, 2, . . . (3.2)

Then {Sk = Bτk , k ≥ 0}) is a simple random walk with S0 = B0. The stopping times
{τ̃k, k ≥ 0} and the simple random walk {S̃k, k ≥ 0} are generated from {B̃t , t ≥ 0}
in the same way.

Clearly, {τk − τk−1}k≥1 is a sequence of i.i.d. random variables with the same
distribution as τ1. Here we point out that the distribution of τ1 does not depend on the
starting point of B.2 The exact distribution of τ1 is known (p. 342, [3]). An instructive
link [5] to the integrability of τ1 is given as follows: By the definition of τ1,

P{τ1 ≥ t} = P
{
max
s≤t

|Bs | ≤ 1
}

= P
{
max
s≤1

|Bs | ≤ 1√
t

}

= exp
{

−
(π2

8
+ o(1)

)
t
}

(t → ∞),

where the last step is the classic result on the small ball probability for Brownian
motions (see, e.g., (1.3), [5]). In particular, Eeθτ1 < ∞ for θ < π2/8. By a standard
application of Chebyshev’s inequality to the sum of independent random variables,
we get

P
{|τn − nEτ1| ≥ nδ

} ≤ 1

nδ2
Var(τ1). (3.3)

The mutual intersection local time Qn of the random walks S and S̃ is given by

Qn
�=

n∑
j,k=1

1{S j=S̃k }. (3.4)

For n ∈ N,

∫ τn+1

0

∫ τ̃n+1

0
δ0(Bs − B̃r )dsdr =

n∑
j,k=0

∫ τ j+1

τ j

∫ τ̃k+1

τ̃k

δ0(Bs − B̃r )dsdr

≥
n∑

j,k=1

∫ τ j+1

τ j

∫ τ̃k+1

τ̃k

δ0(Bs − B̃r )dsdr

2 We mention this as we allow B0 �= 0 and B̃0 �= 0 in later discussion.
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≥
n∑

j,k=1

1{S j=S̃k }
∫ τ j+1

τ j

∫ τ̃k+1

τ̃k

δ0(Bs − B̃r )dsdr

=
n∑

j,k=1

1{S j=S̃k }ξ j,k = Hn (say), (3.5)

where we denote

ξ j,k
�=

∫ τ j+1

τ j

∫ τ̃k+1

τ̃k

δ0(Bs − B̃r )dsdr for j, k = 1, 2, . . .

For a technical reason, we allow the Brownian motions to start from somewhere
different from 0 and use P(x,x̃)(·) for the probability with B0 = x and B̃0 = x̃ .
We follow the convention P(·) = P(0,0)(·). Recall the standard notation used in the
textbook on Markov process:

Pμ(·) =
∫
R2

μ(dx, dx̃)P(x,x̃)(·)

for any probability measure μ on R
2. In the following discussion, we set

μ = 1

4

{
δ(−1,−1) + δ(1,1) + δ(−1,1) + δ(1,−1)

}
.

Despite the fact that (0, 0) is not listed as a starting point of the 2-dimensionalBrownian
motion (Bt , B̃t ) under the distribution μ, noting that

⎧⎨
⎩

P(−1,−1){Hn ≤ a} = P(1,1){Hn ≤ a} = P{Hn ≤ a},

P(−1,1){Hn ≤ a} = P(1,−1){Hn ≤ a} n = 1, 2, . . . ,
(3.6)

we have

Pμ{Hn ≤ a} = 1

2
P{Hn ≤ a} + 1

2
P(1,−1){Hn ≤ a}. (3.7)

Here, we recall the notation from (3.5),

Hn =
n∑

j,k=1

1{S j=S̃k }ξ j,k .

The proof of (3.1) can be reduced to establishing the bound

Pμ{Hn ≤ a} = O
(1
n

)
(n → ∞). (3.8)
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Indeed, by (3.7) we have P{Hn ≤ a} ≤ 2Pμ{Hn ≤ a}. Therefore, (3.5) leads to

P

{ ∫ τn+1

0

∫ τ̃n+1

0
δ0(Bs − B̃r )dsdr ≤ a

}
= O

(1
n

)
(n → ∞).

Consequently, for any 0 < δ < 1,

P

{ ∫ t

0

∫ t

0
δ0(Bs − B̃r )dsdr ≤ a

}

≤ P

{ ∫ τ[(1−δ)t/Eτ1]+1

0

∫ τ̃[(1−δ)t/Eτ1]+1

0
δ0(Bs − B̃r )dsdr ≤ a

}

+ 2P
{
τ[(1−δ)t/Eτ1]+1 ≥ t

}

≤ O
(1
t

)
+ C

t
= O

(1
t

)
(t → ∞),

where the second inequality partially follows from (3.3).
The remaining of the section is devoted to the proof of (3.8). Set the random set on

Z
2+:

�(A)
�= {( j, k) ∈ A; S j = S̃k}, A ⊂ Z

2+.

Notice that #(�([1, n]2) = Qn where Qn is the number of intersections given in (3.4).
We introduce the following stopping time

σ
�= min

{
n ≥ 1; �([1, n]2) �= ∅

}
= min

{
n ≥ 1; Qn > 0

}
. (3.9)

By the law of total probability, we have

Pμ{Hn ≤ a} =
n∑

l=1

Pμ{σ = l, Hn ≤ a} + Pμ{σ > n}

=
n∑

l=1

Pμ{σ = l, Hn ≤ a} + Pμ{Qn = 0}.
(3.10)

On the event {σ = l}, the intersection {S j = S̃k} happens either on [1, l] × {l} or on
{l} × [1, l], or on both. An intersection {S j = S̃k} is called an early intersection, if
there is no ( j1, k1) �= ( j, k) such that j1 ≤ j , k1 ≤ k, and S j1 = S̃k1 . In general, there
may be multiple early intersections due to the multi-dimension of time. On {σ = l},
early intersections happen on [1, l] × {l} or on {l} × [1, l], or on both, i.e.,

{σ = l} =
{
�([0, l − 1]2) = ∅, early intersection happens on [1, l] × {l}

}
⋃ {

�([0, l − 1]2) = ∅, early intersection happens on {l} × [1, l]
}

.
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Therefore, for l = 1, . . . , n,

Pμ{σ = l, Hn ≤ a}
≤ Pμ

{
�([0, l − 1]2) = ∅, early intersection happens on [1, l] × {l}, Hn ≤ a

}

+ Pμ

{
�([0, l − 1]2) = ∅, early intersection happens on {l} × [1, l], Hn ≤ a

}

= 2Pμ

{
�([0, l − 1]2) = ∅, early intersection happens on [1, l] × {l}, Hn ≤ a

}
.

(3.11)

On the event
{
�([0, l−1]2) = ∅, early intersection happens on [1, l]×{l}}, there

is a unique early intersection on [1, l] × {l} happening at (ρ, l) for some 1 ≤ ρ ≤ l,
described by the event

Fρ,l
�=

{
�

(([1, ρ] × [1, l]) \ (ρ, l)
)

= ∅, Sρ = S̃l
}
, ρ = 1, . . . , l. (3.12)

Thus, we have

{
�([0, l − 1]2) = ∅, early intersection happens on [1, l] × {l}

}
⊂

l⋃
ρ=1

Fρ,l .

Here we mention that, when ρ = l, the fact that “Sl = S̃l” is an early intersection
requires, in addition to “S1 �= S̃l , . . . , Sl−1 �= S̃l”, that “Sl �= S̃1, . . . , Sl �= S̃l−1”
(and therefore �(([1, l] × [1, l]) \(l, l)) = ∅). Thus,

Pμ

{
�([1, l − 1]2) = ∅, early intersection happens on [1, l] × {l}, Hn ≤ a

}

≤
l∑

ρ=1

Pμ

{
Fρ,l ∩ {Hn ≤ a}} =

l∑
ρ=1

Pμ

{
Fρ,l ∩ {ξρ,l ≤ a} ∩ {Hn ≤ a}}.

Combining this with (3.11) yields

Pμ{σ = l, Hn ≤ a} ≤ 2
l∑

ρ=1

Pμ

{
Fρ,l ∩ {ξρ,l ≤ a} ∩ {Hn ≤ a}}, l = 1, . . . , n.

(3.13)

When 1 ≤ l ≤ n − 2, we have on Fρ,l ,
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Hn ≥
n∑

j=ρ+2

n∑
k=l+2

1{S j=S̃k }ξ j,k

=
n−ρ−1∑
j=1

n−l−1∑
k=1

1{(Sρ+1+ j−Sρ+1)+(Sρ+1−Sρ)=(S̃l+1+k−S̃l+1)+(S̃l+1−S̃l )}ξρ+1+ j,l+1+k

≥
n−l−1∑
j,k=1

1{(Sρ+1+ j−Sρ+1)+(Sρ+1−Sρ)=(S̃l+1+k−S̃l+1)+(S̃l+1−S̃l )}ξρ+1+ j,l+1+k

= H̄n−l−1 (say), (3.14)

where the equality is due to Sρ = S̃l on Fρ,l . Note that

ξρ+1+ j,l+1+k =
∫ τρ+2+ j

τρ+1+ j

∫ τ̃l+2+k

τ̃l+1+k

δ0(Bs − B̃r )dsdr

=
∫ τρ+2+ j−τρ+1

τρ+1+ j−τρ+1

∫ τ̃l+2+k−τ̃l+1

τ̃l+1+k−τ̃l+1

δ0

(
Bτρ+1+s − B̃τ̃l+1+r

)
dsdr

=
∫ τρ+2+ j−τρ+1

τρ+1+ j−τρ+1

∫ τ̃l+2+k−τ̃l+1

τ̃l+1+k−τ̃l+1

δ0

((
(Bτρ+1+s − Bτρ+1) + (Sρ+1 − Sρ)

)

− (
(B̃τ̃l+1+r − B̃τ̃l+1) + (S̃l+1 − S̃l)

))
dsdr .

Thus, given (Sρ+1−Sρ, S̃l+1− S̃l) = (z1, z2), the distribution of H̄n−l−1 is the same as
that of Hn−l−1 under P(z1,z2), and is independent of {(Bs, B̃r ); 0 ≤ s ≤ τρ+1 and 0 ≤
r ≤ τ̃l+1}, and is therefore independent of Fρ,l and ξρ,l . By (3.14) and the Markov
property

Pμ

{
Fρ,l ∩ {ξρ,l ≤ a} ∩ {Hn ≤ a}} ≤ Pμ

{
Fρ,l ∩ {ξρ,l ≤ a} ∩ {H̄n−l−1 ≤ a}}

= Eμ

[
1Fρ,l1{ξρ,l≤a}P(Sρ+1−Sρ,S̃l+1−S̃l )

{Hn−l−1 ≤ a}
]
. (3.15)

By the fact that Sρ+1 − Sρ = ±1 and S̃l+1 − S̃l = ±1, and by (3.6), the right-hand
side of (3.15) is bounded from above by

P(1,1){Hn−l−1 ≤ a}Eμ

[
1Fρ,l1{ξρ,l≤a}1{Sρ+1−Sρ=S̃l+1−S̃l )

]

+ P(1,−1){Hn−l−1 ≤ a}Eμ

[
1Fρ,l1{ξρ,l≤a}1{Sρ+1−Sρ �=S̃l+1−S̃l )

]

≤ (
P(1,1){Hn−l−1 ≤ a} + P(1,−1){Hn−l−1 ≤ a}) Pμ

{
Fρ,l ∩ {ξρ,l ≤ a}}

= 2Pμ{Hn−l−1 ≤ a}Pμ

{
Fρ,l ∩ {ξρ,l ≤ a}} .

(3.16)
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On Fρ,l ,

ξρ,l =
∫ τρ+1−τρ

0

∫ τ̃l+1−τ̃l

0
δ0

(
(Bτρ+s − Bτρ ) − (B̃τ̃l+r − B̃τ̃l )

)
dsdr

and the right-hand side has the same distribution as ξ1,1 (under the law P(·)), and is
independent of

{
(Bs, B̃r ); s ≤ τρ and r ≤ τ̃l

}
, and therefore of Fρ,l . Hence,

Pμ

{
Fρ,l ∩ {ξρ,l ≤ a}} = Pμ{Fρ,l}P{ξ1,1 ≤ a}. (3.17)

In summary, combining (3.13), (3.15), (3.16) and (3.17), we get for 1 ≤ l ≤ n−2,

Pμ{σ = l, Hn ≤ a} ≤ 4P{ξ1,1 ≤ a}
( l∑

ρ=1

Pμ{Fρ,l}
)
Pμ{Hn−l−1 ≤ a}. (3.18)

When l ∈ {n − 1, n}, by (3.13) and (3.17) we have the bound

Pμ{σ = l, Hn ≤ a} ≤ 2P{ξ1,1 ≤ a}
( l∑

ρ=1

Pμ{Fρ,l}
)

. (3.19)

Now, combining (3.10), (3.18), and (3.19), we get for n ≥ 3,

Pμ{Hn ≤ a}

≤ 4P{ξ1,1 ≤ a}
n−2∑
l=1

( l∑
ρ=1

Pμ{Fρ,l}
)
Pμ{Hn−l−1 ≤ a}

+ 2P{ξ1,1 ≤ a}
( ∑

l∈{n−1,n}

l∑
ρ=1

Pμ{Fρ,l}
)

+ Pμ{Qn = 0}.

(3.20)

Therefore, for any θ ∈ (0, 1),

∞∑
n=3

θn Pμ{Hn ≤ a}

≤
∞∑
n=3

θn Pμ{Qn = 0}

+4P{ξ1,1 ≤ a}
∞∑
n=3

θn
n−2∑
l=1

( l∑
ρ=1

Pμ{Fρ,l}
)
Pμ{Hn−l−1 ≤ a}

+2P{ξ1,1 ≤ a}
∞∑
n=3

θn
( n−1∑

ρ=1

Pμ{Fρ,n−1}
)
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+2P{ξ1,1 ≤ a}
∞∑
n=3

θn
( n∑

ρ=1

Pμ{Fρ,n}
)

.

(3.21)

Notice that

∞∑
n=3

θn
n−2∑
l=1

( l∑
ρ=1

Pμ{Fρ,l}
)
Pμ{Hn−l−1 ≤ a}

= θ

∞∑
n=2

n−1∑
l=1

(
θ l

l∑
ρ=1

Pμ{Fρ,l}
)

θn−l Pμ{Hn−l ≤ a}

= θ

( ∞∑
n=1

θn
n∑

ρ=1

Pμ{Fρ,n}
)( ∞∑

n=1

θn Pμ{Hn ≤ a}
)

.

Plugging this into (3.21) and noting θ ∈ (0, 1), we get

∞∑
n=3

θn Pμ{Hn ≤ a} ≤
∞∑
n=3

θn Pμ{Qn = 0} + 12
∞∑
n=1

n∑
ρ=1

Pμ{Fρ,n}

+ 4P{ξ1,1 ≤ a}
( ∞∑
n=1

n∑
ρ=1

Pμ{Fρ,n}
) ∞∑
n=3

θn Pμ{Hn ≤ a}. (3.22)

We now install the summability of {P(Fρ,l); 1 ≤ ρ ≤ l < ∞}. Let (ρ, l) be fixed
for a while. We start by tracking the possible site z ∈ Z where the early intersection
“Sρ = Sl = z” (given in the definition of Fρ,l ) occurs. Given that S0 = ±1 and
S̃0 = ±1 under Pμ, we must have that z ∈ [−2, 2]. Hence,

Pμ(Fρ,l) =
∑

z∈[−2,2]
Pμ(Fρ,l ∩ {Sρ = S̃l = z}).

Define the hitting times

Tz
�= min{n ≥ 1; Sn = z} and T̃z

�= min{n ≥ 1; S̃n = z}.

By the fact that “Sρ = Sl” is an early intersection, we have

Pμ(Fρ,l ∩ {Sρ = S̃l = z}) ≤ Pμ{Tz = ρ, T̃z = l} = Pμ{Tz = ρ}Pμ{Tz = l},

where the last step follows from the independence between S and S̃. In summary,

Pμ(Fρ,l) ≤
∑

z∈[−2,2]
Pμ{Tz = ρ}Pμ{Tz = l}, (1 ≤ ρ ≤ l < ∞). (3.23)
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Consequently,

∞∑
l=1

l∑
ρ=1

Pμ(Fρ,l) ≤
∑

z∈[−2,2]

∞∑
l=1

l∑
ρ=1

Pμ{Tz = ρ}Pμ{Tz = l} ≤
∑

z∈[−2,2]
1 = 5.

(3.24)

Choose a > 0 sufficiently small, so that

P{ξ1,1 ≤ a} <
1

20
.

By (3.22) and (3.24),

∞∑
n=3

θn Pμ{Hn ≤ a} ≤
(
1 − 20P{ξ1,1 ≤ a}

)−1{
60 +

∞∑
n=3

θn Pμ{Qn = 0}
}

. (3.25)

Lemma 3.1 There is a constant C > 0 such that

Pμ{Qn = 0} ≤ C

n
, n = 1, 2, . . . , (3.26)

and

max
z∈[−2,2] Pμ{Tz ≥ n} ≤ C√

n
, n = 1, 2, . . . . (3.27)

Proof Under Pμ, S0 = ±1 and S̃0 = ±1. When S0 �= S̃0,

{Qn = 0} ⊂
{

min
1≤k≤n

Sk ≥ −S0, max
1≤k≤n

S̃k ≤ −S̃0
}

⋃ {
min
1≤k≤n

S̃k ≥ −S̃0, max
1≤k≤n

Sk ≤ −S0
}
.

When S0 = S̃0,

{Qn = 0} ⊂
{

min
1≤k≤n

Sk ≥ S0, max
1≤k≤n

S̃k ≤ S̃0
} ⋃ {

min
1≤k≤n

S̃k ≥ S̃0, max
1≤k≤n

Sk ≤ S0
}
.

By sub-additivity, symmetry and independence, we get

Pμ{Qn = 0}
≤ P1

{
min

1≤k≤n
Sk ≥ −1

}
P−1

{
max

1≤k≤n
Sk ≤ 1

}
+ P1

{
min

1≤k≤n
Sk ≥ 1

}
P1

{
max

1≤k≤n
Sk ≤ 1

}

=
(
P

{
min

1≤k≤n
Sk ≥ −2

})2
+

(
P

{
min

1≤k≤n
Sk ≥ 0

})2
≤ 2

(
P

{
min

1≤k≤n
Sk ≥ −2

})2
.
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As for the hitting time, we have

Pμ{Tz ≥ n} = 1

2
P{Tz−1 ≥ n} + 1

2
P{Tz+1 ≥ n}

= 1

2
P{T−|z−1| ≥ n} + 1

2
P{T−|z+1| ≥ n}

≤ 1

2
P

{
min
1≤k≤n

Sk ≥ −|z − 1|
}

+ 1

2
P

{
min
1≤k≤n

Sk ≥ −|z + 1|
}
,

where the second equality follows from symmetry.
Therefore, both (3.26) and (3.27) are reduced to the proof for the bound of the form

P
{

min
1≤k≤n

Sk ≥ −z
}

≤ Cz√
n
.

The bound like this looks classic and must exist somewhere in literature. For the
reader’s convenience, we give a short proof here. Since the probability on the left is
non-decreasing in z, we may assume that z ≥ 2. By our construction of the simple
random walk, |Bt − Sk | ≤ 1 for τk ≤ t ≤ τk+1. Therefore,

P
{

min
1≤k≤n

Sk ≥ −z
}

≤ P
{

min
1≤s≤τn

Bs ≥ −(z − 1)
}

≤ P
{

min
1≤s≤(1−δ)nEτ1

Bs ≥ −(z − 1)
}

+ P{τn ≤ (1 − δ)nEτ1}

≤ P
{
|B(1−δ)nEτ1 | ≤ z − 1

}
+ 1

nδ2
Eτ 21 ≤ Cz√

n

,

where the third step follows from Lemma 2.1 and the inequality (3.3). ��
Bringing (3.26) to the bound (3.25) we have

∞∑
n=3

θn Pμ{Hn ≤ a} ≤ C

{
1 +

∞∑
n=1

θn

n

}
= C

{
1 + log

1

1 − θ

}
.

Therefore (with possibly different C > 0),

nθn Pμ{Hn ≤ a} ≤
n∑

k=1

θk P{Hk ≤ k} ≤ C log
1

1 − θ
(θ → 1−).

Taking θ = 1 − 1
n for large n, we have

n
(
1 − 1

n

)n
Pμ{Hn ≤ a} ≤ C log n.

So we have the bound

Pμ{Hn ≤ a} = O
( log n

n

)
(n → ∞). (3.28)
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This bound is weaker than the desired estimate (3.8) and therefore needs to be
strengthened.

Under the re-index l �→ n − l − 1 in the second term on the right-hand side, (3.20)
becomes

Pμ{Hn ≤ a} ≤ Pμ{Qn = 0} + 4P{ξ1,1 ≤ a}
n−2∑
l=1

( n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}
)
Pμ{Hl ≤ a}

+ 2P{ξ1,1 ≤ a}
( n−1∑

ρ=1

Pμ{Fρ,n−1}
)

+ 2P{ξ1,1 ≤ a}
( n∑

ρ=1

Pμ{Fρ,n}
)

.

For large integer k, therefore,

2k+1∑
n=2k+1

Pμ{Hn ≤ a} ≤
2k+1∑

n=2k+1

Pμ{Qn = 0} + 2P{ξ1,1 ≤ a}
( 2k+1∑
n=2k+1

n−1∑
ρ=1

Pμ{Fρ,n−1}
)

+ 2P{ξ1,1 ≤ a}
( 2k+1∑
n=2k+1

n∑
ρ=1

Pμ{Fρ,n}
)

+ 4P{ξ1,1 ≤ a}
2k+1∑

n=2k+1

n−2∑
l=1

( n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}
)
Pμ{Hl ≤ a}

≤ 20 +
2k+1∑

n=2k+1

Pμ{Qn = 0}

+ 4P{ξ1,1 ≤ a}
2k+1∑

n=2k+1

n−2∑
l=1

( n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}
)
Pμ{Hl ≤ a},

(3.29)

where the last step follows from (3.24).
For the summation in the last term on the right-hand side,

2k+1∑
n=2k+1

n−2∑
l=1

( n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}
)
Pμ{Hl ≤ a}

≤
2k+1∑
l=1

Pμ{Hl ≤ a}
2k+1∑

n=max{l+1,2k }+1

n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}

≤
2k∑
l=1

Pμ{Hl ≤ a}
2k+1∑

n=2k+1

n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}

+
2k+1∑

l=2k+1

Pμ{Hl ≤ a}
2k+1∑
n=l+2

n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}. (3.30)
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For the first term on the right-hand side, by (3.23) and (3.28),

2k∑
l=1

Pμ{Hl ≤ a}
2k+1∑

n=2k+1

n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}

≤ C
2k∑
l=1

log l

l

2k+1∑
n=2k+1

n−1−l∑
ρ=1

∑
z∈[−2,2]

Pμ{Tz = ρ}Pμ{Tz = n − 1 − l}

≤ C
∑

z∈[−2,2]

2k∑
l=1

log l

l

∞∑
n=2k+1

Pμ{Tz = n − 1 − l}

≤ C
∑

z∈[−2,2]

2k∑
l=1

log l

l
Pμ{Tz ≥ 2k − l}

≤ C
2k∑
l=1

log l

l

1√
2k − l + 1

,

where the last step follows from (3.27), Lemma 3.1. We claim that the summation on
the right-hand side is bounded in k. Indeed,

2k∑
l=1

log l

l

1√
2k − l + 1

≤ 2− k−1
2

2k−1∑
l=1

log l

l
+ log 2k−1

2k−1

2k∑
l=2k−1+1

1√
2k − l + 1

≤ C
{
2− k−1

2 (log 2k−1)2 + log 2k−1

2k−1 2
k−1
2

}
,

and clearly the right-hand side is bounded in k.
As for the second term on the right-hand side of (3.30), we use the easy bound

2k+1∑
n=l+2

n−1−l∑
ρ=1

Pμ{Fρ,n−l−1} ≤
∞∑
n=1

n∑
ρ=1

Pμ{Fρ,n} ≤ 5,

where the last step follows from (3.24).
Combining the steps after (3.30), we get

2k+1∑
n=2k+1

n−2∑
l=1

( n−1−l∑
ρ=1

Pμ{Fρ,n−l−1}
)
Pμ{Hl ≤ a} ≤ C + 5

2k+1∑
n=2k+1

Pμ{Hn ≤ a}.

Plugging this into (3.29), we have

2k+1∑
n=2k+1

Pμ{Hn ≤ a} ≤ C +
2k+1∑

n=2k+1

Pμ{Qn = 0} + 20P{ξ1,1 ≤ a}
2k+1∑

n=2k+1

Pμ{Hn ≤ a},
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or equivalently,

2k+1∑
n=2k+1

Pμ{Hn ≤ a} ≤
(
1 − 20P{ξ1,1 ≤ a}

)−1{
C +

2k+1∑
n=2k+1

Pμ{Qn = 0}
}
. (3.31)

In view of (3.26) in Lemma 3.1, the sequence

2k+1∑
n=2k+1

Pμ{Qn = 0} ≤
2k+1∑

n=2k+1

C

n
≤ C

(
log 2k+1 − log 2k

)
≤ C

is uniformly bounded in k. Therefore, (3.31) yields that there exists a constant C
independent of k such that

2k+1∑
n=2k+1

Pμ{Hn ≤ a} ≤ C for all k = 1, 2, . . . ,

which leads to, noting the monotonicity of Pμ{Hn ≤ a} in n,

Pμ{H2k+1 ≤ a} ≤ C
1

2k
for all k = 1, 2, . . .

By the monotonicity of the random sequence {Hn}, this leads to (3.8). ��
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