Test #1 (1:50-2:40pm) Fall 2024 Name:
Do all problems and give the process of your solution.

1. (20 points) Given 2z — 3y + 4z =5 and x + 6y + 4z = 3,
(a). Find the angle between them.

Solution. n; =< 2,-3,4 > and ny =< 1,6,4 >
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Two planes are perpendicular.

(b). Find the parametric equation of the intersection line between them.

Solution. Solving 2z — 3y + 42z = 5 and x + 6y + 4z = 3 together with z = 0 gets
the point < =, 115,0> The direction of the intersection is
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The parametric equation of the intersection line is
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2. (20 points) Given the three points P(1,1,1), Q(1,0,2), and R(0,0, 1) in space,

(a.) find the area of the triangle with the vertices P, @, and R;
Solution. @ =<0,—1,1> and PR =< —-1,-1,0 >
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The area of the triangle is
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(b.) find the equation of the plane that contains the points P, @ and R.
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Solution.



(x—1)—(y—1)—(2—1)=0 or z—y—2z=1

3. (15 points) Given the vector a =< 2,2, —1 >, find the unit vector u in the direction
of a.

Solution.
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u= 2,2,—1 >=< g,

4. (15 points) Find parametric equation for the tangent line to the curve r(t) =
(t> = 1,t2 +1,t + 1) at the point when ¢t = 0.

Solution. Whent=0,z= -1,y =1and z = 1. v/(¢) = (2¢,2t,1). r'(0) = (0,0,1).
The parametric equation of the tangent line is:

r=-1, y=1, z=1+1

Or
r(t) = (—1,1,1+41)

5. (15 points) Compute the length of the curve r(t) = (t2,t2 +1,1) over 0 < ¢ < 1.
Solution. r/(t) = (2t,2t,0).
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