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In this paper, we investigate the exponential asymptotics for Brownian self-intersection
times under Dalang’s condition. Our theorem includes the setting of non-homogeneous
interaction functions.
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1 Introduction

Throughout, γ(·) ≥ 0 is an non-negative definite function on Rd. With the generality
this paper allowed, γ(·) can be a generalized function that is defined as a linear functional
on S(Rd), the set of all rapidly decreasing functions known as Schwartz space. The
non-negative definity is defined as the property∫

Rd×Rd
γ(x− y)f(x)f(y)dxdy ≥ 0 ∀f ∈ S(Rd).

By Bochner’s theorem, there is a unique measure on Rd, known as the spectral measure
of γ(·), such that

γ(x) =

∫
Rd
eiξ·xµ(dξ).

Further, µ(dξ) is tempered in the sense that∫
Rd

(
1

1 + |ξ|2

)p
µ(dξ) <∞
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for some p > 0. In particular, µ(dξ) is locally finite. A special example is when γ(·) = δ0(·)
(Dirac function), µ(dξ) is the (2π)−d-multiple of the Lebesgue measure on Rd.

Let Bs be a d-dimensional Brownian motion. We are interested in the random
Hamiltonian ∫ t

0

∫ t

0

γ(Bs −Br)dsdr. (1.1)

According to its role played here, γ(·) is called interaction function. When γ(·) = δ0(·),
the double time integral in (1.1) only exists in d = 1, and is called self-intersection local
time for the reason that it measures the ability of a Brownian path path intersects itself.
An interested reader is referred to Chapter 4, [2] for the discussion on its exponential
asymptotics (or large deviations).

From δ0(·) to general γ(·), the notion of self-intersection local time is extended to the
random Hamiltonian in (1.1) with the meaning of “self-intersection” being interpreted
by the geometric shape of γ(·). When γ(·) = | · |−α for some 0 < α < d (known as Riesz
potential), the ability of self-intersection is measured by the average distance between
two points on the Brownian path. Another example is when

γ(x) =
∑
z∈Z

δaz(x) x ∈ R (1.2)

where a > 0 is a given constant. In this case, self-intersection means Bs = Br mod a for
s 6= r.

The exponential asymptotic behavior plays a fundamental role in the problem known
as intermittency for a class of stochastic partial different equation driven by a Gaussian
noise with γ(·) as its covariance function. The goal of this work is to investigate the
large-t behaviors for the exponential moments of the self-intersection local times in (1.1)
under a condition (on γ(·)) as general as possible. Here is the main result of the paper:

Theorem 1.1. Under the Dalang’s condition∫
Rd

1

1 + |ξ|2
µ(dξ) <∞ (1.3)

the self-intersection local time in (1.1) is properly defined. Further,

lim
t→∞

1

t
logE exp

{(∫ t

0

∫ t

0

γ(Bs −Br)dsdr
)1/2}

(1.4)

= sup
g∈Fd

{(∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
,

lim
t→∞

1

t
logE exp

{
1

t

∫ t

0

∫ t

0

γ(Bs −Br)dsdr
}

(1.5)

= sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
,

where

Fd =

{
g ∈ L2(Rd);

∫
Rd
|∇g(x)|2dx <∞ and

∫
Rd
|g(x)|2dx = 1

}
.

Further, the variations appearing on the right hand sides of (1.4) and (1.5) are finite.

Remark. The condition (1.3) is introduced by Robert Dalang [6] for solving parabolic
Anderson equation with a Gaussian noise that takes γ(·) as its spatial covariance function.
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By (3.1) and (2.5) below,

E

∫ t

0

∫ t

0

γ(Bs −Br)dsdr = 2

∫
Rd
µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr

=

∫
Rd

4

|ξ|2

[
t− 2

|ξ|2
(

1− e−|ξ|
2t/2
)]
µ(dξ).

By a routine computation on the right hand side, one can see that Dalang condition is
equivalent to

E

∫ t

0

∫ t

0

γ(Bs −Br)dsdr <∞

for some t > 0 (or, equivalently, for all t > 0). Therefore, Dalang’s condition is obviously
necessary for the statement in Theorem 1.1.

There have been some investigations (see, e.g., [1] and [2]) on the exponential
asymptotics for self-intersection local times that take form of (1.4) or (1.5). For the
author’s best knowledge, the results exist only under the homogeneity condition

γ(cx) = c−αγ(x) x ∈ Rd, c > 0 (1.6)

for some 0 < α < 2. Under (1.6), the statements (1.4) and (1.5) are equivalent. Morever,
they are equivalent to

lim
t→∞

t−
4−α
2−α logE exp

{∫ t

0

∫ t

0

γ(Bs −Br)dsdr
}

(1.7)

= sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

Through Feynman-Kac representation, (1.7) determines inttermittency for the prabolic
Anderson model with the Gaussian noise that takes γ(·) as its co-variance function (see,
e.g., [4]). It is not clear at this moment how (1.7) is extended to the setting beyond
homogeneity (1.6).

Dalang’s condition (1.3) connects existing results with general γ(·). A more substan-
tial extension made in this paper is the encompass of the settings with non-homogeneity.
Indeed, this work is partially motivated by some practically interesting models where
(1.6) does not hold. One of such settings is when γ(·) has the periodicity

γ(x+ az) = γ(x) x ∈ Rd, z ∈ Zd (1.8)

for some a > 0. Clearly, (1.6) and (1.8) can not co-exist. By theory of Fourier series, the
periodicity in (1.8) allows Fourier expansion

γ(x) ∼
∑
z∈Zd

µz exp
{
i
2πz · x
a

}
x ∈ Rd

in the sense that

µz =
1

ad

∫
[− a2 ,

a
2 ]d

γ(x) exp
{
− i2πz · x

a

}
dx

where, for the sake of non-negativity of γ(·), µ−z = µz ≥ 0. In this case, the spectral
measure is supported on aZd with µ(az) = µz (z ∈ Zd). The Dalang’s condition (1.3)
becomes ∑

z∈Zd

µz
1 + |z|2

<∞. (1.9)
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The case given in (1.2) satisfies (1.9) with µz = a−1 (z ∈ Z).
The non-triviality of Theorem 1.1 can be observed from different aspects: It is the

first time that Dalang’s condition, which was introduced for a very different reason,
becomes the right condition for some precise forms of large deviations. It is rather
surprising to have the exponential integrabilities (especially the one needed for (1.5))
merely under (1.3). Even at the deterministic level, it is not obvious at all why variations
appearing in Theorem 1.1 should be finite. Under the homogeneity (1.6), the finiteness
of the variations are essentially the consequences of Gagliardo-Nirenberg and Hard-
Littlewood-Sobolev inequalities. Here we list a deterministic consequence of Dalang’s
condition (1.3).

Corollary 1.2. Under the Dalang’s condition (1.3) there is a constant C > 0 such that∫
Rd×Rd

γ(x− y)f2(x)f2(y)dxdy ≤ 1

2
‖f‖22‖∇f‖22 + C‖f‖42 ∀f ∈W 1,2(Rd) (1.10)

Proof. Set

Q(f) =

∫
Rd×Rd

γ(x− y)f2(x)f2(y)dxdy f ∈W 1,2(Rd).

Then

Q(f) = ‖f‖42Q
(
‖f‖−1

2 f) =
1

2
‖f‖22‖∇f‖22 + ‖f‖42

{
Q
(
‖f‖−1

2 f)− 1

2

∥∥∇(‖f‖−1
2 f)

∥∥2

2

}
≤ 1

2
‖f‖22‖∇f‖22 + ‖f‖42 sup

g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

So the inequality (1.10) holds with

C = sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
<∞. (1.11)

The proof of Theorem 1.1 is distributed in three sections: Section 2 is for the
construction of self-intersection local time. In this section, we pave a way for the
later development where the self-intersection local times is analyzed in terms of its
Fourier transform. In Section 3, we establish the exponential inegrabilities of the self-
intersection local time and the lower bounds for the exponential asymptotics stated
in Theorem 1.1. The main tools used here are sub-additivity and large deviations by
Feynman-Kac formula. The upper bounds are proved in Section 4. In addition to some
techniques developed along the line of infinite dimensional probability, we adopt a
moment comparison (first introduced by Donsker and Varadhan [8]) through Girsanov’s
theorem. With such comparison, the Brownian self-intersection local time is dominated
by the self-intersection local time run by a Ornstein-Uhlenbeck process which has much
better properties than Brownian motion as far as ergodicity and tightness are concerned.

2 Defining the self-intersection local times

In literature, the self intersection local time has been constructed in different settings
and by different (but equivalent) approaches. An interested reader is referred to [9],
[10] and [11] for historic account. For the later development of the paper, and also for
reader’s convenience, we use this section for the definition of self-intersection local time
under Dalang’s condition (1.3).

Here, the self-intersection local time is defined as∫ t

0

∫ t

0

γ(Bs −Br)dsdr
∆
= lim
ε→0+

∫ t

0

∫ t

0

γε(Bs −Br)dsdr in L(Ω,A,P) (2.1)
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where

γε(x) =

∫
Rd
γ(y − x)pε(y)dy

and pε(·) is the density of the normal distribution N(0, ε). To make this definition work,
one has to establish the L1-convergence requested by (2.1). To this end, all we need is
to show that

lim
ε,δ→0+

E

∣∣∣∣ ∫ t

0

∫ t

0

γε(Bs −Br)dsdr −
∫ t

0

∫ t

0

γδ(Bs −Br)dsdr
∣∣∣∣ = 0 (2.2)

for all t > 0.
By the fact that the spectral measure of γε(·) is e−ε|ξ|

2/2µ(dξ), and by Fourier transform∫ t

0

∫ t

0

γε(Bs −Br)dsdr =

∫
Rd
µ(dξ)e−ε|ξ|

2/2

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2. (2.3)

Therefore, ∣∣∣∣ ∫ t

0

∫ t

0

γε(Bs −Br)dsdr −
∫ t

0

∫ t

0

γδ(Bs −Br)dsdr
∣∣∣∣

≤
∫
Rd

∣∣∣e−ε|ξ|2/2 − e−δ|ξ|2/2∣∣∣∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ).

By Dominated convergence theorem, all we need is to show

E

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) <∞ ∀t > 0. (2.4)

Notice

E

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2 = 2

∫ t

0

∫ t

r

Eeiξ·(Bs−Br)dsdr = 2

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr (2.5)

for any t > 0. Therefore, by Fubini’s theorem∫ ∞
0

dte−tE

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2 = 2

∫ ∞
0

dte−t
∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr

= 2

∫ ∞
0

dre−r
∫ ∞
r

dse−(s−r) exp
{
− 1

2
|ξ|2(s− r)

}∫ ∞
s

dte−(t−s)

= 2

(∫ ∞
0

e−rdr

)(∫ ∞
0

dse−s exp
{
− 1

2
|ξ|2s

})(∫ ∞
0

dte−t
)

=
2

1 + 2−1|ξ|2

and therefore ∫ ∞
0

dte−tE

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) =

∫
Rd

2

1 + 2−1|ξ|2
µ(dξ).

By Dalang’s condition (1.3), the right hand side is finite. By the fact that the expectation
in (2.5) is monotonic in t, this implies (2.4).

We end this section with the following lemma.

Lemma 2.1. Under the Dalang’s condition (1.3),

lim
t→0+

1

t
E

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) = 0. (2.6)
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Proof. By (2.5),

E

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

= 2

∫
Rd
µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr

= 2

∫
{|ξ|≤R}

µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr

+ 2

∫
{|ξ|>R}

µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr.

For the first term, we use the simple bound∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr ≤

∫ t

0

∫ t

r

dsdr =
1

2
t2.

So we have

2

∫
{|ξ|≤R}

µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr ≤ t2µ

(
B(0, R)

)
.

As for the second term, a straightforward computation gives

2

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr =

4

|ξ|2

[
t− 2

|ξ|2
(

1− e−|ξ|
2t/2
)]
≤ 4

|ξ|2
t.

Hence,

2

∫
{|ξ|>R}

µ(dξ)

∫ t

0

∫ t

r

exp
{
− 1

2
|ξ|2(s− r)

}
dsdr ≤ t

∫
{|ξ|>R}

4

|ξ|2
µ(dξ).

In summary,

lim sup
t→0+

1

t
E

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) ≤
∫
{|ξ|>R}

4

|ξ|2
µ(dξ).

Letting R→∞ on the right hand side completes the proof.

3 Exponential integrability, lower bounds and finiteness of the
variations

Letting ε→ 0+ in (2.3)∫ t

0

∫ t

0

γ(Bs −Br)dsdr =

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ). (3.1)

Viewed from left hand side, the intersection local time is monotonic in t, while from the
right hand side, the intersection local time has continuous sample path.

The subject of the discussion in this and next sections are the stochastic processes

Zt =

(∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2

t ≥ 0

and

At =
1

t
Z2
t =

1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) t > 0.
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Definition 3.1. A stochastic process Xt (t > 0) is said to be sub-additive if for any
t1, t2 > 0, there is a random variable X ′t2 such that

Xt1+t2 ≤ Xt1 +X ′t2

and that X ′t2
d
= Xt2 and X ′t2 is independent of {Xs; s ≤ t1}.

Using triangle inequality and Jensen inequality, one can exam that Zt and At are
sub-additive with

Z ′t2 =

(∫
Rd

∣∣∣∣ ∫ t2

0

eiξ·(Bt1+s−Bt1 )ds

∣∣∣∣2µ(dξ)

)1/2

and

A′t2 =
1

t2

∫
Rd

∣∣∣∣ ∫ t2

0

eiξ·(Bt1+s−Bt1 )ds

∣∣∣∣2µ(dξ),

respectively.
With sub-additivity, and with the fact that Zt is non-negative, non-decreasing, sample-

path continuous with Z0 = 0, by (1.3.7), p.21, [2],

P
{
Zt ≥ a+ b

}
≤ P

{
Zt ≥ a

}
P
{
Zt ≥ b

}
for any a, b, t > 0. Repeat this inequality we get

P
{
Zt ≥ m

√
t
}
≤
(
P
{
Zt ≥

√
t
})m

m = 1, 2, . . . .

For any θ > 0, by Lemma 2.1 there is a t0 > 0 such that

sup
0<t≤t0

P
{
Zt ≥ θ−1

√
t
}
≤ exp

{
− 2
}
.

Consequently,

E0 exp
{
θZt/

√
t
}

= 1 +

∫ ∞
0

ebP0

{
Zt ≥ bθ−1

√
t
}
db (3.2)

≤ 1 + e+

∞∑
m=1

em+1P0

{
Zt ≥ mθ−1

√
t
}
≤ 1 + e+

∞∑
m=0

em+1e−2m =
2e2 − 1

e− 1
<∞

for all 0 < t ≤ t0. It should be pointed out that sample path continuity is essential in
above “integrability by sub-additivity” game. A quick reminder is the subordinator, which
starts at 0, is non-decreasing and sub-additive (actually additive) but non-integrable.

From (3.2) one can see that for any θ > 0,

E exp
{
θZt
}
<∞ (3.3)

as t > 0 is sufficiently small.
By sub-additivity, for any t1, t2 > 0

E exp
{
θZt1+t2

}
≤ E exp

{
θZt1

}
E exp

{
θZt2

}
(3.4)

whenever the exponential moments on the right hand side are finite. In particular, (3.2)
is extended to all t > 0. Further, the sub-additivity argument shows that the limit

M(θ)
∆
= lim
t→∞

1

t
logE exp

{
θZt
}

(3.5)

exists and finite for all θ > 0.
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We now extend (3.3) and (3.5) from Zt to At. Unfortunately, we can not follow the
same procedure, as At is not monotonic and is not (continuously) defined at 0.

To establish exponential integrability for At, we first estimate EZnt for 0 ≤ t ≤ 1 and
n = 1, 2, . . . . By (3.2) and Taylor expansion, for any θ > 0, there is a small t0 > 0 such
that

E0Z
n
t ≤

(
2e2 − 1

e− 1

)
θ−nn!tn/2 0 < t < t0, n = 1, 2, . . .

Unfortunately, this bound is not strong enough for exponential integrability of At. In the
following, we tight it up by replacing “n!” by “

√
n!”.

By sub-additivity,

EZnt1+t2 ≤ E(Zt1 + Z ′t2)n =

n∑
l=0

(
n

l

){
EZlt1

}{
EZn−lt2

}
.

Repeating the above bound,

EZnt ≤
∑

l1+···+lm=n

n!

l1! · · · lm!

m∏
k=1

EZlkt/m =
∑

l1+···+lm=n

n!

l1! · · · lm!

m∏
k=1

EZlkt/m

for any integers n,m ≥ 1 and t > 0.
We now let t ≤ t0 and take m = n. By the weaker bound for EZnt ,

EZnt ≤
∑

l1+···+ln=n

n!

l1! · · · ln!

n∏
k=1

(
2e2 − 1

e− 1

)
θ−lj lj !

( t
n

)lj/2
=

(
2e2 − 1

(e− 1)θ

)n
n!n−n/2tn/2

∑
l1+···+ln=n

1.

A simple comibinatorial argument gives∑
l1+···+ln=n

1 =

(
2n− 1

n

)
≤ 4n.

In this way, we have the improved bound

EZnt ≤
(

4(2e2 − 1)

(e− 1)θ

)n√
n!tn/2 uniformly for 0 ≤ t ≤ t0 and n = 1, 2, . . . .

By the definition of At, it can be re-written as

EAnt =
1

tn
EZ2n

t ≤
1

tn

(
4(2e2 − 1

(e− 1)θ

)2n√
(2n)!tn

≤
(

4
√

2e(2e− 1

(e− 1)θ

)2n

n! 0 < t < t0, n = 1, 2, . . . .

Since θ > 0 is arbitrary, by Taylor expansion we have proved that for any θ > 0 there is a
t0 > 0 such that

E exp
{
θAt

}
<∞ (3.6)

for all 0 < t < t0. Further, by sub-additivity, At satisfies (3.4) (with Zt being replaced
by At). Consequently, (3.6) is extended to all t > 0 and the limit

E(θ)
∆
= lim
t→∞

1

t
logE exp

{
θAt

}
(3.7)

exists and finite for any θ > 0.
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The main part of this work is about the evaluation of the limitsM(θ) and E(θ).1

In the next step, we establish the lower bounds for (1.4) and (1.5). Consider the
Hilbert space

H =
{
f ∈ L2(Rd, µ(dξ)); f(−ξ) = f(ξ) a.e.− µ

}
. (3.8)

For any f ∈ H with ‖f‖µ = 1 and ∫
Rd
|f(ξ)|µ(dξ) <∞. (3.9)

By Cauchy-Schwartz inequality

Zt ≥
∫
Rd
f(ξ)

(∫ t

0

eiξ·Bsds

)
µ(dξ) =

∫ t

0

f̄(Bs)ds

where the function

f̄(x) =

∫
Rd
eiξ·xµ(dξ) (3.10)

is continuous, bounded and real. By Theorem 4.1.6, [2],

lim
t→∞

1

t
logE exp

{∫ t

0

f̄(Bs)ds

}
= sup
g∈Fd

{∫
Rd
f̄(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
.

By Fubini’s theorem,∫
Rd
f̄(x)g2(x)dx =

∫
Rd
f(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µ(dξ).

So we have

lim
t→∞

1

t
logE exp

{∫ t

0

f̄(Bs)ds

}
(3.11)

= sup
g∈Fd

{∫
Rd
f(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Therefore,

lim
t→∞

1

t
logE exp

{
Zt
}
≥ sup
g∈Fd

{∫
Rd
f(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Take supremum over ‖f‖ = 1 with (3.9) and notice that the functions satisfying (3.9) are
dense in H. So the supremum on the right hand side is equal to

sup
g∈Fd

{(∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ)

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
.

By Parseval identity∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ) =

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy.

1The identifications of .M(1) and E(1) are given directly by (1.4) and (1.5), respectively. We can also get
M(θ) and E(θ) for general θ by replacing γ(·) by θγ(·) in Theorem 1.1.
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In summary

lim
t→∞

1

t
logE exp

{
Zt
}

(3.12)

≥ sup
g∈Fd

{(∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
.

In view of (3.1), this is the lower bound for (1.4).

The proof of the lower bound for (1.5) is similar: Write

At = t

∫
Rd

∣∣∣∣1t
∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

and let f ∈ H satisfy (3.9). Notice that

‖f‖2 +

∫
Rd

∣∣∣∣1t
∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) ≥ 2

∫
Rd
f(ξ)

[
1

t

∫ t

0

eiξ·Bsds

]
µ(dξ) =

2

t

∫ t

0

f̄(Bs)ds

where f̄ is given by (3.10). Hence,

E exp
{
At
}
≥ exp

{
− t‖f‖2

}
E exp

{
2

∫ t

0

f̄(Bs)ds

}
.

By (3.11) (with f̄ being replaced by 2f̄ ),

lim
t→∞

1

t
E exp

{
At
}

≥ −‖f‖2 + sup
g∈Fd

{
2

∫
Rd
f(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
= sup
g∈Fd

{
− ‖f‖2 + 2

∫
Rd
f(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Take supremum over f on the right hand side. By the fact that

‖h‖2 = sup
f∈H

{
− ‖f‖2 + 2〈f, h〉

}
∀h ∈ H (3.13)

the right hand side becomes

sup
g∈Fd

{∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
= sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
So we have the lower bound for (1.4):

lim
t→∞

1

t
E exp

{
At
}

(3.14)

≥ sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

Finally, the finiteness of the variations appearing in Theorem 1.1 follows from the
proved lower bounds (3.12), (3.14) and the existence of the limits in (3.5) and (3.7).
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4 Proof of upper bounds

Let Zt and At be defined as in the last section. By (3.1), all we need is to show

lim
t→∞

1

t
E exp

{
Zt
}

(4.1)

≤ sup
g∈Fd

{(∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
and

lim
t→∞

1

t
E exp

{
At
}

(4.2)

≤ sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

Consider the decomposition∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) =

∫
[−R,R]d

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ) +

∫
([−R,R]d)c

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ).

By Hölder inequality,

E exp
{
Zt
}
≤

(
E exp

{
p

(∫
[−R,R]d

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2})1/p

×

(
E exp

{
q

(∫
([−R,R]d)c

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2})1/q

for any conjugate numbers p, q > 1 (in the following discussion p is close to 1 and q is
large). Hence

lim
t→∞

1

t
logE exp

{
Zt
}

≤ 1

p
lim sup
t→∞

1

t
logE exp

{
p

(∫
[−R,R]d

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2}
+

1

q
lim sup
t→∞

1

t
logE exp

{
q

(∫
([−R,R]d)c

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2}
.

Notice that the process

Z̃t
∆
= q

(∫
([−R,R]d)c

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2

is sub-additive and therefore satisfies (3.4). Consequently,

lim sup
t→∞

1

t
logE exp

{
q

(∫
([−R,R]d)c

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2}
≤ logE exp

{
q

(∫
([−R,R]d)c

∣∣∣∣ ∫ 1

0

eiξ·Bsds

∣∣∣∣2µ(dξ)

)1/2}
.

For give p > 1 that is close to 1, by (3.3) there is R = Rp > 0 that makes the right hand
side arbitrarily small.
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In summary, the above argument reduces the upper bound (4.1) to the proof of

lim
p→1+

lim sup
t→∞

1

t
logE exp

{(∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ))1/2}
(4.3)

≤ sup
g∈Fd

{(∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
where

µp(dξ) = p21[−Rp.Rp]d(ξ)µ(dξ)

and Rp is a properly chosen sequence according to our discussion.
In a parallel argument, the upper bound (4.2) is reduced to

lim
p→1+

lim sup
t→∞

1

t
logE exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} (4.4)

≤ sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

We prove (4.4) first, as the generating function

E exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} =

∞∑
n=0

1

n!

1

tn
E

[ ∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n (4.5)

is the sum of integer moments. Indeed, the integer moment enjoins the following nice
representation

E

[ ∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n = E

∫
(Rd)n

µ⊗np (dξ)

∫
[0,t]2n

drds

n∏
k=1

eiξk·(Bsk−Brk ) (4.6)

=

∫
(Rd)n

µ⊗np (dξ)

∫
[0,t]2n

drds exp

{
− 1

2
V ar

( n∑
k=1

ξk · (Bsk −Brk)

)}
that allows a moment comparison between the Brownian regime and Ornstein-Uhlenbeck
regime performed as following.

Given a small constant κ > 0. let Pκ and Eκ be the law and expectation, respectively,
of a d-dimensional Ornstein-Uhlenbeck process starting from 0 with the infinitesimal
generator 2−1∆− κx · ∇. In our following discussion, Bs represents a Brownian motion
under P, and an Ornstein-Uhlenbeck process under Pκ. By Girsanov’s theorem, for any
t > 0,

dPκ

dP

∣∣∣
[0,t]

= exp

{
− κ

∫ t

0

Bs · dBs −
κ2

2

∫ t

0

|Bs|2ds
}

(4.7)

= exp

{
− κ|Bt|2 +

κd

2
t− κ2

2

∫ t

0

|Bs|2ds
}

where the second equality follows from a simple use of Ito formula. In particular,

dPκ

dP

∣∣∣
[0,t]
≤ exp

{
κd

2
t

}
. (4.8)

Applying (4.8) and Lemma 3.9, [8] to the Gaussian laws P and Pκ,

V ar

( n∑
k=1

ξk · (Bsk −Brk)

)
≥ Varκ

( n∑
k=1

ξk · (Bsk −Brk)

)
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where “Varκ(·) is the variance under the Ornstein-Uhlenbeck law Pκ. Notice the moment
representation (4.6) holds also under the law Pκ. Thus,

E

[ ∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n ≤ Eκ[ ∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n (4.9)

for all inters n ≥ 1. From (4.5),

E exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} ≤ Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}. (4.10)

We now prove that for fixed p > 1,

lim sup
t→∞

1

t
logEκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} (4.11)

≤ κd

2
+ sup
g∈Fd

{∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Let Hp be a Hilbert space of all complex valued function f(ξ) on [−Rp, Rp]d with
f(−ξ) = f(ξ) a.e. µp and

‖f‖2 ∆
=

∫
[−Rp,Rp]d

|f(ξ)|2µp(dξ) <∞

By Arzelá-Ascoli theorem, for each L > 0, the class

CL =
{
f ∈ Hp; sup

ξ∈[−Rp,Rp]d
|f(ξ)| ≤ 1 and |f(ξ)− f(η)| ≤ L|ξ − η| for ∀ξ, η ∈ [−Rp, Rp]d

}
is relatively compact under the uniform topology and maintains so under the topology of
Hilbert norm. Therefore, the closure KL of CL in Hp is compact in Hp.

In the discussion below, we view the family

Xt(ξ)
∆
=

1

t

∫ t

0

eiξ·Bsds ξ ∈ [−Rp, Rp]d, t ≥ 1

as the stochastic process taking values in Hp. Since supξ |Xt(ξ)| ≤ 1 and

|Xt(ξ)−Xt(η)| ≤ 1

t

∫ t

0

2
∣∣∣ sin (ξ − η) ·Bs

2

∣∣∣ds ≤ |ξ − η|1
t

∫ t

0

|Bs|ds

we have that {
Xt(·) ∈ KL

}
⊃
{∫ t

0

|Bs|ds ≤ Lt
}

∀L > 0.

Write

At =

{∫ t

0

|Bs|ds > Lt

}
.

We have the decomposition

Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} (4.12)

≤ Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1{{Xt(·)∈KL}

+ Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1At .
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For the second term on the right hand side, we use Cauchy-Schwartz inequality:

Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1At

≤

(
Eκ exp

{
2

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}
)1/2(

Pκ(At)
)1/2

≤

(
exp

{κd
2
t
}
E exp

{
2

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}
)1/2

×

(
E exp

{
− κ

2
|Bt|2 +

κd

2
t− κ2

2

∫ t

0

|B(s)|2ds
}

1At

)1/2

where the last step follows from (4.7) and (4.8). By (3.7),

lim sup
t→∞

1

t
logE exp

{
2

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)} ≤ E(2p2).

Also notice that

E exp

{
− κ

2
|Bt|2 +

κd

2
t− κ2

2

∫ t

0

|Bs|2ds
}

1At

≤ e−LtE exp

{∫ t

0

(
|Bs| −

κ2

2
|Bs|2

)
ds+

κd

2
t

}
≤ exp

{(
− L+

1

2κ2
+
κd

2

)
t

}
.

In summary,

lim sup
t→∞

1

t
logEκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1At (4.13)

≤ −L
2

+
κd

2
+

1

4κ2
+

1

2
E(2p2).

We now bound the first term in the decomposition (4.12). The treatment is based on
a simple and universal relation in Hilbert space that is given in (3.13), from which the
family

Gf =
{
h ∈ Hp; ‖h‖22 < −‖f‖2 + 2〈f, h〉+ ε

}
f ∈ KL

form open covers of the compact set KL, where ε > 0 is a given small number. Therefore,
this family contains a finite sub-family Gf1 , . . . , Gfm that cover KL. Consequently, on
{X ∈ KL},

1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ) = t‖Xt(·)‖2 ≤ t
(
ε+ max

1≤j≤m

{
− ‖fj‖2 + 2〈fj , Xt〉

})
.

Therefore,

Eκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1{{Xt(·)∈KL}

≤ eεtEκ exp

{
t max

1≤j≤m

{
− ‖fj‖2 + 2〈fj , Xt〉

}}
≤ eεt

m∑
j=1

exp
{
− ‖fj‖2t

}
Eκ exp

{
2t〈fj , Xt〉

}
.
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Hence,

lim sup
t→∞

1

t
logEκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1{{Xt(·)∈KL}

≤ ε+ max
1≤j≤m

{
− ‖fj‖2 + lim sup

t→∞

1

t
logEκ exp

{
2t〈fj , Xt〉

}}
.

From (4.8),

Eκ exp
{

2t〈fj , Xt〉
}
≤ exp

{κd
2
t
}
E exp

{
2t〈fj , Xt〉

}
= exp

{κd
2
t
}
E exp

{
2

∫ t

0

f̄j(Bs)ds

}
Here we keep using the notation f̄ for the expression

f̄(x) =

∫
[−Rp,Rp]d

f(ξ)eiξ·xµp(dξ).

It should be pointed out that for any f ∈ H, f̄(x) is real, bounded and continuous on Rd.
Applying (3.11) to 2f̄(·),

lim
t→∞

1

t
logEκ exp

{
2t〈fj , Xt〉

}
=
κd

2
+ sup
g∈Fd

{
2

∫
Rd
f̄j(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
=
κd

2
+ sup
g∈Fd

{
2

∫
Rd
fj(ξ)

[ ∫
Rd
eiξ·xg2(x)dx

]
µp(dξ)−

1

2

∫
Rd
|∇g(x)|2dx

}
.

Therefore

− ‖fj‖+ lim
t→∞

1

t
logEκ exp

{
2t〈fj , Xt〉

}
=
κd

2
+ sup
g∈Fd

{
− ‖fj‖+ 2

∫
Rd
fj(x)

[ ∫
Rd
eiξ·xg2(x)dx

]
µp(dξ)−

1

2

∫
Rd
|∇g(x)|2dx

}
≤ κd

2
+ sup
g∈Fd

{∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
where the last step follows from the universal fact that −‖f‖2 + 2〈f, h〉 ≤ ‖h‖2 for any
f, h ∈ Hp.

In summary,

lim sup
t→∞

1

t
logEκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}1{{Xt(·)∈KL}

≤ ε+
κd

2
+ sup
g∈Fd

{∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Take ε→ 0+ on the right hand side. Together with (4.12) and (4.13),

lim sup
t→∞

1

t
logEκ exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}
≤ max

{
− L

2
+
κd

2
+

1

4κ2
+

1

2
E(2p2),

κd

2
+ sup
g∈Fd

{∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}}
.
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FIXME!

Letting L→∞ on the right hand side leads to (4.11).
By (4.10) and (4.11)

lim sup
t→∞

1

t
logE exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}
≤ κd

2
+ sup
g∈Fd

{∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
≤ κd

2
+ sup
g∈Fd

{
p2

∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ)− 1

2

∫
Rd
|∇g(x)|2dx

}
=
κd

2
+ sup
g∈Fd

{
p2

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

Let κ→ 0+ on the right hand side, and then let p→ 1+ on the both sides. We have

lim
p→1+

lim sup
t→∞

1

t
logE exp

{
1

t

∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)}
≤ lim
p→1+

sup
g∈Fd

{
p2

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
.

By (3.7) and the lower bound (3.14) (applied to θγ(·)), the function

Λ(θ)
∆
= sup
g∈Fd

{
θ

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
is finite on R+. It is easy to see that Λ(θ) is convex on R+. Consequently, Λ(θ) is
continuous on R+. In particular, Λ(p2)→ Λ(1) as p→ 1+.

In summary, we have proved (4.4).
It remains to prove (4.3). By an obvious modification of the treatment for (4.11), we

can prove that

lim sup
t→∞

1

t
logEκ exp

{
θ

(∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ))1/2}
(4.14)

≤ κd

2
+ sup
g∈Fd

{
θ

(∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ))1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
for all θ > 0.

The missing part is a comparison that can play a role as (4.10) in the proof of (4.3).
We provide the following replacement: Write

Ψκ(θ) =
κd

2
+ sup
g∈Fd

{
θ

(∫
[−Rp,Rp]d

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ))1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
.

By Lemma 1.2.6-(2), p13, [2] (with p = 2), (4.14) is equivalent to

lim sup
t→∞

1

t
log

∞∑
n=0

θn

n!

{
Eκ
[ ∫

Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n}1/2

≤ 2Ψκ(2θ) θ > 0.

By the moment comparison (4.9), we therefore have

lim sup
t→∞

1

t
log

∞∑
n=0

θn

n!

{
E

[ ∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ)]n}1/2

≤ 2Ψκ(2θ) θ > 0.
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FIXME!

Using Lemma 1.2.6-(2), p13, [2] again,

lim sup
t→∞

1

t
logE exp

{
θ

(∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ))1/2}
≤ Ψκ(θ).

Taking θ = 1 and letting κ→ 0+ on the right hand side.

lim sup
t→∞

1

t
logE exp

{(∫
Rd

∣∣∣∣ ∫ t

0

eiξ·Bsds

∣∣∣∣2µp(dξ))1/2}
≤ sup
g∈Fd

{(∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µp(dξ))1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
≤ sup
g∈Fd

{
p

(∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

)1/2

− 1

2

∫
Rd
|∇g(x)|2dx

}
.

Finally, letting p→ 1+ on the both sides leads to (4.3).
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