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Abstract. This paper is concerned with a wave equation in dimension d € {1, 2, 3}, with a multiplicative space-time Gaussian noise
which is fractional in time and homogeneous in space. We provide necessary and sufficient conditions on the space-time covariance of
the Gaussian noise, allowing the existence and uniqueness of a mild Skorohod solution.

Résumé. Dans cet article, nous nous intéressons a un modele d’équation des ondes, en dimension d € {1, 2, 3}, perturbée par un bruit
gaussien espace-temps multiplicatif, fractionnaire en temps et homogene en espace. Nous fournissons des conditions nécessaires et
suffisantes sur la covariance du bruit qui garantissent 1’existence et I’unicité d’une solution mild, interprétée au sens de Skorohod.
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1. Introduction

In the series of articles [7,8], we started a line of research aiming at a comparative study between the Skorohod and
Stratonovich settings for the parabolic Anderson model in very rough environments. At the core of our project in the
aforementioned papers lies the following observation: while the Stratonovich solution might be seen as more physically
relevant, the Skorohod solution often offers more possibilities in terms of quantitative analysis (moments, asymptotics, see
for instance [1,6,13]). In [7,8], we were thus able to transfer some nontrivial information about moments of the stochastic
heat equation from the Skorohod to the Stratonovich equation.

The current article can be seen as a new chapter in this global picture. Indeed, the stochastic wave equation is another
canonical model of random evolution which deserves a thorough quantitative study, just like for the heat equation. In addi-
tion, the toolbox allowing to handle basic issues for the wave equation is necessarily different in nature from the parabolic
case. It thus seems natural to explore connections between the Stratonovich and the Skorohod worlds in a hyperbolic
setting. We start this long term program here by an in-depth study of existence-uniqueness results in the Skorohod realm.

To be more specific, consider the following stochastic wave equation on RY with d in the set {1,2,3},

3%u .
—(t.x) = Au(t,x) +uW(t,x), t>0xeR?
ot
(1.1)
ou
(0, x) =uo(x), =0, x) =u1(x).

In equation (1.1), A stands for the usual Laplace operator in R?, and wuq, u; are initial conditions satisfying some ap-
propriate upper bounds (see Hypotheses (2.14)—(2.15) below). Regarding the forcing noise W in (1.1), we consider a
centered Gaussian noise whose covariance is given by

(1.2) E[W(s, )W, y)] =Kgy(s =)y (x —y),

where «q, (s) = |s| 7% for g € [0, 1) and k1 (s) is the Dirac delta function §(s) for g = 1.
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The parameter «g € [0, 1] in (1.2) is the scaling factor for the temporal covariance function «, in the sense that
Koo (€S) = ¢ Pkgy(s) foralle>0,s eR.

As far as its time covariance is concerned, W is thus either independent of time («g = 0), white («p = 1) or fractional
(g € (0, 1)). In the latter situation, the temporal part corresponds to that of a one-parameter fractional Brownian noise
with Hurst parameter Hy =1— % € (%, 1).

Besides, we assume that the spatial covariance of W is encoded by a (possibly singular) non-negative and non-negative
definite function y whose spectral measure (i.e. the Fourier transform of y) is denoted by . For instance if the noise
W is white in space, its spatial covariance function y(x) is the Dirac delta function §(x) with u(d€) = d&. Another
example of interest for this class of functions is the Riesz kernel y (x) = |x|™* with « € (0, d), for which we have
w(d€) = Cy 1%~ d&. We remark that the spectral measure p is a nonnegative tempered measure on R (see e.g. [11,
Section 2]), and in particular, it is locally integrable.

With this set of assumptions in hand, we can state our main result in a slightly informal way (see Proposition 3.3 and
Theorem 3.8 for more rigorous versions).

Theorem 1.1. Ler W be a Gaussian noise with covariance Sfunction given by (1.2), where o € [0, 1] and y admits a
spectral measure . Then under appropriate regularity conditions on ug and u1,

3—q

1 2
(1.3) /Rd <T|§|2> u(d§) < oo,

is a necessary and sufficient condition on | so that equation (1.1) admits a unique Skorohod solution when ag € (0, 1],
and a sufficient condition when og = 0.

Remark 1.2. We would like to stress that our condition (1.3) encompasses a wide variety of spatial covariance functions
for the Gaussian noise W, besides the typical examples such as the above-mentioned Dirac delta function and Riesz
kernels. For instance, one may consider a periodic spatial covariance function y (x) for which u becomes a discrete
measure supported on the lattice space aZ? for some constant a > 0. In fact, one of the appeal of Theorem 1.1 is the
generality of our framework.

If the Gaussian noise W possesses spatial homogeneity properties, then Theorem 1.1 generates the following conve-
nient wellposedness criterion (see Section 3.4 for a proof of this corollary).

Corollary 1.3. Assume that the spatial covariance y is non-negative, non-negative definite, and that there exists o > 0
for which

(1.4) y(ex) =c %y (x) forallc>0,xeRe.

Then the condition (1.3) holds true (or equivalently, the wave equation (1.1) has a unique Skorohod solution) if and only
ifag+a < 3.

Let us complete the above statement with a few remarks.

Remark 1.4. It is readily checked that the spectral measure of a homogeneous measure of order v € R is a homoge-
neous measure of order d — v. Therefore, our non-negative definiteness condition on y actually rules out the case of
o-homogeneity with o > d, since a homogeneous measure of negative order is identically zero (this can be seen by let-
ting ¢ tends to 0 in relation (1.4)). As the only homogeneous measures of order 0 on R? are the constant multiples of
the Lebesgue meaure, the only case with o = d is when y(-) is a constant multiple of Dirac function (i.e., W is a spatial
white noise). In particular, as («g, @) € [0, 1) x (0, d], the condition g + @ < 3 is automatically verified for d =1, 2.

Remark 1.5. Our Corollary 1.3 encompasses the Riesz kernel case y(x) = |x|™% with « € (0, d), which obviously
satisfies the homogeneous property (1.4). Another similar example comes from fractional Brownian sheets with Hurst
parameters H; € (%, 1) for j =1,...,d. In this case we have y (x) = I—[‘;=1 |xj|’(2’2HJ'), and the coefficient « in (1.4)
is given by a = Z?: 1(2 —2H;). In both the Riesz kernel and fractional sheet situation, the condition ap + o < 3 is

necessary and sufficient in order to solve (1.1). For the fractional Brownian sheet situation, this condition can be recast as
Ho+Y9_ | Hj>d—1/2.
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Remark 1.6. The range of application of Corollary 1.3 also includes the spatial white noise. In this case we have y (x) =
8(x), and we get o = d. In particular one can solve equation (1.1) driven by a purely spatial white noise (og =0, @ = d)
in dimensions d = 1, 2 but not in dimension d = 3.

P4 with 2 in (1.1)), it is known in
particular that when «g € (0, 1) and y(x) = |x|~* (¢ € (0, d)), the equation admits a unique Skorohod solution if and
only if a < 2, independently of g (see e.g. [3]). This phenomenon thus contrasts with the condition o + ¢ < 3 arising

in Corollary 1.3 for the present hyperbolic model.

Remark 1.7. For the corresponding parabolic Anderson model (i.e., replacing

Theorem 1.1 and Corollary 1.3 are the first results giving necessary and sufficient conditions in order to solve equa-
tion (1.1) in the Skorohod setting for a general space-time fractional Gaussian noise. However, the stochastic wave equa-
tion driven by multiplicative Gaussian noise (also known as hyperbolic Anderson model) has been extensively studied
in recent years. We now briefly recall some literature related to the problem of existence and uniqueness of the mild
Skorohod solution.

1. In [18], Walsh developed an Itd-type stochastic calculus for martingale measures and used it to study stochastic partial
differential equations (SPDESs). In particular, the stochastic wave equation in dimension one was considered therein.
Then adapting some results by Peszat and Zabczyk [16] to the random field setting in [11], Dalang extended Walsh’s
definition of stochastic integral with respect to martingale measures. This allowed him to solve martingale-driven
SPDEs whose Green function is a Schwartz distribution rather than a classical function.

By applying the result of [11, Theorem 13] to the Anderson model (1.1) with W white in time (i.e., ag = 1 in (1.2)),
the so-called Dalang’s condition

1
(15) |, Tganae <o,

appears as a sufficient condition for the existence and uniqueness of a mild It6 solution (equivalent to Skorohod’s
solution in this context) for stochastic wave equations, in case of a dimension d € {1, 2, 3}. Walsh’s theory was fur-
ther extended in [10], where stochastic wave equations in any dimension were studied. Observe that condition (1.5)
actually coincides with our own assumption (1.3) in the temporal white noise case «g = 1. Therefore, in this spe-
cific situation, Theorem 1.1 allows us to guarantee that Dalang’s condition (1.5) is also necessary for the hyperbolic
Anderson model (1.1) to be wellposed.

2. When W has a covariance given by (1.2), the Gaussian noise is colored in time and thus the stochastic calculus for
martingale measures used in [10,11,18] does not apply in this situation. Balan [1] employed Malliavin calculus (see
e.g. [14]) to obtain the existence and uniqueness of a mild Skorohod solution to (1.1) for d € {1, 2, 3}. She worked
with a space-time colored noise with g € (0, 1) and under Dalang’s condition (1.5). This result was extended to any
dimension d in [4]. Our result goes beyond the assumptions of [1], since the hypothesis (1.3) is weaker than Dalang’s
condition (1.5) whenever ag < 1.

3. In the special case d = 1, a study of the fractional space-time noise was carried out in [17]. More specifically [17]
handled the case of a fractional noise in time with index «q € (0, 1), while y was rougher than in [1,4]. Namely in [17]
the spatial component of the noise is assumed to be the distributional second derivative of the function x > |x|*# with
H < 1/2. The condition obtained therein was o € [0, 1) and o € (1, 3/2). Notice that one cannot really compare our
current paper with [17], since our positivity assumptions rule out the possibility of considering a very rough noise in
space.

4. In the recent paper [2], for (1.1) with time-independent homogeneous Gaussian noise (i.e., «¢g = 0 in (1.2) and 0 <
o <d in (1.4)), the existence and uniqueness of the mild Skorohod solution was obtained under the conditions 0 <
o <d<3and 0 <o =d <2 respectively. This is indeed consistent with our assumptions in Theorem 1.1 (see also
Corollary 1.3 and the subsequent remarks). In the sequel we will highlight this point by preforming several separate
computations for the specific time-independent case. It should be observed that even in the time independent case, our
setting is more general than [2]. Indeed, our contribution encompasses cases with no density for the measure w, as
well as no convolution decomposition (y = K * K) and no homogeneity for y .

As one can see from this review, our main Theorem 1.1 gives a general framework allowing to solve hyperbolic
Anderson models in dimension d < 3. It includes and goes beyond most of the aforementioned references. One should
also mention the recent efforts [12,15] in order to properly define wave equations with additive noise and polynomial
nonlinear terms, in the rough paths sense. Further comments on those contributions will be made in our forthcoming
paper [9] on Stratonovich solutions.
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We now summarize the methodology employed in order to prove Theorem 1.1, focusing on the sufficient condition.
With respect to the heat equation situation, one of the main obstacle is that one cannot appeal to Feynman-Kac type
formulae in order to analyze the equation. Therefore, we shall only rely on a proper control of the chaos expansion for a
candidate solution u to equation (1.1). As we will see in (2.12), this chaos expansion takes the form

(1.6) u(t, x) =Y L(fY . 1,0),

n=0

for a sequence of functions f,” based on products of the wave kernel. Our main task is thus reduced to a sharp control of
some weighted norms of the functions f,”. Some important tools towards this aim are the following:

e Second moment computations in (1.6) in terms some L2-norms of functions involving the noise covariance and the
wave kernel.

e Poissonization (or Laplace transform) methods in order to be reduced to L' (as opposed to L?) norms and products of
1-d integrals.

Some of the ingredients described above are already contained in [2]. However, the presence of a nontrivial time co-
variance induces a more technical and challenging situation. In order to proceed with the main steps described above, a
delicate study based on Fourier analysis is needed.

Let us finally emphasize a striking phenomenon revealed by a close examination of the subsequent strategy and argu-
ments. Namely, under suitable initial conditions and referring to the chaos expansion (1.6) (we refer to e.g. [14] for more
details on the Wiener chaos expansion), proving the main convergence result

o0
Zn‘“ G, t,x)”?_[@,, <00, forallt>0
n=0

is in fact equivalent to proving the (much) weaker property
| fi¢ 2,004 < oo, forsomez > 0.

This explains in particular how condition (1.3) becomes necessary in the statement of Theorem 1.1.

Remark 1.8. Itis natural to ask if our Laplace method could be applied to the stochastic heat equation. Some preliminary
computations (not shown in this paper for sake of conciseness) seem to indicate that our results would not be optimal
in that case. Indeed, the Laplace technique in Proposition 3.5 does not provide a sharp power of n! in our upper bounds
for || £,V (-, ¢, x)| (specifically, we don’t get anything more precise than (3.55) below). This fact is not relevant for our
purposes in the wave case, since the chaos expansion (1.6) for u(z, x) is dominated by the first term /;(f{"(-, ¢, x)). The
situation is different for the heat equation, for which higher order terms contribute in a nontrivial way.

This paper is organized as follows. In Section 2, we provide some preliminaries on Gaussian analysis related to the
noise W and equation (1.1). In Section 3, we first show that (1.3) is actually a necessary condition for the second mo-
ment of the first chaos of the mild Skorohod solution to be finite. This yields the necessity of condition (1.3). Then in
Sections 3.2-3.3 we show that under our assumption (1.3), the chaos expansion of the solution does converge in L?(£2)
by estimating the Laplace transform of the second moment of each chaos. This corresponds to the sufficient part in
Theorem 1.1.

Throughout the paper, we use the symbol C for a generic positive constant which may be different in different places.

2. Preliminaries

This section is devoted to a better grasp on the Gaussian analysis related to the noise W defined by (1.2). Then we shall
state a rigorous version of the mild formulation for equation (1.1).

2.1. The Gaussian noise and Malliavin calculus

In this subsection we collect some preliminaries on Malliavin calculus for the Gaussian noise W with covariance given
by (1.2). For more details, we refer to [14]. Let us first label our running assumptions on the noise coefficients.
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Hypothesis 2.1. Recall that the covariance function of W is formally given by (1.2). Moreover, the function y is supposed
to be non-negative and non-negative definite with spectral measure (L.

With Hypothesis 2.1 in mind, we define a set of functions encoding the covariance structure of W. Namely, let 7 be
the Hilbert space which is the completion of the Schwartz space S(R4 x R) under the inner product

/Rz /RM lr —s|7%@(r, x)¢ (s, y)y(x —y)dxdydrds, aye]l0,1),
2.1) (. ou=1"p*
/R ,/de @(s,x)p(s, y)y (x —y)dxdyds, ap = 1.

One can also write this inner product in spatial Fourier mode as follows:

/%LV—W%%ﬁﬁ@QM&MM&cmdQD
2.2) (P p)p =17 F _

/ / (s, ) (s, £)pu(de) ds, a=1.

R, JRA

where we recall from Hypothesis 2.1 that y is a non-negative definite function with spectral measure .
We can now introduce W as an isonormal Gaussian process. Specifically, on a complete probability space (€2, F, P),
let W ={W(g), ¢ € H} be a Gaussian family with covariance given by

(2.3) E[W(@)W ()] = (¢. d)n.

Then W (¢) for ¢ € H is called the Wiener integral of ¢ with respect to W and we also denote fR+ fRd o, x)W(dt,dx) .=

W(p).

Let h(xy,...,x,) be a smooth function such that its partial derivatives have at most polynomial growth. Then for
smooth and cylindrical random variables of the form F = h(W (¢1), ..., W(gy,)), one can define the Malliavin derivative
DF as the H-valued random variable

"\ oh
DF = Z a—Xk(W(Ql)l), cees W((pn))<pk.
k=1

One can verify that D : L3(Q) — L*(Q;H) is a closable operator, and then we define the Sobolev space D2 as the
closure of the space of the smooth and cylindrical random variables under the norm

IFll2 = E[F2] + E[IDFI3,]

Denote by Dom § the domain of the divergence operator 8, which is the set of u € L>($2; H) such that | E[(DF, u)]| <
cr||F| forall F € DV2, where cF is a constant depending on F. The divergence operator § (also known as the Skorohod
integral) is the adjoint of the Malliavin derivative operator D defined by the duality

(2.4) E[F§(u)] = E[(DF,u)y], forall FeD"?andu € Doms.

Thus, for u € Dom§, we have §(u) € L?(S2). It is also readily checked from (2.4) with F = 1 that E[§(x)] = 0. Note that
we will use the following notation

(2.5) 8(u)=/ /u(t,x)W(dt,dx), for all u € Dom$§.
Ry JR

To end this subsection, we recall the Wiener chaos expansion of a random variable F € L2(Q). Let Hy = R, and
for integers n > 1, let H,, be the closed linear subspace of L*() containing the set of random variables {H, (W (¢)),
¢ € H, |l¢ll =1}, where H), is the n-th Hermite polynomial (i.e., H,(x) = (—1)"e"2/2%,1(e_x2/2)). Then H,, is called
the n-th Wiener chaos of W. Assuming F is the o-field generated by {W(¢), ¢ € H}, we have the following Wiener
chaos decomposition

o
L*(Q,F. P)=(PH.,.
n=0
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Forn > 1, let #®" be the n-th tensor product of 7 and H®" be the symmetrization of H®". Then the mapping I, (h®") =
H, (W (h)) for h € H with ||h]l3 =1 can be extended to a linear isometry between H®" and the n-th Wiener chaos H,,.
Thus, for any random variable F € L(Q, F, P), the following unique Wiener chaos expansion in L%(Q) holds true,

F=E[F]1+ ) L(f). with f, e H®".

n=1
Furthermore, noting that
2
E[|L:(f)| "] = ntll fa 300

we have

oo

(2.6) E[|FI?] = (BIF))* + Y E[[ (£ ] = (BLIF1)* + Y nll fulldgen-

n=1 n=1

2.2. Mild solution for the Skorohod equation

In this subsection, we define the mild Skorohod solution to (1.1) and derive its Wiener chaos expansion. We start by
introducing some more notation about filtrations related to our problem.

Notation 2.2. In the sequel we write {F;};>0 for the filtration generated by the time increments of W. That is we set
Fi=0{Wpne):0<s<t,p e SR} VN,
where N is the collection of null sets.

We now label some notation concerning the wave kernel.

Notation 2.3. We denote by G,(x) the fundamental solution of the wave equation, and recall that we consider here the
dimensions d = 1, 2, 3. The generalized function G, is characterized by its spatial Fourier transform

sin(z|§])
[N

For two functions uq, u; of the variable x (whose regularity will be specified below), we also set

2.7) Gi(§) =

d
(2.8) w(r, x) = E(Gt*uo)(X)+(Gt kup)(x),
where * denotes the convolution in space.
The expression (2.7) of the fundamental solution 6, in Fourier modes will prove to be crucial in our computations

below. However, we will also resort to properties of G; in direct modes. To this aim, we recall that for d € {1, 2, 3}, the
fundamental solution G, (x) has explicit expressions:

1 .
51[\x|<t] ifd = 1,
Gi(x)= 1 1
— 1 ifd=2,
NI [lx]<r]
and G, = #at if d = 3, where o; is the uniform measure on the sphere {x € R3: |x| =1}.

With this notation in hand, we are ready to state a rigorous definition of the Skorohod solution to equation (1.1).

Definition 2.4. An {F;};>0-adapted random field u = {u(t,x),t > 0,x € R?} is called a mild Skorohod solution to (1.1)
if E[u?(z, x)] < oo for each (z, x) € Ry x R and if it satisfies the following integral equation,

t
2.9) u(t, x) = wit, x) + / / Gusx = uls, YW s, dy),
0 JR
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where w(t, x) is given in (2.8) and the stochastic integral on the right-hand side is a Skorohod integral as in (2.5). In
particular, it is implicitly assumed that for each > 0, x € R, the process v; (s, y) = G,—s(x — y)u(s, y)1j0,,1(s) lies in
Dom § (see (2.4)).

Let us say a few words about the chaos decomposition for the mild solution (2.9). First for n € N we denote

w 1
S 1 X1 S 1 0) = D G & = Xo ) Gy —soy Ko@) = Ko (1))
(2.10) Toex,

X W(So (1)s Xo (1)) L0 <54 (1)< <50y <115

where ¥, is the set of permutations on {1, 2, ..., n}, G, is the wave kernel defined by (2.7) and w is the convolution (2.8).
Then the following result can be found, for instance, in [1].

Proposition 2.5. There exists a unique mild Skorohod solution to (1.1) if and only if the function w(t, x) given by (2.8)
is well-defined and the series ZZOZI L, (f,(-,t,x)) converges in L*(Q) forallt >0, i.e.,

o0
(2.11) Zn!||fnw(-,t,x)||§_[®,, <00, forallt>0andxeR?.

n=1
Whenever (2.11) is met, we have the following Wiener chaos expansion for the solution u to equation (1.1):
o
(2.12) u(t, ) = w(t,x) + ) L (fiy (. 1.2)).
n=1
In order to state some necessary and sufficient conditions allowing to solve (1.1), we have to introduce another piece

of notation. Namely we will call f, the function f in (2.10) obtained when w = 1. More specifically we have

1
fn(slvxlv <oy Sny Xn, tvx) = E Z Gl—SJ(,,)(-x _xa(n)) o 'Gsc,(z)—sg(l)(xo(Z) _xa(l))
(2.13) ot

X 1[0<S0(1)<~-'<Sa(n)<t]'

‘We can now state our bound on the function w.

Proposition 2.6. Let ug and u; be the initial conditions in (1.1), and recall that w is defined by (2.8). Let us assume that

(2.14) sup |u1(x)| < oo,

xeRd

and for ug we suppose

(2.13) sup |up(x)| <oo ifd=1, and /|ﬁ0(g)|dg<oo ifd=2,3.
]Rd

xeR4

Then the function w satisfies

(2.16) sup }w(z,x)| < 00.
t€[0,T],xcRd

Proof. We resort to expression (2.8) and will bound the two terms therein.

First, in order to bound the term G; * u; in (2.8), note that (regardless of the dimension d = 1,2, 3) we have
fRd G:(x)dx =t forall t > 0. Hence if ||u|looc = M < 00, for all x € R? we get

@.17) |G ()] < ||u1||oo/Rd Gi(y)dy = M.
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Regarding the term %(G, * ug)(x) in (2.8), we separate the study according to the dimension. That is for d = 1 it is
readily checked that

0 G 1
E( z*uo)(x)—E(uo(x+t)+uo(x—t)).

Therefore, if ||uo|lcc = M, we clearly have

(2.18) ‘%(Gz*uo)(X) =M,

uniformly in x € R. For d = 2,3, we express the convolution in Fourier modes. Namely using G; x ug = @,'L?o and
appealing to expression (2.7) for the Fourier transform of G, one can write

9 5 nGlED -
g(Gt *u0)(x) = 5([;@ %MO(S)E’E%IS) = /Rd cos(t1€)io(&)e' ™ dé.

Hence if one assumes [[zo| .1 ®dy = M, we get

d
(2.19) ’E(Gt * u0)(x)

5/ 70 (8)| ds = M.
Rd

uniformly in x € R,
We can now conclude our claim: we simply gather (2.17), (2.18) and (2.19) into expression (2.8). This yields our
estimate (2.16). O

3. Existence and uniqueness in the Skorohod setting

We now turn to the existence and uniqueness problem for the Skorohod equation (2.9), starting with the statement of our
main theorem.

Theorem 3.1. Consider equation (2.9) driven by a centered Gaussian noise W. The covariance function of W is given
by (1.2), with ag € [0, 1] and y satisfying Hypothesis 2.1. Then the following holds true.

1. If (2.14) and (2.15) are satisfied, we have that equation (2.9) admits a unique solution as soon as y satisfies (1.3),
that is

3—q

1 b
/@(HW) Hds) < oo

2. Recall that w is defined by (2.8). If in addition we have w(t, x) > aq for all (t,x) € Ry x R? with a strictly positive
constant ag, then (1.3) is also a necessary condition in order to get a unique solution to (2.9) when «g € (0, 1].

Remark 3.2. A simple example of initial condition (uq, u1) in (1.1) fulfilling (2.14)—(2.15) and giving rise to a strictly
positive w is ug = 1 and u; = 0 (the proof of item (ii) in Theorem 3.1 will in fact reduce to the analysis of this particular
case, see Proposition 3.3 below).

The remainder of the section is devoted to a proof Theorem 3.1. We start with the necessary condition.
3.1. On the necessary condition
Recall that the covariance function of W is given by (1.2), with a non-negative constant iy and a non-negative and
non-negative definite function y (x) whose Fourier transform is . In Proposition 3.3 below, we provide a necessary
condition (1.3) for the existence and uniqueness of the Skorohod solution to (1.1).
Proposition 3.3. Let W be a noise whose covariance function is given by (1.2). We assume that Hypothesis 2.1 holds true

with ag € (0, 1] and a function y . Assume that the function w given by (2.8) is lower bounded by a constant ay > 0. Then
a necessary condition in order to solve equation (1.1) is (1.3).
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Proof. Recall that the function f}” corresponding to the first chaos in our decomposition (2.12) is defined by
3.1 17 Gs,yit,x) = Gy—s (x — y)w(s, )10,11(s).

Since we have assumed w(¢, x) > ap > 0 uniformly in (¢, x) € R}y x R4, it suffices to show that (1.3) is a necessary
condition for | f1(, ¢, x)||%_t to be finite, where we recall that we have set f1 = fl“’ for the initial condition w(s, y) = 1.
Furthermore, thanks to (2.2) we have the following expression for fi:

oo . .
/ / / i — g0 SMCED SINGIED o) e ds. ap € (0.1),
| At x)||2 _)Jo Jo Jra ) 1§ &1
TR /t/ sin(s|&1)
0 JR

n(dé)ds, ap=1.
1§
Using the fact that the Fourier transform of «, is proportional to |A|%0~1, we thus obtain

) ot | 1 s sinGsIED
(32) ||f1<-,r,x>||H=ca0/Rde|x| ; ‘/Oe* el ds

We now lower bound the square in the right-hand side of (3.2). First, separating real and imaginary parts, we easily get

, .
/ Jits sin(s|&1) s
0 €]

2
drp(d§).

2

2
(3.3) >5E |0 (1, &)

where we have set
t
0:(A, &) :/ cos(As) sin(|5§|s) ds.
0

Then notice that Q; (X, £) is an integral which can be computed explicitly thanks to elementary methods. We get

0/(1, &)= % /Ot(sin(()» +1&1)s) — sin((x — |&])s)) ds

l<l —cos((A +16D1) n 1 —cos((|&] —)»)t)>

2 A+ €| HE

34

Let us focus our attention on the region 0 < A < |&] in the right-hand side above. In this case, both terms in (3.4) are
non-negative and as a consequence,

1 — cos((J¢] —A)z))z

\Qtu,é)!zzl(
3 EE

Therefore, for |£]| > 0, we get the following lower bound:
ap—1 2 ¢! ap—1 2
IR |0:(h, 8)]"dh = e |01, §)]"di

2 2
21/5|Ma0_1<1—cos((|$|—k)t)> dkz1|$|a0_1/|5|<1_cos((|g|—x)t)) ar,
4Jo &1 =2 4 0 &1 =2

where the last inequality is due to g € (0, 1]. Thanks to the elementary change of variable |£| — A = 7, we thus end up
with

€] _ 2
(35) [t Panz qiert [7(F2E0)
R 4 0

T

Let us summarize our computations so far. Plugging (3.5) into (3.3) and then (3.2), we have obtained

€l 2
| AiC e 05 = Ca / HEa / <7C°S(”)) dTu(de),
R4 0 T
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where we recall that C designates a constant whose exact value can change from line to line. Hence, bounding the integral
in £ over R? below by an integral over {|£| > 1} we get

€l /1 — 2
| At 0% = Ca / s / (M) dpu(de)
{1§1=1} 0 T

1,1 2
z%( / (ﬂ) dr) / 1£(9073 ().
0 T {I&]=1}

Observe that the integral over t above is just a strictly positive universal constant. Hence, one can recast (3.6) as

(3.6)

Ificenlzc [ g,
{IE]1=1}

where C is a finite positive constant. Now, noting the local integrability of the spectral measure p, it is readily checked
that the right-hand side above is finite if and only if (1.3) is fulfilled. We have thus found that (1.3) is a necessary condition
to have || f1(-, t, x)||%_[ < 00, which concludes the proof. O

Remark 3.4. If the noise is independent of time, namely if «g = 0, it is readily checked that (3.2) becomes

) ! sin(s|&]) > /(1 cos([£])?
1, = —d d&).
I i¢ 0l A(/o e < er o mee)

Therefore a sufficient condition (also necessary if the noise is spatially homogeneous, see [2]) for || f1(-, ¢, x)||%{ to be
finite is

1 2
3.7) /R XW) H(d€) < oo

Note that if we plug the value ¢p = 0 into our condition (1.3), we get something stronger than (3.7). This means that (1.3)
is not an optimal condition for || f1(-, ¢, x) ||%{ < o0 when g = 0. However, our condition (1.3) with ag = 0 is still a suffi-
cient condition for (1.1) with time-independent noise to have a unique Skorohod solution as stated in Theorem 1.1. Hence
we are not able (at this moment) to close the gap between necessary and sufficient condition for the time independent
case oo = 0. At a technical level, this is mainly due to the considerations leading to relations (3.48)—(3.49) below.

3.2. Bound for the Laplace transform of n-th chaos contributions
Recall that the function f," is given by (2.10), and features in (2.11) as the kernel for the n-th chaos contribution in the
decomposition of u(z, x). As a first step toward (2.11), and accordingly toward existence and uniqueness of a solution

for (1.1), let us prove the following Proposition, which provides an upper bound for the Laplace transform of the 2nd
moment E[|,(f," (-, 1, x))*].

Proposition 3.5. Assume that Hypothesis 2.1 holds true and that uo, u| satisfy the conditions of Proposition 2.6. Let
p = 1 be a fixed parameter. Then, there exists a positive constant Cy, depending only on o such that

l n
C|l Cq —— dtuld , 0,1),
( Ojl‘gd-#l |.L.|1—a0q)p(1_’ ) T u( 77)) ap € (0,1)
(3.8) 2 / T B di < { € f ——— =0
0 n b, Hen —= Rd Cbp(O, 7]) ) ’

o (i) (L prapymean) !
—(— ———nudn) ) , ap =1,
p \4p rd p>+ Inl?

and @, is the function defined on R4t given by

where C = ||w||Loo([o T1xR9)

. 2 2
3.9) () i=|(p—iv)* +Inl*|” = 4p*c* + (p* + nl* — %)



1804 X. Chen et al.

Proof. This somewhat lengthy proof will be split onto seven steps for the reader’s convenience. We focus on the complex
case ag € (0, 1), the case «g = 0 being proved in a similar way, and the proof for the simple case ag = 1 is provided in
Step 1.

Step 1: Reduction to a constant initial condition and proof for the case ag = 1. Let us write f,* = % Do s, e,
with

fnwyo.(sla-xla .- 'asnaxnvtax)
= thxa(,,) (x —Xom) - Gsa(z)fsa(l) (Xo2) = Xo (1)) X W(Sa(1)s xo(l))1[0<so(1)<m<sg(n)<t]~

It is easily seen, thanks to Jensen’s inequality applied to the uniform measure on %,,, that

1
(3.10) [5Gt gen = — 0 1A Gt [en-

‘oex,

Now, using first the expression (2.1) and then the result of Proposition 2.6 (which guarantees that w € L*°([0, T'] x Rd)),
we derive that

1A o2 3 gen

n
= /(‘Rn - dsds' /(;RMZ dde’(l_“Sk — s;(|_%y(xk —x}())
+

k=1

X Gr—s, (X = Xom) ++ Gs, 0y —sey Ko 2) = Xo (1)) X W(Sa (1) Xo (1) L[0<s, (1) << <t]

xGiy (= x5 (m) GSé<z>—Sé(1)(x$(2> — X)) X w(st;(l)’xé(l))l[()“a(]ﬁ <S5 <1
< ||w||L°°(0T xIRd) 01 /Rd)z (l_[|sk—sk| ( Xk —x,/c))

(l—[GYk se-1 Gk = 01 Gy 1(x,/c—x,/{_l)) dxdx dsds/,
k=1

where we use the convention so = 0 and xg = x(/) = x, and the notation ds = ds1 - - - ds,, (we use similar conventions for

dx, dx' and ds’). Note also that we use [0, #]”. to denote the n-th order simplex [0 <51 < s < --- < s, < 7] on [0, ¢].
Injecting the latter estimate into (3.10), and with expression (2.1) in mind, we get that

Hf,;”(',t,x)”H@n < ”w”LOO([O,T]XRd)Hgn(‘vtax)”';.[@n’
where g, is defined by
(3.11D 8n(S1, X1, vy Sps Xy 1, X) 1= Gy, (x — Xp) -+ Gyy—gy (x2 — x1) L1067 (51, - - -, Sn).
In the sequel, we shall upper bound the terms involving g,. This finishes our reduction to a constant initial condition for

a general o € [0, 1].
We now show that (3.8) holds true when a9 = 1. Namely, when o9 = 1, following [5, Lemma 2.3] we directly have

o n n
—2pr 2 1<1) / 1
e X Ldt < d&y)---n(d
/0 |gnC 1. 2) |58 o\3p) Jo |:|1 e GV CL

<55(a) (L reeee)
“2p\4p rd p* + [§)?

where the second step follows from Lemma 3.6. This proves our claim (3.8) for «g = 1. Therefore in the remainder of the
proof we focus on the case a € (0, 1). The proof of the case op = 0 is similar and is thus omitted for sake of conciseness.
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Step 2: Expression for the Laplace transform. When o € (0, 1) one has

|gnCot. 0500 = /[Ot )2/(Rnd)2<]_[|sz<—sk| k_xl/c)>

(1_[ GSk—Sk—l (xk — xk_l)GS/i_Sl/c—l (x,/( — x,’(_l)> dXdX,deS/.

k=1

(3.12)

In order to ease our arguments below, let us recast (3.12) in a slightly more complicated way by doubling the ¢ variable.
That is, write

(3.13) 8o, Ggen = Fult. ),

where the function F : R?> — R is defined by

F,(t,1) = e o
0 /[o,t]zx[o,f]»;/Rnd)z<H|sk sty (u xk)>

(]_[ Gog—spy ok = xk-1)Gyy 1(x,g—x,’(_l)) dxdx dsds'.
k=1

(3.14)

Also recall that we are interested in the Laplace transform of ||g, (-, z, x) II%{@,, for which we introduce a notation:

o 2 o0
(3.15) An(p) = / e | g, x, -)||H®n dt :/ e 2P E,(t,1)dt.
0 0

Step 3: Reverse L? bounds. We will now use monotonicity properties of exponential random variables in order to
reduce the L>-type norm (3.15) to a product of L!-type norms. The argument is inspired by page 954 in [6] and goes as
follows:

1. The integral in (3.15) can be seen as an integral with respect to an exponential variable 7" with parameter 2p. Namely

1
An(p) = ZE[FH(T, T)], with T ~exp(2p).

2. Itis elementary to prove the identity in law T @ T A T, with 7, T i.i.d. with common law exp(p). Hence,
1

(3.16) An(p) = —E[Fy(t AT, T ATD)].
2p

3. Due to the positivity of y and G, it is readily checked that both 7 — F,(z,f) and 7 — F, (¢, ) are non-decreasing
functions. Plugging this information into (3.16) we obtain

1 3
(3.17) An(p) < EIE[F,,(L D).

Let us now recall the expression (3.14) for F,, and write the expected value with respect to 7, T in (3.17) explicitly.
Summarizing our considerations (i)-(iii) above, we have obtained the following relation:

1 _ P _
An(p) < = / dtdipe™P"H x / / | | Sk — s (xk — x;
1 2p Jey (0,11 x (RdY2 | fd 0

n
(]‘[ Go—sis Ok = xk-1)Gg _g (xf — x,g_l)> dxdx dsds'.
k=1

(3.18)
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We now rearrange terms above thanks to Fubini’s theorem, in order to obtain a more readable version of (3.18). To this

aim, let us introduce an additional notation. Namely, for s1,...,s, € [0,¢] and x1, ..., x, € R4, we set
00 n
(3.19) Hy(s1,X1...,80, %) = / e P! (H Gy —si (xk — Xk—l)) L0<s; <o <sy <] dE.
0
k=1

Notice that the function H, is nicely defined for d = 1, 2, while it requires a mollification procedure as in [2, Section 3]
for d = 3. With notation (3.19) in hand, relation (3.18) can be expressed as

p
An(p) S E \/(\Rdﬁ—l)Zn Hp(slaxl e 7snv-xl’l)H[7(Sia-xia . 'as;”-x;l)

(3.20)

n
X (l—“sk —sp] "y (e — x,@)) dxdx'dsds'.
k=1

Step 4: Some algebraic manipulations. Notice that the right-hand side of (3.20) can be written in terms of a convolution
product. That is, we have

14
(3.21) An(p)fg/ . Hp(slaxl,--ovsn,xn)d)p(slsxl,~-«,Sn,xn)dyd5,
R+

where

n
Gp(S1, X1, ..., Sp, X)) = Hp [H |Sk|a07/(xk):|~

k=1

Therefore, one can express (3.21) in Fourier modes thanks to Plancherel’s identity. This yields, for some positive con-
stant Cy,

n
D 1
A <Cc" -
n(p) = ) ao/(]RdJrl)n (H |)\k|1a0>

k=1

n
/exp(z‘ZAksk>ﬁp(sl,gl,...,sn,g,,)ds
k=1

where we abuse the notation dX = dXA;---dA, and u(d€) = u(déy) - - - u(d&,), and ﬁp means the Fourier transform of
H), in its space variable. R

Let us now say a few words about the computation of H), in (3.22). Denoting without any further mention the spatial
Fourier transform by Fg or g, we have

(3.22) 2

X dru(d§),

ﬁp(sl9$19”‘7sﬂ’$n)

(3.23) o
:/(; e P'F l_[ Gsk—sk,l(yk —yk—1) | &1, .. 'aén)l[o,t]’i(sm coysp)dt.
k=1

Furthermore, performing the change of variables zx = yx — yr—1 and rearranging the Fourier variables thanks to some
easy algebraic manipulations, it is readily checked that

f(]"[ Gy (Vk — )Uc—l)) g =[] Gomsin (Zs,).
k=1 k=1 j=k

Plugging this identity in (3.23) and then in (3.22), we end up with

p n
3.24 A <Ec
(3.24) w(p) <3 /(R

+1)n

o501
v, 6 T ey AH(dE),
k=1
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where we have set
o0
(3.25) \pp(x,s)=/0 e—!’ffo exp Zxksk ]_[Gék . Zgl dsdt.
[0.11% k=1

Step 5: Some Fourier computations. In this step, we write a more explicit version of (3.24) by computing some Fourier
transforms. Namely write sy — sy—1 =r¢ fork =1,...,n + 1, where we have set so =0 and s,,+1 = . It is easily seen
that the function ¥, in (3.25) becomes

n+1

W,(A,8) = /R”* exp( erk) Hexp(zrkZA )ark(ZSj) dr.
=k

Integrating over the variable r, 41, we are left with a product of # integrals:

(3.26) \1/,,@,5):11_[/ exp((—p+i2)\j>r>6r<2§/> dr.
P i=1/R+ j=k j=k

We now give a more explicit expression for ¥, thanks to the expression (2.7) for G. Namely, for any 8 € C with positive
real part, it is well known that

. .
(3.27) / —prsmein) 21 .
0 nl B= + Inl

Reporting this expression into (3.26), we get

2
1 n n
wp(x,a:—]"[[(p—z )
P j=k

Going back to (3.24), we have thus obtained
n 2
( —iy 2 ,-) +
j=k

.

25/

drp(d§).

Cn n n
3.28 A < ﬂ/
( ) n(p) < ) (Rd+l)ﬂ(l_[ Mk'l a())]!_[l

Moreover, recalling the expression (3.9) for @, (3.28) can be expressed as

-1

Cg n 1 n n n
(3.29) An(p) < 5" /(RM)” (H W) l_[(% (ZM, Za)) drpu(dE).
k=1 k=1 Jj=k Jj=k

Step 6: Reduction to 1-d integrals. Our next aim is to transform the right-hand side of (3.29) into a product of integrals
in R4*! In order to achieve this we invoke the following lemma, which is an elaboration of [6, Lemma 3.1]:

Lemma 3.6. Let [ be a function and v be a measure, both defined on R™ and both positive. We assume that the Fourier
transforms f andV of f and v are positive functions. Then for all n € R™ we have

(3.30) / f(E—'?)V(dE)S/ fE)v(dE).
Rm Rﬂl
Proof. A basic application of Parseval’s identity shows that

/ FE—nyv(ds) = / ¢ D) d.
Rm R”T

We now trivially bound the oscillating exponential term by 1 in the right hand side above, and apply Parseval’s identity
again, in order to get our claim (3.30). (]



1808 X. Chen et al.

Lemma 3.6 is applied successively to the A, & variables in (3.29). We now provide some details about the (A1, &1)-integrals.
That is, in the right-hand side of (3.29), the (A1, &) variables appear in the integral

(3.31) Ani(p) :/RM [Wp (1 + 1, + )| v(dh, dEy),

where [ = 27:2 Aj, X = 27:2 &; and where the function ¥, and the measure v are respectively defined by

(3.32) voem =@, n) P =((p—itP+m?) ", v(dh,dE) = A (dEy).

1
|A1|1=20

If we wish to apply Lemma 3.6 to the integral in (3.31), we thus have to prove that the space-time Fourier transforms of
[Vp |2 and v are both positive functions. This is argued below:

1. Owing to (3.27) and (2.7), we have
(T, n) = /RM exp(i (tt 41 - x))1jo,00) (1) "' Gy (x) dx dt.

Otherwise stated, v, is the Fourier transform of a non-negative function g, defined on R*1 by gpt,x) =
1{0,00)(1)e 7' G, (x). Therefore F,, is a positive function. Since F|, |2 = (Frp) * (]-'w,,) we also get that F[y, |2
is a positive function.

2. According to (3.32), the space-time Fourier transform of the measure v is given by Fv(¢, x) = Cy|t|"*y (x), which
is a positive function.

We are thus in a position to apply Lemma 3.6 to the integral in (3.31), which yields

2 -1
(3.33) Ani(p) = / [¥p(u1, 60| v(dA1, d&1) :f (®p(r1,81)) v(drr, déy),
Rd+1 Rd+1
where we observe that the right-hand side above does not depend on the variables A, &; with j =2, ..., n anymore,
recalling that &, is given by (3.9).

As mentioned above, we now just have to iterate (3.33) into (3.28). This allows to reduce A,(p) to a product of n
integrals in R4*1:

(3.34) Au(p) =3 (cao L, e o, n))_ldw(dn)) :

Step 7: Conclusion. Recall that according to (3.15), A, (p) is the Laplace transform of ¢ — || g, (¢, x, -) ||%{®,1. Moreover,
we have reduced our computations for f,” to those of g, in Step 1. Hence (3.34) easily yields (3.8). This finishes our
proof. ]
3.3. On the sufficiency of the condition

In this subsection, we aim to show that the necessary condition (1.3) obtained in Section 3.1 is also a sufficient condition
for the existence and uniqueness of the mild Skorohod solution to (1.1). We first give the following preparatory result.

Lemma 3.7. Assume that Hypothesis 2.1 holds true, and set

1
/RM m u(dé)dxr, ape(0,1),
(3.35) Loy = / >, (O ) w(dé&), ag =0,
1 1
n/d 2y Eph s a =1,

where ®,, is defined in (3.9). Then under the condition (1.3), we have

(3.36) Lyyn <00 foreveryn>1, and lim nLy,, =0.
) n—>0o0
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Proof. Case I: ag € (0, 1). Starting from the right hand side of (3.9), some elementary manipulations show that

422 + (n2 + |§|2 _k2)2 =4n2|$|2 + (n2 +A2- |E|2)2-
Therefore one can symmetrize ®,, in the following way:

O, (1, &) = %{4;12/\2 + (02 + EP = 22)7 +4nE) + (2 + 2% — E1)7)
=n* + (1] + [21)*(1§1 = 121)° + 207 (€2 + 42).

Next some elementary algebraic manipulations yield

0, 8) = n* + (1E]+ 1) (1] = [71)” +n2 (181 + 21)°

=nt 4 (1E1+ 1) (22 + (18] = 121)?).

Hence to obtain the desired assertion (3.36), it suffices to prove that

(3.37) K, <oo (foralln>1) and Ilim nK, =0, withK, :=/ Ci>,,()», Eyn(dé)dn,
n—00 Rd+!1

and where the function ®,, is defined by

1
[A1=e0(n® + (1] + IAD2(n* + (1] = [AD2)

(3.38) O, (1, &)=

The remainder of the proof is devoted to show (3.37).
In order to bound K, with a suitable (finite) quantity, let us fix a large constant a > 0. Then we decompose K,, as

(3.39) K, =Ky (a) + K, (a),

where K, (a) and K, (a) are respectively defined by
(3.40) K@= [ dGoudd. K@= [ S0ouadd.
Rx{|§|<a) Rx{|§]|>a}

We now bound those two terms separately.
In order to estimate K, (a) in (3.39), we simply write

1

$, (2, 8) < :
n(A,8) < |)»|1_°‘0(n4+n2)nz)
which yields
di n(él =a) dA
K < < < .
i@ <l <a) [ Gt < MEEE | e

Since ag € (0, 1), the latter estimate readily entails that
(341 K,(a) <oo and lim nK,(a)=0.
n—>oo
We now analyze the term K, (a) in (3.40). For this we decompose the integral and write
(3.42) Ku(a) =K, (a) + K} (a),

where If’,} (@), K 3(51) are given by

Rla) = f Sy OdE)dh,  R2a):= / (0, ) (dE) .
{IA<I&1/2,|&|>a} {IA>1€1/2}, 1€ |>a}
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Now we estimate I?,% (a). If |A] < %IEI and recalling the expression (3.38) for ®,,, we have

1

O, (0, &) < .
M0 (nt + |E12(n2 + 11E[2))

Hence integrating first with respect to A, we get

1
_ 1 i 1
K, _/ </ —dk) dE).
@ = R nt 4 [£2(n2 + Lg[2) \J-1jgy (2170 )

In addition, the elementary inequality a> 4+ b> > 2ab implies that n” + }TIE |2 > %n|§ |. We thus get

-1 Coy €17
Rlw=<e [ e,

Taking into account our assumption (1.3), we obtain that K ,} (a) < oo for every fixed n > 1, and a classical dominated
convergence argument allows to conclude

(3.43) lim nK)(a)=0.
n—0oo

As far as K ,% (a) in (3.42) is concerned, on the set |A| > %|$|, there exists a constant C > 0 such that

C
&30 (n% + (1&] — 1AD?)

(3.44) D, (0, &) <
Furthermore, one can argue that
/ ! dk</ ! di
=2y 2+ (61— 1AD2 7 = Jr n2 4+ (1&] — |A])?

o0 1 1 27
=2/ 7dk§2/7d)u=—.
o n:+(—|ED? R A2+ A2 n

Plugging (3.44) and (3.45) into the definition of K 3 (a), we thus get

(3.45)

(3.46) nK2(a) < Co, /{ ),

which, due to assumption (1.3), already guarantees that K ,f (a) is finite for every fixed n > 1. B
Summarizing our considerations so far, we report (3.43) and (3.46) into the decomposition (3.42) of K, (a). Taking
also into account (3.41) and the decomposition (3.39), we end up with

(3.47) K, <oo foreveryn>1 and limsupnk, < Cg, /{ }|g|*<3*°’0m(dg).
l€|>a

n—00

Eventually recall that we are working under (1.3). Moreover, the parameter a in the right-hand side of (3.47) is arbitrarily
large. Hence the right-hand side of (3.47) is arbitrarily small. We thus get

lim nk, =0,

n—o00

which means that (3.37) is shown. As argued in the beginning of the proof, this is sufficient to ensure that (3.36) holds
true.
Case 2: ag = 0. Noting that ®,, (0, &) = (n% + |£|%)?, it suffices to prove

n—o0

1 n
3.48 ———u(dé) <oo foreveryfixedn>1 and Ilim ———u(d&)=0.
(3.48) /Rd ) ry fixed n > fRd )

Observe first that the condition (1.3) with «g = 0 becomes

1
(3.49) fRd 1+ €] u(d§) < oo,
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and so the fact that fRd m u(dé) < oo (for n > 1) is obvious. Besides, one has clearly

n n
3.50
-0 /Rn s = /W} gt /{m} pra Pl

The second term of (3.50) satisfies

1
——u(d ——u(d
/{gm} n4+|§|4“( 5= ./|§>n} n4+n|5|3“( = /dn3+|s|3“( 5)

and hence, by (3.49) this second term converges to 0 as n — oco. Regarding the first term of (3.50), we have

/{s|<n} nt flél“u( & = suligl=n}).

In addition, observe that

1 1 1
FH«({M <n}) = 2/{|§<n} mﬂ(d@ = 2/}; mﬂ(df),

and the right hand side above also goes to 0 as n — 0 thanks to dominated convergence arguments, similarly to what we
did for (3.43). This shows (3.48), and the proof for op = 0 is completed.
Case 3: ap = 1. In this case, (3.36) is a direct consequence of (1.3). This completes the proof. [l

Lemma 3.7 was our last preliminary result before proving our existence and uniqueness theorem. We now state and
prove this result, which has to be regarded as the main contribution of the current paper.

Theorem 3.8. Recall that the function f,' is given by (2.10). Assume that Hypothesis 2.1 holds true and assume the same
conditions as in Proposition 2.6. Then we have

o0

3.51) Sl £ 120 jen < 00

n=0

Hence owing to Proposition 2.5, there is a unique mild Skorohod solution to (1.1).

Proof. We start by upper bounding the Laplace transform of the function ¢ — || f," (-, ¢, x)||%_[®,,. To this aim, apply
directly (3.8) with p =n. We get

o0
(3.52) 2]0 e £t x)”;@,, dt < (CoyLay.n)",

where Ly, , is the (finite) quantity introduced in (3.35).
According to Lemma 3.7, it holds that lim,,_, oo 1L, » = 0, and hence some elementary considerations yield

.1 .
Jim_ -~ log(n" (CayLag.n)") = Jim (log Cy +l0g(nLa.n)) = —00

This together with (3.52) lead to the following relation:

: 1 n OO —2nt w 2
(3.53) lim —logn 2/ e M £t 0| qgen di | = —o0.
0

n—oon

This identity can be related to a single value of || f,” (-, ¢, x)||en in the following way: for a given constant ¢ > 0, write

oo 2 o 2
2/ o= 2ns ” fnw(.’ s, X) ||7-l®” ds > 2/ e 2ns “ fnw(.’ s, X)HH‘@” ds
0 t

Moreover, going back to expression (3.12) and taking into account the fact that the kernels G and y are positive, it is
clear that s — || /" (-, 5, x) ||y is nondecreasing. Therefore we get

o 1
(3.54) 2 /O S0 s 2 | 210 e
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Combining (3.53) and (3.54), we thus get
.1 2
(3.55) nlggo - logn” || G, t’x)”H@" = —00.

We are now ready to conclude the proof of (3.51). Indeed, since n! < n” for all n > 0 (with the convention 00=1), we
have

o0 o0
(3.56) SO £t g < D0 £ G0 |30
n=0 n=0

Moreover, relation (3.55) asserts the existence of ng > 1 such that for n > no we have n" || £,V (-, ¢, x)||yen < e™". Plugging
this information into (3.56), we trivially get (3.51). This finishes our proof. O

Remark 3.9. For the special case stated in Corollary 1.3, we can prove Theorem 3.8 by just gathering Proposition 3.5
and the following scaling property valid for the functions g, defined by (3.11):

(357) || 8n (" Z )C) ||i[®” = t(4_a_a0)n || gi’l('a 17 x) ||§.[®n .

In particular, we do not need to invoke the behavior of L, , as n — o0o. More specifically, let us recall that (3.8) is also
valid for the functions g, (-, ¢, x) defined by (3.11). Hence

(.¢]
(358) /0' 6721 ||gn('vt7-x)||§_[®n dt S (COIOLO[OJ)HV

where Ly, 1 < 00. Moreover, owing to (3.57), the left-hand side of (3.58) can be recast as

2 oo
(3.59) 01,02y / T E———
0

Let us also recall from Remark 1.3 that in the homogeneous case our condition (1.3) reads «g + « < 3. Thus gathering
(3.58) and (3.59), and reporting to elementary properties of Gamma functions, we end up with

Cn

2
Hgn('7 Lx)”rH@n = W,

for a constant C > 0. We can now invoke (3.57) again in order to get

- (Ct4—oc—oz0)n

2
O ==

Since 4 — o — ag > 1, this is enough to ensure (3.51).

3.4. Proof of Corollary 1.3

It is readily checked that the Fourier transform of a «-homogeneous measure is homogeneous of order d — «. In other
words, condition (1.4) can be easily recast as follows: for all bounded function ¢ : RY — R with compact support and all
c>0,

/ <p(cx)u(dx)=c*°‘/ () u(dx).
R4 R4

Applying this formula with ¢ (£) := 1;¢/<1y and ¢ = r~!, we obtain that
(3.60) n(B@©,r)) =r*u(B,1)) forallr>0,

where B0, r) :={£ e R : |g| < 1}.
With relation (3.60) in mind, applying (3.62) in Lemma 3.10 below with v =y and £ (r) = (1 4r2)@~3/2 will enable
us to establish the following identity:

3—q 3—q

1 = © dr 1 b
(361) /Rd (m) [/L(dé) =Ol,bL(B(O, 1))/0 rl—_a(m)

from which we immediately derive the conclusion of Corollary 1.3 (recall that o > 0).
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Lemma 3.10. Let v be a Radon measure on RY and denote g(r) = v(B(0, r)) for r > 0. Then for any continuous function
f:10,00) — [0, 00), we have

(3.62) / F(IENv(@E) = / F(r)dg(r).
R4 0

Proof. It suffices to prove the following equality for all R > 0:

R
(3.63) f F(lENv@E) = / £ dg(r),
B(0,R) 0

where the integral on the right-hand side is a well-defined Riemann-Stieltjes integral noting that f is continuous and g is
increasing.

For a fixed positive number R, let 0 =rg <r; < --- <r, = R be a partition of the interval [0, R]. Denoting Ej =
B, r)\B(0, rg—y) fork =1, ..., n, clearly we have

dg) = de).
/B(QR)f(Iél)v( £) ];/Ekma)u( £)

By the continuity of f, we have that for each k,

/E FENv@e) = f(rF)v(ED = £(ri)[gre) — gtri—1)],

for some r,f € [rr—1, rr]. Thus, we have

fBO FENVEE) =" £(rf)[g () — glrr-1)],

R i=1

and letting n — oo yields the desired (3.63). ]
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