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EXPONENTIAL ASYMPTOTICS AND LAW OF THE
ITERATED LOGARITHM FOR INTERSECTION

LOCAL TIMES OF RANDOM WALKS1

BY XIA CHEN

University of Tennessee

Let α([0,1]p) denote the intersection local time ofp independent
d-dimensional Brownian motions running up to the time 1. Under the
conditionsp(d − 2) < d andd ≥ 2, we prove

lim
t→∞ t−1 logP

{
α([0,1]p) ≥ t (d(p−1))/2} = −γα(d,p)

with the right-hand side being identified in terms of the the best constant of
the Gagliardo–Nirenberg inequality. Within the scale of moderate deviations,
we also establish the precise tail asymptotics for the intersection local time

In = #{(k1, . . . , kp) ∈ [1, n]p;S1(k1) = · · · = Sp(kp)}
run by the independent, symmetric,Zd -valued random walksS1(n),

. . . , Sp(n). Our results apply to the law of the iterated logarithm. Our ap-
proach is based on Feynman–Kac type large deviation, time exponentiation,
moment computation and some technologies along the lines of probability in
Banach space. As an interesting coproduct, we obtain the inequality(

EIm
n1+···+na

)1/p ≤ ∑
k1+···+ka=m

k1,...,ka≥0

m!
k1! · · ·ka !

(
EI

k1
n1

)1/p · · · (EI
ka
na

)1/p

in the case of random walks.

1. Introduction. Let {S1(n)}, . . . , {Sp(n)} be symmetric independentd-di-
mensional lattice-valued random walks with the same distribution. Throughout we
assume that{S1(n)}, . . . , {Sp(n)} have finite second moment and that the smallest
group that supports these random walks isZ

d . Write� for their covariance matrix.
It is known that the trajectories of{S1(n)}, . . . , {Sp(n)} intersect infinitely often if
and only ifp(d − 2) ≤ d . In this case the intersection local time defined by

In =
n∑

k1,...,kp=1

1{S1(k1)=···=Sp(kp)}

= #{(k1, . . . , kp) ∈ [1, n]p;S1(k1) = · · · = Sp(kp)}
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tends to∞ almost surely asn → ∞. An important problem is to understand the
long term behavior of{In} asp(d − 2) ≤ d . The weak laws for{In} were obtained
by Le Gall (1986a, b) and Rosen (1990) [see (1.4) below for the noncritical case
and Le Gall (1986b) for the critical case]. Our concern in this work is large
(moderate) deviations for intersection local times and its application to the law
of the iterated logarithm. The critical case defined byp(d −2) = d was studied by
Marcus and Rosen (1997) and Rosen (1997), and the cased = 1 was studied by
Chen and Li (2004). In this work we consider the cases defined by

p(d − 2) < d and d ≥ 2.(1.1)

In other words, we consider the cased = 2, p ≥ 2 and the cased = 3, p = 2.
Another closely related object is the intersection local time generated by

Brownian motions. Asd = 1, the intersection local times can be represented
in terms of Brownian local times. Given a Brownian local timeL(t, x) and its
independent copiesL1(t, x),L2(t, x), . . . , the intersection local times∫ ∞

−∞
Lp(t, x) dx and

∫ ∞
−∞

p∏
j=1

Lj (t, x) dx

measure the time (up tot) spent for self-intersection and inter-path intersection,
respectively. Chen and Li (2004) observed that these two types of intersection
local times have similar tail behaviors asd = 1. This phenomenon allows us to
study the mixed type of intersection local time:∫ ∞

−∞

m∏
j=1

L
p
j (t, x) dx.

Indeed, it has been established by Chen and Li (2004) that

lim
λ→∞ t−1 logP

{∫ ∞
−∞

m∏
j=1

L
p
j (1, x) dx ≥ t(mp−1)/2

}

= − m

4(mp − 1)

(
mp + 1

2

)(3−mp)/(mp−1)

B

(
1

mp − 1
,

1

2

)2

,

whereB(·, ·) is the beta function.
In the multidimensional case, the self-intersection local time and the interpath

intersection local time have different asymptotic behaviors and therefore are
treated separately. In this paper, we deal only with the intersection local times
run byp independent Brownian motions. The interested reader is referred to Bass
and Chen (2004) for a recent development on large deviations and the laws of the
iterated logarithm for self-intersection local times of two-dimensional Brownian
motions.
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Let W1(t), . . . ,Wp(t) be independentd-dimensional Brownian motions. Ac-
cording to Dvoretzky, Erdös and Kakutani (1950, 1954), the set of intersections

p⋂
j=1

{x ∈ R
d;x = Wj(t) for somet ≥ 0}

contains points different from 0 if and only ifp(d − 2) < d . The interested reader
is also referred to a survey paper by Khoshnevisan (2003) for an elementary proof
of this result and for an overview of the whole area of path intersection.

Under condition (1.1), the intersection local timeα(ds1, . . . , dsp) of W1(t),

. . . ,Wp(t) is defined as a random measure on(R+)p supported on

{(t1, . . . , tp) ∈ (R+)p;W1(t1) = · · · = Wp(tp)}.
It is formally written as

α(ds1, . . . , dsp) = δ0
(
W1(s1)−W2(s2)

) · · · δ0
(
Wp−1(sp−1)−Wp(sp)

)
ds1 · · · dsp

or

α(ds1, . . . , dsp) =
[∫

Rd

p∏
j=1

δ0
(
Wj(sj ) − x

)
dx

]
ds1 · · · dsp.

There are two equivalent ways to construct Brownian intersection local time in
the multidimensional case. Geman, Horowitz and Rosen (1984) proved that under
(1.1), the occupation measure onR

d(p−1) given by

f �→
∫
A

f
(
W1(t1) − W2(t2), . . . ,Wp−1(tp−1) − Wp(tp)

)
dt1 · · · dtp

is absolutely continuous with respect to Lebesgue measure onR
d(p−1) for any

Borel setA ⊂ (Rp)+ and the densityα(x,A) of the occupation measure can be
chosen in such a way that the function

(x, t1, . . . , tp) �→ α(x, [0, t1] × · · · × [0, tp]),
x ∈ R

d(p−1), (t1, . . . , tp) ∈ (Rp)+,

is jointly continuous [see Bass and Khoshnevisan (1993) for a further discussion on
Hölder continuity of the Brownian intersection local times]. The random measure
α(·) on (Rp)+ is defined as

α(A) = α(0,A) ∀Borel setA ⊂ (Rp)+.(1.2)

Another approach involves the approximation of the Dirac function. Given
ε > 0, define the random measureαε(·) on (Rp)+ by

αε(ds1, . . . , dsp) =
[∫

Rd

p∏
j=1

1

Cdεd
1{|Wj(sj )−x|≤ε} dx

]
ds1 · · · dsp,
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whereCd is the volume of thed-dimensional unit ball. Whend = 2 andp ≥ 2, Le
Gall [(1990), Theorem 1, page 183] showed that there is a unique random measure
α(·) on (Rp)+ such that

lim
ε→0+ αε(A1 × · · · × Ap) = α(A1 × · · · × Ap)

holds inLm norm for anym ≥ 1 and for any Borel boxA1 × · · · × Ap ⊂ (Rp)+.
By closely examining his argument, we can see that the same conclusion applies
to all cases defined by (1.1) without extra work.

By the scaling property of Brownian motions,

α([0, t]p)
d= t(2p−d(p−1))/2α([0,1]p).(1.3)

Very similarly,

n−(2p−d(p−1))/2In
d→ det(�)−(p−1)/2α([0,1]p).(1.4)

Indeed, it is known [see, e.g., Le Gall (1986a) and Rosen (1990)] that

n−(2p−d(p−1))/2In
d→ αU([0,1]p),

where αU([0, t]p) denotes the analogue ofα([0, t]p) with W1(t), . . . ,Wp(t)

replaced by the independentd-dimensional Lévy Gaussian processes

U1(t), . . . ,Up(t) whose covariance matrix is�. By the fact thatW d= �−1/2U ,
we have

{αU([0, t]p); t ≥ 0} d= {
det(�)−(p−1)/2α([0, t]p); t ≥ 0

}
,(1.5)

from which (1.4) follows. Here we recommend the interested reader to Bass and
Khoshnevisan (1992) for further discussion on the uniformity (over time and initial
points) of the convergence given in (1.4). So it is expected thatIn andα([0, t]p)

have similar long term behavior.
Under the conditionp(d − 2) < d , König and Mörters (2002) established the

large deviation principle for projected intersection local times,

lim
t→∞ t−1/p logP{l(U) ≥ t} = −C(p,d,U),(1.6)

where

l(U) =
∫
U

dy

p∏
j=1

∫ Tj

0
ds δy

(
Wj(s)

)
,

where T1, . . . , Tp are the exit times of, respectively, the Brownian motions
W1, . . . ,Wp from a ballB(0,R) of center 0 and radiusR > 0, whereU ⊂ B(0,R)

is a bounded open subset that contains starting points ofW1, . . . ,Wp and where
the constantC(p,d,U) > 0 is given in terms of certain variational problems. Our
situation is different from that studied by König and Mörters (2002): We let the
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Brownian motion run up to a deterministic time rather than random time, and our
intersection local time is defined on the whole spaceR

d , while theirs is limited
to a bounded domain. On the other hand, we point to (Remark 4.1) a possible
connection between our work and that by König and Mörters.

To see what we expect, we recall some work done by Le Gall (1986a). In
Lemma 2.2 of Le Gall (1986a) it is proved that asd = 2 andp ≥ 2,

Cm
1 (m!)p−1 ≤ Eα([0,1]p)m ≤ Cm

2 (m!)p−1(logm)m,(1.7)

and asd = 3 andp = 2,

Cm
1 (m!)3/2 ≤ Eα([0,1]2)m ≤ Cm

2 (m!)3/2,(1.8)

where the constantsC1 > 0 andC2 > 0 depend only on(d,p). To improve the
upper bound in (1.7), we propose the following simple treatment, which works for
all cases defined by (1.1).

Let τ1, . . . , τp be i.i.d. exponential times with parameter 1, and assume the
independence between{τ1, . . . , τp} and {X1(t), . . . ,Xp(t)}. Let �m be the set
of the permutations on{1, . . . ,m} and letpt(x) (t ≥ 0) be thed-dimensional
Brownian densities. By Le Gall’s moment formula [(1), page 182 in Le Gall
(1990)],

E
[
α([0, τ1] × · · · × [0, τp])m]

=
∫
(Rd )m

dx1 · · · dxm

[∫ ∞
0

e−t dt

×
∫

0≤s1<···<sm≤t

∑
σ∈�m

m∏
k=1

psk−sk−1

(
xσ(k) − xσ(k−1)

)]p

=
∫
(Rd )m

dx1 · · · dxm

[ ∑
σ∈�m

m∏
k=1

∫ ∞
0

e−tpt

(
xσ(k) − xσ(k−1)

)
dt

]p

≤ (m!)p
∫
(Rd )m

dx1 · · · dxm

[
m∏

k=1

∫ ∞
0

e−tpt (xk) dt

]p

= (m!)p
[∫

Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

]m

,

where the convention thatxσ(0) = 0 ands0 = 0 is adapted, where the inequality
follows from Hölder’s inequality together with some suitable variable substitutions
and where the second equality follows from the fact that∫ ∞

0
e−t dt

∫
0≤s1<···<sn≤t

ds1 · · · dspϕ1(s1)

m∏
k=2

ϕk(sk − sk−1)

(1.9)

=
m∏

k=1

∫ ∞
0

e−tϕk(t) dt.
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We give a short proof here. By the substitution

t1 = s1, t2 = s2 − s1, . . . , tm = sm − sm−1 and tm+1 = t − sm,

the integral on the left-hand side is equal to∫ ∞
0

· · ·
∫ ∞

0
dt1 · · · dtm+1 exp(−tm+1)

m∏
k=1

exp(−tk)ϕk(tk)

=
m∏

k=1

∫ ∞
0

e−tϕk(t) dt.

Notice that∫
Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

=
∫ ∞

0
· · ·

∫ ∞
0

dt1 · · · dtp exp
(−(t1 + · · · + tp)

) ∫
Rd

p∏
j=1

ptj (x) dx

= (2π)−(d(p−1))/2

×
∫ ∞

0
· · ·

∫ ∞
0

exp
(−(t1 + · · · + tp)

)( p∑
j=1

∏
1≤k≤p

k 	=j

tk

)−d/2

dt1 · · · dtp.

By arithmetic–geometric mean inequality,

1

p

p∑
j=1

∏
1≤k≤p

k 	=j

tk ≥
p

√√√√√√
p∏

j=1

∏
1≤k≤p

k 	=j

tk =
p∏

j=1

t
(p−1)/p
j .

Notice thatd(p − 1)/(2p) < 1 under (1.1). So we have∫
Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

≤ (2π)−(d(p−1))/2p−d/2
(∫ ∞

0
t−(d(p−1))/(2p)e−t dt

)p

< ∞.

On the other hand,τmin ≡ min{τ1, . . . , τp} is an exponential time with
parameterp. By the scaling property given in (1.3),

E
[
α([0, τ1] × · · · × [0, τp])m]

≥ E
[
α([0, τmin]p)m

] = Eτ
((2p−d(p−1))/2)m
min E

[
α([0,1]p)m

]
(1.10)

= p−(((2p−d(p−1))/2)m−1)�

(
1+ 2p − d(p − 1)

2
m

)
Eα([0,1]p)m.



3254 X. CHEN

Summarizing what we have,

Eα([0,1]p)m ≤ p(((2p−d(p−1))/2)m+1)�

(
1+ 2p − d(p − 1)

2
m

)−1

× (m!)p
[∫

Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

]m

.

By Stirling’s formula,

lim sup
m→∞

m

√
Eα([0,1]p)m

(m!)(d(p−1))/2

≤
(

2p − d(p − 1)

2p

)−(2p−d(p−1))/2∫
Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx,

lim sup
k→∞

k

√
Eα([0,1]p)2k/(d(p−1))

k!(1.11)

≤
(

2p − d(p − 1)

2p

)−(2p−d(p−1))/(d(p−1))

×
(

d(p − 1)

2

)−1(∫
Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

)2/(d(p−1))

.

By the first estimate, we obtain an upper bound forEα([0,1]p)m, which claims,
together with the lower bounds given in (1.7) and (1.8), that

Cm
1 (m!)(d(p−1))/2 ≤ Eα([0,1]p)m ≤ Cm

2 (m!)(d(p−1))/2.(1.12)

Consequently, there is a constantγα(d,p) > 0, such that

Eexp
{
γ α([0,1]p)2/(d(p−1))}{< ∞, γ < γα(d,p),

= ∞, γ > γα(d,p).
(1.13)

In the special cased = p = 2, (1.13) was obtained by Le Gall (1994).

QUESTION. What can we say about the critical exponentγα(d,p)? Can we
strengthen (1.13) into the large deviation

lim
t→∞ t−1 logP

{
α([0,1]p) ≥ t(d(p−1))/2} = −γα(d,p)?

By (1.11) and the Taylor expansion, a partial answer to the question is

γα(d,p) ≥ d(p − 1)

2

(
2p − d(p − 1)

2p

)(2p−d(p−1))/(d(p−1))

(1.14)

×
(∫

Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

)−2/(d(p−1))

.

Unfortunately, (1.14) cannot be developed into an equality. The complete answer
is given in Theorem 2.1.
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2. Main results. Recall our assumption (1.1). To identify the constants given
in our main results, we consider the Gagliardo–Nirenberg type inequalities

‖f ‖2p ≤ C‖∇f ‖(d(p−1))/(2p)
2 · ‖f ‖1−(d(p−1))/(2p)

2 , f ∈ W1,2(Rd),(2.1)

whereC > 0 is a constant independent off and for eachr ≥ 1,W1,r (Rd) denotes
the Sobolev space

W1,r (Rd) = {f ∈ Lr (Rd);∇f ∈ Lr(Rd)}.
The validity of (2.1) can be derived from the Sobolev inequality [see, e.g., Ziemer
(1989), Theorem 2.4.1, page 56]

‖f ‖r∗ ≤ K‖∇f ‖r , f ∈ W1,r (Rd),

where 1≤ r < d , r∗ = dr(d − r)−1 andK > 0 is a constant that depends only on
r andd . Indeed, takingr = d(p − 1)p−1, we have

‖f ‖d(p−1) ≤ K‖∇f ‖d(p−1)p−1.(2.2)

Replacingf with |f |2p/(d(p−1)), we have

‖f ‖2p ≤
(

2p

d(p − 1)
K

)(d(p−1))/(2p)

×
(∫

Rd
|∇f (x)|(d(p−1))/p|f (x)|(2p−d(p−1))/p dx

)1/2

≤
(

2p

d(p − 1)
K

)(d(p−1))/(2p)

‖∇f ‖(d(p−1))/(2p)
2 · ‖f ‖1−(d(p−1))/(2p)

2 ,

where the second step follows from Hölder inequality.
Let κ(d,p) be the best constant of the Gagliardo–Nirenberg inequality given

in (2.1):

κ(d,p) = inf
{
C > 0; ‖f ‖2p ≤ C‖∇f ‖(d(p−1))/(2p)

2 · ‖f ‖1−(d(p−1))/(2p)
2

for ∀f ∈ W1,2(Rd)
}
.

Then 0< κ(d,p) < ∞.

THEOREM 2.1. Under condition (1.1),

lim
t→∞ t−1 logP

{
α([0,1]p) ≥ t(d(p−1))/2} = −p

2
κ(d,p)−4p/(d(p−1)).(2.3)

Finding the best constants for Gagliardo–Nirenberg inequalities appears to
be a difficult problem which remains open in general. It has been attracting
considerable attention partially due to its connection to some problems in physics.
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The best constant for Nash’s inequality, which is a special case of Gagliardo–
Nirenberg inequalities, was found by Carlen and Loss (1993). See also papers
by Cordero-Erausquin, Nazaret and Villani (2004) and by Del Pino and Dolbeault
(2002) for recent progress on the best constants for a class of Gagliardo–Nirenberg
inequalities. See the paper by Del Pino and Dolbeault (2003) for a connection
between the best constants for Gagliardo–Nirenberg inequalities and logarithmic
Sobolev inequalities. Two papers are directly related toκ(d,p): In the cased = 2
andp = 3, Levine (1980) obtained the sharp estimate

3

√
1

4.6016
< κ(2,3) < 3

√
1

4.5981
.

He conjectured thatκ(2,3) = π−4/9. Weinstein (1983) studied the problem of
the best constants for the Gagliardo–Nirenberg inequalities of the type (2.1). It
was shown [Weinstein (1983), Theorem B] that under (1.1), the best constant is
attained at an infinitely smooth, positive and spherically symmetric functionf0,
which solves the nonlinear equation

d(p − 1)

2
�f − 2p − d(p − 1)

2
f + f 2p−1 = 0.

In addition, f0 has the smallestL2 norm among all solutions of the above
equation (such a solution is called a ground state solution). Furthermore [Weinstein
(1983), (I.3)],

κ(d,p) = (
p‖f0‖−2(p−1)

2

)1/(2p)
.

Using this result, Weinstein (1983) obtained the following numerical approxima-
tion in the cased = p = 2:

κ(2,2) ≈ 4

√
1

π × (1.86225. . . )
.

By comparing Theorem 2.1 with (1.14), the following bound ofκ(d,p) is a by-
product:

κ(d,p) ≤
(

p

d(p − 1)

)(d(p−1))/(4p)( 2p

2p − d(p − 1)

)(2p−d(p−1))/(4p)

(2.4)

×
(∫

Rd

(∫ ∞
0

e−tpt (x) dt

)p

dx

)1/(2p)

.

In Lemma A.2, we connectκ(d,p) to a variational problem.
We now turn to the random walks. Let{bn} be a positive sequence that satisfies

bn → ∞ and bn/n → 0 (n → ∞).(2.5)
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THEOREM 2.2. Under conditions (1.1)and (2.5),

lim
n→∞

1

bn

logP
{
In ≥ λn(2p−d(p−1))/2b(d(p−1))/2

n

}
(2.6)

= −p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1))

for all λ > 0.

Our large and moderate deviations apply to the following law of the iterated
logarithm.

THEOREM 2.3. Under condition (1.1),

lim sup
t→∞

t−(2p−d(p−1))/2(log logt)−(d(p−1))/2α([0, t]p)

(2.7)

=
(

2

p

)(d(p−1))/2

κ(d,p)2p a.s.,

lim sup
n→∞

n−(2p−d(p−1))/2(log logn)−(d(p−1))/2In

(2.8)

=
(

2

p

)(d(p−1))/2

det(�)−(p−1)/2κ(d,p)2p a.s.

Specifically,

lim sup
t→∞

1

t (log logt)p−1
α([0, t]p) =

(
2

p

)p−1
κ(2,p)2p a.s.,

lim sup
n→∞

1

n(log logn)p−1
In =

(
2

p

)p−1

det(�)−(p−1)/2κ(2,p)2p a.s.

as d = 2 and p ≥ 2, and

lim sup
t→∞

1√
t (log logt)3

α([0, t]p) = κ(3,2)4 a.s.,

lim sup
n→∞

1√
n(log logn)3

In = det(�)−1/2κ(3,2)4 a.s.

as d = 3 and p = 2.

Recall that the trajectories of{S1(n)}, . . . , {Sp(n)} intersect infinitely often if
and only if p(d − 2) ≤ d . In the critical cases defined asp(d − 2) = d—the
cased = 4, p = 2 and the cased = p = 3—the law of the iterated logarithm was
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obtained by Marcus and Rosen (1997) and Rosen (1997), respectively. Under the
assumption of finite third moment, it was proved [Marcus and Rosen (1997)] that

lim sup
n→∞

In

logn log log logn
= 1

2π2
√

det(�)
a.s.(2.9)

asd = 4 andp = 2, and [Rosen (1997)] that

lim sup
n→∞

In

logn log log logn
= 1

π det(�)
a.s.(2.10)

asd = p = 3.
The cased = 1 was studied by Chen and Li (2004). As a special form of a

general result given in Theorem 1.4 of Chen and Li (2004),

lim sup
n→∞

n−(p+1)/2(log logn)−(p−1)/2In

(2.11)

=
(

4(p − 1)

pσ 2

)(p−1)/2(p + 1

2

)(p−3)/2

B

(
1

p − 1
,

1

2

)−(p−1)

a.s.

asd = 1 andp ≥ 2, whereσ 2 > 0 is the variance of the random walks.
The law of the iterated logarithm given in Theorem 2.3 solves the cases left by

the previous works.
In addition to being important in the study of random paths, the notion of

intersection local times of independent Brownian trajectories is connected to some
other interesting problems. Bass and Chen (2004) proved that the renormalized
2-multiple self-intersection local time run by a two-dimensional Brownian motion
satisfies exactly the same large deviation and the law of the iterated logarithm as
doesα([0, t]2) in the cased = p = 2. Chen and Li (2004) pointed out how the
intersection local times are related to the local times of additive Lévy processes
[see Khoshnevisan, Xiao and Zhang (2003a, b) for some later developments in
this area]. In their paper, König and Mörters (2002) applied the large deviation
result given in (1.6) to the problem of finding the Hausdorff dimension spectrum
for thick points of the intersection of two independent Brownian paths inR

3.
The most interesting link is the range problem. While the intersection local time

In counts the times spent in intersecting, the random variable

Jn = #{S1[1, n] ∩ · · · ∩ Sp[1, n]}(2.12)

counts the sites of intersection. Clearly,Jn ≤ In and the difference is caused by the
possibility that the trajectories intersect more than once at the same site. The weak
laws for Jn were studied by Le Gall (1986a, b) and Le Gall and Rosen (1991),
and it has been observed that in the transient case (d ≥ 3), Jn behaves likeγ pIn,
whereγ = P{Sn 	= 0 ∀n ≥ 1}. In light of (2.9) and (2.10), therefore, the law of the
iterated logarithm was given by Marcus and Rosen (1997) and Rosen (1997) as
p(d − 2) = d . On the other hand, Le Gall (1986a) proved that asd = p = 2,

(logn)2

n
Jn

d→ (2π)2 det(�)−1/2α([0,1]2).(2.13)
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Comparing (2.13) with (1.4), we observe a sharp contrast betweenIn andJn as
d = 2. Theorem 2.1 established in our work opens the possibility to understand
the tail behavior ofJn under the condition (1.1). We leave this to future study.

We outline some key technique points in each of the following sections.
In Section 3, we establish the large (moderate) deviations for the intersection
local times smoothed by convolution. Different from the one-dimensional case,
multidimensional Brownian motions do not have local time. Even in the case of
random walks, the absence of a modulus of continuity for local times makes it
difficult to handle intersection local time directly as we did before [Chen and Li
(2004)]. For this reason, the large (moderate) deviations are accomplished first
for theLp norms and multilinear forms of the occupation times over small balls
instead of the local times. In spite of the difference mentioned above, some of
the ideas developed by Chen and Li (2004) are adapted here: A Feynman–Kac
type large deviation given by Remillard(2000) for Brownian occupation times
and analogous minorization established by Chen and Li (2004) in the context of
random walks, an idea of localization developed by Donsker and Varadhan (1975)
and Mansmann (1991), a deterministic comparison (via Hölder type inequality)
between multilinear form andLp norms, a way to establish exponential tightness
introduced by de Acosta (1985) andLp embedding are the main ingredients in
the proof of Theorem 3.1. We point out that Donsker and Varadhan’s (1974) large
deviation principle for empirical processes could be used [see Mansmann (1991)
for “how” in the cased = 1] in the proof of (3.2) and (3.3). We chose not to do so
because the proof of (3.4) and (3.5) demands an approach which can be extended
(at least partially) to the case of random walks.

In Section 4, we prove the upper bound for Theorem 2.1. The idea is approx-
imation via Theorems 3.1. Le Gall’s moment formula and time exponentiation
(Laplacian transform) are essential tools. Laplacian transform has been developed
into an important tool in the study of limit laws for occupation times since the re-
markable work by Darling and Kac (1957). The interested reader is referred to the
survey paper by Fitzsimmons and Pitman (1999) for an overview. It is worth men-
tion that our situation is not quite standard: We have to deal withp independent
exponential times at the same time.

In Section 5, we prove the upper bound for Theorem 2.2, which is by no means
a trivial consequence of Theorem 2.1 and the invariance principle, due to the
discontinuity of the functionals involved. The treatment we present is completely
different from that for the upper bound of Theorem 2.1. The central piece of our
approach is a moment inequality given in Theorem 5.1. This inequality appears to
be interesting for its own sake.

In Section 6, we prove the lower bounds for both Theorems 2.1 and 2.2. For
the needs of the law of the iterated logarithm, the statement given in Theorem 6.1
is more than we need for Theorems 2.1 and 2.2: We allow the independent paths
to start at different points and we establish the lower bounds uniformly over the
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starting points. The key step is to show that the moments of intersection local times
can be minorized by those of the multilinear forms that appear in Theorem 3.1.

In Section 7, we prove Theorem 2.3. With the extensive preparation on the
tail estimate, the proof is a standard practice of the Borel–Cantelli lemma. In the
Appendix, we give two analytic lemmas which are used in the proof of our main
theorems.

3. Smoothing intersection local times. To simplify the notation, we denote
W(t) for a d-dimensional Brownian motion and{S(n)} for a d-dimensional
random walk with the same distribution as{S1(n)}, . . . , {Sp(n)}, whenever only
a single Brownian motion or a single random walk is involved. In this section, we
let the small numberε > 0 be fixed but arbitrary and write

L(t, x, ε) = 1

Cdεd

∫ t

0
1{|W(s)−x|≤ε} ds, x ∈ R

d, t ≥ 0,

l(n, x, ε) = 1

#{Bn}
n∑

k=1

1{S(k)−x∈Bn}, x ∈ Z
d, n = 1,2, . . . ,

whereCd is the volume of thed-dimensional unit ball and

Bn = {
y ∈ Z

d; |y| ≤ ε
√

n/bn

}
.

For each 1≤ j ≤ p, let Lj(t, x, ε) andlj (n, x, ε) be the analogues ofL(t, x, ε)

andl(n, x, ε) with W(t) andS(n) being replaced byWj(t) andSj (n), respectively.
For any locally integrable functionf onR

d , we introduce the notation

fε(x) = 1

Cdεd

∫
{|y−x|≤ε}

f (y) dy.

Givenθ > 0, write

Mε(θ) = sup
f ∈Fd

{
θ

(∫
Rd

[(f 2)ε(x)]p dx

)1/p

− 1
2

∫
Rd

|∇f (x)|2 dx

}
,

Nε(θ) = sup
f ∈Fd

{
θ

(∫
Rd

[(f 2)ε(x)]p dx

)1/p

− p

2

∫
Rd

|∇f (x)|2 dx

}
,

M̃ε(θ) = sup
f ∈Fd

{
θ

(∫
Rd

[(f 2)ε(x)]p dx

)1/p

− 1
2

∫
Rd

〈∇f,� ∇f 〉dx

}
,

Ñε(θ) = sup
f ∈Fd

{
θ

(∫
Rd

[(f 2)ε(x)]p dx

)1/p

− p

2

∫
Rd

〈∇f,� ∇f 〉dx

}
,

where

Fd =
{
f ∈ W1,2(Rd);

∫
Rd

|f (x)|2 dx = 1
}
.(3.1)
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By the fact that∫
Rd

[(f 2)ε(x)]p dx ≤ sup
x∈Rd

[(f 2)ε(x)]p−1 ≤
(

1

Cdεd

)p−1

,

the functionsMε(·), M ′
ε(·), Nε(·) andN ′

ε(·) are continuous for any fixedε > 0.

THEOREM 3.1. For any θ > 0 and integers d ≥ 1, p ≥ 2,

lim
t→∞

1

t
logEexp

{
θ

(∫
Rd

Lp(t, x, ε) dx

)1/p}
= Mε(θ),(3.2)

lim
t→∞

1

t
logEexp

{
θ

(∫
Rd

p∏
j=1

Lj (t, x, ε) dx

)1/p}
= Nε(θ),(3.3)

lim
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)

(3.4)

×
( ∑

x∈Zd

lp(n, x, ε)

)1/p}
= M̃ε(θ),

lim
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)

(3.5)

×
( ∑

x∈Zd

p∏
j=1

lj (n, x, ε)

)1/p}
= Ñε(θ).

REMARK 3.1. It should be emphasized that Theorem 3.1 holds for alld ≥ 1
and all integersp ≥ 2 [in other words, condition (1.1) plays no role here], and that,
smoothed by the uniform distribution over a small ball, the self-intersection and
interpath intersection present almost the same behavior. This is quite contrary to
the strong dimension dependence of the intersection local times and contrary to
the substantial difference in asymptotic behaviors between self-intersection local
times and interpath intersection local times asd ≥ 2. Here is our explanation: First,
replacing the trajectories by their “ε sausage” makes intersection always possible
regardless of the values ofd and p. Second, the behavior of the intersection
local times is determined by the degree of their singularity, which depends on a
combination of the space structure (dimensiond) and the pattern of intersection.
The smoothing procedure eliminates the singularity and therefore eliminates the
difference in behavior. Furthermore, we can see from the proof below thatp can
be any real number larger than 1 in (3.2) and (3.4).
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PROOF OFTHEOREM 3.1. We first deal with Brownian case. We start with a
result based on the Feynman–Kac formula [see, e.g., Remillard (2000)],

lim
t→∞

1

t
logEexp

{∫ t

0
f (W(s)) ds

}
(3.6)

= sup
g∈Fd

{∫
Rd

f (x)g2(x) dx − 1

2

∫
Rd

|∇g(x)|2 dx

}
,

wheref can be any bounded, measurable functionf onR
d .

We now prove the upper bound for (3.2). We may lett → ∞ along the integer
points in our argument when it is needed. The basic idea is to view{L(t, ·, ε); t ≥
0} as a process taking values in the Banach spaceLp(Rd). Then (3.6) provides
all the information we need for the logarithmic generating function of the linear
forms ofL(t, ·, ε). If {L(t, ·, ε); t ≥ 0} were exponentially tight inLp(Rd), then
the upper bound for (3.2) would follow from a standard argument. Unfortunately,
this is not the case, so we need the following localization procedure to compactify
L(t, ·, ε).

Let m > 0 be fixed and letGm be the discrete subgroup ofR
d that consists

of vectors whose coordinates are integer multiples ofm. Let Tm be the quotient
of R

d moduloGm and letι : R
d → Tm be the canonical map. Then theTm-valued

processW ∗(t) = ι(W(t)) is a Markov process and is called, in the literature,
Brownian motion on the torusTm. Notice thatTm becomes a compact group under
the induced distance

d(x∗, y∗) = inf{|x − y|; ι(x) = x∗ andι(y) = y∗}.
Let λ(dx∗) be the Lebesgue (Haar) measure onTm and write

L∗(t, x∗, ε) = ∑
k∈Zd

L(t, x + mk, ε)

=
∫ t

0
ϕε

(
W ∗(s) − x∗)ds, t ≥ 0, x∗ ∈ Tm,

whereϕε is a function onTm defined by

ϕε(x
∗) = 1

Cdεd

∑
k∈Zd

1{|x+mk|≤ε}.

Notice that ifm is large enough, then the above summation has at most one nonzero
term, soϕε(x

∗) ≤ C−1
d ε−d and∫

Rd
Lp(t, x, ε) dx = ∑

k∈Zd

∫
[0,m]d

Lp(t, x + mk, ε) dx

≤
∫
[0,m]d

[ ∑
k∈Zd

L(t, x + mk, ε)

]p

dx(3.7)
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=
∫
Tm

[L∗(t, x∗, ε)]pλ( dx∗).

For each integrable functionf on Tm, define the functionf ∗ on R
d by f ∗ =

f ◦ ι. We have∫
Tm

f (x∗)L∗(t, x∗, ε)λ( dx∗) = ∑
k∈Zd

∫
[0,m]d

f ∗(x)L(t, x + mk, ε) dx

=
∫

Rd
f ∗(x)L(t, x, ε) dx =

∫ t

0
(f ∗)ε(W(s)) ds.

By (3.6),

lim
t→∞

1

t
logEexp

{
θ

∫
Tm

f (x∗)L∗(t, x∗, ε)λ( dx∗)
}

= sup
g∈F

{
θ

∫
Rd

(f ∗)ε(x)g2(x) dx − 1

2

∫
Rd

|∇g(x)|2 dx

}
(3.8)

= sup
g∈F

{
θ

∫
[0,m]d

f ∗(x)

( ∑
k∈Zd

(g2)ε(x + mk)

)
dx − 1

2

∫
Rd

|∇g(x)|2 dx

}
.

We now intend to establish exponential tightness forL∗(t, ·, ε) as it is viewed as
a process taking values inLp(Tm). For anyx∗, y∗ ∈ Tm with d(x∗, y∗) ≤ δ, there
arex, y ∈ R

d such thatι(x) = x∗, ι(y) = y∗ and|x − y| ≤ δ. Therefore,

|L∗(1, x∗, ε) − L∗(1, y∗, ε)|
≤ ∑

k∈Zd

|L(1, x + mk, ε) − L(1, y + mk, ε)|

≤ #
{

k;min{|x + mk|, |y + mk|} ≤ max
0≤t≤1

|W(t)| + ε

}
× sup

|x−y|≤δ

|L(1, x, ε) − L(1, y, ε)|.

By shifting invariance, the quantity #{k} on the right-hand side can be bounded by
a finite random number independent ofx, y andδ. By the obvious fact that

sup
|x−y|≤δ

|L(1, x, ε) − L(1, y, ε)| P→ 0, (δ → 0),

we have

γδ ≡ sup
d(x∗,y∗)≤δ

|L∗(1, x∗, ε) − L∗(1, y∗, ε)| P→ 0, (δ → 0).
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Consequently,

sup
d(y∗,z∗)≤δ

∫
Tm

|L∗(1, y∗ + x∗, ε) − L∗(1, z∗ + x∗, ε)|pλ( dx∗)

≤ γ
p−1
δ sup

d(y∗,z∗)≤δ

∫
Tm

{L∗(1, y∗ + x∗, ε) + L∗(1, z∗ + x∗, ε)}λ(dx∗)

= 2γ
p−1
δ

P→ 0 (δ → 0).

Hence, the family{L∗(1, y + ·, ε)}y∈Tm of Lp(Tm)-valued random variables is
uniformly tight. In addition, for anyy ∈ Tm,∫

Tm

[L∗(1, y∗ + x∗, ε)]pλ( dx∗) ≤
(

1

Cdεd

)p−1 ∫
Tm

L∗(1, y∗ + x∗, ε)λ( dx∗)

=
(

1

Cdεd

)p−1

< ∞.

By Theorem 3.1 in de Acosta (1985), there is a compact, convex, positively
balanced subsetK ⊂ Lp(Tm) such that

sup
y∈Tm

Ey exp
{
qK

(
L∗(1, ·, ε))} < ∞,

whereqK(·) is Minkowski functional, which is a seminorm onLp(Tm). Applying
the Markov property, we have

Eexp
{
qK

(
L∗(t, ·, ε))} ≤

(
sup
y∈Tm

Ey exp
{
qK

(
L∗(1, ·, ε))})t

,

which gives

lim sup
t→∞

1

t
logEexp

{
qK

(
L∗(t, ·, ε))} < ∞.(3.9)

Notice that for anyγ > 0,

E

[
exp

{
θ

(∫
Tm

[L∗(t, x∗, ε)]pλ( dx∗)
)1/p}

; 1

t
L∗(t, ·, ε) /∈ γK

]

≤ exp
{
θ

(
1

Cdε

)p−1

t

}
P
{
qK

(
L∗(t, ·, ε)) ≥ γ t

}
.

In view of (3.9), we have that for sufficiently largeγ ,

Eexp
{
θ

(∫
Tm

[L∗(t, x∗, ε)]pλ( dx∗)
)1/p}

(3.10)

∼ E

[
exp

{
θ

(∫
Tm

[L∗(t, x∗, ε)]pλ( dx∗)
)1/p}

; 1

t
L∗(t, ·, ε) ∈ γK

]
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ast → ∞.
Let q > 1 be the conjugate number ofp and letδ > 0 be fixed. By the Hahn–

Banach theorem and compactness, there are finitely many bounded functions
f1, . . . , fN in the unit sphere ofLq(Tm) such that(∫

Tm

|h(x∗)|pλ( dx∗)
)1/p

< max
1≤i≤N

∫
Tm

fi(x
∗)h(x∗)λ( dx∗) + δ ∀h ∈ γK.

In particular,

E

(
exp

{
θ

(∫
Tm

[L∗(t, x∗, ε)]pλ(dx̄)

)1/p}
; 1

t
L∗(t, ·, ε) ∈ γK

)

≤ eθδt
N∑

i=1

Eexp
{
θ

∫
Tm

fi(x
∗)L∗(t, x∗, ε)λ( dx∗)

}
.

By (3.8) and (3.10),

lim sup
t→∞

1

t
logEexp

{
θ

(∫
Tm

[L∗(t, x∗, ε)]pλ(dx̄)

)1/p}

≤ θδ + max
1≤i≤N

sup
g∈Fd

{
θ

∫
[0,m]d

f ∗
i (x)

( ∑
k∈Zd

(g2)ε(x + mk)

)
dx

− 1

2

∫
Rd

|∇g(x)|2 dx

}

≤ θδ + sup
g∈Fd

{
θ

(∫
[0,m]d

( ∑
k∈Zd

(g2)ε(x + mk)

)p

dx

)1/p

− 1

2

∫
Rd

|∇g(x)|2 dx

}
,

where the last step follows from Hölder’s inequality. In view of (3.7) and
Lemma A.1, lettingδ → 0 and thenm → ∞, we obtain the upper bound for (3.2):

lim sup
t→∞

1

t
logEexp

{
θ

(∫
Rd

Lp(t, x, ε) dx

)1/p}
≤ Mε(θ).(3.11)

By the inequality(∫
Rd

p∏
j=1

Lj (t, x, ε) dx

)1/p

≤ 1

p

p∑
j=1

(∫
Rd

L
p
j (t, x, ε) dx

)1/p

we have

Eexp

{
θ

(∫
Rd

p∏
j=1

Lj(t, x, ε) dx

)1/p}
≤

[
Eexp

{
θ

p

(∫
Rd

Lp(t, x, ε) dx

)1/p}]p

.
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From (3.11) (withθ replaced byp−1θ ) we have the upper bound for (3.3):

lim sup
t→∞

1

t
logEexp

{
θ

(∫
Rd

p∏
j=1

Lj (t, x, ε) dx

)1/p}
≤ Nε(θ).(3.12)

We now come to the proof of the lower bounds for (3.2) and (3.3). Notice that
for any 0< r ≤ ∞ and any measurable functionf on R

d with ‖f ‖q = 1 and
f (x) = 0 for |x| > r (if r < ∞),(∫

{|x|≤r}
Lp(t, x, ε) dx

)1/p

≥
∫

Rd
f (x)L(t, x, ε) dx =

∫ t

0
fε(W(s)) ds.

By (3.6) we have

lim inf
t→∞

1

t
logEexp

{
θ

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}

≥ sup
g∈Fd

{
θ

∫
Rd

fε(x)g2(x) dx − 1

2

∫
Rd

|∇g(x)|2 dx

}

= sup
g∈Fd

{
θ

∫
{|x|≤r}

f (x)(g2)ε(x) dx − 1

2

∫
Rd

|∇g(x)|2 dx

}
.

Taking the supremum overf on the right-hand side,

lim inf
t→∞

1

t
logEexp

{
θ

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
(3.13)

≥ sup
g∈Fd

{
θ

(∫
{|x|≤r}

|(g2)ε(x)|p dx

)1/p

− 1

2

∫
Rd

|∇g(x)|2 dx

}
.

In particular, lettingr = ∞ gives the lower bound for (3.2).
To prove the lower bound for (3.3), we viewL(t, ·, ε) as a process with

values inLp(Br) by limiting x to Br , whereBr is thed-dimensional closed ball
with center 0 and radiusr > 0 being fixed but arbitrary. We need to show that
t−1L(t, ·, ε) is exponentially tight inLp(Br): For anyγ > 0, there is a compact
setK0 in Lp(Br), such that

lim sup
t→∞

1

t
logP

{
1

t
L(t, ·, ε) /∈ K0

}
≤ −γ.(3.14)

To this end, we first prove that for anyλ > 0,

lim sup
δ→0+

sup
t≥1

1

t
logEexp

{
λ sup

|y|≤δ

(∫
Rd

|L(t, x + y, ε) − L(t, x, ε)|p dx

)1/p}
(3.15)

= 0.
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Indeed, by subadditivity,

Eexp
{
λ sup

|y|≤δ

(∫
Rd

|L(t, x + y, ε) − L(t, x, ε)|p dx

)1/p}

≤
[
Eexp

{
λ sup

|y|≤δ

(∫
Rd

|L(1, x + y, ε) − L(1, x, ε)|p dx

)1/p}]t

.

To have (3.15), we need only to show

lim
δ→0+ Eexp

{
λ sup

|y|≤δ

(∫
Rd

|L(1, x + y, ε) − L(1, x, ε)|p dx

)1/p}
= 1.(3.16)

Notice that as|y| ≤ δ < ε,

|L(1, x + y, ε) − L(1, x, ε)|
≤ 1

Cdεd

{∫ 1

0
1{ε−δ<|W(s)−x|≤ε} ds +

∫ 1

0
1{ε−δ<|W(s)−(x+y)|≤ε} ds

}
= ξδ(x) + ξδ(x + y) (say).

By triangular inequality,

sup
|y|≤δ

(∫
Rd

|L(1, x + y, ε) − L(1, x, ε)|p dx

)1/p

≤ 2
(∫

Rd
|ξδ(x)|p dx

)1/p

.

The right-hand side approaches 0 asδ → 0+. Hence (3.16) follows from the
dominated convergence theorem.

For eachk ≥ 1, by (3.15) and Chebyshev’s inequality there is aδk > 0 such that

P

{
sup

|y|≤δk

(∫
Rd

|L(t, x + y, ε) − L(t, x, ε)|p dx

)1/p

≥ k−1t

}
≤ e−kγ t ∀ t ≥ 1.

In addition, by (3.12) there is aC > 0 such that

lim sup
t→∞

1

t
logP

{(∫
Rd

Lp(t, x, ε) dx

)1/p

≥ Ct

}
≤ −γ.

Consider the setA ⊂ Lp(Br) given by

A =
{
f ∈ Lp(Br); ‖f ‖p ≤ C and sup

|y|≤δk

‖f (· + y) − f (·)‖p ≤ k−1 ∀ k ≥ 1
}
.

By the criterion of compactness inLp space [see, e.g., Dunford and Schwartz
(1988), Theorem 21, page 301],A is conditionally compact inLp(Br). In addition,
from the construction ofA we have

lim sup
t→∞

1

t
logP

{
1

t
L(t, ·, ε) /∈ A

}
≤ −γ.
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TakingK0 as the closure ofA, we have (3.14).
Takingγ sufficiently large, we have

Eexp
{

θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
(3.17)

∼ E

[
exp

{
θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
; 1

t
L(t, ·, ε) ∈ K0

]
.

Consider the continuous, nonnegative functional� defined on(Lp(Br))
p:

�(f1, . . . , fp) = 1

p

p∑
j=1

(∫
{|x|≤r}

|fj (x)|p dx

)1/p

−
(∫

{|x|≤r}

p∏
j=1

|fj (x)|dx

)1/p

.

Clearly,� ≡ 0 on the diagonal

{(f1, . . . , fp);f1 = · · · = fp}.
Hence, for givenδ > 0 and anyg ∈ Lp(Br), there exists ab = b(g, δ) > 0 such
that

�(f1, . . . , fp) ≤ δ asfj ∈ B(g, b) ∀1≤ j ≤ p,

whereB(g, b) stands for the open ball inLp(Br) with centerg and radiusb.
Therefore,

Eexp
{
θ

(∫
{|x|≤r}

p∏
j=1

Lj(t, x, ε) dx

)1/p}

≥ e−δt
E

[
exp

{
θ

p

p∑
j=1

(∫
{|x|≤r}

L
p
j (t, x, ε) dx

)1/p
}
;

(3.18)
1

t
Lj (t, ·, ε) ∈ B(g, b) ∀1≤ j ≤ p

]

= e−δt

(
E

[
exp

{
θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
; 1

t
L(t, ·, ε) ∈ B(g, b)

])p

.

Let {B(g1, b1), . . . ,B(gN, bN)} be a finite subfamily of the open sets{
B
(
g, b(g, δ)

); g ∈ K0
}
,

which coverK0. Then

E

[
exp

{
θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
; 1

t
L(t, ·, ε) ∈ K0

]

≤
N∑

i=1

E

[
exp

{
θ

p

(∫
Br

Lp(t, x, ε) dx

)1/p}
; 1

t
L(t, ·, ε) ∈ B(gi, bi)

]
.
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Therefore,

lim inf
t→∞

1

t
log max

1≤i≤N
E

[
exp

{
θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
;

1

t
L(t, ·, ε) ∈ B(gi, bi)

]

≥ lim inf
t→∞

1

t
logE

[
exp

{
θ

p

(∫
{|x|≤r}

Lp(t, x, ε) dx

)1/p}
; 1

t
L(t, ·, ε) ∈ K0

]
.

Combining this with (3.13) (withθ replaced byp−1θ ), (3.17) and (3.18), we have

lim inf
t→∞

1

t
logEexp

{
θ

(∫
{|x|≤r}

p∏
j=1

Lj(t, x, ε) dx

)1/p}

≥ −δ + p sup
g∈F

{
θ

p

(∫
{|x|≤r}

|(g2)ε(x)|p dx

)1/p

− 1

2

∫
Rd

|∇g(x)|2 dx

}
.

Letting δ → 0+ andr → ∞, we obtain the lower bound for (3.3):

lim inf
t→∞

1

t
logEexp

{
θ

(∫
Rd

p∏
j=1

Lj (t, x, ε) dx

)1/p}
≥ Nε(θ).(3.19)

We now come to the random walks. Givent > 0, write tn = [tn/bn] and
γn = [n/tn]. Thenn ≤ tn(γn + 1). By independence and triangular inequality,

Eexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

lp(n, x, ε)

)1/p}

≤
(

Eexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)

×
( ∑

x∈Zd

[
1

#{Bn}
tn∑

k=1

1
{∣∣∣∣S(k) − x√

nb−1
n

∣∣∣∣ ≤ ε

}]p)1/p})γn+1

=
(

Eexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)

×
(∫

Rd

[
1

#{Bn}
tn∑

k=1

1
{∣∣∣∣S(k) − [x]√

nb−1
n

∣∣∣∣ ≤ ε

}]p

dx

)1/p})γn+1



3270 X. CHEN

=
(

Eexp

{
θ

(∫
Rd

[(
bn

n

)(2−d)/2

× 1

#{Bn}
tn∑

k=1

1

{∣∣∣∣∣S(k) − [
√

nb−1
n x]√

nb−1
n

∣∣∣∣∣ ≤ ε

}]p

dx

)1/p})γn+1

.

Notice that (
bn

n

)(2−d)/2 1

#{Bn} ∼ bn

n
C−1

d ε−d (n → ∞).

Applying the invariance principle to the continuous, uniformly bounded and
uniformly convergent functionals{ϕn(f )} onC{[0, t];R

d}, given as

ϕn(f ) =
∫

Rd

(
1

Cdεd

∫ t

0
1

{∣∣∣∣∣f (s) − [
√

nb−1
n x]√

nb−1
n

∣∣∣∣∣ ≤ ε

}
ds

)p

dx,

we have

lim
n→∞ Eexp

{
θ

(∫
Rd

[(
bn

n

)(2−d)/2

× 1

#{Bn}
tn∑

k=1

1

{∣∣∣∣∣S(k) − [
√

nb−1
n x]√

nb−1
n

∣∣∣∣∣ ≤ ε

}]p

dx

)1/p}

= Eexp
{
θ

(∫
Rd

L̃p(t, x, ε) dx

)1/p}
whereL̃(t, x, ε) is the analogue ofL(t, x, ε) with W replaced by the Gaussian
Lévy processU whose covariance matrix is�. Therefore,

lim sup
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

lp(n, x, ε)

)1/p}
(3.20)

≤ 1

t
logEexp

{
θ

(∫
Rd

L̃p(t, x, ε) dx

)1/p}
.

By the same argument used in the canonical Brownian case,

lim
t→∞

1

t
logEexp

{
θ

(∫
Rd

L̃p(t, x, ε) dx

)1/p}
= M̃ε(θ).

Hence, lettingt → ∞ gives the upper bound for (3.4):

lim sup
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

lp(n, x, ε)

)1/p}
(3.21)

≤ M̃ε(θ).
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By the inequality( ∑
x∈Zd

p∏
j=1

lj (n, x, ε)

)1/p

≤ 1

p

p∑
j=1

( ∑
x∈Zd

l
p
j (n, x, ε)

)1/p

and (3.21), we have the upper bound for (3.5):

lim sup
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

p∏
j=1

lj (n, x, ε)

)1/p}
(3.22)

≤ M̃ε(θ).

On the other hand, for any uniformly continuous functionf supported onBr

with ‖f ‖q = 1,( ∑
x∈Zd

lp(n, x, ε) dx

)1/p

=
(

n

bn

)d/(2p)(∫
Rd

lp
(
n,

[√
nb−1

n x
]
, ε

)
dx

)1/p

≥
(

n

bn

)d/(2p) ∫
Rd

f (x)l
(
n,

[√
nb−1

n x
]
, ε

)
dx.

Notice that∫
Rd

f (x)l
(
n,

[√
nb−1

n x
]
, ε

)
dx

=
(

bn

n

)d/2∫
Rd

f

(√
bn

n
x

)
l(n, [x], ε) dx

=
(

bn

n

)d/2
{
o(n) + ∑

x∈Zd

f

(√
bn

n
x

)
l(n, x, ε)

}

=
(

bn

n

)d/2
{
o(n) +

n∑
k=1

1

#{Bn}
∑

x∈Zd

f

(√
bn

n

(
x + S(k)

))
1{x∈Bn}

}

=
(

bn

n

)d/2
{
o(n) +

n∑
k=1

fε

(√
bn

n
S(k)

)}
(n → ∞),

where the termo(n) is bounded by a deterministic sequencean that satisfies
an/n → 0 asn → ∞. By Theorem 4.1 in Chen and Li (2004),

lim inf
n→∞

1

bn

logEexp
{
θ

(
bn

n

)(2−d)/2∫
Rd

f (x)l
(
n,

[√
nb−1

n x
]
, ε

)
dx

}
≥ sup

g∈Fd

{
θ

∫
Rd

fε(x)g2(x) dx − 1

2

∫
Rd

〈∇g(x),�∇g(x)〉dx

}
(3.23)
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= sup
g∈Fd

{
θ

∫
Rd

f (x)(g2)ε(x) dx − 1

2

∫
Rd

〈∇g(x),�∇g(x)〉dx

}
.

Consequently, we have the lower bound for (3.4):

lim inf
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

lp(n, x, ε)

)1/p}
(3.24)

≥ M̃ε(θ).

It remains to prove the lower bound for (3.5). Notice that∑
x∈Zd

p∏
j=1

lj (n, x, ε) =
(

n

bn

)d/2∫
Rd

p∏
j=1

lj
(
n,

[√
nb−1

n x
]
, ε

)
dx.

We need only to prove

lim inf
n→∞

1

bn

logEexp

{
θ

(
bn

n

)(2−d)/2
(∫

Rd

p∏
j=1

lj
(
n,

[√
nb−1

n x
]
, ε

)
dx

)1/p}
(3.25)

≥ Ñε(θ).

Similar to (3.20) (witht = 1), we can prove that for anyθ > 0 andδ > 0,

lim sup
n→∞

1

bn

logEexp
{
θ

(
bn

n

)(2−d)/2

× sup
|y|≤δ

(∫
Rd

∣∣l(n,
[√

nb−1
n (x + y)

]
, ε

)
− l

(
n,

[√
nb−1

n x
]
, ε

)∣∣p dx

)1/p}

≤ logEexp
{
θ sup

|y|≤δ

(∫
Rd

|L̃(1, x + y, ε) − L̃(1, x, ε)|p dx

)1/p}
.

ReplacingL(t, x, ε) with L̃(t, x, ε) in (3.16), we have

lim
δ→0+ lim sup

n→∞
1

bn

logEexp
{
θ

(
bn

n

)(2−d)/2

× sup
|y|≤δ

(∫
Rd

∣∣l(n,
[√

nb−1
n (x + y)

]
, ε

)
− l

(
n,

[√
nb−1

n x
]
, ε

)∣∣p dx

)1/p}
= 0.

Similar to (3.17), asx is limited to a finite ballBr andl(n, [√nb−1
n (·)], ε) is viewed
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as a process with values inLp(Br), there is a compact setK0 ⊂ Lp(Br) such that

Eexp
{

θ

p

(
bn

n

)(2−d)/2(∫
Rd

lp
(
n,

[√
nb−1

n x
]
, ε

)
dx

)1/p}

∼ E

[
exp

{
θ

p

(
bn

n

)(2−d)/2(∫
Rd

lp
(
n,

[√
nb−1

n x
]
, ε

)
dx

)1/p}
;(3.26)

n(d−2)/2b−d/2
n l

(
n,

[√
nb−1

n (·)], ε) ∈ K0

]
asn → ∞. In view of (3.23) and (3.26), the argument used in the proof of (3.16)
gives (3.25). �

4. Upper bound in Theorem 2.1. In this section, we establish the upper
bound for Theorem 2.1:

lim sup
t→∞

t−1 logP
{
α([0,1]p) ≥ t(d(p−1))/2} ≤ −p

2
κ(p, d)−4p/(d(p−1)).(4.1)

Let τ be exponential time with parameter 1 and with independent copies
τ1, . . . , τp. Recall thatFd is defined in (3.1). Write

M = sup
f ∈Fd

{(∫
Rd

|f (x)|2p dx

)1/p

− 1
2

∫
Rd

|∇f (x)|2 dx

}
.(4.2)

See Lemma 8.2 for howM is related to the Gagliardo–Nirenberg constant.
To apply Theorem 3.1, first notice that by Jensen’s inequality,

Mε(θ) ≤ sup
f ∈Fd

{
θ

(∫
Rd

|f (x)|2p dx

)1/p

− 1
2

∫
Rd

|∇f (x)|2 dx

}
= θ2p/(2p−d(p−1))M,

where the last step follows from the substitution

f �→ θdp/(2(2p−d(p−1)))f
(
θp/(2(2p−d(p−1)))x

)
.

By (3.2) in Theorem 3.1,

Eexp
{
θ

(∫
Rd

Lp(τ, x, ε) dx

)1/p}
< ∞ ∀ θ < M−(2p−d(p−1))/(2p).

From the fact(∫
Rd

p∏
j=1

Lj (τj , x, ε) dx

)1/p

≤ 1

p

p∑
k=1

(∫
Rd

L
p
j (τj , x, ε) dx

)1/p
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we have

Aθ ≡ Eexp

{
θ

(∫
Rd

p∏
j=1

Lj(τj , x, ε) dx

)1/p}

≤
[
Eexp

{
θ

p

(∫
Rd

Lp(τ, x, ε) dx

)1/p}]p

< ∞, θ < p · M−(2p−d(p−1))/(2p)

and, therefore,

E

(∫
Rd

p∏
j=1

Lj (τj , x, ε) dx

)m

≤ (pm)!θ−pmAθ

(4.3) ∀ θ < p · M−(2p−d(p−1))/(2p)

for any integerm ≥ 1.
On the other hand, writeδε

x(y) = (1/Cdε
d)1{|y−x|≤ε}. For any integerm ≥ 1, let

�m be the set of the permutations of{1,2, . . . ,m}. Under the conventionσ(0) = 0
ands0 = 0,

E

(∫
Rd

p∏
j=1

Lj (τj , x, ε) dx

)m

=
∫
(Rd )m

dx1 · · ·dxm

(
E

m∏
k=1

L(τ, xk, ε)

)p

=
∫
(Rd )m

dx1 · · · dxm

( ∑
σ∈�m

∫ ∞
0

dt e−t

×
∫

0≤s1≤···≤sm≤t
E

m∏
k=1

δε
xσ(k)

(
W(sk)

)
ds1 · · · dsm

)p

≥
∫
(Rd)m

dx1 · · · dxm

( ∑
σ∈�m

∫ ∞
0

dt e−t
∫

0≤s1≤···≤sm≤t
ds1 · · · dsm

×
m∏

k=1

inf|y|≤2ε
psk−sk−1

(
xσ(k) − xσ(k−1) + y

))p

,

where the last step follows from the Markov property. Notice that for anyx, y ∈ R
d

with x 	= 0 and|y| ≤ 2ε, and for anyt > 0,

pt(x + y) ≥ pt

((
1+ 2ε

|x|
)
x

)
≡ qt(x) (say).
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By (1.9),

E

(∫
Rd

p∏
j=1

Lj (τj , x, ε) dx

)m

≥
∫
(Rd )m

dx1 · · · dxm

( ∑
σ∈�m

∫ ∞
0

dt e−t
∫

0≤s1≤···≤sn≤t
ds1 · · · dsm

×
m∏

k=1

qsk−sk−1

(
xσ(k) − xσ(k−1)

))p

=
∫
(Rd)m

dx1 · · · dxm

( ∑
σ∈�m

m∏
k=1

∫ ∞
0

e−tqt

(
xσ(k) − xσ(k−1)

)
dt

)p

.

Let δ > 0 be fixed. We can see that for any 0< λ < 1, if we takeε > 0 small
enough,

qt(x) ≥ λpt (λ
−1x)

holds uniformly fort ≥ δ, x ∈ R
d . Hence,

E

(∫
Rd

p∏
j=1

Lj(τj , x, ε) dx

)m

≥ λpm
∫
(Rd)m

dx1 · · · dxm

( ∑
σ∈�m

m∏
k=1

∫ ∞
δ

e−tpt

(
λ−1(xσ(k) − xσ(k−1)

))
dt

)p

≥ λ(p+d)me−pδm
∫
(Rd)m

dx1 · · · dxm

×
( ∑

σ∈�m

m∏
k=1

∫ ∞
0

e−tpt+δ

(
xσ(k) − xσ(k−1)

)
dt

)p

= λ(p+d)me−pδm
E
[
α([δ, δ + τ1] × · · · × [δ, δ + τp])m]

,

where the last step can be seen from the fact (1.9) and Le Gall’s [(1990), (1),
page 182] moment formula: For anyt1, . . . , tp ≥ 0,

Eα([δ, δ + t1] × · · · × [δ, δ + tp])m

=
∫
(Rd )m

dx1 · · · dxm

p∏
j=1

∫
0≤s1<···<sm≤tj

ds1 · · · dsm

× ∑
σ∈�m

pδ+s1

(
xσ(1)

) m∏
k=2

psk−sk−1

(
xσ(k) − xσ(k−1)

)
.
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In view of (4.3), therefore,

Eα([δ, δ + τ1] × · · · × [δ, δ + τp])m
(4.4)

≤ Aθ

(
epδλ−(p+d)

)m
(pm)!θ−pm ∀ θ < p · M−(2p−d(p−1))/(2p).

For each 0≤ j ≤ p and the integers 1≤ k1 < · · · < kj ≤ p, let Ak1···kj
be the

product of thep sets, of which thek1, . . . , kj factors are[δ, δ + τk1], . . . , [δ, δ +
τkj

], respectively, and the rest are[0, δ]. Then

α([0, δ + τ1] × · · · × [0, δ + τp]) =
p∑

j=0

∑
1≤k1<···<kj ≤p

α
(
Ak1···kj

)
.

By the fact that

α([0, τ1] × · · · × [0, τp]) ≤ α([0, δ + τ1] × · · · × [0, δ + τp])
and by Hölder’s triange inequality,[

Eα([0, τ1] × · · · × [0, τp])m]1/m

≤
p∑

j=0

∑
1≤k1<···<kj ≤p

[
Eα

(
Ak1···kj

)m]1/m

(4.5)
≤ [

Eα([δ, δ + τ1] × · · · × [δ, δ + τp])m]1/m

+
p−1∑
j=0

(
p

j

)[
Eα([δ, δ + τ ]p)m

]j/mp[
Eα([0, δ]p)m

](p−j)/(mp)
,

where the second step follows from Lemma 4.1.
Let τ ′

1, . . . , τ
′
p be independent exponential times with parameterp−1. Similar

to (4.4), there is a constantC > 0 such that

Eα([δ, δ + τ ′
1] × · · · × [δ, δ + τ ′

p])m ≤ (pm)!Cm, m ≥ 1.

Notice thatτ d= min{τ ′
1, . . . , τ

′
p},

Eα([δ, δ + τ ]p)m ≤ α([δ, δ + τ ′
1] × · · · × [δ, δ + τ ′

p])m ≤ (pm)!Cm, m ≥ 1.

Taking (1.12), (4.4) and (4.5) into account, we obtain

Eα
([0, τ1] × · · · × [0, τp])m

(4.6)
≤ Aθ

(
1+ o(1)

)m(
epδλ−(p+d))m(pm)!θ−pm (m → ∞).

From (1.10) we have

Eα([0,1]p)m ≤ Aθ

(
1+ o(1)

)m(
epδλ−(p+d))mp1+((2p−d(p−1))/2)m

× �

(
1+ 2p − d(p − 1)

2
m

)−1

(pm)!θ−pm.
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An estimate via the Stirling formula gives

lim sup
k→∞

k

√
Eα([0,1]p)2k/(d(p−1))

k!
≤ (

epδλ−(p+d))2/(d(p−1)) 2

d(p − 1)

×
(

p

θ

)2p/(d(p−1))( 2p

2p − d(p − 1)

)(2p−d(p−1))/(d(p−1))

.

Take the limit in the orderλ → 1, δ → 0 andθ → pM−(2p−d(p−1))/(2p). So we
have

lim sup
k→∞

k

√
Eα([0,1]p)2k/(d(p−1))

k!

≤ 2

d(p − 1)

(
2pM

2p − d(p − 1)

)(2p−d(p−1))/(d(p−1))

= 2

p
κ(d,p)4p/(d(p−1)),

where the equality follows from Lemma A.2.
Therefore, by Taylor’s expansion we can see that

Eexp
{
γ α([0,1]p)2/(d(p−1))

}
< ∞ ∀γ <

p

2
κ(d,p)−4p/(d(p−1)).(4.7)

Finally, (4.1) follows from Chebyshev’s inequality.

REMARK 4.1. To our surprise, the estimate given in (1.10) turns out to
be sharp enough to maintain the right constants. We point out a possible
connection between our results and those established by König and Mörters
(2002). From (4.6), we can see that

lim sup
m→∞

1

m
log

1

(m!)p Eα([0, τ1] × · · · × [0, τp])m

≤ 2p − d(p − 1)

2
log

(
2p − d(p − 1)

)
+ d(p − 1)

2
logd(p − 1) + p log

κ(d,p)2

p
.

From the relationship (1.10) and our main result, Theorem 2.1, the opposite



3278 X. CHEN

relationship follows. So we have

lim
m→∞

1

m
log

1

(m!)p Eα([0, τ1] × · · · × [0, τp])m

= 2p − d(p − 1)

2
log

(
2p − d(p − 1)

)
(4.8)

+ d(p − 1)

2
logd(p − 1) + p log

κ(d,p)2

p
.

This result takes a form close to that given in Proposition 2.2 of König and Mörters
(2002), which provides the key estimate for their theorems. In the paper by König
and Mörters, the exponential times are replaced by exit times and the intersection
local time is limited to a bounded domain. It may be of some interest in the future
study to understand how exactly they are related to each other.

We close this section with the following lemma.

LEMMA 4.1. For any bounded Borel sets A1, . . . ,Ap ∈ R
+ and for any

integer m ≥ 1,

E[α(A1 × · · · × Ap)m] ≤
p∏

j=1

(
E[α(A

p
j )m])1/p

.

PROOF. Write

(Aj )
m
< = {(s1, . . . , sm) ∈ (Aj )

m; s1 < · · · < sm}.
Then our lemma follows from Le Gall’s moment formula [Le Gall (1990),
Theorem 1, page 182] and Hölder’s inequality [recall our conventionσ(0) ≡ 0
ands0 ≡ 0]:

E[α(A1 × · · · × Ap)m]

=
∫
(Rd )m

dx1 · · · dxm

p∏
j=1

[∫
(Aj )

m
<

ds1 · · · dsm

× ∑
σ∈�m

m∏
k=1

psk−sk−1

(
xσ(k) − xσ(k−1)

)]

≤
p∏

j=1

{∫
(Rd )m

dx1 · · · dxm

[∫
(Aj )

m
<

ds1 · · · dsm

× ∑
σ∈�m

m∏
k=1

psk−sk−1

(
xσ(k) − xσ(k−1)

)]p}1/p

=
p∏

j=1

(
E[α(A

p
j )m])1/p

. �
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5. Upper bound in Theorem 2.2. The approach used in Section 4 is no
longer applicable to the case of random walks, mainly due to the absence of a
scaling property. To begin with, we introduce the following inequality which is of
interest for its own sake.

THEOREM 5.1. Given positive integers n1, . . . , na and m,(
EIm

n1+···+na

)1/p ≤ ∑
k1+···+ka=m

k1,...,ka≥0

m!
k1! · · ·ka !

(
EI k1

n1

)1/p · · · (EI ka
na

)1/p
.(5.1)

Consequently, for any λ > 0,
∞∑

m=0

λm

m!
(
EIm

n1+···+na

)1/p ≤
a∏

i=1

∞∑
m=0

λm

m!
(
EIm

ni

)1/p
.(5.2)

PROOF. Let l(n, x) be the local time generated byS(n),

l(n, x) =
n∑

k=1

1{S(k)=x}, n = 1,2, . . . ,

and letl1(n, x), . . . , lp(n, x) be the local times of the independent random walks
{S1(n)}, . . . , {Sp(n)}, respectively. Then

In = ∑
x∈Zd

p∏
j=1

lj (n, x).(5.3)

Write n0 = 0 and

�i(x) = l(n0 + · · · + ni, x) − l(n0 + · · · + ni−1, x),

x ∈ Z
d; i = 1, . . . , a,

�ij (x) = lj (n0 + · · · + ni, x) − lj (n0 + · · · + ni−1, x),

x ∈ Z
d; i = 1, . . . , a; j = 1, . . . , p.

Then

(
EIm

n1+···+na

)1/p =
( ∑

x1,...,xm

[
E

m∏
k=1

a∑
i=1

�i(xk)

]p)1/p

=
( ∑

x1,...,xm

[
a∑

i1,...,im=1

E
(
�i1(x1) · · ·�im(xm)

)]p)1/p

≤
a∑

i1,...,im=1

( ∑
x1,...,xm

[
E
(
�i1(x1) · · ·�im(xm)

)]p)1/p

.
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Given integersi1, . . . , im between 1 anda, let k1, . . . , ka be the numbers of
1, . . . , a, respectively, amongi1, . . . , im. Thenk1 + · · · + ka = m. To prove our
conclusion, it suffices to show that∑

x1,...,xm

[
E
(
�i1(x1) · · ·�im(xm)

)]p ≤ EI k1
n1

· · ·EI ka
na

.

Without loss of generality, we may only consider the case whenk1, . . . , ka ≥ 1.
Under the notation̄xi = (xi

1, . . . , x
i
ki
) ∈ (Zd)ki , we set

φi(x̄i) = E
(
l(ni, x

i
1) · · · l(ni, x

i
ki

))
.

It is easy to see that ∑
x̄i

φ
p
i (x̄i) = EI ki

ni
, i = 1, . . . , a.

Define

S̄i (k) = ( ki︷ ︸︸ ︷
S(k), . . . , S(k)

)
and S̄i

j (k) = ( ki︷ ︸︸ ︷
Sj (k), . . . , Sj (k)

)
, k = 1,2, . . . ,

where 1≤ i ≤ a and 1≤ j ≤ p. Then∑
x1,...,xm

[
E
(
�i1(x1) · · ·�im(xm)

)]p
= ∑

x̄1

· · ·∑
x̄a

[
E

a∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

)]p

= ∑
x̄1

· · ·∑
x̄a

[
E

{(
a−1∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

))
φa

(
x̄a − S̄a(n − na)

)}]p

.

Notice that

∑
x̄a

[
E

{(
a−1∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

))
φa

(
x̄a − S̄a(n − na)

)}]p

= ∑
x̄a

E

{ p∏
j=1

(
a−1∏
i=1

�ij (x
i
1) · · ·�ij

(
xi
ki

))
φa

(
x̄a − S̄a

j (n − na)
)}

= E

{( p∏
j=1

a−1∏
i=1

�ij (x
i
1) · · ·�ij

(
xi
ki

))∑
x̄a

p∏
j=1

φa

(
x̄a − S̄a

j (n − na)
)}

≤ E

{( p∏
j=1

a−1∏
i=1

�ij (x
i
1) · · ·�ij

(
xi
ki

)) p∏
j=1

(∑
x̄a

φp
a

(
x̄a − S̄a

j (n − na)
))1/p}
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= E

{( p∏
j=1

a−1∏
i=1

�ij (x
i
1) · · ·�ij

(
xi
ki

))∑
x̄a

φp
a

(
x̄a

)}

=
(

E

a−1∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

))p

· EI ka
na

.

So we have ∑
x̄1

· · ·∑
x̄a

[
E

a∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

)]p

≤ EI ka
na

· ∑
x̄1

· · · ∑
x̄a−1

[
E

a−1∏
i=1

�i(x
i
1) · · ·�i

(
xi
ki

)]p

.

Repeat this procedure:∑
x1,...,xm

[
E
(
�i1(x1) · · ·�im(xm)

)]p ≤ EI k1
n1

· · ·EI ka
na

.

The second half of Theorem 5.1 follows from the computation
∞∑

m=0

λm

m!
(
EIm

n1+···+na

)1/p

≤
∞∑

m=0

λm
∑

k1+···+ka=m
k1,...,ka≥0

1

k1! · · · ka!
(
EI k1

n1

)1/p · · · (EI ka
na

)1/p

=
∞∑

k1,...,ka=1

λk1+···+ka
1

k1! · · ·ka!
(
EI k1

n1

)1/p · · · (EI ka
na

)1/p

=
a∏

i=1

∞∑
m=0

λm

m!
(
EIm

ni

)1/p
. �

Theorem 5.1 applies to our situation in two different ways. The first application
is given in the following lemma.

LEMMA 5.2. For given λ > 0, there is a positive sequence {Cm}m≥0 such that

sup
n

(
n−((2p−d(p−1))/2)m

EIm
n

)1/p ≤ Cm, m ≥ 0,

and
∞∑

m=0

λm

m! Cm < ∞.
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PROOF. Write P k(x) = P{Sk = x} (k ≥ 1, x ∈ Z
d ) andP 0(x) = δ0(x). For

any m ≥ 1, let �m be the set of the permutations of{1, . . . ,m}. Under the
conventionσ(0) = 0 andi0 = 0,

EIm
n = ∑

x1,...,xm

[ ∑
σ∈�m

∑
1≤i1≤···≤im≤n

m∏
k=1

P ik−ik−1
(
xσ(k) − xσ(k−1)

)]p

≤ (m!)p ∑
x1,...,xm

[ ∑
1≤i1≤···≤im≤n

m∏
k=1

P ik−ik−1(xk)

]p

≤ (m!)p ∑
x1,...,xm

[
m∏

k=1

n∑
i=0

P i(xk)

]p

= (m!)p
[∑

x

(
n∑

i=0

P i(x)

)p]m

.

Notice that∑
x

(
n∑

i=0

P i(x)

)p

∼ ∑
x

(
n∑

i=1

P i(x)

)p

= EIn, (n → ∞).

In connection with the weak law given in (1.4), we have

EIn = O
(
n(2p−d(p−1))/2), (n → ∞).

Therefore, there is aC > 0 such that

sup
n

(
n−((2p−d(p−1))/2)m

EIm
n

)1/p ≤ m!Cm, m = 0,1, . . . .

WhenλC < 1, the lemma follows if we takeCm = m!Cm. In the caseλC ≥ 1, we
choose a smallδ > 0 such that

λδ(2p−d(p−1))/(2p)C < 1.

Let a = [δ−1] + 1. Thenn ≤ a[δn]. By (5.1) in Theorem 5.1,(
EIm

n

)1/p ≤ ∑
k1+···+ka=m

m!
k1! · · ·ka!

(
EI

k1[δn]
)1/p · · · (EI

ka[δn]
)1/p

≤ ∑
k1+···+ka=m

m!
k1! · · ·ka!

a∏
i=1

ki !Cki [δn]((2p−d(p−1))/(2p))ki

= m!Cm[δn]((2p−d(p−1))/(2p))m

(
m + a − 1

m

)
≤ m!(δ(2p−d(p−1))/(2p)C

)m (
m + a − 1

m

)
n((2p−d(p−1))/(2p))m ∀n,
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where the equality follows from the fact that the equationk1 + · · · + ka = m has(m+a−1
m

)
nonnegative integer solutions.

Therefore, the desired conclusion follows with

Cm = m!(δ((2p−d(p−1))/(2p))C
)m (

m + a − 1
m

)
, m = 0,1, . . . . �

LEMMA 5.3. Let {Zε} be a family of nonnegative random variables and
let p ≥ 1 be an integer. Let I (λ) be a lower semicontinuous, nondecreasing,
nonnegative function on [0,∞) such that I (0) = 0, I (| · |p) is convex on (−∞,∞)

and that I (λ) → ∞ as λ → ∞.

(i) If

lim sup
ε→0+

ε logP{Zε ≥ λ} ≤ −I (λ), (λ > 0)(5.4)

and if b > 0 satisfies

lim
N→∞ lim sup

ε→0+
ε log

∞∑
m=1

(bε−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p = −∞,(5.5)

then

lim sup
ε→0+

ε log

( ∞∑
m=0

(bε−1)m

m! (EZm
ε )1/p

)
≤ sup

λ>0
{bλ1/p − p−1I (λ)}.(5.6)

(ii) Conversely, if (5.6) is satisfied for all b > 0, then (5.4)holds for all λ > 0.
(iii) In addition, the condition (5.5) is satisfied if there is a b′ > 2pb such that

lim sup
ε→0+

ε logEexp{ε−1b′Z1/p
ε } < ∞.(5.7)

REMARK 5.1. By the convention used in the area of large deviations, the
notationε may also be used for a positive sequence approaching zero, in which
caseZε represents a random sequence.

PROOF OFLEMMA 5.1. Part (i) follows from an argument almost identical to
that for Lemma 4.3.6 in Dembo and Zeitouni (1998).

To prove (ii), write

�(b) = sup
λ∈R

{bλ − p−1I (|λ|p)}, b ∈ R.

If b > 0,

�(b) = sup
λ>0

{bλ1/p − p−1I (λ)}.
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By Chebyshev’s inequality, asb > 0,

λm/p(bε−1)m(P{Zε ≥ λ})1/p ≤ (bε−1)m(EZm
ε )1/p

for any integerm ≥ 0. Summing up gives

exp(bλ1/pε−1)(P{Zε ≥ λ})1/p ≤
∞∑

m=0

(bε−1)m

m! (EZm
ε )1/p.

Hence

lim sup
ε→0+

ε logP{Zε ≥ λ} ≤ −p{λ1/pb − �(b)}.(5.8)

Notice that

sup
b>0

{λ1/pb − �(b)} = sup
b∈R

{λ1/pb − �(b)} = p−1I (λ) (λ > 0),

where the first equality follows from the fact

sup
b>0

{λ1/pb − �(b)} ≥ 0 and sup
b≤0

{λ1/pb − �(b)} ≤ 0

and the second follows from the duality lemma [see, e.g., Dembo and Zeitouni
(1998), Lemma 4.5.8]. Taking the supremum overb > 0 on the right-hand side
of (5.8) gives (5.4).

We now prove (iii). From the relationship(2pm)! ≤ (2p)2pm(m!)2p,
∞∑

m=0

(bε−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p

≤ (P{Zε ≥ N})1/(2p)
∞∑

m=0

(bε−1)m

m! (EZ2m
ε )1/(2p)

≤ (P{Zε ≥ N})1/(2p)
∞∑

m=0

(
2pb

b′
)m(

(ε−1b′)2mp
EZ2m

ε

(2mp)!
)1/(2p)

≤
(

1− 2pb

b′
)−1

(P{Zε ≥ N})1/(2p)(Eexp{ε−1b′Z1/p
ε })1/(2p).

Hence

lim sup
ε→0+

ε log
∞∑

m=1

(bε−1)m

m!
(
EZm

ε 1{Zε≥N}
)1/p

≤ 1

2p

{
−I (N) + lim sup

ε→0+
ε logEexp{ε−1b′Z1/p

ε }
}
.

Letting N → ∞ gives (5.5). �
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We are ready to prove the upper bound for Theorem 2.2:

lim sup
n→∞

1

bn

logP
{
In ≥ λn(2p−d(p−1))/2b(d(p−1))/2

n

}
(5.9)

≤ −p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

The proof is the second application of Theorem 5.1. Lett > 0 be fixed, and let
tn = [tn/bn] andγn = [n/tn]. Thenn ≤ tn(γn + 1). By (5.2) in Theorem 5.1,

∞∑
m=0

1

m!θ
m

(
bn

n

)((2p−d(p−1))/(2p))m

(EIm
n )1/p

≤
( ∞∑

m=0

1

m!θ
m

(
bn

n

)((2p−d(p−1))/(2p))m(
EIm

tn

)1/p

)γn+1

for anyθ > 0. In view of Lemma 5.2, by the weak convergence given in (1.4) and
the dominated convergence theorem,

∞∑
m=0

1

m!θ
m

(
bn

n

)((2p−d(p−1))/(2p))m(
EIm

tn

)1/p

→
∞∑

m=0

1

m!θ
mt((2p−d(p−1))/(2p))m det(�)−((p−1)/(2p))m

(
Eα([0,1]p)m

)1/p

asn → ∞. Hence,

lim sup
n→∞

1

bn

log

( ∞∑
m=0

1

m!θ
m

(
bn

n

)((2p−d(p−1))/(2p))m

(EIm
n )1/p

)

≤ 1

t
log

( ∞∑
m=0

1

m!θ
mt((2p−d(p−1))/(2p))m(5.10)

× det(�)−((p−1)/(2p))m
(
Eα([0,1]p)m

)1/p

)
.

In addition, (4.1) implies that

lim sup
t→∞

1

t
logEexp

{
b′t(2p−d(p−1))/(2p)α([0,1]p)1/p} < ∞

for anyb′ > 0. Hence condition (5.7) is satisfied withε = t−1 and with

Zε = t−(d(p−1))/2α([0,1]p),
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and [by (4.1)] condition (5.4) is satisfied with

I (λ) = p

2
κ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

According to (i) of Lemma 5.3,

lim sup
t→∞

1

t
log

( ∞∑
m=0

1

m!θ
mt((2p−d(p−1))/(2p))m

× det(�)−((p−1)/(2p))m
(
Eα([0,1]p)m

)1/p

)

≤ sup
λ>0

{
det(�)−(p−1)/(2p)θλ1/p − 1

p

p

2
κ(d,p)−4p/(d(p−1))λ2/(d(p−1))

}

= sup
λ>0

{
θλ1/p − 1

p

p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1))

}
.

Letting t → ∞ in (5.10) gives

lim sup
n→∞

1

bn

log

( ∞∑
m=0

1

m!θ
m

(
bn

n

)((2p−d(p−1))/(2p))m

(EIm
n )1/p

)
(5.11)

≤ sup
λ>0

{
θλ1/p − 1

p

p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1))

}
.

Finally, the desired upper bound (5.9) follows from (ii) of Lemma 5.3 withε = b−1
n

andZε replaced by

n−(2p−d(p−1))/2b−(d(p−1))/2
n In.

6. Lower bounds. For givenx̄ = (xo
1, . . . , xo

p) ∈ (Rd)p, we introduce the no-
tationP

x̄ for the probability induced by independentd-dimensional Brownian mo-
tionsW1, . . . ,Wp starting atxo

1, . . . , xo
p, respectively. Without causing confusion,

for given x̄ = (xo
1, . . . , xo

p) ∈ (Zd)p, we also useP x̄ for the probability induced
by the random walksS1(n), . . . , Sp(n) in the case whenS1(n), . . . , Sp(n) start at
xo

1, . . . , xo
p, respectively. The notationEx̄ denotes the expectation that corresponds

to P
x̄ . To be consistent with the notation we used before, we haveP

(0,...,0) = P and
E

(0,...,0) = E. Write

‖x̄‖ = max
1≤j≤p

|xo
j |, x̄ = (xo

1, . . . , xo
p) ∈ (Rd)p.

THEOREM 6.1. For any constant C > 0,

lim inf
t→∞

1

t
log inf‖x̄‖≤C

P
x̄
{
α([0,1]p) ≥ t(d(p−1))/2} ≥ −p

2
κ(d,p)−4p/(d(p−1)).(6.1)
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Given λ > 0,

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
P

x̄
{
In ≥ λn(2p−d(p−1))/2b(d(p−1))/2

n

}
(6.2)

≥ −p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

PROOF. Due to similarity, we only prove (6.2). We first proceed under the
additional assumption that the random walk{S(n)} is aperiodic: The greatest
common factor of the set{n ≥ 1;P{S(n) = 0} > 0} is 1. LetM > 0 be given as
in (4.2). To prove (6.2), it is sufficient to show that for anyθ > 0,

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
E

x̄ exp
{
θ

(
bn

n

)(2p−d(p−1))/(2p)

I1/p
n

}
(6.3)

≥ θ2p/(2p−d(p−1))p−(d(p−1))/(2p−d(p−1)) det(�)−(p−1)/(2p−d(p−1))M.

Indeed, sinceEI
m/p
n ≤ (EIm

n )1/p by (5.11), we have

lim sup
n→∞

1

bn

logEexp
{
θ

(
bn

n

)(2p−d(p−1))/(2p)

I1/p
n

}
< ∞ ∀ θ > 0.

Furthermore, by (5.9) and Lemma 4.3.6 in Dembo and Zeitouni (1998), the above
lim sup is bounded by

sup
λ>0

{
θλ1/p − p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1))

}
= θ2p/(2p−d(p−1))p−(d(p−1))/(2p−d(p−1)) det(�)−(p−1)/(2p−d(p−1))M,

where the equality partially follows from Lemma A.2. Combining this with (6.3),
by the Gärtner–Ellis theorem [Dembo and Zeitouni (1998), Theorem 2.3.6],

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
P

x̄{In ≥ λn(2p−d(p−1))/2b(d(p−1))/2
n

}
≥ −sup

θ>0

{
λθ − θ2p/(2p−d(p−1))p−(d(p−1))/(2p−d(p−1))

× det(�)−(p−1)/(2p−d(p−1))M
}

= −p

2
det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)),

where again the equality partially follows from Lemma A.2.
We now prove (6.3). Letε > 0 and u > 0 be small numbers and let̄x =

(xo
1, . . . , xo

p) ∈ (Zd)p such that‖x̄‖ ≤ C
√

n. Write

Bn(x) = {
y; |y − x| ≤ ε

√
n/bn

}
, x ∈ Z

d,
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and setBn = Bn(0). Let 0< u < 1 be a small number. For any integerm ≥ 1,

E
x̄

(∑
x

p∏
j=1

[
lj (n + [un], x) − lj ([un], x)

])m

= ∑
x1,...,xm

p∏
j=1

E

(
m∏

k=1

[
lj (n + [un], xo

j + xj ) − lj ([un], xo
j + xk)

])

= ∑
x1,...,xm

p∏
j=1

n∑
i1,...,im=1

E

(
m∏

k=1

1{S([un]+ik )=xo
j +xk}

)

≥ ∑
x1,...,xm

p∏
j=1

n∑
i1,...,im=1

E

(
m∏

k=1

∑
y∈Bn(x

o
j )

1{S([un])=y}

× 1{S([un]+ik )−S([un])=xo
j −y+xk}

)
.

Notice that

m∏
k=1

∑
y∈Bn(x

o
j )

1{S([un])=y} · 1{S([un]+ik )−S([un])=xo
j −y+xk}

= ∑
y∈Bn(xo

j )

1{S([un])=y} ·
m∏

k=1

1{S([un]+ik )−S([un])=xo
j −y+xk}.

Let

γn = min
1≤j≤p

inf
|xo

j |≤C
√

n
inf

y∈Bn(xo
j )

{
P{S([un]) = y}}.

Then

E

(
m∏

k=1

∑
y∈Bn(xo

j )

1{S([un])=y} · 1{S([un]+ik)−S([un])=xo
j −y+xk}

)

= ∑
y∈Bn(x

o
j )

P{S([un]) = y} · E

[
m∏

k=1

1{S(ik)=xo
j −y+xk}

]

≥ γn

∑
y∈Bn

E

[
m∏

k=1

1{S(ik)=y+xk}
]
.
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Therefore,

E
x̄

(∑
x

p∏
j=1

[
lj ([un] + n,x) − lj ([un], x)

])m

≥ γ p
n

∑
x1,...,xm

(
n∑

i1,...,im=1

∑
y∈Bn

E

[
m∏

k=1

1{S(ik)=y+xk}
])p

= γ p
n

∑
x1,...,xm

( ∑
y∈Bn

E

m∏
k=1

l(n, y + xk)

)p

= γ p
n

∑
x1,...,xm

∑
y1,...,yp∈Bn

p∏
j=1

E

[
m∏

k=1

l(n, yj + xk)

]

= γ p
n

∑
y1,...,yp∈Bn

∑
x1,...,xm

E

[
m∏

k=1

p∏
j=1

lj (n, yj + xk)

]

= γ p
n

∑
y1,...,yp∈Bn

E

(∑
x

p∏
j=1

lj (n, yj + x)

)m

.

By Jensen’s inequality,

1

#{Bn}p
∑

y1,...,yp∈Bn

E

(∑
x

p∏
j=1

lj (n, yj + x)

)m

≥ E

(
1

#{Bn}p
∑

y1,...,yp∈Bn

∑
x

p∏
j=1

lj (n, yj + x)

)m

= E

(∑
x

p∏
j=1

lj (n, x, ε)

)m

,

wherelj (n, x, ε) (1 ≤ j ≤ p) are the same as in Section 3. By (5.3), therefore,

E
x̄(In+[un]

)m ≥ E
x̄

(∑
x

p∏
j=1

[
lj ([un] + n,x) − lj ([un], x)

])m

≥ (γn#{Bn})pE

(∑
x

p∏
j=1

lj (n, x, ε)

)m

.

According to the Remark on page 661 of Le Gall and Rosen (1991), the
aperiodicity of the random walk implies

sup
x∈Zd

∣∣∣∣[un]d/2
P{S([un]) = x} − 1

(2π)d/2 det(�)1/2
exp

{
− 1

2[un]〈x,�−1x〉
}∣∣∣∣ → 0
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asn → ∞. Hence

γn = 1

[un]d/2 min
1≤j≤p

inf
|xo

j |≤C
√

n
inf

y∈Bn(xo
j )

[
exp

{
− 1

2[un]〈y,�−1y〉
}

+ o(1)

]

≥ 1

[un]d/2
exp

{
−C2 + o(1)

2uλ

}
,

whereλ > 0 is the smallest eigenvalue of�. Notice that #{Bn} ∼ Cdεd(n/bn)
d/2

asn → ∞. There is aδ = δ(ε) > 0, such that for any integerm ≥ 0 andn ≥ 1,

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

)m ≥ δb−dp/2
n E

(∑
x

p∏
j=1

lj (n, x, ε)

)m

.(6.4)

For each integerk ≥ 0, letm ≥ 0 be the integer such thatmp ≤ k < p(m + 1).
Applying (6.4) and Hölder’s inequality gives

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

)(k+p)/p

≥
[

inf
‖x̄‖≤C

√
n
E

x̄

(∑
x

p∏
j=1

lj ([un] + n,x)

)m+1](k+p)/((m+1)p)

≥ (δb−dp/2
n )(k+p)/((m+1)p)

[
E

(∑
x

p∏
j=1

lj (n, x, ε)

)m+1](k+p)/((m+1)p)

≥ (δb−dp/2
n )(k+p)/k

[
E

(∑
x

p∏
j=1

lj (n, x, ε)

)k/p](k+p)/k

.

Therefore,(
bn

n

)((2p−d(p−1))/(2p))(k+p)

inf
‖x̄‖≤C

√
n
E

x̄(In+[un]
)(k+p)/p

≥
((

bn

n

)((2p−d(p−1))/(2p))(k+p)

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

)(k+p)/p
)k/(k+p)

(6.5)

≥ δb−dp/2
n

(
bn

n

)((2p−d(p−1))/(2p))k

E

(∑
x

p∏
j=1

lj (n, x, ε)

)k/p

,

where the first step follows from the following rough estimate: Asn is sufficiently
large,(

bn

n

)((2p−d(p−1))/(2p))(k+p)

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

)(k+p)/p ≥ 1, k = 0,1, . . . ,
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which we prove as follows. First, by Jensen’s inequality, we need only to show that(
bn

n

)(2p−d(p−1))/2

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

) ≥ 1.(6.6)

Second, similarly to (6.4) (withm = 1),

inf
‖x̄‖≤C

√
n
E

x̄
(
In+[un]

)
≥ δ(ε)E

( ∑
x∈Zd

p∏
j=1

1

#{B ′
n}

n∑
k=1

1
{∣∣∣∣Sj (k) − x√

n

∣∣∣∣ ≤ ε

})

∼ δ(ε)n(2p−d(p−1))/(2p)

× E

(∫
Rd

p∏
j=1

1

nCdεd

n∑
k=1

1
{∣∣∣∣Sj (k) − [√nx]√

n

∣∣∣∣ ≤ ε

}
dx

)
(n → ∞),

whereB ′
n = {x ∈ Z

d; |x| ≤ ε
√

n }. Therefore, (6.6) follows from the invariance
principle which claims∫

Rd

p∏
j=1

1

nCdεd

n∑
k=1

1
{∣∣∣∣Sj (k) − [√nx]√

n

∣∣∣∣ ≤ ε

}
dx

d→
∫

Rd

p∏
j=1

L̃j (1, x, ε) dx.

[Recall thatL̃(t, x, ε) is the analogue ofL(t, x, ε) asW(t) is replaced by a Lévy
Gaussian process with the same covariance matrix as the random walks.]

Combined with Taylor’s expansion, (6.5) implies that for any 0< ν < θ ,

inf
‖x̄‖≤C

√
n
E

x̄

[(
bn

n

)(2p−d(p−1))/2

In+[un]

× exp
{
(θ − ν)

(
bn

n

)(2p−d(p−1))/(2p)(
In+[un]

)1/p
}]

≥ δb−dp/2
n Eexp

{
(θ − ν)

(
bn

n

)(2p−d(p−1))/(2p)
( ∑

x∈Zd

p∏
j=1

lj (n, x, ε)

)1/p}
.

By Theorem 3.1 and by the fact that exp(θx1/p) ≥ x exp((θ − ν)x1/p) for largex,
we have

lim sup
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
E

x̄ exp
{
θ

(
bn

n

)(2p−d(p−1))/(2p)(
In+[un]

)1/p
}

≥ Ñε(θ − ν).

As ε → 0, the right-hand side approaches

sup
f ∈Fd

{
(θ − ν)

(∫
Rd

|f (x)|2p dx

)1/p

− p

2

∫
Rd

〈∇f,�∇f 〉dx

}
.
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Replacingn with kn ≡ [(1− u)n] and noticing that[ukn] + kn ≤ n, we have

lim sup
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
E

x̄ exp
{
θ

(
bn

n

)(2p−d(p−1))/(2p)

I1/p
n

}

≥ sup
f ∈Fd

{
(θ − ν)(1− u)(2p−d(p−1))/(2p)

(∫
Rd

|f (x)|2p dx

)1/p

− p

2

∫
Rd

〈∇f,�∇f 〉dx

}
= (1− u)(θ − ν)2p/(2p−d(p−1))p−(d(p−1))/(2p−d(p−1))

× det(�)−(p−1)/(2p−d(p−1))M,

where the last step follows from the substitution

f (x) = √|det(A)|g(Ax)

with thed × d nondegenerate matrixA satisfying

Aτ�A = (1− u)

(
θ − ν

p

)2p/(2p−d(p−1))

det(�)−(p−1)/(2p−d(p−1))Id,

whereId is thed ×d identity matrix. Finally, lettingu → 0 andν → 0 gives (6.3).
We now prove (6.2) without assuming aperiodicity. Let 0< γ < 1 be fixed and

let {δn}n≥1 be i.i.d. Bernoulli random variables with the common law:

P{δ1 = 0} = 1− P{δ1 = 1} = γ.

We assume independence between{S(n)} and{δn}.
Define the renewal sequence{σk}k≥0 by

σ0 = 0 and σk+1 = inf{n > σk; δn = 1}.
Then{σk − σk−1}k≥1 is an i.i.d. sequence with common distribution

P{σ1 = n} = (1− γ )γ n−1, n = 1,2, . . . .

Consider the random walk{S(σk)}k≥1. It is symmetric with covariance

Cov
(
S(σ1), S(σ1)

) = (Eσ1)� = (1− γ )−1�(6.7)

and

P{S(σ1) = 0} = (1− γ )

∞∑
k=1

γ k−1
P{S(k) = 0} > 0.

In particular,{S(σk)}k≥1 is aperiodic.
Write l̃(n, x) for the local times of the random walk{S(σk)}k≥1:

l̃(n, x) =
n∑

k=1

1{S(σk)=x}, x ∈ Z
d, n = 1,2, . . . .
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Let {δj
n}n≥1 (1 ≤ j ≤ p) be independent copies of{δn}n≥1 and let the renewal

sequences{σ j
k }k≥0 and the local times̃lj (n, x) (1 ≤ j ≤ p) be defined in the

obvious way. Write

Ĩn =
n∑

k1,...,kp=1

1{S1(σ
1
k1

)=···=Sp(σ
p
kp

)} = ∑
x∈Zd

p∏
j=1

l̃j (n, x).

By what we have proved [i.e., (6.2) under aperiodicity] in the previous step and
by (6.7),

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
P

x̄
{
Ĩn ≥ λn(2p−d(p−1))/2b(d(p−1))/2

n

}
(6.8)

≥ −p

2
(1− γ )−1 det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

On the other hand, notice that

l̃(n, x) =
σn∑

k=1

δk1{S(k)=x} ≤
σn∑

k=1

1{S(k)=x}, x ∈ Z
d, n = 1,2, . . . .

Consequently, on the events{σ j
n < a(1− γ )−1n,1 ≤ j ≤ p}, where we leta > 1,

we have

Ĩn ≤ ∑
x∈Zd

p∏
j=1

lj (σ
j
n , x) ≤ I[a(1−γ )−1n].

So we have, for anȳx ∈ (Zd)p,

P
x̄{Ĩn ≥ λn(2p−d(p−1))/2b(d(p−1))/2

n

}
≤ P

x̄{I[a(1−γ )−1n] ≥ λn(2p−d(p−1))/2b(d(p−1))/2
n

} + pP{σn ≥ λ(1− γ )−1n}.
According to Cramér’s large deviation [Dembo and Zeitouni (1998), Theo-
rem 2.2.3], there is aδ > 0 such that

P{σn ≥ a(1− γ )−1n} ≤ e−δn

for largen. From (6.8), therefore,

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
P

x̄{I[a(1−γ )−1n] ≥ λn(2p−d(p−1))/2b(d(p−1))/2
n

}
≥ −p

2
(1− γ )−1 det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)).
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Replacingn with [a−1(1−γ )n] andλ with (a(1−γ )−1)(2p−d(p−1))/2λ we obtain

lim inf
n→∞

1

bn

log inf
‖x̄‖≤C

√
n
P

x̄{In ≥ λn(2p−d(p−1))/2b(d(p−1))/2
n

}
≥ −p

2
a(2p−d(p−1))/(d(p−1))(1− γ )−2p/(d(p−1))

× det(�)1/dκ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

Letting a → 1 andγ → 0, we have (6.2). �

REMARK 6.1. Notice that for anȳx ∈ (Rd)p andt > 0,

Lx̄(α([0, t]p)
) d= Lx̄/

√
t (t(2p−d(p−1))/2α([0,1]p)

)
.

In particular, (6.1) implies that for anyC > 0 andλ > 0,

lim inf
t→∞

1

log logt

× log inf
‖x̄‖≤C

√
t
P

x̄
{
α([0, t]p) ≥ λt(2p−d(p−1))/2(log logt)(d(p−1))/2}(6.9)

≥ −p

2
κ(d,p)−4p/(d(p−1))λ2/(d(p−1)).

This fact is used to prove the lower bound of the law of the iterated logarithm in
Theorem 2.3.

7. The law of the iterated logarithm. In this section, we prove Theorem 2.3.
Due to similarity, we prove only (2.8) in the context of random walks. The
proof of the upper bound becomes a standard argument [see, e.g., Chen and Li
(2004), Section 6] via the Borel–Cantelli lemma after we takebn = log logn in the
moderate deviation given in Theorem 2.2.

To prove the lower bound, letnk = kk . We first show that for any

λ <

(
2

p

)(d(p−1))/2

det(�)−(p−1)/2κ(d,p)2p,

lim sup
k→∞

n
−(2p−d(p−1))/2
k+1 (log lognk+1)

−(d(p−1))/2(7.1)

× ∑
x∈Zd

p∏
j=1

[lj (nk+1, x) − lj (nk, x)] ≥ λ a.s.

We adapt the notation introduced in Section 6 and consider thedp-dimensional
random walkS̄(n) = (S1(n), . . . , Sp(n)). By the Markov property and Lévy’s
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Borel–Cantelli lemma [see Breiman (1992), Corollary 5.29], (7.1) holds if we have∑
k

P
S̄(nk)

{
Ink+1−nk

≥ λn
(2p−d(p−1))/2
k+1 (log lognk+1)

(d(p−1))/2}
(7.2)

= ∞ a.s.

Indeed, it is easy to see that
√

nk log lognk = o(
√

nk+1 − nk ) as k → ∞. By
the classic Hartman–Wintner law of the iterated logarithm, with probability 1 the
events {‖S̄(nk)‖ ≤ √

nk+1 − nk

}
, k = 1,2, . . . ,

eventually hold. Therefore, (7.2) holds if we have∑
k

inf
‖x̄‖≤√

nk+1−nk

P
x̄{Ink+1−nk

≥ λn
(2p−d(p−1))/2
k+1 (log lognk+1)

(d(p−1))/2} = ∞,

which follows from (6.2) in Theorem 6.1 withbn = log logn.
Since ∑

x∈Zd

p∏
j=1

lj (nk+1, x) ≥ ∑
x∈Zd

p∏
j=1

[lj (nk+1, x) − lj (nk, x)],

letting

λ →
(

2

p

)(d(p−1))/2

det(�)−(p−1)/2κ(d,p)2p

in (7.1) gives the desired lower bound for (2.8).

APPENDIX

LEMMA A.1. Under the notation given in Section 3,

lim sup
m→∞

sup
g∈Fd

{
θ

(∫
[0,m]d

( ∑
k∈Zd

(g2)ε(x + mk)

)p

dx

)1/p

(A.1)

− 1
2

∫
Rd

|∇g(x)|2 dx

}
≤ Mε(θ).

PROOF. Let g ∈ Fd be fixed and write

ḡ(x) =
√ ∑

k∈Zd

g2(x + mk), x ∈ R
d .

Thenḡ is absolutely continuous and∫
[0,m]d

ḡ2(x) dx = 1 and |∇ḡ(x)|2 ≤ ∑
k∈Zd

|∇g(x + mk)|2.(A.2)
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Write

E =
d⋃

i=1

({
0≤ xi ≤ √

m + ε
} ∪ {

m − √
m − ε ≤ xi ≤ m

})
.

By Lemma 3.4 in Donsker and Varadhan (1975), there is ana ∈ R
d such that∫

Eε
ḡ2(x + a) dx ≤ 2d(

√
m + 2ε)

m
,

whereEε is theε neighborhood ofE. We may assumea = 0, that is,∫
Eε

ḡ2(x) dx ≤ 2d(
√

m + 2ε)

m
,(A.3)

for otherwise we may replaceg(·) with g(a + ·).
Define the functionφ onR by

φ(λ) =


λm−1/2, 0 ≤ x ≤ m1/2,

1, m−1/2 ≤ λ ≤ m − m1/2,

m1/2 − λm−1/2, m − m1/2 ≤ x ≤ m,

0, otherwise,

and write

ϕ(x) = φ(x1) · · ·φ(xd), x = (x1, . . . , xd) ∈ R
d,

f (x) = ḡ(x)ϕ(x)
/√∫

Rd
ḡ2(y)ϕ2(y) dy = ḡ(x)ϕ(x)/

√
A (say).

Then|ϕ| ≤ 1, |∇ϕ| ≤ √
d/m andf ∈ Fd . By (A.2),∫

Rd
|∇f |2dx = 1

A

{∫
Rd

|∇ḡ|2|ϕ|2 dx +
∫

Rd
|ḡ|2|∇ϕ|2 dx + 2

∫
Rd

ḡϕ〈∇ḡ,∇ϕ〉dx

}
≤ 1

A

{∫
[0,m]d

|∇ḡ|2 dx + d

m

∫
[0,m]d

|ḡ|2 dx

+ 2
(∫

[0,m]d
|∇ḡ|2|∇ϕ|2 dx

)1/2}
(A.4)

≤ 1

A

{∫
[0,m]d

|∇ḡ|2 dx + d

m
+ 2

√
d

m

(∫
[0,m]d

|∇ḡ|2 dx

)1/2}

≤ 1

A

{(
1+ d

m

)∫
[0,m]d

|∇ḡ|2 dx + 2d

m

}

≤ 1

A

{(
1+ d

m

)∫
Rd

|∇g|2 dx + 2d

m

}
,
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where the fourth step follows the inequality 2θ1θ2 ≤ θ2
1 + θ2

2 .
On the other hand, notice that(ḡ2)ε(x) = A−1/2(f 2)ε(x) for all x ∈ [0,m]d \E:

(∫
[0,m]d

( ∑
k∈Zd

(g2)ε(x + mk)

)p

dx

)1/p

=
(∫

[0,m]d
|(ḡ2)ε(x)|p dx

)1/p

≤ A

(∫
[0,m]d\E

|(f 2)ε(x)|p dx

)1/p

+
(∫

E
|(ḡ2)ε(x)|p dx

)1/p

(A.5)

≤ A

(∫
Rd

|(f 2)ε(x)|p dx

)1/p

+
(

2d(
√

m + 2ε)

m

)1/p

sup
x

(ḡ2)ε(x)(p−1)/p,

where the last step partially follows from (A.3). By (A.2),

(ḡ2)ε(x) = 1

Cdεd

∫
{|y−x|≤ε}

ḡ2(y) dy ≤ 1

Cdεd
, x ∈ R

d .

Combining (A.4) and (A.5) and noticing thatA ≤ 1, we obtain

θ

(∫
[0,m]d

( ∑
k∈Zd

(g2)ε(x + mk)

)p

dx

)1/p

− 1

2

∫
Rd

|∇g(x)|2 dx

≤ A

(
1+ d

m

)−1

×
{
θ

(
1+ d

m

)(∫
Rd

|(f 2)ε(x)|p dx

)1/p

− 1

2

(∫
Rd

|∇f (x)|2 dx

)}

+ θ

(
2d(

√
m + 2ε)

m

)1/p( 1

Cdεd

)(p−1)/p

+ 2d

m + d

≤ Mε

(
θ

(
1+ d

m

))
+ θ

(
2d(

√
m + 2ε)

m

)1/p( 1

Cdεd

)(p−1)/p

+ 2d

m + d
.

Taking the supremum on the left-hand side overg ∈ Fd and then lettingm → ∞
on the both sides, we have (A.1).�
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LEMMA A.2. Under (1.1),

sup
f ∈Fd

{(∫
Rd

|f (x)|2p dx

)1/p

− 1

2

∫
Rd

|∇f (x)|2 dx

}

= 2p − d(p − 1)

2p

(
d(p − 1)

p

)(d(p−1))/(2p−d(p−1))

(A.6)

× κ(d,p)4p/(2p−d(p−1)),

where

Fd =
{
f ∈ W1,2(Rd);

∫
Rd

|f (x)|2 dx = 1
}
.

PROOF. Write M for the left-hand side of (A.6). For anyf ∈ Fd ,(∫
Rd

|f (x)|2p dx

)1/p

− 1

2

∫
Rd

|∇f (x)|2 dx

≤ κ(d,p)2|∇f |(d(p−1))/p
2 − 1

2
|∇f |22 ≤ sup

θ>0

{
κ(d,p)2θ(d(p−1))/p − 1

2
θ2

}

= 2p − d(p − 1)

2p

(
d(p − 1)

p

)(d(p−1))/(2p−d(p−1))

κ(d,p)4p/(2p−d(p−1)).

Hence

M ≤ 2p − d(p − 1)

2p

(
d(p − 1)

p

)(d(p−1))/(2p−d(p−1))

κ(d,p)4p/(2p−d(p−1)).

On the other hand, for anyC < κ(d,p), there is ag such that

‖g‖2p > C‖∇g‖(d(p−1))/(2p)
2 · ‖g‖1−(d(p−1))/(2p)

2 .

By homogeneity, we may assume‖g‖2 = 1. Givenλ > 0, let f (x) = λd/2g(λx).
Then‖f ‖2 = 1, ‖∇f ‖2 = λ‖∇g‖2 and

‖f ‖2p = λ(d(p−1))/(2p)‖g‖2p > C(λ‖∇g‖2)
(d(p−1))/(2p).

Hence,

M ≥ ‖f ‖2
2p − 1

2‖∇f ‖2
2 > C2(λ‖∇g‖2)

(d(p−1))/p − 1
2(λ‖∇g‖2)

2.

Sinceλ > 0 can be arbitrary,

M ≥ sup
θ>0

{
C2θ(d(p−1))/p − 1

2
θ2

}

= 2p − d(p − 1)

2p

(
d(p − 1)

p

)(d(p−1))/(2p−d(p−1))

C4p/(2p−d(p−1)).

Letting C → κ(d,p) gives the desired lower bound.�
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