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EXPONENTIAL ASYMPTOTICS AND LAW OF THE
ITERATED LOGARITHM FOR INTERSECTION
LOCAL TIMES OF RANDOM WALKS!

By XIA CHEN
University of Tennessee

Let «([0, 1]7) denote the intersection local time ¢f independent
d-dimensional Brownian motions running up to the time 1. Under the
conditionsp(d — 2) < d andd > 2, we prove

Nim 17t logP{a((0. 117) = P2 = —yy(d. p)
—00

with the right-hand side being identified in terms of the the best constant of
the Gagliardo—Nirenberg @guality. Within the scale of moderate deviations,
we also establish the precise tail asymptotics for the intersection local time

In =#{(ky. ..., kp) €[1,n)?; S1(ky) =+ = Sp(kp)}

run by the independent, symmetriZ-valued random walksSy(n),
..., Sp(n). Our results apply to the law of the iterated logarithm. Our ap-
proach is based on Feynman—Kac type large deviation, time exponentiation,
moment computation and some tectogies along the lies of probability in
Banach space. As an interestimgpecoduct, we obtain the inequality

1 m! k\1 ka\1
(]EI;Z;_+"'+Vla) /p = Z k1! k '(]Eln::ll_-) /p e (Elna) /p
Kyt thg=m 17 Ka
kgseka =0

in the case of random walks.

1. Introduction. Let {S1(n)},...,{S,(n)} be symmetric independentdi-
mensional lattice-valued random walks with the same distribution. Throughout we
assume thatS1(n)}, ..., {S,(n)} have finite second moment and that the smallest
group that supports these random walk&qs Write I" for their covariance matrix.

It is known that the trajectories ¢b1(n)}, ..., {S,(n)} intersect infinitely often if
and only if p(d — 2) < d. In this case the intersection local time defined by

n
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tends tooco almost surely ag — oco. An important problem is to understand the
long term behavior of1,,} asp(d — 2) < d. The weak laws fofl,} were obtained

by Le Gall (19864, b) and Rosen (1990) [see (1.4) below for the noncritical case
and Le Gall (1986b) for the critical case]. Our concern in this work is large
(moderate) deviations for intersection local times and its application to the law
of the iterated logarithm. The critical case definedigy — 2) = d was studied by
Marcus and Rosen (1997) and Rosen (1997), and thedasg was studied by
Chen and Li (2004). In this work we consider the cases defined by

(1.1) pd—2)<d and d=>2

In other words, we consider the case- 2, p > 2 and the casé = 3, p = 2.

Another closely related object is the intersection local time generated by
Brownian motions. Asd = 1, the intersection local times can be represented
in terms of Brownian local times. Given a Brownian local tirhér, x) and its
independent copieki (¢, x), L2(t, x), ..., the intersection local times

00 oo P
/ LP(t,x)dx and f []Lj@ x)dx
—oQ —oQ ]:l

measure the time (up tQ spent for self-intersection and inter-path intersection,
respectively. Chen and Li (2004) observed that these two types of intersection
local times have similar tail behaviors ds= 1. This phenomenon allows us to
study the mixed type of intersection local time:

co m
/ l_[ Lf(t, x)dx.
—o0 iy
Indeed, it has been established by Chen and Li (2004) that

co m
lim t‘llogIP’{/ H Lf-’(l,x)dx > t(mp—l)/Z}

A—00 _Ooj=1

m mp +1 (3—mp)/(mp—1) 1 1\ 2
= — B Y )
4(mp—1)< 2 ) <mp—l 2)

whereB(., -) is the beta function.

In the multidimensional case, the self-intersection local time and the interpath
intersection local time have different asymptotic behaviors and therefore are
treated separately. In this paper, we deal only with the intersection local times
run by p independent Brownian motions. The interested reader is referred to Bass
and Chen (2004) for a recent development on large deviations and the laws of the
iterated logarithm for self-intersection local times of two-dimensional Brownian
motions.
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Let Wi(z), ..., W,(¢) be independent-dimensional Brownian motions. Ac-
cording to Dvoretzky, Erdoés and Kakutani (1950, 1954), the set of intersections

P
() {x € RY; x = W;(¢) for somer > 0}
j=1

contains points different from O if and only if(d — 2) < d. The interested reader
is also referred to a survey paper by Khoshnevisan (2003) for an elementary proof
of this result and for an overview of the whole area of path intersection.
Under condition (1.1), the intersection local tim&dsy, ..., ds,) of Wi(z),
..., W,() is defined as a random measure(@1)” supported on

{(t1, ..., 1p) € RN, Walty) = -+ = W, (1))}
It is formally written as
a(dsy, ..., dsp) =80(Wils1) — Wa(s2)) -+ - So(Wp—1(sp—1) — Wp(sp)) ds1- - - ds
or

p
a(dsy, ..., dsy) = |:/d l_[ So(W(sj) —x) a’xi| dsy---dsp.
RY g

There are two equivalent ways to construct Brownian intersection local time in
the multidimensional case. Geman, Horowitz and Rosen (1984) proved that under
(1.1), the occupation measure BA”?~1 given by

f /A FWL(1) = Walt2), ... Wp_1(ty_1) — W(t,)) i1 --- di,

is absolutely continuous with respect to Lebesgue measui@?etr? for any
Borel setA c (R”)* and the density (x, A) of the occupation measure can be
chosen in such a way that the function

(x, 11, tp) > ox, [0, 1] x -+ X [0, 2,]),
x e RIP=D (11,...,1,) e RP)T,

is jointly continuous [see Bass and Khoshnevisan (1993) for a further discussion on
Holder continuity of the Brownian intersection local times]. The random measure
a(-) on (RP)* is defined as

(1.2) a(A) =a(0, A) VBorel setA C (R”)™.

Another approach involves the approximation of the Dirac function. Given
e > 0, define the random measuwrg(-) on (R?)™ by

p

oeg(a'sl,...,dsp)=|:/RdH

j=1

oo LW 51 dx} dsy--- dsp,
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whereCy is the volume of the/-dimensional unit ball. Whed = 2 andp > 2, Le
Gall [(1990), Theorem 1, page 183] showed that there is a unique random measure
a(-) on (RP)* such that

lim o (Agx - xAp)) =a(Agr x -+ X Ap)
e—0t
holds inL™ norm for anym > 1 and for any Borel bor1 x --- x A, C (RP)™.
By closely examining his argument, we can see that the same conclusion applies

to all cases defined by (1.1) without extra work.
By the scaling property of Brownian motions,

(1.3) a([0,1]7) £ (@P=dr=D)/2q |0, 1)),

Very similarly,

(1.4) n—@r=d(p=10/2] 4 qeqr)=(rP=D/24 ([0, 1]7).

Indeed, it is known [see, e.g., Le Gall (1986a) and Rosen (1990)] that
n—(zp—d(P—l))/zln _d> ay ([0, 117),

where ay ([0, ]7) denotes the analogue of([0, t]7) with Wi(r), ..., W,(1)
replaced by the independent/-dimensional Lévy Gaussian processes

Ui(t), ..., U,(t) whose covariance matrix i. By the fact thatw 4 r-1/2,
we have
(1.5) {aw (10, 117); 1 = 0} £ {detT) =P ~Y/2u([0, 117); 1 > 0},

from which (1.4) follows. Here we recommend the interested reader to Bass and
Khoshnevisan (1992) for further discussion on the uniformity (over time and initial
points) of the convergence given in (1.4). So it is expected thand« ([0, ¢17)
have similar long term behavior.

Under the conditiorp(d — 2) < d, Kénig and Morters (2002) established the
large deviation principle for projected intersection local times,

(1.6) lim =P 1ogP{(U) = 1) = =C(p.d. U).

where
14 T;
(=] d Cds 8y(Wi(s)),
) /ijl"[:lfo 58, (W;(s))

where T1,..., T, are the exit times of, respectively, the Brownian motions
W1, ..., W, from a ballB(0, R) of center 0 and radiuB > 0, whereU C B(0, R)

is a bounded open subset that contains starting point®;of.., W, and where
the constanC(p, d, U) > 0 is given in terms of certain variational problems. Our
situation is different from that studied by Kénig and Moérters (2002): We let the
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Brownian motion run up to a deterministic time rather than random time, and our
intersection local time is defined on the whole sp&¢e while theirs is limited
to a bounded domain. On the other hand, we point to (Remark 4.1) a possible
connection between our work and that by Konig and Morters.

To see what we expect, we recall some work done by Le Gall (1986a). In
Lemma 2.2 of Le Gall (19864a) it is proved thatdés- 2 andp > 2,

1.7) CrmHP~t <Ea ([0, 117)" < Ci(m!)P~L(logm)™,
andasi =3 andp =2,
(1.8) Cy'(m)*¥? <Ea ([0, 11" < C5'(m)*?,

where the constantS; > 0 andC»2 > 0 depend only ord, p). To improve the
upper bound in (1.7), we propose the following simple treatment, which works for
all cases defined by (1.1).

Let 73,...,7, be ii.d. exponential times with parameter 1, and assume the
independence betwedn, ..., 7,} and {X1(¢),..., X,(1)}. Let ¥, be the set
of the permutations odl,...,m} and let p;(x) (+ > 0) be thed-dimensional
Brownian densities. By Le Gall's moment formula [(1), page 182 in Le Gall
(19901,

E[a([0, 71] x -+ x [0, T,])"]

o0
= dxl---dxm|:/ e 'dt
(Rd)m 0

m p
X / Yo T Pse—sia (o _xo(k—l))i|
O<s1<:-<sSpm

= oey,, k=1

m 00 p
= dxi--- dxm|: Z 1_[ /O e_tp,(xg(k) - xa(k—l)) dt:|

d
RE™ 0 €S k=1

m 00 p
Y4 —t
< (m!) /(Rd)m dx1 dxm[k];[l /O e pz(xk)dr}

o9 )4 m
:(m!)p[/Rd</0 e_’p,(x)dt) a’x} ,

where the convention that; o) = 0 andso = 0 is adapted, where the inequality
follows from Holder’s inequality together with some suitable variable substitutions
and where the second equality follows from the fact that

00 m
/ e dt/ ds1--- dsp1(sy) [ | ex(sk — se-1)
0 0<sy<---<sp <t k=2
(1.9)

m 00
= ]‘[f e o) dt.
k=10



INTERSECTION LOCAL TIMES 3253

We give a short proof here. By the substitution
1 =91, D=852—81,-.-,;my =Sm — Sm—1 and tny1=1— Sy,

the integral on the left-hand side is equal to

00 00 m
/o /0 dty - dtyy1€Xp(—tmr1) [ | €Xp—10) @i (1)
k=1

mn 00
= H/ e Tor(t)dt.
k=170

Notice that

00 14
[ ( [ e—fpt<x>dr) dx
o0 0 d
:/0 /o dl]_---dtpexq—(ll+"‘+tp))/Rdj1;[lptj(x)dx

— (27)~@(r-D)/2

%) 00 P —d/2
x/ / exp(—(t1+---+tp))<z I tk) dty--- dt,.
0 0 Jj=11<k<p
k]

By arithmetic—geometric mean inequality,

14 )4 P
S M= |[T1 I w=T15"""
pj:llgkfp p|j=11<k<p j=1

k#j k#j

Notice thatd(p — 1)/(2p) < 1 under (1.1). So we have

/]I;d (/OOO e " pi(x) dt)pdx

p
< 2)~@(r-D)/2 p—d/2< / = @(p=1)/@p) 1 d,) oo,
0

On the other handimin = min{ry, ..., 7,} iS an exponential time with
parametep. By the scaling property given in (1.3),

E[a([0, r1] x - -+ x [0, T,1)"]
(1.10) > E[a([O, Tmin]p)m] _ ET((2P—d(P—1))/2)mE[O{([O’ 1]p)m]

min

_ p-((@p=d(p=1)/2m-D; (1 n wmﬁ“([o’ 137y,
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Summarizing what we have,

-1
Ea ([0, 117)" < p(((Zp—d(p—l))/Z)m+l)F(l . 2p—d 2(17 — 1)m)

X (m!)”[/{w </OOO e_’p,(x)dt)pdx}m.

By Stirling’s formula,

i [Ea(0, 17"

mSuP N @72

20 —d(p — 1)\ —@p—d(p-1))/2 00 p
(=) Jull e tmoar) ax

Ii/ Ear([0, 1]7)2%/@(p—1)
k!

<

(2.11) limsup

k— o0

<

(zp —d(p—1) )—(2p—d(p—l))/(d(p—l))
2p

() (L )

By the first estimate, we obtain an upper boundEe([0, 1]17)", which claims,
together with the lower bounds given in (1.7) and (1.8), that

(1.12) C (m) P2 <Ea([0, 117)" < € (m) P/,
Consequently, there is a constantd, p) > 0, such that
<OO’ V<)/oc(d7p),

= 00, Y > Ya(d, p).
In the special casé = p = 2, (1.13) was obtained by Le Gall (1994).

(1.13) Eexply ([0, 1]7)2/@(P=1)) {

QUESTION.  What can we say about the critical exponegntd, p)? Can we
strengthen (1.13) into the large deviation

lim t~togP{a([0, 1]7) = t9P=DV2y = _y (d, p)?
—00

By (1.11) and the Taylor expansion, a partial answer to the question is
d(p—1) (2p —d(p — 1)\ @—dp=1)/(@(p-1)
2 ( 2p )

oo p —2/(d(p-1))
X </ (/ e ' pi(x) dt) dx) .
R4 \JO

Unfortunately, (1.14) cannot be developed into an equality. The complete answer
is given in Theorem 2.1.

Ya(d, p) >
(1.14)
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2. Mainresults. Recall our assumption (1.1). To identify the constants given
in our main results, we consider the Gagliardo—Nirenberg type inequalities

d(p—1 2 1-d(p—1 2
Q2.1 fll2p < CIV fISTP=IED 57 @=DED) o wl2rdy,

whereC > 0 is a constant independent fand for eachr > 1, ler(]Rd) denotes
the Sobolev space

W RY) = (f € L/RY); V£ € L7 (R},

The validity of (2.1) can be derived from the Sobolev inequality [see, e.g., Ziemer
(1989), Theorem 2.4.1, page 56]

Ifls <KIVLl, — feWh @®Y,

where 1<r <d, r*=dr(d — r)~t andK > 0 is a constant that depends only on
r andd. Indeed, taking = d(p — 1) p~1, we have

(2.2) I fllap—1) = KNV fllacp—1)p-1-
Replacingf with | £[22/@(=D) we have

2p )(d(p—l))/(Zp)

1£1l2 5(71<
P=\d(p-1
-1/ @r-dr-02/p g\
2 P p—d(p— p
x ( /R IVf (0l | f (0l a’x)
2p (d(p—1)/(2p) o o
5( ) IV £ PPy o 2= p=10/ @),

— " K
d(p—1)

where the second step follows from Hélder inequality.
Let x(d, p) be the best constant of the Gagliardo—Nirenberg inequality given
in (2.1):

. -1 2 1— -1 2
K(d, p) =inf{C > 0; || fll2p < CIV fISPE) | g5~ @p—10/@P)
forv f e Wh2(R%)).
Then O< k(d, p) < oo.

THEOREM2.1. Under condition (1.1),
(2.3) lim t~togP{a ([0, 1]7) > 1¥(r=1)/2) :—%K(d, p)~4r/@p=1)
— 00
Finding the best constants for Gagliardo—Nirenberg inequalities appears to

be a difficult problem which remains open in general. It has been attracting
considerable attention partially due to its connection to some problems in physics.
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The best constant for Nash'’s inequality, which is a special case of Gagliardo—
Nirenberg inequalities, was found by Carlen and Loss (1993). See also papers
by Cordero-Erausquin, Nazaret and Villani (2004) and by Del Pino and Dolbeault
(2002) for recent progress on the best constants for a class of Gagliardo—Nirenberg
inequalities. Seehke paper by Del Pino and Dolbeault (2003) for a connection
between the best constants for Gagliardo—Nirenberg inequalities and logarithmic
Sobolev inequiities. Two papers are directly related#dd, p): In the casel =2

andp = 3, Levine (1980) obtained the sharp estimate

1 1
3 3
\ 2.6016 €23 < \ 45081

He conjectured that (2, 3) = = ~#/9. Weinstein (1983) studied the problem of
the best constants for the Gagliardo—Nirenberg inequalities of the type (2.1). It
was shown [Weinstein (1983), Theorem B] that under (1.1), the best constant is
attained at an infinitely smooth, positive and spherically symmetric fungtgon
which solves the nonlinear equation

d(p—1) 2p—d(p—1)
AN T
2 ! 2
In addition, fo has the smallesL.? norm among all solutions of the above

equation (such a solution is called a ground state solution). Furthermore [Weinstein
(1983), (1.3)],

f+ =0

—2(p—1)\1/(2
k(d. p) = (pll foll 2P~ )Y/ @P),

Using this result, Weinstein (1983) obtained the following numerical approxima-
tion in the case = p = 2:

1
2,2y~ ¢ .
¥(2,2) \/rr x (1.86225...)

By comparing Theorem 2.1 with (1.14), the following boundcka#, p) is a by-
product:

p )(d(p—l))/(4p)< 2p )(2p—d(p—l))/(4p)
d(p—1) 2p—d(p=1

oo p 1/(2p)
X (/Rd</0 e ’p,(x)dt) a’x) .

In Lemma A.2, we conneet(d, p) to a variational problem.
We now turn to the random walks. L4, } be a positive sequence that satisfies

d. p) < (
(2.4)

(2.5) b, — oo and b,/n—0 (n — 00).
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THEOREM2.2. Under conditions(1.1)and (2.5),

) 1 2p—d(p—1))/25.d(p—1))/2
lim = logP{1, > An2r=d(r-D)/2pd(r=1)/2)

n

(2.6)
=2 det) Yk, p)_417/(d(l7—1))k2/(d(p—1))

2
for all A > 0.

Our large and moderate deviations apply to the following law of the iterated
logarithm.

THEOREM2.3. Under condition (1.1),

o\ [d(p=1))/2 ,
= <—) k(d, p)? as.,
p
lim supn~2P=4(P=1)/2(loglogn) ~@(P-10/2],
(@8) o (d(p—1))/2
2 rP=
= <—) de'l(l")_(p_l)/zk-(d’ p)zp as.
p
Foecifically,

limsu

: ([0 r]f’)—(z)p_l @p?  as
z—>oopt(|0glogt)l7—1a ’ - » K&, p .S.,

limsu

2\ r1
— I, = - M~ ?=1/2,. 2 )2p s
n—>oopn(|Og|Ogn)P—1 (P) det(T) k(2, p) a.s

asd=2and p >2,and

lim sup;a([o, ") =x@3,2* as,

i—oo t(loglogr)3

1
limsup——=——1, =detI") Y% (3,2* as.

n—oo +/n(loglogn)3
asd =3and p =2.
Recall that the trajectories ¢f1(n)}, ..., {S,(n)} intersect infinitely often if

and only if p(d — 2) < d. In the critical cases defined agd — 2) = d—the
cased =4, p = 2 and the casé = p = 3—the law of the iterated logarithm was
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obtained by Marcus and Rosen (1997) and Rosen (1997), respectively. Under the
assumption of finite third moment, it was proved [Marcus and Rosen (1997)] that

I, 1

2.9 limsu = a.s.
(2:9) n—>oop|Ogn logloglogn  2n2./detT)
asd =4 andp = 2, and [Rosen (1997)] that
I 1
(2.10) limsu 2 a.s

n—>ooplogn logloglogn -  detT")
asd =p=3.
The cased = 1 was studied by Chen and Li (2004). As a special form of a
general result given in Theorem 1.4 of Chen and Li (2004),
lim supn~?+Y/2(log logn)~ =Y/,

n—oo

_(4(1?—1))(”‘1)/2<p+1>(1’—3)/2B< 1 1>—(p—1> e

asd = 1 andp > 2, whereo2 > 0 is the variance of the random walks.

The law of the iterated logarithm given in Theorem 2.3 solves the cases left by
the previous works.

In addition to being important in thetwgly of random paths, the notion of
intersection local times of independent Brownian trajectories is connected to some
other interesting problems. Bass and Chen (2004) proved that the renormalized
2-multiple self-intersection local time run by a two-dimensional Brownian motion
satisfies exactly the same large deviation and the law of the iterated logarithm as
doesa/([0, 1]%) in the casel = p = 2. Chen and Li (2004) pointed out how the
intersection local times are related to the local times of additive Lévy processes
[see Khoshnevisan, Xiao and Zhang (2003a, b) for some later developments in
this area). In their paper, Kénig and Mdorters (2002) applied the large deviation
result given in (1.6) to the problem of finding the Hausdorff dimension spectrum
for thick points of the intersection of two independent Brownian patti3in

The most interesting link is the range problem. While the intersection local time
I,, counts the times spent in intersecting, the random variable

(2.12) Jo=#S1[L,n]N---N S,[L, nl}

counts the sites of intersection. Cleatly,< I, and the difference is caused by the
possibility that the trajectories intersect more than once at the same site. The weak
laws for J, were studied by Le Gall (1986a, b) and Le Gall and Rosen (1991),
and it has been observed that in the transient case]), J, behaves like/?1,,,
wherey = P{S,, #0Vn > 1}. In light of (2.9) and (2.10), therefore, the law of the
iterated logarithm was given by Marcus and Rosen (1997) and Rosen (1997) as
p(d —2) =d. On the other hand, Le Gall (1986a) proved thaiasp = 2,

(logn)?

(2.11)

(2.13) T % 20)2detT)"Y2a([0, 11?).
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Comparing (2.13) with (1.4), we observe a sharp contrast bet#eand J, as
d = 2. Theorem 2.1 established in our work opens the possibility to understand
the tail behavior of/, under the condition (1.1). We leave this to future study.

We outline some key technique points in each of the following sections.
In Section 3, we establish the large (moderate) deviations for the intersection
local times smoothed by convolution. Different from the one-dimensional case,
multidimensional Brownian motions do not have local time. Even in the case of
random walks, the absence of a modulus of continuity for local times makes it
difficult to handle intersection local time directly as we did before [Chen and Li
(2004)]. For this reason, the large (moderate) deviations are accomplished first
for the L, norms and multilinear forms of the occupation times over small balls
instead of the local times. In spite of the difference mentioned above, some of
the ideas developed by Chen and Li (2004) are adapted here: A Feynman-Kac
type large deviation given by Remillaf@000) for Brownian occupation times
and analogous minorization established by Chen and Li (2004) in the context of
random walks, an idea of localization developed by Donsker and Varadhan (1975)
and Mansmann (1991), a deterministic comparison (via Hélder type inequality)
between multilinear form andl , norms, a way to establish exponential tightness
introduced by de Acosta (1985) aild, embedding are the main ingredients in
the proof of Theorem 3.1. We point out that Donsker and Varadhan’s (1974) large
deviation principle for empirical processes could be used [see Mansmann (1991)
for “how” in the casel = 1] in the proof of (3.2) and (3.3). We chose not to do so
because the proof of (3.4) and (3.5) demands an approach which can be extended
(at least partially) to the case of random walks.

In Section 4, we prove the upper bound for Theorem 2.1. The idea is approx-
imation via Theorems 3.1. Le Gall's moment formula and time exponentiation
(Laplacian transform) are essential tools. Laplacian transform has been developed
into an important tool in the study of limit laws for occupation times since the re-
markable work by Darling and Kac (1957). The interested reader is referred to the
survey paper by Fitzsimmons and Pitman (1999) for an overview. It is worth men-
tion that our situation is not quite standard: We have to deal withdependent
exponential times at the same time.

In Section 5, we prove the upper bound for Theorem 2.2, which is by no means
a trivial consequence of Theorem 2.1 and the invariance principle, due to the
discontinuity of the functionals involved. The treatment we present is completely
different from that for the upper bound of Theorem 2.1. The central piece of our
approach is a moment inequality given in Theorem 5.1. This inequality appears to
be interesting for its own sake.

In Section 6, we prove the lower bounds for both Theorems 2.1 and 2.2. For
the needs of the law of the iterated logarithm, the statement given in Theorem 6.1
is more than we need for Theorems 2.1 and 2.2: We allow the independent paths
to start at different points and we establish the lower bounds uniformly over the
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starting points. The key step is to show that the moments of intersection local times
can be minorized by those of the multilinear forms that appear in Theorem 3.1.

In Section 7, we prove Theorem 2.3. With the extensive preparation on the
tail estimate, the proof is a standard practice of the Borel-Cantelli lemma. In the
Appendix, we give two analytic lemmas which are used in the proof of our main
theorems.

3. Smoothing intersection local times. To simplify the notation, we denote
W () for a d-dimensional Brownian motion anflS(n)} for a d-dimensional
random walk with the same distribution &$;(n)}, ..., {S,(n)}, whenever only
a single Brownian motion or a single random walk is involved. In this section, we
let the small numbesr > 0 be fixed but arbitrary and write

1 t
- Cd&‘d,/(; L(jw (s)—x|<e} dS,

L(t,x,¢) xeR4 >0,

erd, n=12 ...,

I(n,x,e)=

#{B } o
where(Cy is the volume of the/-dimensional unit ball and

B,=|yeZ% |yl <eyn/b, ).

Foreachkx j < p,letL;(t,x,¢) andl;(n, x, ¢) be the analogues df(z, x, &)
and(n, x, e) with W(r) andS(n) being replaced by, (t) andS; (n), respectively.
For any locally integrable functiofi onRR¢, we introduce the notation

fo= [ o
T Caed Sy

Givend > 0, write

) 1/p
M.(0) = sup 9( [ s »(x)]f’dx) (19700 dx}
feFq Rd
) 1/p
N.(6) = sup 9( [ »(x)]ﬁdx) [ 19700 dx}
feFa R4
~ 1/p
M. (0) = sup 9( / [<f2)8<x>]de) VATV dx}
feFa R4
N ) 1/p
N.0) = sup 9( [ s »(x)]f’dx) e Vf,FVf>dx},
feFq Rd

where

(3.1) Fy = {fe Wl’z(Rd);/Rd |f(x)|2a’x:1}.
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By the fact that

_ 1\
/R (217 dx < supl(f2)e (01" < (Cdgd) :

xeRd

the functionsM,(-), M(-), N.(-) andN/(-) are continuous for any fixeg> 0.

THEOREM3.1. Foranyf > Qandintegersd >1,p > 2,

1 1/p
I _ P —
(3.2) tllm ; IogEexp{@(/Rd LP(t, x, e)a’x) } =M.(0),

(3.3) t[}moo? IogEexp{Q(/d [TLi@.x.¢ dx) } = N.(0),
RY

1 by \ @r—d(p=1)/@p)
lim — logE exp 9(—)
o0 b, n

n—

3.4
(34) vy
X(le<n,x,s>) }=Mg<9>,
xezd
1 by (2p—d(p—-1))/(2p)
lim —logEex 9(—)
n—)oobn n
(3.5)

P 1/p _
x (Z HL;(n,x,e)) }:Ns(e).

xezd j=1

REMARK 3.1. It should be emphasized that Theorem 3.1 holds faf alll

and all integerg > 2 [in other words, condition (1.1) plays no role here], and that,
smoothed by the uniform distribution over a small ball, the self-intersection and
interpath intersection present almost the same behavior. This is quite contrary to
the strong dimension dependence of the intersection local times and contrary to
the substantial difference in asymptotic behaviors between self-intersection local

times and interpath intersection local timeslas 2. Here is our explanation: First,

replacing the trajectories by theig ‘sausage” makes intersection always possible
regardless of the values af and p. Second, the behavior of the intersection
local times is determined by the degree of their singularity, which depends on a

combination of the space structure (dimensirand the pattern of intersection.

The smoothing procedure eliminates the singularity and therefore eliminates the

difference in behavior. Furthermore, we can see from the proof belowptlban
be any real number larger than 1 in (3.2) and (3.4).
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PrROOF OFTHEOREM 3.1. We first deal with Brownian case. We start with a
result based on the Feynman—Kac formula [see, e.g., Remillard (2000)],

t
lim }IogEexp{/ f(W(s))ds}
t—>o0 t 0
(3.6) 1
= sup{ [ rwgtmar—3 [ Ve Paxl,
gesy LRI 2 Jpd

where f can be any bounded, measurable functioon R<.

We now prove the upper bound for (3.2). We maytlet oo along the integer
points in our argument when it is needed. The basic idea is to Migw -, ¢); t >
0} as a process taking values in the Banach spateR?). Then (3.6) provides
all the information we need for the logarithmic generating function of the linear
forms of L(z, -, ¢). If {L(z,-,¢);t > 0} were exponentially tight inc? (RY), then
the upper bound for (3.2) would follow from a standard argument. Unfortunately,
this is not the case, so we need the following localization procedure to compactify
L(t,- ¢).

Let m > 0 be fixed and leG,, be the discrete subgroup & that consists
of vectors whose coordinates are integer multiples:of_et 7,, be the quotient
of R moduloG,, and let: : R — T, be the canonical map. Then tifig-valued
processW*(¢) = «(W(t)) is a Markov process and is called, in the literature,
Brownian motion on the torug,,. Notice that7;, becomes a compact group under
the induced distance

d(x*,y*) =inf{|lx — y[; 1(x) = x™ andu(y) = y*}.
Let A(dx™) be the Lebesgue (Haar) measurelgnand write

L*(t,x*, &)= Y_ L(t,x +mk,¢)
kezd

t
=/0 @e(W*(s) —x™) ds, t>0,x*eT,,

whereg, is a function on7,, defined by

1
%(X*) = W Z e tmk|<e)-
A" yezd

Notice that ifm is large enough, then the above summation has at most one nonzero
term, sog (x*) < C;*e~¢ and

/Rde(t,x,s)dxz >

kezd

3.7) < f[o’m]d[ >

kezd

/[0 y LP(t, x +mk, &)dx
m

p
L(t, x +mk, 8):| dx
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:/ [L*(t, x*, &)]PA(dx™).
T

For each integrable functioi on 7;,,, define the functionf* onR¢ by f* =
f ot. We have

/ FOL* (@, x*, e)A(dx™) = Z / fr*(x)L(t,x +mk,e)dx

kezd
t
- / FEROL(, x, &) dx = f (f*)e (W(s)) ds.
Rd 0

By (3.6),

1
lim —IogEexp{Q/ f(x*)L*(t,x*,s)k(dx*)}

t—00

(3.8) —sup{ [megeas -3 f Ve dx}

= sup{@/{om f* (x)(Z (g%)e(x +mk)>dx——/ Vg (x)| a’x}

8eF kezd

We now intend to establish exponential tightnesdftg, -, ¢) as itis viewed as
a process taking values 87 (T,,). For anyx*, y* € T,, with d(x*, y*) < §, there
arex, y € R¢ such that (x) = x*, ((y) = y* and|x — y| < 8. Therefore,

|L*(17-X*7 8) - L*(l’ y*v 8)'

< > LA x+mk,e) — L1, y+mk,e)
kezd

5#{k; min{|x + mK|, |y + mK|} < 0ma>i|W(t)| +e}
<i<

x sup |L(L,x,e)—L(1,y,e)l.
|x—yl=<é

By shifting invariance, the quantity{i} on the right-hand side can be bounded by
a finite random number independentwgfy ands. By the obvious fact that

sup [L(Lx,e)—L(Lye)|>0  (5—0),
|[x—y|<é

we have

vs= sup |L*(Lx* &) —L*(Ly*¢e)|>0 (85— 0).
d(x*,y*)<$
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Consequently,

sup IL*(1, y* +x*, &) — L*(1, 2% + x*, &)|PA(dx™)
d(y*,z*)ga T

<y{™ sup (L*(L, y* +x*, &) + L*(1, z* + x*, &)}A(dx™)
d(y*,z%)<8 ¢ Tm

=250 5-0.

Hence, the family{L*(1,y + -, &)} er,, Of LP(T,,)-valued random variables is
uniformly tight. In addition, for any € T,,,

1 \»1
/ [L*(@, y* +x*, )P (dx™) < (—) / L*(1, y* +x*, &)A(dx™)
T Cae? T

1\t
- (_) < 0.
Cyed
By Theorem 3.1 in de Acosta (1985), there is a compact, convex, positively
balanced subs& c £7(T,,) such that

supE, exp{gk (L*(1,-,¢))} < o0,

Y€y

wheregg (-) is Minkowski functional, which is a seminorm a6 (7,,). Applying
the Markov property, we have

t
Eexplgx (L*(,-, )} < ( supE, explgx (L*(1, -, e))}) ,

yeTn
which gives
1
(3.9 lim sup? logEexp{gx (L*(z, -, €))} < oo.
t—00

Notice that for any > 0,

/ry 1
E[exp{@(/ [L*(t, x", e)]pk(dx*)) }; ;L*(t, &) ¢ yK}
Tl’l?

< exp{@(%ﬁ)p_lt}P{qK(L*(;, -, €)) > yt}.

In view of (3.9), we have that for sufficiently large

1/p
Eexp{@(/ [L*(t, x*, s)]”/\(dx*)) }
Tn

(3.10) v 4
NE[eXp{Q(/Tm[L*(t,x*, 8)]pk(dx*)> }; ;L*(t, -, €)€ yKi|
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ast — oo.

Letg > 1 be the conjugate number pfand lets > O be fixed. By the Hahn—
Banach theorem and compactness, there are finitely many bounded functions
f1, ..., fn in the unit sphere of£4(T,,) such that

1/p
(/ |h(x*)|p)»(dx*)> < max / [i(xXHR(MA(dXx*) + 8 VheyK.
T 1<i<N JT,

In particular,

/py 1
E(exp{@(/ [L*(t, x*, e)]pk(d)_c)> }; ;L*(t, -, E)E yK)
Tin

N
see‘”ZEexp{G/ fi(x*)L*(t,x*,s)X(dx*)}.
i=1 Tom

By (3.8) and (3.10),

1 1/p
lim sup; IogEexp{@(/ [L*(t,x*,e)]”)»(di)) }
Tin

t—00

<65+ max sup{ /[0 y J’,-*<X><Z<g2>e<x+m")) dx

1=i=N ge7y kezd
— 5 IVg(X)I dX}
p 1/p
<608+ sup{@(/ (Z(gz)s(x +mk)> dx)
geFy [0,m]}d ke7d
~3 IVg(X)I dX}

where the last step follows from Hdlder's mequality. In view of (3.7) and
Lemma A.1, lettingg — 0 and thenn — oo, we obtain the upper bound for (3.2):

1/p
(3.11) lim sup— IogEexp{G(/Rd Lp(t,x,e)dx> }SME(Q).

1—>00

By the inequality

p 1/p 1
L'(t,x,s)dx) —
('/Rd ]'1:[1 ! P

we have

p Yp 0 1/pyqp
Eexp[@(/Rd HlL‘,-(t,x,e)dx> }5[Eexp{;</RdLP(t,x,e)dx) ” :
=

r 1/p
Z(fRd Lf(t,x,s)dx)

j=1
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From (3.11) (withd replaced byp—10) we have the upper bound for (3.3):

)4 1/p
(3.12)  limsup= IogEexp{@(/d I1 Lj(t,X,E)dX) } < N:(9).
RY

t—00

We now come to the proof of the lower bounds for (3.2) and (3.3). Notice that
for any O< r < co and any measurable functiof on R¢ with Il fll; =1 and
f(x)=0for |x| >r (if r <o00),

1/p t
([ _ trexed) = [ forexed=[ nove)d
{Ix|=r} R4 0

By (3.6) we have

1/p
I|m|nf IogEexp{ (/ Lp(t,x,s)dx) }
{lx]=<r}

> suplo [ fuogodx =3 [ 1veeoax)

g<€Fu

= supfo /{ L TOE @i / Vo).

8E€Fu

Taking the supremum ovef on the right-hand side,

1 1/p
liminf — IogEexp{@(/ L”(t,x,e)dx) }
t—oo f {Ix|<r}

1/p
zSUp{9</{| <}|(g2>s<x>|"dx) _1 |Vg(x>|2dx}.

gefFy 2 Jrd

(3.13)

In particular, lettingr = oo gives the lower bound for (3.2).

To prove the lower bound for (3.3), we view(s, -, &) as a process with
values in.L?(B,) by limiting x to B,, whereB, is thed-dimensional closed ball
with center 0 and radius > 0 being fixed but arbitrary. We need to show that
t~1L(t, -, ) is exponentially tight int?(B,): For anyy > 0, there is a compact
setKp in L7 (B,), such that

(3.14) lim sup— IogIP{ 1L(t, &) ¢ Ko} <—y.

t—00

To this end, we first prove that for any> 0,

1 /p

lim supsup— IogEexp{k sup(/ |L(t,x +y,e)— L(t,x,¢)|” dx) }
s—>0t 1>11 ly|<s \/R4

(3.15)
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Indeed, by subadditivity,

1/p
Eexp{A sup(/d |L(t,x +y,e)— L(t,x, 8)|”dx> }
R

lyl<d
1/pyqt
< [Eexp{k sup(/ |L(1,x+y,£)—L(l,x,e)lpdx> ” .
ly|<8 \JR?
To have (3.15), we need only to show
1/p
(3.16) lim Eexp{k sup(/ IL(1,x+y,e) — L@, x,¢)l” a'x> } =1.
§—>0* ly|<s \JRY
Notice that agy| <48 < ¢,
IL(1,x+y,e) — L(L,x,¢)]

1 1 1
= Cdgd{fo Lie—s<iw(s)—xI<e) dS+/O Jl{e_a<|vv(s)_(x+y)|<s}ds}

=&(x)+&x+y) (say)

By triangular inequality,

1/p 1/p
SUp(/ IL(L,x+y,e)— LA, x, e)|pdx> < 2(/ |§5(x)|pdx> .
|y|<8 \JRY R4
The right-hand side approaches 0 &s> 0t. Hence (3.16) follows from the
dominated convergence theorem.

For eachk > 1, by (3.15) and Chebyshev’s inequality there & & 0 such that

1/p
]P’{ sup (/d |L(t,x +y,€)— L(t, x,)|” dx) > k_lt} <e kvt vi>1.
[yI<ék

In addition, by (3.12) there is@ > 0 such that

1 1/p
limsup— IogIP{ (/d LP(t,x,¢) dx) > Ct} <-y.
R

t—oo I

Consider the setd C L7 (B,) given by

A= {f e LP(By); Ifllp=C and| ‘Suapllf(- +3) = fOllp <k Vk> l}.
Y=ok

By the criterion of compactness ih, space [see, e.g., Dunford and Schwartz

(1988), Theorem 21, page 304);s conditionally compact it (B,). In addition,

from the construction oA we have

. 1 1
limsup- Iog]P’{?L(t, -, 8) ¢ A} < —y.

t—oo I
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Taking K as the closure o, we have (3.14).
Takingy sufficiently large, we have

0 1/p
Eexp{—(/ Lp(t,x,s)dx> }
P \J{lx|=r}

0 ry 1
~E[exp{—(/ Lp(t,x,e)dx> }; ZLG,-e) eKO]
P \J{ix|<r) t

Consider the continuous, nonnegative functiobadefined on(.L? (B,))?:

12 1/p p 1/p
= — . p _ . d ]
W(fireeos f) pz(/{x|<r}'f’(x)' dx) (/{x|<r}]_[|f](x)| x)

j=1 j=1

(3.17)

Clearly, ¥ = 0 on the diagonal

{1 fp)i fa=---= [p).

Hence, for givers > 0 and anyg € L?(B,), there exists & = b(g, §) > 0 such
that

W(f1,..., fp)<§6 asfje€B(g,b)V1<j<p,

where B(g, b) stands for the open ball iC”(B,) with centerg and radiush.
Therefore,

p 1/p
Eexp{@(/ I Lj(t,x,s)dx> }
{lx|<r} j=1
o L 1/p
> e S'E| expl = Z(/ Li-’(t,x, 8)dx) ;
P \ixl=ry

(3.18)
1
;Lj(t, ,8)eEB(g,b)V1<j< pi|

1/p p
:e“S’(E[exp{g(/ L”(t,x,e)dx) };}L(t,-,e)eB(g,b)D :
P \J{ixl<r) !

Let{B(g1,b1), ..., B(gn, by)} be afinite subfamily of the open sets

{B(g.b(g.9)); g € Ko,
which coverKg. Then

0 ry 1
E[exp{—(/ Lp(t,x,e)dx) }; ZLG@,-e) eKo]
P \J{ix|<r} 1

< iéE[exp{g

/py 1
(/ L”(t,x,s)dx> }; i) eB(gl-,b»].
P \JB, t
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Therefore,

1 0 1/p
liminf —log max E[exp{—(/ Lp(t,x,s)dx> };
100t T1sisN p \J{ix|=r)

%L(r, Le) e B(g,-,b,->]

.1 0 Yry 1
zllmlnf—logE[exp{—(/ Lp(t,x,s)dx> }; —L(t,-,¢) eKo].
= P \J{lx|=r} t

Combining this with (3.13) (witl# replaced byp~16), (3.17) and (3.18), we have

1 )4 1/p
liminf —logE exp; 6 / Li(t,x,e)d
t—oo f g p{ ( {|x|<r} 1_[ j( %2 £) x) }

j=1

0 2 b NP 2
z—8+psup{—(/ 1(6)e (0)] dx) e dx}.
geF LD \Jx|=r} 2 Jrd

Letting s — O* andr — oo, we obtain the lower bound for (3.3):

1 P 1/p
(3.19) |ItrEIOI’<1)f;|09Eexp{9</};§d}_[_le(t,x,8)dx> }zNE(G).

We now come to the random walks. Given- O, write ¢, = [tn/b,] and
vu = [n/t,]. Thenn < t,(y, + 1). By independence and triangular inequality,

b, \ @P—d(r=1)/@p) Yp
Eexp 9(—) (Z lp(n,x,e)>
n xeZd
b\ 2p—d(p=1)/(2p)
§<Eexp{9<—">
n
1 & S(k) —x
(g 2o 22
<xezd B i1 nb,
by \ @P—d(p—1)/(2p)
= | Eexp 0(—)
n

In .
X </£ [#{Jlen} ,;1”5(27;]

=)
A=)




3270 X. CHEN

_ (Eexp{e( [ d[(%)(””z

1 & HS(k) — [Vnb;tx]
X Z 1
#(B,} vV nbn_l

k=1

L)

(n — 00).

Notice that

n #B,) n ¢

Applying the invariance principle to the continuous, uniformly bounded and
uniformly convergent functionalgs, (f)} on C{[0, t]; R¢}, given as

B 1 [Vnb;x] !
(pn(f)_—/]l%d<@/0 ]1{ — 58}ds> dx,

nb;1
we have
b\ Z—D/2
lim Eex 0/ (—)
n—o0o R4 n

1 &
* #B,) 21{

p 1/p
SICN
k=1
~ 1/
:EGXp{@(@d L”(t,x,e)dx) P}

whereZ(t,x,e) is the analogue ol (z, x, ¢) with W replaced by the Gaussian
Lévy procesd/ whose covariance matrix i3. Therefore,

_ 1 b, \ 2P=d(p=1)/(2p) Yp
limsup-— logE ex 9(—) > 1P(n,x,6)
n—o00 bn n

xeZ4

1 - /p
§—IogEexp{0</ L”(t,x,e)dx) }
t R4

By the same argument used in the canonical Brownian case,

im L - Yry
im A ogEexp{@(/RdL (t,x,e)dx) }:ME(G).

t—00

fs) -

S(k) — [Vnb; 1x]
Vbt

(3.20)

Hence, letting — oo gives the upper bound for (3.4):

1 by \ 2P—d(p=1)/2p) 1/p
Iimsupb— logEE exp 9(—) (Z lp(n’x’g))
" xeZd

n—oo n

(3.21)

< M.(0).
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By the inequality

p 1/p 1/p
(Z nlj(n,x,e)) < pz(z 1f(n,x, e))

xezd j=1 J=1 \xezd

and (3.21), we have the upper bound for (3.5):

1 by (2p—d(p—1))/(2p) P 1/p
IimsupalogEexp{0<;) (Z Hlj(n,x,€)> }

n—oo Zd i—1
(3.22) B rerd
< M.(0).

On the other hand, for any uniformly continuous functiérsupported onB,
with || fllg =1,

1/p
( > 1P(n,x, s)dx)
Notice that

xez4
/ F(n, [Vnb; Ix], &) dx

- (i_ny/szdf</i2x)l<n,[x],g>dx

dJ2
) o(n) + Z f(/;x)l(n X, e)}
xez4

)2
#{B } (\/7 (x + S(k)))ﬂ{xeBn}}
by, d/2 n by,
=<7) 0(n)+k§;_fs<\/;S(k)>} (n — 00),

where the termv(n) is bounded by a deterministic sequengethat satisfies
a,/n — 0 asn — oco. By Theorem 4.1 in Chen and Li (2004),

1 (2—-ad)/2
Iinrgiorlfb—logEexp{< ) / F@)I(n, [Vnb; x] )dx}

(3.23) > Sup{Q/Rd f,;(x)g x)dx — —/ (Vg(x), FVg(x))dx}

g€Fu

Sk

)d/(ZP) (/Rd 1P (n, [\/W;lx], €) dx)l/p

v

d/(2p)
) pf FI(n, [Vnb,1x], &) dx.

®‘|§
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= suplo [ rewax—3 [ (Ve TVgwaxl,

g€Fu
Consequently, we have the lower bound for (3.4):

1 b, \ 2P—=d(p=1)/(2p) Yp
liminf — logE ex 9(—) > 1P(n,x,6)
n— 00 bn n
xeZd

(3.24) .
> M (6).

It remains to prove the lower bound for (3.5). Notice that

an(nxe) ( )d/Z/RdHl nb 1x ], &)dx.

xezd j=1
We need only to prove

1 b\ D2( 0 T v
“an_])IDOfEIOgEeXp{0<;) ([Rdnlj(l’l,[\/l’lb; x],s)dx) }

> Ne(9).
Similar to (3.20) (withtr = 1), we can prove that for ary> 0 ands > 0,

1 b\ /2
lim supb— IogEexp{e (—)
n n

x sup( [ b e+ 300, 2)

ly|<é

(3.25)

(. [Vb, L], £)|pdx>1/p}

- - 1/p
§IogEexp{0 sup(/d IL(L,x+y,¢) —L(l,x,e)|pdx) }
lyl<s \/R

ReplacingL(z, x, &) with L(z, x, £) in (3.16), we have

b\ /2
lim limsup— IogEexp{Q(—)
-0t n—ooo by n

X Sup(/Rd |l(n, [W(x + )], €)

ly|=<é
i, [J,T;lx],e)v’dx)l/p} o0,

Similarto (3.17), as is limited to a finite ballB, and!(n, [\/nb;l(-)], ) is viewed
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as a process with values i (B, ), there is a compact sély C L”(B,) such that

Eexp{g (b—")(z_d)/2</Rd 1P (n, [\/W;lx], €) dx)l/p}

p\n

20)  ~efel2(2) ([ o i ) )

p\n
n4=212p-d121(n [Vnb, 1], €) € Ko]

asn — oo. In view of (3.23) and (3.26), the argument used in the proof of (3.16)
gives (3.25). O

4. Upper bound in Theorem 2.1. In this section, we establish the upper
bound for Theorem 2.1:

(4.1) limsuprtlogP{a ([0, 1]7) > 1 @P=D)/2} < —gk(p, d)y~4p/@p=1),
I—0o0

Let T be exponential time with parameter 1 and with independent copies
11, ..., Tp. Recall that¥; is defined in (3.1). Write

@2 m=suf([ |f<x>|2pdx)l/p ~3 [ 1vrwiax,

feFa

See Lemma 8.2 for how! is related to the Gagliardo—Nirenberg constant.
To apply Theorem 3.1, first notice that by Jensen’s inequality,

1/p
Me<9>ssup{9(f |f<x>|2pdx) -3/ |Vf<x>|2dx}
feFq R4 R4
— 92r/@p—d(p=D) py

where the last step follows from the substitution

£ 1> 08P/ @2p=d(p=1) ¢ (gp/@2p=d(p=1)) v
By (3.2) in Theorem 3.1,
1/p
Eexp{@(/d LP(t, x, ) dx) } <00 VO <M Cr=dp=1)/@p)
R

From the fact

p Yro 1/p
(/Rd]"[Lj(rj,x,e)dx) §;Z</Rde(tj,x,e)dx)
j=1

k=1
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we have

P 1/p
AQEEeXp[9</Rd Hle(rj,x,e)dx> }
]:

0 /pyqp
< [Eexp{;(/w Lp(r,x,e)dx> ”

< 00, 0 < p-M—@r—dp=1)/@2p)

and, therefore,

p m
E(fd I Lj(rj,x,s)dx) < (pm)'9~P" Ay
R4
j=1

(4.3) VO < p- M~2p=d(p=1)/2p)

for any integerm > 1.

On the other hand, writ (y) = (1/ C4e%)1{jy—x|<¢}. FOr any integem > 1, let
> be the set of the permutations{df 2, ..., m}. Under the conventioa (0) =
andsg =0,

)4 m
E(/];Qd 1‘[1Lj(rj,x,g)dx)
j=

m p
= a’xl---dxm<EHL(t,xk,e)>

Ry k=1

= dxq-- dxm< Z/ dte”!

d
RE™ oEX,

p
El]8 (Wisk))d -ds
X \/O\SS]-S“.SS”, <t lj X, (k) (Sk) Sl )

2/ dxy---dxy / dte” ’/ dsy---dsy
(Rym ves, 0<s1< <sp <t

m

p
X inf Psj—si— 1(-x6(k)_x0‘(k l)+y) ,
ket VI=2e

where the last step follows from the Markov property. Notice that fonanye R?
with x # 0 and|y| < 2¢, and for anyt > 0,

2¢
pi(x+y)> pz<<1+ m)X) =q;(x) (say)
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By (1.9),

P m
E(/Rd jl:[lL‘,-(t‘,-,x,e)dx)

2/ dxq--- a’xm(
Ry

o0
Z / dte_t/ dsy---dsy
0 0

<51 <--<5, <
o€ =s1= 0SS =t

m

p
X 1_[ qSk—Sk—l(XU(k) - xU(k—l))>

k=1
m 00 p
= a’xl---dxm< Z 1_[/ e_tq,(xo(k)—xg(k_l))dt) .
Ry oeyk=1"0

Let§ > O be fixed. We can see that for any<O, < 1, if we takee > 0 small
enough,

1(x) > Apr (A1)
holds uniformly fort > 6, x € R“. Hence,

)4 m
E(/Rd jl:[le(rj,x,e)dx>

m 00 b
> p\Pm /(Rd)m dxy--- dxm( > ]_[/(S e pi (M Hxo ) —xc(k—l)))df)

o€, k=1

> )\(P'i‘d)me—l’am / d.x]_ e d_xm
(R ym

m o0 ?

x ( > ]_[/ e prys(xom) —xcr(k—l))d’)
O’Ezmk:]' 0

_ A(P+d)me_p8nlE[a([3, S+t x---x[8,8+ ‘L’p])m}

where the last step can be seen from the fact (1.9) and Le Gall's [(1990), (1),
page 182] moment formula: Forany ...,t, >0,

Ea([8,8 +11] x -+ x [8,8 +1,])"

P
= a’xl---dxml_[/ dsy---dsy

(Rd)ym i=1 O0<sy<- <sm<tj

m
x > P (o) [T Poc—sioa (o) — Xoe-1)-
oEX,, k=2
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In view of (4.3), therefore,

Eo([8,8 + 1] x -+ x [8,8 + T,])™
4.4
@ < Ag(eP ATV (pmy1g=Pm Vo < p. M- @r—dw=1)/@p),

Foreach O0< j < p and the integers ¥ k1 < --- <k; < p, let Akl---kj be the
product of thep sets, of which théq, ..., k; factors ards, § + 74,1, ..., [8,6 +
7,1, respectively, and the rest d@& 5]. Then

p
a([0,8+fl] X X [076+Tp])=Z Z a(Akl---kj)-
J=01ky < <kj<p

By the fact that
a([0,71] x --- x [0, 7p]) <a([0,6 + 7] X --- x [0, 8 + 7))
and by Hoélder’s triange inequality,

[Ea([O, 1] X -+ x [0, .L.p])m]l/m

=YY [Ealdns)" "

Jj=01<ki<--<k;j<p
(4.5) 1m
< [Ea([8,8 + 2] x -+ x [6,8 +T,])"]

p—1 . .
+ Z (f) [Ea([(S, S+ T]p)m]]/mP[Ea([o’ 8]p)m](P_])/(mP)’
j=0

where the second step follows from Lemma 4.1.
Let 71,..., 7, be independent exponential times with parametet. Similar
to (4.4), there Is a constaat > 0 such that

Ea([8,8 + 11] X -+ X [8,8+r;,])m§(pm)!Cm, m>1.

Notice thatr < min{zy, ..., rl/,},

Ea([8,8 +1]1°)" <a([8,8 + 1] x -+ x [8,8 + tl/,])m < (pm)!C™, m > 1.
Taking (1.12), (4.4) and (4.5) into account, we obtain

4.6) Ea ([0, 71] x - -+ x [0, T,])"
4.
< Ag(L+0(D)" (P’ A= PTN" (pm)19~P™  (m — 00).

From (1.10) we have
Ea ([0, 1]7)" < Aqg (1 + 0(1))’” (epf?)\—(p-i-d))mp1+((2p—d(p—1))/2)m

2p—d(p—1)

1
> m) (pm)lo=—P",

X F(l+
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An estimate via the Stirling formula gives

limsup

k—o0

k\/ Ear([0, 117)2/@(p—D)
k!

< (VP2 P2/ @(P=1) 2

dip—1
5 <£>2p/(d(p—l))< 2p )(2p—d(P—1))/(d(P—1))
o 2p—d(p—-1 '

Take the limit in the ordek — 1,8 — 0 andd — pM—@P—d(P=1)/2p) 50 we
have

,(\/an([O, 1]p)2k/(@(p—D)

limsu
2 2pM (2p—d(p—-1))/(d(p—-1))
a3l )
dip—D\2p—d(p-1)

_ 2 d, p)*r/@p-1),
P

where the equality follows from Lemma A.2.
Therefore, by Taylor's expansion we can see that

(4.7) Eexp{ya([0,1]7)7@r-D} c0o vy < g"(d’ p)~4P/d(=1),

Finally, (4.1) follows from Chebyshev’s inequality.

REMARK 4.1. To our surprise, the estimate given in (1.10) turns out to
be sharp enough to maintain the right constants. We point out a possible
connection between our results and those established by Koénig and Morters
(2002). From (4.6), we can see that

1
limsup—lo
m—)oopm g (m')p

2p—d(p—1
<2220 D iog(2p —d(p— 1)

d(p—1) k(d, p)?
P

Ea([0, r1] x - -+ x [0, T, D™

+ — 5 logd(p — 1) + plog

From the relationship (1.10) and our main result, Theorem 2.1, the opposite
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relationship follows. So we have

lim 1 log
m—>com > (m!)P
_2p—dpp-1
2
dip—-1

+ — 5 logd(p — 1)+ plog

This result takes a form close to that given in Proposition 2.2 of Kénig and Mérters
(2002), which provides the key estimate for their theorems. In the paper by Kénig
and Morters, the exponential times are replaced by exit times and the intersection
local time is limited to a bounded domain. It may be of some interest in the future
study to understand how exactly they are related to each other.

Ea([0, 71] x - -+ x [0, T, )™

(4.8) log(2p —d(p — 1))

k(d, p)?
o

We close this section with the following lemma.

LEMMA 4.1. For any bounded Borel sets A1,...,A, € RT and for any
integer m > 1,
p
Elo(Ar x - x Ap)"] < [ (Ela(a?)™ )7,
j=1
PROOF  Write
(ANZ={(s1,.-,5m) €(A)™; s1< -+ <Sm}.
Then our lemma follows from Le Gall's moment formula [Le Gall (1990),
Theorem 1, page 182] and Hoélder’s inequality [recall our converni@® = 0
andso = 0]:
Ela(Ay x -+ x Ap)™]
p

= dx1---dx / ds1---ds
Ry 'njl_[:l[ (Aj)m "
m
x Y T Ps—sialrow —Xo(k—l))}

oeX, k=1

p
H{/ -dxm|:/ dsy---dsy
Rdym (Apm

j=1

m py1/p

X D Hpsk—sk_l(xcr(k)—xc(k—l))} }
oeX, k=1

P

1_[ E[O{(Ap)m 1/P N

j=1
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5. Upper bound in Theorem 2.2. The approach used in Section 4 is no
longer applicable to the case of random walks, mainly due to the absence of a
scaling property. To begin with, we introduce the following inequality which is of
interest for its own sake.

THEOREMb5.1. Given positiveintegersni, ..., n, and m,

1 m! 1 1
61 EBLh..)""< Y = ER)Y e (EL)Y

l...
kit ham K2t Kal
kl,...,ngO

Consequently, for any A > 0,

[e’e) A 1/p a oo A 1/p
(5.2) > — (Bl g oyn,) " = 1> — (B17) 77
m—0 M i=1m=0 """

PROOF Letl(n, x) be the local time generated I5yn),

n
l(n,x):Z]l{S(k):x}, n=12,...,
k=1

and let/y(n, x),...,[,(n,x) be the local times of the independent random walks
{S1(m)}, ..., {Sp(n)}, respectively. Then

p
(5.3) Li=Y J]ti®nx).
xezd j=1
Write ng =0 and
Ai(x) =l(no+---+nj,x) —lno+---+nj_1,x),
xeZdi=1,...,a,
Aij(x)=1j(no+ - +nj,x) —Lj(ng+---+n;_1,x),
xeZd;i=l,...,a;j=1,...,p.
Then

1
EL )

(£ i)

k=1i=1

seensXm

a »\p
= ( Z |: Z E(Ail(xl) te Aim (xm))i| )
X1 i1 ]

seesXm
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Given integersiy, ..., i,, between 1 andi, let k1,...,k, be the numbers of
1,...,a, respectively, among, ..., i,. Thenky + --- 4+ k, = m. To prove our
conclusion, it suffices to show that

Y [E(Aq G0 Ay, ()] <ELE---ELe.

Without loss of generality, we may only consider the case when. ., k, > 1.
Under the notatiott; = (x, ..., x; ) € (Z4Hki  we set

i (%)) = E(I(n;, x1) -+ 1(ni, x},)).

It is easy to see that

SNolGy=Elf, i=1...a.
Xi

Define

Sk = (Sk).....SK0)) and Sik)=(S;k),....8;0). k=12...,

where 1<i <aand 1< j < p. Then

Z [E(Aiy (x1) -+ Ay, o)) ]”

B3 L EINIERNES]
= ZZ[E[ (‘11;[ Ai(xi) e Ai(x/iq))%(fa —Sn — na))” )
1 X i=1
Notice that
a—1 P
Z[E{ (H Ai(xh) - Ai(x,ii))¢a(ia — 8%n — na))}:|
Fa i=1

Xq

P a_l . . -
H (1‘[ Ajj(x) - A,-,-(x;q))%(fa — $%(n — na))}

i=1

p a-1 14
ZE{ (H [TA5GD A (x/’;,«)) DI balra—S5n— na))}

j=1i=1

< E{ <,1i[ E[ i (D) - (xi)) |



INTERSECTION LOCAL TIMES 3281

(s s

j=li=1

a—1 . \?
= (E [TAGD A (x;q)) -EIfe.

i=1
So we have

- lefsoh a6k

Xq i=1

a— p
<EIj*- Y - Z[EH A,-(xi)---A,-(x;;i)} :

X1 Xa—1 i=1

Repeat this procedure:
Y [E(An (1) Ay, (xn))]” <EIL- - EIN.

The second half of Theorem 5.1 follows from the computation

o0
A m

2

m=0

o0
e I S L2110 AARERY (07 )
— ky!-- - kg!

ki+-Akg=m
k- ska >0

1
B )

a oo
)\‘ m

1
(L) P, 0

S

i=1m=0

Theorem 5.1 applies to our situation in two different ways. The first application
is given in the following lemma.
LEMMA 5.2. For given 1 > 0, thereis a positive sequence {C,, },»>0 such that
Suqn—((Zp—d(p—l))/Z)mEllT)1/P <C,, m >0,
n
and

m
_|
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PROOF Write P¥(x) = P{Sx = x} (k > 1, x € Z%) and P%(x) = 8o(x). For
any m > 1, let X,, be the set of the permutations ¢f,...,m}. Under the
conventions (0) =0 andig =0,

EL'= ) [Z > ﬁPi"_i"‘l(xcr(k)—xw—l))}

X1, XmbloeX, 1<i1<---<ip<nk=1

m 14
< (mYH? Z[ > HP"k—"ka)}

X1yeens Xm 15[15...§im5nk:1

m n p
<@mh? Yy [1‘[ P"(xw}
0

X1yeees Xm Lk=1i=

X

Notice that
n . p n . p
Z(Z Pl(x)) ~ Z(Z P’(x)) =EI,, (n — 00).
x \i=0 x \i=1

In connection with the weak law given in (1.4), we have
El, = O(n(zp—d(l?—l))ﬂ)’ (n — 00).
Therefore, there is @ > 0 such that

Suqn—((zp—d(P—l))/Z)mEI}T)1/17 < m'Cm’ m= O, 1’ L
n

WhenAC < 1, the lemma follows if we tak€,, = m!C™. In the case.C > 1, we
choose a small > 0 such that

a8 @P—d(p=1)/Cp) 1.

Leta = [6~1] + 1. Thenn < a[8n]. By (5.1) in Theorem 5.1,

1/p m! k1 \1/p ka \1/p
(Elr’?) = ) 2;{ ky!-- ‘ka,(EI[aln]) "'(El[sn])
1t tkg=m )
m! 4
< o k1 Cki 15n1(@P—d(p=1)/2p))ki
_k_’_“;(: kl!'--ka!g_ ! [on]
1 a=m i

— mIC™ [§n](@P=d(p=1)/@p)m (m +rz - 1)

< m!(8@r=dp=1)/@p) )™ (’" +a- 1) n(@p—d(p=1)/2p)m v,
N m
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where the equality follows from the fact that the equatiert- - - - + k, = m has
(m+n‘1’_l) nonnegative integer solutions.
Therefore, the desired conclusion follows with

Cyp = m!(5(@P=d(p=D)/@p) (’" ta- 1) ., m=01... O

m

LEMMA 5.3. Let {Z,} be a family of nonnegative random variables and
let p > 1 be an integer. Let 7(1) be a lower semicontinuous, nondecreasing,
nonnegative function on [0, co) suchthat 7 (0) =0, 7 (] - |?) isconvexon (—oo, 0o)
andthat 7 (1) = oo asA — oc.

@ If
(5.4) limsupelogP{Z, > 1} < —1()), A>0

e—0t

and if b > 0 satisfies
( —l)m

(5.5) Jlim_lim supe log Z (EZ"1(z,=n)) Y7 = o0,

0 ¢0t

then

00 —1ym
(5.6) limsupe Iog(Z (be” )" (EZ’”)””) <supbrY? — p7In).
e—0t m=0 m! A>0
(i) Conversely, if (5.6)is satisfied for all b > 0, then (5.4) holdsfor all A > 0.
(ii) Inaddition, the condition (5.5)is satisfied if thereisa b’ > 2pb such that
(5.7) lim supe logE exple ~1b' 227} < 0.

e—0t

REMARK 5.1. By the convention used in the area of large deviations, the
notatione may also be used for a positive sequence approaching zero, in which
caseZ. represents a random sequence.

PROOF OFLEMMA 5.1. Part (i) follows from an argument almost identical to
that for Lemma 4.3.6 in Dembo and Zeitouni (1998).
To prove (i), write

W(b) = suplbr — p~ LI (1A|P))}, beR.
LeR
If b>0,

W (b) = supbr? — p~ir ().
r>0
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By Chebyshev’s inequality, ds> 0,
AP (b~ (P{Z, = ADYP < (beTHy" (EZMYP

for any integetn > 0. Summing up gives

b —1\m
eX[kal/pe_l)(]P’{Z > )\})1/17 < Z u(Ezm)l/P
m=0
Hence
(5.8) limsupe logP{Z, > A} < —p{AYPb — W(b)).
e—0t

Notice that

supAYPb — w(b)} =supAYPb — W) =p~tI(x) (A >0),

b>0 beR

where the first equality follows from the fact

sugAY?b —w ()} >0 and sup tPb—Ww(b)} <0
b>0 b<0
and the second follows from the duality lemma [see, e.g., Dembo and Zeitouni
(1998), Lemma 4.5.8]. Taking the supremum o¥et O on the right-hand side
of (5.8) gives (5.4).
We now prove (iii). From the relationshi@pm)! < (2p)2"™ (m!)??,
i (be~Hym

m=0

. (BZ'1z,2n) """

< (P(Ze = N/ Z

2pb) ((e—lb/)ZmpEng )1/(2]7)

< (P{Z, = NHV/@P) Z( X @]

2pb\~t
5(1— 5 ) (P{Z, = NHY P Eexple b/ zY/ Pyt @),

Hence

—1\m
(be ) (EZ"1z,2n) "

lim supe log Z

e—0t

1
<o { —I(N) + limsupe logE exple ~1b'Z2/7} }
P

e—0t

Letting N — oo gives (5.5). [
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We are ready to prove the upper bound for Theorem 2.2:

lim sup— logP{1, > An@r~4(r=D)/2d(-1)/2)
n—oo by - "

(5.9)
<_ g det(T) Yk (d, p)=4P/@(p=1),2/(d(p=D)

The proof is the second application of Theorem 5.1. 4.et0 be fixed, and let
t, = [tn/b,] andy, = [n/t,]. Thenn <t,(y, + 1). By (5.2) in Theorem 5.1,

0 (2p—d(p—1))/2p))m
Z i'em<b_") (IEI,;”)l/”
—o™m! n

| b, \ (@p—d(p=1))/@2p)m L v+l
< Z—Gm(—> (IEI;:’) /p

- |
m:Om. n

for any6 > 0. In view of Lemma 5.2, by the weak convergence given in (1.4) and
the dominated convergence theorem,

2p—d(p-1))/(2
i igm b_n (2p—d(p—1))/( p))m(Elm)l/p
m! n In
m=0
o0
1 2p—d(p—1))/(2 —((p=1)/(2 1
N Z %th(( p—d(p—1))/2p))m detT) ((p=D)/( p))m(Ea([O’ l]p)m) /p

m=0""

asn — oo. Hence,

. 1 © 1 b\ (2p—d(p—1))/@2p))m
limsup— log Z _9'"<_”) (Elrrln)l/P
n—oo by m:Om! n
1 * 1 o
(5.10) < Zlog Z — gm(@p—d(p=1))/(2p)m
! m:Om!

x deKF)—((P—l)/(ZP))m (EO(([O, ]_]P)nl)l/l’)'
In addition, (4.1) implies that

. 1
limsup— IogEexp{b/t(Zp—d(p—l))/(zp)a([o’ 1]p)1/p} -0

t—oo I
for anyd’ > 0. Hence condition (5.7) is satisfied with= ¢ ~1 and with

Ze =170, 1)),
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and [by (4.1)] condition (5.4) is satisfied with
100 = L@, py=4/@p-1),2/((p-1)
Sk, .

According to (i) of Lemma 5.3,

lim sup} log i iem;((zp—d(p—l))/(Zp))m
t m!

t—00 m=0 .

% deI(F)_((p_l)/(ZP))m (Eot([o, 1]17)"1)1/17)

<su deKF)—(P—l)/(ZP)Q)Ll/P _ EEK(d’ p)—4P/(d(P—l))k2/(d(P—l))}
A>0 P 2

_ Sup{g 3P — 1P ey (g, p)y-4e/@p-1) ,\2/<d<p—1>>},
A>0 p 2
Lettingtr — oo in (5.10) gives

o1 (&1 b\ @ demepm
b — — /p
imsup, '°9<Zmz9 () €1}

n—oo n =0 n

(5.11)
< Sup{ 031/ — 1P Geiry Ui (4, py=4p/@r=10;2/d(p-D) }
A>0 p 2
Finally, the desired upper bound (5.9) follows from (ii) of Lemma 5.3 with b;l
andZ, replaced by

n—(2p—d(p—1))/2b;(d(p—l))/ZIn.

6. Lower bounds. For givenx = (x7, .. .,x;’,) e (RY)?, we introduce the no-
tationP* for the probability induced by independehtlimensional Brownian mo-

tions Wy, ..., W), starting atx7, ..., x7, respectively. Without causing confusion,
for givenx = (x{,...,x9) € (Z4)?, we also uséP* for the probability induced
by the random walks1(n), ..., S,(n) in the case whed1(n), ..., S,(n) start at

x7, ..., xy, respectively. The notatidR* denotes the expectation that corresponds

to P*. To be consistent with the notation we used before, we Ede:? = P and
E©.--0 —E. Write

- - d
5= max [xfl,  £= (g xp) € R,

THEOREM6.1. For any constant C > 0,

1 -
(6.1) liminf =log inf P¥{a((0,1]7) > (“4P=0/2) > Ly (g p)=4r/@p-D),
t—00 t lx[|=C 2



INTERSECTION LOCAL TIMES 3287

Given A > 0,

Iiminfilog inf  P¥{1, > xan@P—dp=1)/2p(d(p=1)/2}
n=00 by i <Cyi - "

(6.2)
> _% det(T) Yk (d, p)~4P/(d(pr=1)32/d(p=1),

PROOF Due to similarity, we only prove (6.2). We first proceed under the
additional assumption that the random wdli(n)} is aperiodic: The greatest
common factor of the sz > 1; P{S(n) = 0} > 0} is 1. Let M > O be given as
in (4.2). To prove (6.2), it is sufficient to show that for athy- 0,

1 i} by, \ @r—d(r=1)/2p)
liminf —log inf E* exp{@(—) Inl/”}
=00 by T |E|=Cyn n
(6.3)

> 92p/(2p—d(p—1))p—(d(p—l))/(Zp—d(p—l)) del(F)_(p_l)/(ZP_d(p_l))M.

Indeed, sinc&1,"? < (EI™)Y/? by (5.11), we have

1 by \ @P—d(p—1)/2p)
lim sup— IogEexp{@(—) Inl/l’} <00  V6>0.
n

n—oo by

Furthermore, by (5.9) and Lemma 4.3.6 in Dembo and Zeitouni (1998), the above
limsup is bounded by

Sup{g AP L demy ey (g, py—4e/@p-D) /\z/u(p_l))}
A>0 2

— 920/ @p=d(p=1)) \,~(d(p=1)/@p~d(p=1) dey)~(P~D/@p—d(p=1) ps.

where the equality partially follows from Lemma A.2. Combining this with (6.3),
by the Gartner—Ellis theorem [Dembo and Zeitouni (1998), Theorem 2.3.6],

liminf — log _inf P¥{I, > an@P~dp=1)/2pld(p=1)/2)
n>00 by 7 E|<Cy/n - "
> — supag — 620/ @r=d(p=1) = (@d(p=1))/@p=d(p=1)
6>0
% del(F)_(p_l)/(ZP_d(p_l))M}
— _g det(T) Y (d, p)=4/@(pr=1);2/@(p=1)

where again the equality partially follows from Lemma A.2.
We now prove (6.3). Let > 0 andu > 0 be small numbers and lat =
(x{,...,x5) € (Z)? such that|x|| < C/n. Write

Bn(x):{y; |y—x|§£\/n/bn}, erd,
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and setB,, = B,(0). Let 0< u < 1 be a small number. For any integer> 1,

- 4 m
E* (Z [T+ [un], x) — 1 ([un], x)])
x j=1

Z HE(H [1; (n—i—[un],xf-i—xj)—lj([un],xj?+xk)])

XloeonXm j=1 \k=1

= Z 1_[ Z E(Hﬂs<[un1+zk) x”+xk}>

,,,,, Xm j=1li1,...,im=1

%

) ﬁ i E(ﬁ Y Lisqunh=y)

XLs-eesXm j=1i1,...,i;=1 k:lyeBn(qu)
X ]1{S([un]+ik)—5<[un])=x;—y+xk})-

Notice that

m

n Z ]l{S([un])=y}']l{S([un]+ik)—S([un])=X7—y+Xk}
k=1yeB,(x9)

> Lisqund=y) * | [ Lisauntvio—sunn=so—y-+xe)-

YEBA(x}) k=1
Let
= min inf inf  {P{S([un]) = y}}.
Yn 18 Lol i vebr) { {S([un]) = y}}
Then

m
E(H > Lisunp=y) - 1{S([un]+ik)—S([un])=x7—y+xk})

k:lyeBn(x‘;)

= > IP’{S([Wl])Zy}'E[H 1{S(ik)=x;—y+xk}:|

YEBu(x9) k=1

m
>V ) E[H 1{S(ik)=y+xk}:|'

yeBy, k=1



INTERSECTION LOCAL TIMES 3289

Therefore,

E¥ (ZH l ([un]+n, x) —1;([un], x)])

X Jj 1

2w (5 T8 fltswmml)

i1,im=1yeB, Lik=1

m p
=y? > (Z EHl(n,y+xk))

X1,..»Xm \yeB, k=1

=7 Z > HE[HI(”)’]‘F)%)}

,,,,, Xm y1,...,yp€By j=1

=y > > E[ﬁ]ﬁ[lj(n,yﬁxk)}

Voo YpE€By X1, 3 Xm k=1j=1

P m
=y’ > E(Zﬂlj(n’yﬂrx))-

x j=1
By Jensen’s inequality,
1

P m
B E(znmn,y‘,m)

Y1, Yp€By X j=1

1
2E<#{Bn}p Z an(ny,+x)>

p
:E(Z []ti.x, e)) ,

x j=1
wherel;(n, x, e) (1< j < p) are the same as in Section 3. By (5.3), therefore,

- - p "
E* (Lytum)” = E* (Z [T (unl +n, x) = 1;([un], x)])

x j=1

P m
> <yn#{Bn}>"E<Z [T4ox, e)) :

X j:]_
According to the Remark on page 661 of Le Gall and Rosen (1991), the
aperiodicity of the random walk implies

sup| [un/2P(S ([un]) = x) - L expl (.m0
xezd (27)d/2 de([‘)l/Z 2[un]
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asn — oo. Hence

1 1
———__ min inf inf [exp{—— 1 } +o(1 ]
0 = unl12 12j=p 9I<C Vi yEB (x)) 2[un] o o)

1 exp{ C2+0(1)}
= [un]d/? 2ul ’

wherea > 0 is the smallest eigenvalue Bt Notice that #B,,} ~ Cye?(n/b,)%/?
asn — oo. There is & = §(¢) > 0, such that for any integet > 0 andn > 1,

- p m
(6.4) inf B Ly pun))™ = 8b97/ ZE(ZHI,-(n,x,e)> ,

IFl=CVa i1

For each integet > 0, letm > 0 be the integer such thatp <k < p(m + 1).
Applying (6.4) and Holder’s inequality gives

inf Ei I (k+p)/p
IEI<Cyn (it tun)

p
z[ inf Ef<znlj([un]+n,x)

m+1= (k+p)/((m+1)p)
¥l<Cy/n x j=1 ) :|

p
> (gb;dp/z)(k+p)/((m+l)p) |:E (Z l_[ 1j(n,x,¢)

m+14(k+p)/((m+1)p)

p k/p(k+p)/k
z(8b;dp/2)(k+p)/k|:E<Znlj(n,x,e)) } .

x j=1
Therefore,

2p—d(p—1))/12p))(k+
o\ @@ )/
B n ( n+[un])
[X|<Cy/n

b\ (Cp—d(p—1))/(2p))(k+p) B} k/(k+p)
69 =((2) nf B () )
C\\n [N

((2p—d(p—1))/(2p))k P k/p
) E(S[[hmxe) .

X j:l

n

> 3b;dp/2(b_”

n

where the first step follows from the following rough estimatenAs sufficiently
large,

<bn ) (2p—d(p—1))/2p))(k+p)

inf  EY(1 ktP/r > 1 k=0,1,..
HElND (n+1am) -

.

n
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which we prove as follows. First, by Jensen’s inequality, we need only to show that

<bn>(2p—d(p—1))/2

inf  EX(I > 1.
IEI<C i (rttun)) 2

Second, similarly to (6.4) (withm = 1),

inf  EY(1
IEI<C/n (ttun)

>5(8)E< /
|

~ 3(5)n(2p—d(P—l))/(2p)

(6.6)

n

Sj(k) —x
NG

y

(18 (k) — [/nx]

(L g S

where B, = {x € 74 x| < e/n}. Therefore, (6.6) follows from the invariance
principle which claims

8}dx) (n — 00),

/ nnCdeXn: { S; (k)\/_[\/_x g}dx—d>/ﬂ§d]1i[lzj(1,x,£)dx.

[Recall thatL(z, x, ¢) is the analogue of.(r, x, £) as W (¢) is replaced by a Lévy
Gaussian process with the same covariance matrix as the random walks.]
Combined with Taylor's expansion, (6.5) implies that for any 0 < 0,

/by @P=d(p=1)/2
inf Ex|:(—> In+[un]
I¥l<C/n n

b (2p—d(p—1)/(2p) 1p
X exp{ @ — U)(;) (In+[un]) }i|

b, \ (2P=d(p=1))/(2p) p Yp
> 8b, “PI’Eexp} (0 — v)(—) Y [l x, e :
n

xezd j=1

By Theorem 3.1 and by the fact that égpl/?) > x exp((6 — v)x1/?) for largex,
we have

1/

b\ Cp—=d(p=1))/(2p)
) (In+[un])

1 _
limsup—log inf E"exp{e(—"

ﬂzMw—w
n—oo by T|x|=Cyn n

As ¢ — 0, the right-hand side approaches

1/p
sup{(e _ U)</Rd |f(x)|2”a’x> _ g [ s, FVf)dx}.

feFa
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Replacing: with k,, = [(1 — u)n] and noticing thafuk,] + k, < n, we have

. 1 ) _ by (2p—d(p-1))/(2p) 1
limsup—log inf E"exp{@(-) In/p}

n—oo by Ix<Cyn n
2 2 2 Yp
> sup{(@ —v)(1- u)( p—d(p—1))/( P)(/ | £ ()] de>
feFa R
p

2 [ vrrvsa]
= (1 — u)(0 — v)2P/@r=d(p=D) ,=(@d(p=1))/@p=d(p=1)
% deI(F)_(p_l)/(ZP_d(p_l))M,
where the last step follows from the substitution

f(x) =+|det(A)|g(Ax)

with thed x d nondegenerate matrix satisfying

deKF)—(P—l)/(ZP—d(P—l))Id’

0 — p\2p/@2p—d(p=1)
A'TTA=(1- u)( )

wherel, is thed x d identity matrix. Finally, letting: — 0 andv — 0 gives (6.3).
We now prove (6.2) without assuming aperiodicity. Let@ < 1 be fixed and
let {5, },>1 be i.i.d. Bernoulli random variables with the common law:

P61 =0} =1—P{5; =1} = y.

We assume independence betwégt)} and{s,,}.
Define the renewal sequengs };>o0 by

oo=0 and Ok+1= inf{n > oy; 6, = 1}.
Then{o, — ox—1}x>1 IS an i.i.d. sequence with common distribution
Plo1=n}=(1—-y)y" L, n=12,....
Consider the random wallS (ox ) }x>1. It is symmetric with covariance

(6.7) Cov(S(a1), S(01)) = (Bo)l' = (1 —y)~'T

and
o0

P{S(c1) =0} =(1—y) Y y* 'P(S(k) =0} > 0.

k=1

In particular,{S(ox)}x>1 is aperiodic.
Write /(n, x) for the local times of the random wa{l§ (o%) }x>1:

n
l(n,x):Z]l{S(gk):x}, xeZén=12,....
k=1



INTERSECTION LOCAL TIMES 3293

Let {8,{},121 (_1 < j < p) be independent copies ¢,},>1 and let the renewal
sequence$o,j}kzo and the local time§j(n,x) (1 = j < p) be defined in the
obvious way. Write

p
L= ) 1{sl(a,}1)=---=sp(a,§’ N > ITG@x.
kyoonkp=1 P xezd j=1
By what we have proved [i.e., (6.2) under aperiodicity] in the previous step and

by (6.7),

fiminf — log inf P¥{[, > an@P=dp=1/2p(d(r=1)/2}
n=00 by E|<Cyi - "
(6.8)

> _g(l — )" Ldet(T) Yk (d, p)—4p/@(p=1),2/d(p=1).

On the other hand, notice that
. oy On
I(n,x)= Z5k1{3(k)=x} < Z 1{S(k)=x}» xeZén=12,....
k=1 k=1

Consequently, on the ever{tsf <a(l—y)~tn,1<j < p}, where we lets > 1,
we have

p
In < Z l_[ lJ(O‘n/,x) < I[a(l—y)*ln]'
xezd j=1

So we have, for any € (Z%)?,

[p)x{fn > )Ln(Zp—d(l?—l))/zbfld(l?—l))/z}
<Pp* {I[a(l_y)—ln] > kn(zl’_d(p_l))/zbfld(”_l))/z} + pP{o, > A(1— y)_ln}.

According to Cramér's large deviation [Dembo and Zeitouni (1998), Theo-
rem 2.2.3], there is & > 0 such that

P{o, > a(1l— y)_ln} <e0n

for largen. From (6.8), therefore,

1 _
liminf —log inf P*{I _1 1> an@p—d(p=1)/2}d(p=1))/2
n—>00 b, g||f||SC\/Z { [a—y)~tn] = n }

> _%(1 _ y)—l dei(F)l/d;c(d, p)—4P/(d(P—l)))\2/(d(P—l)).
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Replacing: with [a=1(1— y)n] andi with (a(1—y)~1)@P—d(P=D)/2) we obtain

Iiminfilog inf  P¥{1, > asn@P=dp=1)/2p(d(p=1)/2)
n=00 by FI<Cy - "

> _gaap—d(p—l))/u(p—l))(l — y)"2p/d(p=D)

X det(F)l/dK , p)_417/(d(l7—1))}\’2/(d(p—1)).

Lettinga — 1 andy — 0, we have (6.2). O

REMARK 6.1. Notice that for any € (R¢)? andr > 0,

L (O(([O, t]P)) 4 c,C)?/x/;(t(217—51(17—1))/205([0’ 1]17)).

In particular, (6.1) implies that for angy > 0 andx > 0,
liminf
t—oo loglogt

(6.9) x log inf\[]P’f{a([O, 117y > a@P=dP=D)/2(1oglogr)@P=1)/2)
IxlI=Cvt

> ‘%"(d’ )~ 4P/ @(p=1);2/@(p=1)

This fact is used to prove the lower bound of the law of the iterated logarithm in
Theorem 2.3.

7. Thelaw of theiterated logarithm. In this section, we prove Theorem 2.3.
Due to similarity, we prove only (2.8) in the context of random walks. The
proof of the upper bound becomes a standard argument [see, e.g., Chen and Li
(2004), Section 6] via the Borel-Cantelli lemma after we thke- loglogn in the
moderate deviation given in Theorem 2.2.

To prove the lower bound, let, = k¥. We first show that for any

2\ (d(p=1))/2
h < <_) detT)~"~D/2 (4, p)?P,
p

(7.1) limsupn, 3~ P"V2(0glogny 1)@ P-D)/2

— 00

p
x Y JIUjesr. x) =i, x)1 =% as.

xezd j=1

We adapt the notation introduced in Section 6 and consided phdimensional
random walkS(n) = (S1(n), ..., S,(n)). By the Markov property and Lévy’s
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Borel-Cantelli lemma [see Breiman (1992), Corollary 5.29], (7.1) holds if we have

S 2p—d(p—1))/2 -
SUESOO (L, = 2P 2 loglogny ) @P-1)12)

72 -

=0 a.s.

Indeed, it is easy to see thatniloglogn, = o(\/nky+1 —ni) ask — oco. By
the classic Hartman—Wintner law of the iterated logarithm, with probability 1 the
events

ISeoll < V=), k=12,
eventually hold. Therefore, (7.2) holds if we have

inf P17, _p > a2 P2 (0g10gm,, 1) P2 = oo,
Xk:ufnsm ! }

which follows from (6.2) in Theorem 6.1 with, = loglogn.
Since

14 14
Yo TTluesr. o) = > [T (gn, ) = 1 (g, 1)1,

xezd j=1 xezd j=1
letting

o\ (d(p=1))/2
A— (-) det(T)~P~V/2¢ (4, p)?r
p

in (7.1) gives the desired lower bound for (2.8).
APPENDIX

LEMMA A.1. Under the notation given in Section 3,

p 1/p
Iimsupsup{@(/o d(z (gz)g(x +mk)> dx)
[0,m]

m—00 ge}'d keZd

(A1)
- %/@ |Vg<x>|2dx} < M. (0).

PROOF Letg € F; be fixed and write

go)= [ Y g2(x+mk),  xeR
kezd

Theng is absolutely continuous and

(A.2) / gPdx=1 and [VZWP< Y Vgl +mk).
(0] kezd
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Write
d

E=U({0§xiSﬁ—ks}u{m—ﬂ—sfxifm}).

i=1
By Lemma 3.4 in Donsker and Varadhan (1975), there i aiR“ such that

/ gz(x +a)dx < w’
E¢ m

whereE? is thee neighborhood of. We may assume = 0, that is,

(A.3) / gz(x) dx < w’
Ef m

for otherwise we may replagg-) with g(a + -).
Define the functiorp on R by

am~1/2, 0<x <m'?,

1, m_l/2<)»<m—m1/2,
()= 1/2 ~1/2 12 _

m-'4—m , m—m-/'-<x<m,

0, otherwise,

and write

p() =¢(x1) - P(xa),  x=(x1,...,x9) €RY,

f@) =g@ew / / fR (BWeRdy =gex)/VA  (say)
Then|p| <1, |Ve| < /d/mandf € ;. By (A.2),

/ V] dx‘Z{/ V22l dx+f 12121Vl dx+2f Z0! Vg,vmdx}

1 _2 d -2
< |Vg| a’x+ |g|“dx
A m J[0,m)4

1/2
(A.4) +2</ |vg|2|w|2dx) }
[0,m]}d
d d 1/2
/ valldx + +2/7</ |vg|2dx> }
[0,m]4 [0,m]4

d 5 2d
(1+—)/ |Vg| dx-i-—}
m /) J[0,m]4 m
d 2d
(1+—)/ |Vg|2dx+—},
m R4 m

IA A

IA
Bl R xR
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where the fourth step follows the inequalit§12, < 62 + 6.
On the other hand, notice th@?), (x) = A~Y2(£2),(x) forall x € [0, m]¢\ E:

P 1/p
(/[O ]d<Z<g2>e<x+mk>) dx)

kezd

/p
= ([, 1@ ar)

1/p 1/p
A5 < A( [ e dx) T ( / |<g2)e<x>|"dx)
[0,m]4\E E
1/p
<a( [, 12 ax)
N <2d(ﬂ + 2¢)
m

1/p
) SUR(E?) (x) P~ V7P,
X

where the last step partially follows from (A.3). By (A.2),

(89 (x) =

1

-2 d
dy < ——, x € R%.
Cyed /{|y—x|<£}g )y = Cyed

Combining (A.4) and (A.5) and noticing thdt< 1, we obtain

p 1/p
2 1 2
9(/[0’m]d<§ (g2)e(x +mk)> a’x) —EfRde(xn dx

kezd

J\-1
< A(l—l— —)
m

oo )L o) (oo

1/p (p=D/p
+9(W> ()" 2

m Cyed m+d

d 2d 2 1/p 1 \®@-D/p 2d
5M8<9<1+—))+9<—(ﬁ+ 8)) ( d) b=

m m Cye m+d

Taking the supremum on the left-hand side oyer #; and then lettingn — oo
on the both sides, we have (A.1)J
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LEMMA A.2. Under (1.1),

swpl ([ 1rerar)” -2 [ wrwea

feFu
20 —d(p —1) /d(p — D\ @p—1)/2p—d(p-1)
(A.6) _2p—d(p )( (p ))
2p p
x k(d, p)4p/(2P—d(P—1))’
where

Fa= {f e WH(RY); /d £ () 2dx = 1}.
R
PrROOF Write M for the left-hand side of (A.6). For any € %4,

/p 1
2 2
([irwrrax) ™ =3 [ 19rwitax

d(p—1 1 _ 1
<k(d, p)?|V fISHP=DIP _ §|Vf|%ssug{x(d, p)20€r=10/p _ 592}
0>

op —d(p—1) /d(p — 1)\ @p-D)/@p—d(p-1)
_2p (p )( (p )) (d, p)*/@p=d(p=1)

2p p
Hence
20 —d(p—1 /d(p — D\ @p—1)/2p—d(p-1)
m<2P 2;17 )< (Pp )> (d. p)in/@r—d(p-1),

On the other hand, for any < «(d, p), there is a such that

d(p=1))/(2 1—(d(p—=1))/(2
lgllzp > ClIVg|| S P~/ P g 2=@p=D)/Cp),

By homogeneity, we may assurig|> = 1. Givenx > 0, let f(x) = A%/2g(ix).
Then[| fll2=1,[IVfll2=2Vgll2 and

I £llzp = 24@=D/CP g5, > C(1||Vg|l) @ P~/ @),
Hence,
M= |If15, = 31V FI5> C2M Vgl @ P/ — S| Vgl
SinceA > 0 can be arbitrary,

M> Sup{czg(d(P—l))/P _ }92}
0>0 2

_ 2p—d(p—1) (d(p -1 )(d(l’—l))/(Zp—d(p—l))C4p/(2p_d(p_l)).
2p p
Letting C — «(d, p) gives the desired lower bound]
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