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MODERATE DEVIATIONS AND LAW OF THE ITERATED
LOGARITHM FOR INTERSECTIONS OF THE
RANGES OF RANDOM WALKS!

BY X1A CHEN
University of Tennessee

Let S1(n), ..., Sp(n) be independent symmetric random walks in 74,
We establish moderate deviations and law of the iterated logarithm for the
intersection of the ranges

#S1[0,n]N---N Sp[0, n]}

inthe cased =2, p > 2 and the case d =3, p =2.

1. Introduction. Let p > 2 be an integer and let {S;(n)},...,{S,(n)} be
symmetric independent d-dimensional lattice valued random walks with the same
distribution. Throughout we assume that {S;(n)}, ..., {S,(n)} have finite second
moment and that the smallest group that supports these random walks is Z¢.
Write I for their covariance matrix. Unless claiming otherwise, we assume that
the random walks start at the origin, that is,

Sj0)=0, j=1,....p.

To simplify the notation, we use {S(n)} for a random walk of the same distribution
as {S1(n)},...,{Sp(n)}, in the context where only a single random walk is
involved. For any A € R™, we set

S(A) ={S(k); ke A}.
In the transient case d > 3, we write
y(8)=P{S(n) #0, n>1}.

It is known [Dvoretzky, Erdos and Kakutani (1950, 1954)] that the trajectories
of the random walks {S;(n)}, ..., {S,(n)} intersect infinitely often if and only if
p(d — 2) <d. There are two ways to measure the intensity of such intersection.
One is to count the times of intersection by introducing the intersection local time

(1.1) L =#{(ki, ..., kp) €[0,n]"; Si(k) =---=S,(kp)}.
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INTERSECTION OF RANGES 1015

Another is to count the sites of intersection by considering the intersection of the
ranges

(1.2) Jo =#{$1[0,n] N ---N S, [0, n]}.

In the critical cases defined by p(d — 2) = d, a weak law obtained by Le Gall
(1986b) shows that I, and J, are attracted by I'-distributions. The law of the
iterated logarithm (LIL) for I, and J, has been obtained in Marcus and Rosen
(1997) and Rosen (1997). See (1.19) and (1.20) below for the LIL for J,.

In Chen and Li (2004) and Chen (2004), the moderate deviations and the law of
the iterated logarithm for /,, have been established in the noncritical cases defined
by p(d —2) < d. See also Chen, Li and Rosen (2005) and Chen and Rosen (2005)
for the extensions of such results to the stable random walks.

In this paper, we study the moderate deviations and the law of the iterated
logarithm for J,, under the condition

(1.3) pd—2)<d and d=>2

which consists of the case d =2, p > 2 and the case d =3, p = 2. Our work is
partially inspired by two papers. One is Le Gall (1986a) in which it is pointed out
[Theorem 5.1, Le Gall (1986b)] thatasd =2, p>2, m=1,2,...,

(1.4) MEJ'" s 2m)P" det(TY"*Ea([0,1]7)"  (n — o0)
I’l

and [Theorem 5.3, Le Gall (1986a)] thatasd =3 and p=2,m=1,2,...,
(1.5)  n ™PREJ™ — y(S)*™ det(T") ™/ ?Ea([0, 1)  (n — 00)

where ([0, 1]7) is the Brownian intersection local time

(1.6) a ([0, 1]!’)—/ []‘[/ (W;(s) ds} dx

generated by the independent d-dimensional Brownian motions Wy (t), ..., W, (1).
Here we make the following remarks: First, Le Gall only discussed the case where
the covariance matrix I' is a multiple of the identical matrix. By examining his
argument, we made a slight extension without repeating his proof. Second, it is
very likely that (1.4) and (1.5) can be developed into the laws of weak convergence.
To our best knowledge, this was confirmed [see, e.g., Le Gall (1986a) and Le Gall
and Rosen (1991)] in the case d =2, p =2, 3 and the case d =3 and p = 2.

Another is the recent large deviation result [Theorem 2.1, Chen (2004); see also
Chen and Rosen (2005) for its stable extension]

(17)  lim r~logP{a([0, 117) = 11112} = _gx(d, p) 4P/ @p=1)

under the condition (1.3), where «(d, p) > 0 is the Gagliardo—Nirenberg constant
given below. In view of (1.4) and (1.5), it is natural to expect that the tail behavior
given in (1.7) passes to J,, in certain ways.
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For each d, p satisfying (1.3), we introduce the positive number « (d, p) as the
best constant of the Gagliardo—Nirenberg inequality

1fll2p < CUV £II3 PP/ @ gy =R p e wh2RY),
where W1-2(R%) denotes the Sobolev space
W RY) = {f € L2RY); Vf e LXRY)}.
That is,

. d(p—1)/ 1-d(p—1)/(2
k(d, p) =inf{C >0; | fll2p < CIVFIy P~ ply =P DICP)
(1.8)
for f € WH2(RY)).
The Gagliardo—Nirenberg inequality can be obtained from the Sobolev inequality
by a simple substitution. We refer the interested reader to Levine (1980), Weinstein
(1983), Carlen and Loss (1993), Del Pino and Dolbeault (2003) and Cordero-
Erausquin, Nazaret and Villani (2004) for an overview of the latest state in finding
the value of Gagliardo—Nirenberg constants.

THEOREM 1. Asd=2and p >?2,

1
lim —logIP’{Jn >A

n—00 bn

by~ }
(logn)? "
(1.9) = —Z@m)~r/eD

% det(F)_l/(z(p_l))K(Z, p)—ZP/(P—l))\l/(P—l) (A > 0)
for each positive sequence {b,} satisfying

(1.10) by — oo and b,=o((logn)*?)  (n— o).
THEOREM 2. Asd=3and p =2,

1
lim — logP{J, > AVnb} |

n—00 bn
(111) 1/3 4/3 8/342/3
= —det(I)'3y(8)™*3k(3,2)78/32%/ (A > 0)
for each positive sequence {b,} satisfying

(1.12) b, —> o0 and b, = o(n2/9) (n — 00).

REMARK. We point out the fact that as d > 3,

00 1 1 !
1.13 S) = P{S(k) =0 =\ 57 o %
(1.13)  y(S) (1{; {Sk) }) ((m)d /[_n,n]d 1 —o) )
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where ¢ (1) is the characteristic function of the i.i.d. increments of {S(n)}. To prove
the first equality in (1.13), let g be the last time that the random walk S(n) visits 0.
By transience and the Markov property,

1= Plro=k} =) P{Sk) =0}y ().
k=0 k=0

The second equality in (1.13) follows from the fact that

P{S(k) =0} = eM)kdx, k=0,1,....

1
(2m)4 v/[—ﬂ,n]d

We now compare J,, with I,,. A trivial observation gives that J,, < I, with the
difference caused by the possibility that the multiple intersection may happen at
the same site. By Theorem 2.2 in Chen (2004),

1 p -1
i p—h _ _ & —2p/(p—1Dy (p—1)
(1.14) nh_grolo b logP{l, > Anbl™"} = 2\/det(r‘)/<(2, p) A
asd =2, p>2;and
.1 /3 1/3 —8/3,2/3
(1.15) nh_groloalog]P{In >Avnb;, } = —det(I') 7k (3,2) A

as d =3, p =2, where {b,} can be any positive sequence satisfying
(1.16) b, — oo and b, =o00n) (n — 00).

Comparing (1.9) with (1.14), we see a substantial difference in asymptotic
behaviors between [,, and J,, as d = 2.

Another difference is in the range of {b, }. By comparison it is natural to ask if
we can extend Theorems 1 and 2 so that any sequence {b,} satisfying (1.16) can
be included. The answer is “No.” Indeed, if we take b, > §(logn)?/(?=1 in (1.9),
or b, > 8n'/3 in (1.11), then the involved probability is bounded by

P{J, > §An)

which is eventually zero for A > 1. So our results do not hold in this case.
It seems that in Theorem 2, the right condition on {b,} is

b, — oo and bn=0(n1/3) (n — 00).

As for Theorem 1, we can push a little further: If (1.9) were true for b, = logn,
we would have

1
lim
n—oo log n

logIP’{J,, > A " }
logn

= — P (27)=P/P=D gey(r)~1/RP=D) (2, p)=2/ (=D 1/ (P=D)
2 ’ '
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This is implausible since, in the sense of moderate deviation at the scale b;,, = logn,
J, would have the rate n(logn)~! independent of p, which sharply contrasts
with (1.4). We believe that in Theorem 1, the right condition on {b,} is

b, — oo and b, =o0(logn) (n — 00).

We are not able to prove our results under these conditions. So we leave this
problem to future study.

THEOREM 3. Asd=2and p >?2,

log n)P 2\ P!
(1.17) 1imsup“’$)_1Jn=(2n)P<—) Jaet @@, ) as.
n—oo n(loglogn)? p

Asd=3and p=2,

1
(1.18)  limsup ——J, = y($)%det(I) "2 (3,2)*  a.s.

n—oo +/n(loglogn)?

Recall that the trajectories of {Si(n)}, ..., {S,(n)} intersect infinitely often if
and only if p(d — 2) <d. In the critical cases defined as p(d — 2) = d—the case
“d =4, p="2" and the case “d = p = 3,” the law of the iterated logarithm for J,
has been obtained in Marcus and Rosen (1997) and in Rosen (1997), respectively.
Under the assumption of finite third moment, it has been proved [Marcus and
Rosen (1997)] that

J, 5)?
(1.19) lim su " R ACY

n»ooplognlogloglogn 2mw2y/det(T")
as d =4 and p =2, and [Rosen (1997)] that

In _y©’

1.20 li =
(120) lrfgso%p lognlogloglogn  mdet(I")
asd=p=3.
As d =1, we have
(1.21) Jp < min max S;(k) — max minS; (k).

1<j<p k=<n I<j<pk=n

Since the equality holds in the special case of simple random walks, it is natural
to believe that even in the general case, both sides of (1.21) are asymptotically
equivalent in a suitable sense. By the classical results on the tail estimate of the
random walks, therefore, we conjecture that

.1 pA?
(1.22) Jlim ElogP{Jn > a/nby, } = —=—

for any positive sequence {b,} satisfying (1.16), where o> > 0 is the variance of
the random walks. The rigorous proof of (1.22) [more precisely, the lower bound
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of (1.22)] for the general random walks can be difficult. By comparing (1.22)
with Theorems 1, 2, (1.19) and (1.20), it is interesting to note that the asymptotic
magnitude of J, is not monotonic in dimension d and that asymptotically, J, is
maximized by d = 2.

Another interesting problem is the study of #{S[0, n]} (i.e., J, with p=1). In
the case d = 1, it is expected that #{S[0, n]} behaves like

max S(k) — min S(k)
k<n k<n

in terms of the upper and lower tail behaviors.

In the multidimensional case, the behaviors of the range #{S[0, n]} are generally
different from what we observe in the present paper. In the case d > 3, it has been
shown [Jain and Pruitt (1972) and Bass and Kumagai (2002)] that the centered
sequence

(1.23) #(S[0,n]) — E#{S[0,n]}, n=1,2,...,

has Gaussian tails and behaves essentially like a partial sum of independent
random variables.

The case d = 2 is the most interesting case in which the tail of the sequence
in (1.23) is no longer Gaussian, not even symmetric. Bass and Kumagai (2002)
obtain

. (logn)*
(1.24) lim sup ———— (#{S[0, n]} — E#{S[0,n]}) =C a.s.

n—oo nlogloglogn
with the unidentified constant C > 0. In a forthcoming paper, we [Bass, Chen and
Rosen (2004)] shall identify the constant C and we shall show that it is the lim inf
behavior of the sequence in (1.23) (i.e., J, — [EJ, with p = 1) that is relevant to
the lim sup behavior of J,, (with p = 2) given in Theorem 3.

Finally, we point out some interesting problems in the case

(1.25) p(d—2)>d.

According to Dvoretzky, Erdos and Kakutani (1950, 1954), we have
Ioo =#{(k1, ..., kp) €[0,00)7; Si(k1)=---=S,(kp)} <00 a.s.,
Joo =#{$1[0,00) N ---N §,[0,00)} < 0 a.s.;

a natural problem is to study the tails of the random variables /o, and J. In
Khanin, Mazel, Shlosman and Sinai (1994), this problem is linked to the study of
the random walk in the random potential. In the special case d > 5 and p = 2,
Khanin, Mazel, Shlosman and Sinai (1994) prove that there are c1, ¢c; > 0, such
that

(1.26) exp{—c1t'/?} < P{ly > 1} < exp{—cat'/?)
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and that given § > 0,
(1.27) expl{—1' ") <PJ = 1} < exp{—t'7/"70)

holds for large ¢. From (1.26) and (1.27) we observe again a fundamental
difference between the intersection local time and the intersection of independent
ranges. In particular, this observation breaks the stereotype that J. always behaves
like y (S)? 1. in the transient case. It is certainly of great interest in studying precise
large deviations for I, and J, under (1.25).

The paper is organized as follows. In Section 2, we formulate a nonstandard
version (Theorem 4) of the Girtner—Ellis theorem with nearly standard proof.
From the viewpoint of large deviation theory, our work contributes an important
example which is not quite suitable for the classic Gértner—Ellis theorem but can
be solved in a nonstandard way.

In Section 3, we prove the upper bounds given in Theorems 1 and 2. The key
tool is a moment inequality (Theorem 6) for J,, which is parallel to the one given
in Theorem 5.1 in Chen (2004) for I,,.

In Section 4, we prove the lower bounds given in Theorems 1 and 2. This is
the most delicate part of the whole paper and some substantially new ideas are
needed. First we establish a weak law (Theorem 7) for certain functionals related
to J,, which seems new and has independent interest for its own sake. Second,
we partition the time interval [0, n] properly and conduct some sharp estimate to
eliminate the influence from intersection of trajectories between any two different
time periods. Finally, we establish some Feynman—Kac type large deviation lower
bounds (Theorem 8) in a way close to Theorem 4.1 in Chen and Li (2004).

In Section 5, we prove the laws of the iterated logarithm given in Theorem 3.
The nontrivial part is the lower bound, for which some uniform lower bounds of
the moderate deviations are needed.

In spite of some technical connections to the recent works Chen and Li (2004),
Bass and Chen (2004), Chen (2004), Chen, Li and Rosen (2005), Chen and Rosen
(2005) and Bass, Chen and Rosen (2005) on the exponential asymptotics for
intersection local times, the main approach used here is fundamentally different.

2. A Girtner-Ellis type theorem. Let {Z,} be a family of nonnegative
random variables and let p > 1 be an integer. Assume that for any 6 > 0, the
following limit exists:

(2.1) hm elog Z (Ezm)‘/P (o).

It is easy to see that W (0) is nondecreasing and convex on [0, co) with W (0) =

By the Girtner—Ellis theorem, Z, satisfies the large deviation principle if p = 1
and if W(#) and its convex conjugate W*()\) satisfy some regularity conditions
[see, e.g., Theorem 2.3.6 in Dembo and Zeitouni (1998) for details]. What we
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intend to establish in this section is a large deviation principle under (2.1) and
some additional regularity assumptions in the case p > 1.
Write

(2.2) 1(}) = psup{r!/Po — w(6)).
6>0

By Lemma 2.3.9 in Dembo and Zeitouni (1998), I is a good rate function: I is
lower semicontinuous on [0, co] and for each [ > 0, the level set {A; I (L) <[} is
compact. In addition, one can easily see that / (0) = 0 and that /(] - |”) is convex
on (—o0, 00).

DEFINITION. Ag € [0, 00) is called a p-distinguishable point of [ if there is
6o € [0, 00) such that

1
APy — —I(A) < W(6y) VA >0with A % Ag.
p

REMARK. By an argument of duality [see the proof of Lemma 5.3 in Chen
(2004)] we have that for any 6y > 0,

pg, _ 1
supiA /POy — —1(L); =W (Oo).
A>0 p

Therefore, Ag is p-distinguishable if ¢ is the unique maximizer of the function
1
o) =276 — —1()
p

for some 6y > 0.
An important ingredient of our idea is the following generalization of the
Girtner—Ellis theorem on large deviations.

THEOREM 4. Let {Z.} be a family of nonnegative random variables and let
p > 1 be an integer. Assume that for any 6 > 0, (2.1) holds. Then for any A > 0,

(2.3) limsupeloglP{Z, > A} < —1(}).

e—0t

Further, if the set of p-distinguishable points of I is dense in [0, 00), then
2.4) lim eloglP{Z; > 1} =—1(}), A>0.
e—071
PROOF. The proof of the upper bound is just a routine application of the
Chebyshev inequality: For any 6 > 0,
KPR O™ (B{Ze = 1)'P < (07" BZIHP
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for any integer m > 0. Summing up gives

1/po—1 X (BehHym
T P(Ze Z A < YD @2,
m=0 '

Hence

limsupe logP{Z, > A} < —p{r!/P6 — W (6)).

e—071

Taking the supremum over 0 gives the desired upper bound.
To accomplish the second part, we need only to prove that for any
p-distinguishable point A¢ and any § > 0,

(2.5) liminfelogP{Z, € (Ag — §, Ao + 8)} > —1 (Ag).
e—071
We may assume that 0 < § < Ag. Notice that
1 1
(o +8)"/P (B{Ze € (ho = 8,20 + O 7 = (BZI Viz,c00-5.00+50) -
Summing up we have
e W0t (Br7. e (g — 8,20 +8)) 7
o] —1\m
(Boe™") 1
> Y (EZ N zc00-5.0010) "
=0 :

m

where 6 is given as in the definition of the p-distinguishable point Ag.
If we can prove that for any § > 0,

o0 —1\m
(Boe™") 1
> (B2 Uz c0p-5.00+50) v
m=0 '
(2.6) o oty
~ Z M(Ez‘?)l/l) (e > 07)
= m!

then we will have

liminfe logP(Z, € (g — 8,20 +8)} = —p{fo(h +8)17 —w(hy)).
e—0

For any 0 < 8’ < 8, replacing § by 8" and noticing that
P{Ze € (o — 8, 20 +8)} = P(Zc € (ho — &', 20 +8')},
we obtain

liminfe logP{Ze € (ho — 8,20 +8)} = —p{6o (. + SHYP — W (6p)).
e—0
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Letting ' — 0% gives
liminfelogP{Ze € (ho — 8,20 +8)} = — {0 P — W (By)} = —1 (10).
e—0

That is (2.5).
To prove (2.6), notice that

(Boe™ )m my1/p
5 e

o0 —1\ym
(Boe™") Y
< Z 7!(Ezgiﬂ{zge<xo—a,xo+a)}) g

(908_1)’" 1
(EZ"L 17, ¢G0-5.5048))

+Z

In view of (2.1), we will have (2.6) if

(908_1)’"

(27)  liminfe log Z (BZ" 117, ¢0—5.50150) 7 < W (B0).

m=0

Write Bg = (Ao — 8, Ao+ ). Since I (1) is a good rate function, by distinguisha-
bility
1/ 1
n=W(0y) — sup {A"Pho——I(A)} >0
A¢ By p

From the Holder inequality, (EZ}") I/p > IEZS"/ P and the assumption (2.1) we have

limsupelogEexp{Heflzg} < 00, 6 > 0.

e—0

According to Lemma 5.3(iii) in Chen (2004) (or Theorem 5 below), therefore,

( g—l)m

lim limsupelog Z (EZ;”]I{ZSEN})I/” = —00.

N—o0o o o+ m=0
Let N > A + 8 be fixed for a moment and let
B; =[a;, b;], i=1,...,1,

be intervals such that

1
[0, N1\ Bo=_J B;

i=1
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and that (b; — a;)'/? <n/2fori=1,...,1. Then

(e ¢) —1\m
(Boe™") 1
3 (B2 z,p)

|
m—0 m.

(B~ 1y | L& (fpe™ "y
T(Ezénﬂ{lszm) v +Z Z —
!

i=1m=0

A

— (EZ"1z,e5,)""

IA

2
i’j: 9()8_1)m

)
(EZ01(z,=m) 7+ 3 0 ®(Z, = ai)) VP,
i=1

By the proved upper bound,

—1\m
lim sup ¢ log Z M(EZ?E{Z#BM)I/[)

e—0F m=0

< max ! limsupe Z

e—~>0t 0

0 8_1 m
M(Ezm z=m)'"7,

<i<l

max {9 b'? — lI(a,-)}}
1 p

(908_1)’"

< max ! limsup e Z EZI'1 ZgzN})l/p»

e—~>0t 0

1
sup {90/\‘/1? - —I(A)} L1
¢ By P 2

Letting N — oo gives

(908_1)’"

lim sup ¢ log Z (EZ?IL{ZﬁBo})I/p

e—>0t m=0

< sup {Hokl/p — —1(,\)} 5 < Y.

A¢By O

Like Varadhan’s integral lemma [Theorem 4.3.1 in Dembo and Zeitouni (1998)]
to the well-known Girtner—Ellis theorem, the following theorem is a converse of
Theorem 4. We give it without proof, as it is essentially given in the proof for
Lemma 5.3 in Chen (2004) (only some obvious modification is needed).

THEOREM 5. Let {Z;} be a family of nonnegative random variables and let
p > 1 be an integer. Let 1(A) be a nondecreasing good rate function on [0, 00)
such that 1(0) =0, I(| - |?) is convex on (—00, 00). Assume that

lir{)l+ eloglP{Z, > A} =—1()) (A>0)
e—
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and that 0 > 0 satisfies

—1\m
(2.8) hm limsup ¢ log Z (Be ) (EZQ“JL{Z&Z]V})]/" = —00;
N—>00 o0+ m=1
then
. (98—1) my1/ Vp _
(29)  lim elog Z EzZ™MYP) =sup{er’? — p~TI (1))
e—07F m—0 A>0
In particular, the condition (2.8) is satisfied if there is a 0’ > 2p6 such that
(2.10) limsupelog Eexp{e~10'Z1/P}) < o0.
e—07T

Theorem 4 applies to the proof of Theorems 1 and 2 as follows.

CLAIM 1. We will have Theorem 1 if

1 X 0™ (b, logP n\"™'P
lim —1 se - EJ™M/P
i 5-toe 32 () @
@2.11)

1/2(p—1)\77!

= —<&> Q2mr0)P/det(Mk (2, p)zl’ 6 >0)
p p

in the cased =2, p > 2.

CLAIM 2.  We will have Theorem 2 if

00 pm m/4
nli)ngob—log Z ( ) EJ"
(2.12) ;
—2( > (y (SO det(M) '« (3,28 (0 >0)

inthe cased =3, p =2.

Due to similarity we only show how Claim 1 follows from Theorem 4. First, the
condition (2.1) is satisfied with

xp(e)_—<2(p D) (276)P /det(D)k (2, p)2P.
P\ p

A simple calculus gives that

1(x) = psup{r'/P0 — W (6)}
6>0

= L (27)=P/ =D gey(r)~1/ Q=D (2, p)=2P/ (=D 1/(p=D)
2 ’ '
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Second, every Ag > 0 is p-distinguishable. Indeed, doing simple calculus again

one can directly verify that for
0o = 2Py P/ D (2, )20 (0D /PP,
2p—1

A 1s the unique maximizer of the function

1
o) =AYPgy — =1 (n).
p

3. Upper bounds. The main goal of this section is to prove that in the case
d=2,p>2,

1 . 0™ (bylogl n\"/P
lim sup — log Z (%) (EJmM/P

n—o0 n

(3.1) -1

for any {b,} satistfying (1.10); and that in the case d =3, p =2,

1 & 0m (b, \"*
limsup — log Z ( " ) EJ"

n—oo n

(3.2) 3
<2( > (v ($)H)*det(I) 'k (3,2)% 6 >0)

for any {b,} satisfying (1.12).

To begin, we first consider {Si(n)},...,{Sp(n)} as any independent and
1dentlcally distributed Z?-random walks. Let the integer a > 2 be fixed and let
ni, ..., N, be positive integers, ng = 0. Write

Aj=[no+---+nj—1,no+---+nil, i=1,...,a,

P a
A=) T Liwes;an-

X j=li=1
Notice that

p
Jn1+-~~+l’la = Z 1_[ 1{xeSj[0,n1+~-+na]} < A.
X j=1

For the needs of the upper bound, it is enough to control J, .. 4p,. In the
proof of the lower bound, however, it is required to control the self-intersection
between two different parts of a single trajectory, which is associated with A (with
a,ny,...,n, being suitably chosen) in law. In addition, the hardest part of this
work is to essentially show that A and J,, 4...4,, are asymptotically equivalent as
a,ny,...,ny (all depend on n) are suitably chosen.
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THEOREM 6. For any integer m > 1,

I m! kiy1/p kay1/p
(3.3) EAMHVP < 3 m(EJn;) o (BJRP
Consequently, for any A > 0,
o0 9m

(3.4) > S EAMP < ]’[ Z me,

mO llmO

PROOF.

m 1/p
(EAm)l/Pz( > [EHZ xkeS(A):| )
X1yeeesXm k=

a p\ 1/p
=( > [ > E(ﬂ{xlesmil)}"'1{xmeS(Aim)})})
X1 1

i1yeeesim=1

a 1/p
< X ( Y [Epesa - 1{xmeS<Aim>})]p) :
| .

I1,eees im=1 \X1,..., Xm

Given integers iy, ...,i, between 1 and a, let ki, ..., k, be the number of
occurrences of i. = 1,...,i. = a, respectively. Then k; + --- 4+ k; = m. To
prove (3.3), it suffices to show
3.5 Y [E(pesann - Lupesan)) <ELT - Bl

X1

Without losing generality we may only consider the case when ki, ..., ks > 1.
Under the notation x; = (xl, .. xk ) € (ZhHki, we set

ki
¢i (X)) = E( I1 1{X;ES[07ni]}).
I=1
It is easy to see that

Y ¢lG)=EJy,  i=1...a.
X
Define

—. —_— - — e e
Sy = (SK),....SK)) and Sik)=(S;(k),....8;0),  k=12...,
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where 1 <i <aand 1 <j < p. Then

Y [E(esan - Tomesa,on)]”

X1 Xm

. p
=Y [E [10iesan 1{x,’;ieS<Af>}} '
X1 Xa i=1
Notice that

a P
> [E [T 0esan T eS(Ai)}}
i=1 '

Xa
a—1 _ p
= Z |:E{< H Il{x’ieS(Ai)} o ﬂ{x};.eS(Ai)}>¢“ (Yo = 5%n — n”))}]
Xa i=1 !
a—1 _
( Hl Lviesam l{x,’;iesjmi)})‘f’a (Yo — S5(n — ”a))}
1=

p
H Liiesicany {xk €Sj(A; )}) Z H Pa(Xa — Sf(n — ”“))}

Xq j=1

p
H IL{x €S; (AN} l{x,iiesj(Ai)}>
p _ 1/p
e—
Liies;an” ]l{x,iieSj(Ai)}> quf,’(ia)}
Xa

a—1 P
_ A A ka
= {E 1_[1 Litesany ]1{x,;,.eS<A,«>}} BTG
1=

So we have

p
Z Z [E [T esam {x;esm,«)}}

p
<EJfe. Z > [E [1 Liesany {x;iiGS(Ai)}} '

Xa—1

Repeating this procedure gives (3.5). [
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Immediately, we have:

COROLLARY 1. For any integer m > 1,

| m! 1 |
(]EJ;ZT'F""Fna) /p < Z W(Ejrlfll) p .. (EszZ) /p‘
s

Consequently, for any A > 0,

o A" 1/p L A" 1/p
> B in,) S [1> B
m=0 . i=1m=0 '

As application, we have the following sharp moment estimate.

LEMMA 1. There is a constant C > 0 depending only on d and p such that:
(i) Whend =2 and p > 2,

1 m
(3.6) IEJ,f"f(m!)p_lCmnm(min{i,ID Vm,n=1,2,....
(log(n/m))?
(ii) Whend =3, p=2,
(3.7) EJ™ < (m)*>2C™n™?  Vm,n=1,2,....

PROOF. Due to similarity we only prove (3.6) in the case log(n/m) > 1. Write
[(m,n) =[n/m]+ 1. Then

1 m! ki \U/p kn /P
BV < ) Zk kl,‘”km|(]EJl(;n,n)) w (B my)
+-otky= ’ ’
lk] ..... kmz()m
m! k km
< Z Wkl!“'km!(Ejl(m,n)) l/p'--(EJI(m,n)) /p

ey etk =m 17T K

lkl ..... kaOm

= (2mm_ 1>m!Cm (Ejl(m’n))m/p
<2m—1> | m( (n/m) >m/17
= m!C"| ————
m (log(n/m))Pr

< <2m) (m!)(P—l)/PCm<+>mm
T\m (log(n/m))?

where the second inequality follows from the fact [Remarks, page 664 in Le Gall
and Rosen (1991)] that

EJF < k)P (EJ)*,  k=0,1,....
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EJ" < <2’">pcpm(m!)l’—1 (L)m
" A\m (log(n/m))?

Finally, the desired conclusion follows from the fact

2m m
(m)54. -

We are ready to prove the upper bounds for Theorems 1 and 2. Due to similarity
we only prove (3.1). Let ¢ > 0 be fixed and let t,, = [tn/b,]. Applying Corollary 1,

Hence

we have
o m n
(3.8)
[n/ta]+1
b log? n\"/? 1
( ) .

By (1.4), Lemma 1 and the dominated convergence theorem,
ad igm(bn logpn)m/"(EJtm)l/p
m! n "

— ¥ —(2n9)m /P det(I) /P (Ba ([0, 117)™) /7
m= O

m=0

3.9

as n — oo. Hence,

1 S| by, logP n\™/P
limsupb—log<2 _9m<M> (EJ,;")l/p)
n

n—o00 n m:Om!

(3.10)

1 > 1
=< —log ( - - @ue)"1™P det(I)!/ 0" (Ee ([0, 1]p)m)1/p>.
m=0"

In view of (1.7) (with d = 2), applying Theorem 5to & = ¢!
Zo=1""Dg([0,117) and I()= §K(2, p) 2P/ (=D, 1/(p=1)

gives

1 >
lim — log( 3" — @)™ det() Y P™ (B ([0, 1]P)m)1/”>
m!

t—00
m=0

— sup {(2719) det(T) /@y 1/p _ %K(z, )20/ (=D) kl/(p—l)}
A>0

_ p—1
_ l(M) (270)P/det(TYk (2, p)*P.
P p
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Letting t — oo in (3.10) gives (3.1).

4. Lower bounds. The main goal of this section is to prove that in the case
d=2,p>2,

0™ (bylogl n\"/P

hmlnf— log Z (M> (EJmM/P

n—o00 b n

4.1
1/2(p—1\"!
> —(w) Q2r0)P/det(T)k (2, p)P @ >0
p p
for any {b,} satisfying (1.10); and that in the case d =3, p =2,

[ee] om b m/4
lim 1nf— log Z ( ) EJ"
n

n—>00
n m= 0

(4.2) 5
>2( ) (y(S)O)*det(M) 43,22 (6 >0)

for any {b,} satisfying (1.12).

We proceed in two steps. The main result in the first step is a weak law given in
Theorem 7 and the essential tool is the second moment estimate. The second step
starts after the proof of Theorem 7 and the goal is to establish Theorem 8 which
leads to (4.1) and (4.2) through a simple argument. To this end we first establish
a Feynman—Kac lower bound in Lemma 5, using an argument similar to the one
given in the proof of Theorem 4.1 of Chen and Li (2004). The accomplishment
of Theorem 8 relies on eliminating the contribution from self-intersection between
different time periods. This part is carried out in Lemma 6.

For any x = (x1,...,x4) € RY, we adopt the notation [x] € 74 throughout this
section for the lattice part of x, that is,

[x]=([x1], ..., [xaD)-

Recall that a Z¢ random walk {S(n)} is said to be aperiodic if the greatest
common factor of the set

{n>1;P{S(n) =0} > 0}

is 1. According to a remark made in page 661 of Le Gall and Rosen (1991), the
aperiodicity implies

1
4.3 A2PS(n) =x} —
@3 s S = i g7

1
exp{—%(x, F_lx)H -0

as n — oQ.
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LEMMA 2. Let {S(n)} be a mean zero, square integrable random walk in Ze.
For any x € 72, write

T, =inf{n > 0; S(n) = x}.

Then

4.4) P(T. <n}>=> P{S(k) :x}/Z]P’{S(k) =0}, n=1,2,....
k=0 k=0

PROOF. By the Markov property,

k
P{S(k) =x} =) P(Ty = j, S(k) = x}

j=0
(4.5) .
=Y P{T, = j}P{S(k — j) =0}.
j=0

Summing up on both sides,

n n k
Y PSk)=x}=)_ > P{T. = j}iP{S(k — j) =0}
k=0

k=0 =0

=Y P{Ty=j} ) P{Sk—j)=0)

j=0 k=j

<P{Tx <n}) P{S(k)=0}.

k=0 O

LEMMA 3. Let {S(n)} be a mean zero, square integrable random walk in Z¢.

() Asd =2,
(4.6) supEexp {910%#{5[0, n]}} <0 (0>0).
(i) Asd >3,
4.7) supEexp {9%#{5[0, n]}} <o (0>0).

PROOF. Since #{S[0, n]} <n+1, (4.7) is trivial. To prove (4.6), we first show
that for any a, b > 0 and any integer n > 1,

4.8) P{#{S[0, n]} > a + b} < P{#{S[0, n]} > a}P{#{S[0, n]} > b}.
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Notice that #{S[0, n]} takes integer values. So we may assume that a and b are
integers, for otherwise we can use [a], [b] and [a + b] instead of a, b and a + b,
respectively, in the following argument. Define the stopping time

© =inf {k; #{S[0, n]} > a}.
Then
P{#{S[0,n]} > a + b}
=P{#{S[0,n]} >a+b,7t <n}

= 3" Pl =k, #{S[0, n]} — #{S[0, k]} = b}
k=0

<Y P{r =k, #(S[k, nl} > b}
k=0

= XH:IP’{r = k}P{#{S[0, n — k1} > b}
k=0
<P{r <n}P{#{S[0, nl} > b}
=P{#{S[0, n]} > a}P{#{S[0, n]} > b}.
We now prove (4.6) in the case d = 2. Let C > 0 be fixed. By (4.8) we have

IP’{#{S[O, nl) > CmL} < (]P’{#{S[O, nl}=C—- }) .
logn logn
By the fact that E#{S[0, n]} = O (n(log n)~1) one can take C > 0 large enough so
n -2
sup Pi#{S[0,n]} > C—— <e ~.
n logn
Therefore, (4.6) holds for & = C~!. We now show that it holds for all & > 0.

Indeed, take § > O such that & < C~![§~1] and write k, = [6n]. The desired
conclusion follows from the following estimate:

(67111
Eexp {eloﬂ#{S[o, n]}} < <Eexp {eloﬂ#{sm, kn]}})
n n

losk 61141
< <Eexp{C_l%#{S[0, kn]}}> O

THEOREM 7. Let {S(n)} be a mean zero, square integrable random walk in Z.¢
and let X; be the symmetric Lévy Gaussian process such that S(1) and X have the
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same covariance matrix I'. Let f(x) be a bounded, continuous function on R?.

(i) Asd =2,

0 (ot 3 /(5 ) - ([ o)

xeS[0,n]

(ii) Asd >3,

o (b 2 5)52) = ([ )

PROOF. We only consider the case d = 2, as the proof for d > 3 is similar. By
the invariance principle,

( Zf(S(k)) 551_)) a, (/ £ dr, Xl)

Let

n
I(n,x) =Y Lis@=x}: xeZ* n>1,
k=1

be the local time of {S(n)}. By the fact
S(k) X
Zf< >= Zf(—)l(n,X)
\/_ xeZ? ﬁ
we need only to prove

1 E[xgz:zf(%)l(n,x)

2
logn
4.11) ~ o J Zf( )11{Tx<n] -0

(n — 00)

where T = inf{n >0, S(n) = x}.
We may assume that f > 0, for otherwise we consider the decomposition
f=f*— f~. We only need to prove

“4.12) — [Zf( )l(n x)T—>EU f(Xt)dt]z (n — 00),
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2
log?n by
——=__F )1
47202 det(T") |:xeXZ:2 f(ﬁ) {Txf"}}
1 2
— IE[/ f(Xt)dt] (n — 00),
0

s £ (o) (2o

xeZ?

4.13)

(4.14) | )
—>IE[/(; f(Xt)dt] (n — 00).

Clearly, (4.12) is a direct consequence of the invariance principle and the
dominated convergence theorem. Notice that

Z f( )1{Tx<n =/H;2f<%)1{nx]sn}dx

[/nx]
=0 [ 1 (g gz

=o(1) - #{S[0, n]} +n%1;2 f(x)]l{T[ﬁx]fn}dx (n — 00).

By Lemma 3, (4.13) is equivalent to

2

1 2 2 1
og n E['/H;Z f(x)]l{r[ﬁxlsn}dx] — E|:f0 f(X,)dti| (n — 00).

472 det(I")

Notice that

2
EI:/I;@? f(x)]l{T[ﬁx]gn}dx]

= 2/R2 f(X)f(Y)P{T[fx] T Juy) S n}dxdy.
By (5.d) and (5.e) in Le Gall (1986a), respectively,
lim (logn) IP{T[[X] Tt Juy) <1}

— (27)? det(T") f /{ oy PP =) ds

(logn)*P{Ty sy < Ty iy) <1} < C*h(IxDA(ly — x1),
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where p;(x) is the density of X; and A (r) = (log(1/r))+ + rfz]l{r>1/2}. By the
dominated convergence theorem,

lim €1 _p 1 ix|
n50 472 det(T') [/sz (O g2 x}

:2A2XR2 f(x)f(y){ /\/;Ofsftfl}pS(X)ptS(y —x)dsdt}dxdy
=2ff{0§s§t§l} dsdt/]RZ dx f(JC)Ps()C)/]Rz FO)pi—s(y —x)dy

= 2//{0<s<t<1} dsdt E{f (Xs)Ex, f(X;—s)}

_ 2f/{0§$§§1}E{f(xs)f(x,)}ds di :E[/O] f(X;)dtT.

We now come to the proof of (4.14). Since

[(Z f< ) n<n}) (xng(%)l(n,x))}

xeZ?

o] H o)

xeZ? xe7?

by (4.12) and (4.13)
ogn
Py [(Zf(f> T)(%f( )l(”””)}

=< E[./o f(Xt)dt]z.

To obtain the lower bound for (4.14), notice that

E[( sz(%)ﬂmfn}> (gzjzf(%)l(n,x))]

- X f( ) s (%) S BT, = . S(K) =)

,yEZ? 0<j<k=n

n Z f( ) (%) S PS(j) =x, Ty =k},

,yEZ2 0<j<k=n
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By the Markov property,

Y. P{Ti=j, Sk =y)

O0<j<k=n

= Y P(T=jIP(SCk—j)=y—x)

0<j<k<n

=Y P(S(k)=y —x)P{Ty <n —k)
k=1

n n—k
>3 PSh) =y —x} (G — ) Y PIS() =x)

k=1 j=1

n n—k
> (Gn) ™' Y P{Sk) =y —x} > _P{S(j) =x}
k=1

j=1

=(@Gm)™" Y PSG)=x)P(Sk—j)=y—x},

0<j<k=n

where, by Proposition 2.4 in Le Gall and Rosen (1991),

Gn) = ZIP’{S(k) =0} ~ logn (n — 00)
=0 2

1
J/det(I")

and where the third step follows from Lemma 2.
Using the Markov property again,

> PS()=x,Ty =k}

0<j<k=n

= > PSW=xTy=j, S #y,....Stk =1 #y, Sk =y)

0<j<k=n

= Y  PS()=x,Ty> jIP{Ty_x =k — j}

0<j<k=n

= Y PSG) =x)P(Ty_ =k — j)

0<j<k=n

- Y PSG)=x,Ty < j}P{Ty—x =k — j}.

O0<j<k=n
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For the first term on the right-hand side,
> PISG) =xIP{Ty—r =k — j)

0<j<k=n

= P{S(j) =x}P{Ty—x <n— j}
j=0

= ZP{S(J)—x}(G(n—J) ZP{S(k) y—x}

j=0

> (G~ Y PS() =xIP(Stk— j) =y —x}.

0<j<k=n

For the second term,

Yo PSG)=xTy < jP{Ty—y =k — j)

0<j<k=n

<P{Ty_» <n} Y P{S(j)=x,Ty < j}
j=0

noJ
=P(Ty—x <n} ) D> P(Ty=i,S(j)=x}

j=0i=0

noJj
=P(Ty_x <n} ) ) P(Ty =i}P{S( —) =x —y)

j=0i=0

<P{Te <n}P{Ty_y <n} Y PS(j)=x—y}.
j=0

Summarizing what we have,

logn x
lggfmz—clet(F)E[<gZ:2f<\/_ﬁ>ﬂ{T"§"}> (xgzjzf(f)l(n X)ﬂ
2
> lhnllorolfnz [ Z f( )l(n,x):|

sz, 2, () ()

x P{T: < m)P(Ty—x <n} Y P(S(j) =x = y}.
j=0
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In view of (4.12), it remains to prove

nlir%olzgzn > (%)(%)

(4.15) ez "
x P{T, <n}P{Ty_y <n} Y P(S(j)=x—y}=0.
j=0
Indeed,
X
— P{T, <n}P{T,_, < P{S(j)=x —
XEZZf(ﬁ) (I) (T, < n)P(T,_ n}JX;) (SG)=x—y)
<fllee Y. f P(T < n}P{Ty_x <n} > P(S(j) =x — y}
x,yeZ? ([) ’ j=0
< ||f||oo{E Yo f 1, <n) ]{ > PT, <n}ZP{S(1)——x}]
xeZ? ([) xeZ?
From (4.13),
lim sup lognE Z f<i>]l{r <n) < 00.
noeo N xeZ? ﬁ h

Notice that

Y P{Tc<n} ) P(S(j) =—x)

xeZ? Jj=0

{ Y (P{T: sn})z}m{ 3 [fmsu)ﬂ}ﬂl/z.

xeZz? xez? L j=0
Finally, (4.15) follows from the fact that as p = 2,
n
EJy= 3 (BT, <n})?= 0<7>,
n Z ( { X = n}) (logn)2

xeZ?

n 2
El, =) [Z]P’{S(j):x}] =0n).

xez? L j=0 O

Fix integer r > 1 and the bounded measurable function f on R?. Define the
linear operator T on £2(Z4) by

(T&)(x) =Ex[exp{ > f(y)}S(S(t))}

yeS[0,1]

{exp i > flx+ y)}é(x + S(r))]-

yeS[0,1]
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LEMMA 4. Given any symmetric random walk {S(n)} on Z2, T is self-adjoint:
For any §,n € L*(Z%), (1, T&) = (Tn. £).

PROOF.

n,T&) =) n(X)E[eXP{ > f(x-i-y)}E(x'i‘S(t))}

xezd y€es[0,z]

=F Zr]x—S(t) exp{ > flr+y-— S(t))}é(x)}

Lxezd yeSs[0.1]

=E| Y n(x+S®) eXP: > f(ery)}S(X)}

Lxezd y€S'10,1]

=E| Y nx+S@©) eXp{ > f(x+y)}é(x)}

L xezd yeS[0,1]

= (TU, S)s

where §'(k) = —S(@) + S — k), k=0,1,...,t and the fourth equality follows
from the fact that

(8°0), ..., S' )L (500), ..., S()). 0

In the rest of the paper, we adopt the notation
(4.16) th =[n/b,] and A; =[G — Dt,,it,], i=1,2,....
Write

Fa={g e LXRY); glla=1and [|Vg|2 < oo}.

LEMMA 5. Let {S(n)} be a symmetric, square integrable and aperiodic
random walk on 7Z¢ and let f be bounded and continuous on R¢. Assume that
{b,} satisfies (1.16).

(1) Asd =2,

bul

1 by log(n/by) L

liminf — log E Sy ,/
0o by, eXp{Zﬂn«/det(F P lxeS(A)f

> sup | [ rogmar—3 [ v, FVg(x»dx}.

g€

4.17)
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(i) Asd >3,

| [b]
liminf — log Eex f
Hoee by 8 p{ (S)n;XESX(:A) (V )}

1
> sup | [ rogwdx =3 [ (Ve Vg0 dx .

8EF3

(4.18)

PROOF. We only consider the case d = 2, as the proof for d > 3 is similar. For
each n, define the continuous, self-adjoint linear operator 7, on L2(72) as

B by log(n/by)
TnS(X)—Ex<6XP{2nnMxe%t ]f</7 )}5(Srn))

where x € Z? and & € £L2(Z?).
Let g be a bounded function on R? and assume that g is infinitely differentiable,
supported by a finite box [—M, M]? and

/ 800 2dx =1
]R2

by by,
-‘?n(x)=g<\/;x>/ > 82< ;)7), x €7

yeZ?

and write

Let P, (x) (x € 72) be the probability density of S;, . Then
by log(n/by) Lnl ( ) }
Eexp f
s T (o

= > P,(x)Erexp bn 10g(/bn) [bXJ:I o f \/7
A 27 n+/det(T) puriiiery

xeZ?

- supy|g<y>|2{ 28 (/7 )} > Py (k)

yeZ? xeZ?

by log(n/by) 2 /7
x E, (exp { /et ; XESX(:A )f( )}sn(s(([bn] - 1)fn)))

- [bn]~
~ sup, |g<y>|2{ 28 (/7 )} > P& @TI T (0

yeZ? xeZ?
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where the last step follows from the Markov property. Notice that
b n n
> g2<,/—”y) | Jg@)Pdx ==
n b b,
yeZ?
as n — 00. In view of (4.3), by aperiodicity

sup
xeZ2

exp{—i(x,r‘_lx)HaO (n — 00).

1
i () = 5 S e 12

Since &,(x) = 0 outside [—MV nb;l, My nb;1 12, there is a § > 0 independent

of n, such that
. !b log(n/b)[bX”% 3 f( [ba )}
exp
2w ns/det(I") 22 xeSAN n

>8 Y & e, (x) = 8(&,, T g,).

xeZ?

Consider the spectral representation of 7j,:

(s Tukn) = /0 it (d)

where g, is a probability measure on R*. By the mapping theorem,

o0
(%-n’ Ty[[bn]*‘éﬂ) — /(; )\‘[bn]*lugn (d)\.)

- (/ooo Mg ("“)[bn]l = (£, Tun) ™!

where the second step follows from the Jensen inequality. Hence,

I by log(n/by,) (o] | bn

liminf — log Eex

n—>oo b, g p{Zﬂn\/W;xeSX(:A)f
> ]ilrgigéflog@n» Tnén)

Let the Lévy Gaussian process X; be given in Theorem 7. Then

wna=(Z (1)) 2ol

yeZ?

bn log(n/b,) bn
(et 35, (e
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e (2) 5l

xeZ?

by log(n/by) b,
X E(exp {r o) yeSX[o:,tn] f(\/;(x + y))}

)

—>/ g(x)E, [exp{/ f(X)ds} (Xl)]dx (n — o0)

S

where the last step follows from Theorem 7, Lemma 3 and the dominated
convergence theorem.
Summarizing what we have so far, we obtain

1 by log(n/by) 2! \/7
hrglnfb log Eexp <2ﬂ”\/W;xeSX(:A)f

(4.19) )
Zlongzg(x)Ex[exp{/o f(XS)ds}g(Xl)} dx.

What follows next is a standard treatment [see, e.g., Remillard (2000)] which is
briefly described here: Let the semigroup of linear operators {IT;} on £2(R?) be
defined as

H,h(x):IEx[exp{/(;tf(Xs)ds}h(X,)], h e L£L2(R?), t > 0.

The infinitesimal generator of {I1;} is

1 & 32h
Ah(X)ZE'Zl CFTor Ty -(x) + f()h(x)
L

where a;; (1 <1i, j <d) are entries of the matrix I'. Clearly, + is self-adjoint. Let

(g, Ag) = [ ()

be the spectral representation of the quadratic form (g, 4g), where ug is a
probability measure on (—o00, c0). By the Jensen inequality,

/Rzg(x)IEx[exp{/ol f(Xs)ds}g(Xl):Idx

= (g, I1g)
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o0 o0
_ f St ug(dh) > exp { f wg(dx)}
—00 —00
= exp{(g, Ag)}
—exp| [ rogmdn - [ (Ve rVgwydx).
R2 R2
In view of (4.19), taking the supremum over g ends the proof. [J

Recall that #,, and A; are defined by (4.16).

LEMMA 6. Let {S(n)} be a mean zero and square integrable random walk on
74 and let & > 0 be fixed but arbitrary.

(i) Asd =2 and {b,} satisfies (1.10),

(4.20) limsup bi logP{ Z HS(A;)NS(Ap)} > ¢

n=oee n 1<j<k<[bu]

I
|
2

logn

(1) As d =3 and {b,} satisfies (1.12),

(4.21)  limsup bi logP{ Z #HS(A)NS(AR)} > sn} = —00.

n=00 Yn 1<j <k<[by]

PROOF. Due to similarity we only prove (4.20). To be consistent with the
notation used in this paper, {S1(n)} and {S>2(n)} are two independent copies of
{S(n)} and J,, = #{S1[0, n] N $3[0, n]}. Notice that

[bn]—1 [by]
Yo #HSAHNSAI= D Y #HS(AHNSA))
1<j<k=[b4] j=1 i=j+1
and that for any fixed 1 < j <[b,] —
[b,] 4 (bnl—Jj
D #HSAHNSANIE Y #H(=S1(A)) NS (A))
i=j+1 i=1
[bn]

< Z# —S1(AD)) N S2 (AN}

By the triangular inequality, we need only to prove

[Dn] n

1
(4.22) hmsupb—log]P’ ZZI# Sl(Al))ﬂSz(A,-)}ngnlogn = —00
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Indeed,

[bn] [bn]
D o#{(=S1(AD) NS2:AD} = D Lresyan) Y Lixesa(an)-
i=1 i=1

xeZ?

So for any integer m > 1,

[bn] m
[Z# —S1(A1) N S2(A; )}]

m [by]
= Z |:E l_[ 1 xkES(Al)}:| {E 1_[ Z Tixpes(a, )}}

Xlseens Xm k=1i=1

m 2y1/2 m (by] 2y1/2
|:E1_[1{Xk€S(A1)}:| } { > {Enzﬂ{xkesm»}} }
x1

A
rm——
=

™

..... Xm L k=1 vtm L k=1i=1
12 2 [bul my1/2
= (EJ;) { [anﬂxesm)}} } :
xez? j=li=1

Hence, for any 6 > 0,

3/2

o0 gm 1 m/2 [b,] my 1/2
Z%(%) { [Z# —S1(A)) ﬂSz(A)}} }
© om (B2(ogn\ 2 01
E5E

m=0
 gm b, (logn)?\™/? 2 [bu] my1/2\ 172
2_: F(ﬁ) { [ Yo 1D twes;can .

xez? j=li=1
Applying (3.1) with p =2 and with n being replaced by ¢,,, we have

1 X gm b2 1 2\ m/2

n—o0 n =0 m! n

By (3.4) with p =2,

00 1 b 1 m/2 2 [ba] my 1/2
2_: ;(M> {E|: Z 1_[ Z]l{xesj(Ai)}] }

xez2 j=li=1

(b w(logn) )m/Z{IEJZ’:}I/Z}

bll

IA

1
m!

p
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Using (3.9) there is Cy > 0 such that

1 & 1 (by(logn)*\"/?
limsup — log Z <@)

n—oo n

2 [bal my1/2
XiE[Z HZﬂ{xes,-m»J } <G

xez? j=li=l
Replacing b, by 6°b, gives

1 & 0™ (by(logn)*\"/?
lim sup . log Z (@)

n—oo n

(4.23)

2 [by] my1/2
X {E[ > I Zﬂ{xesjm»}} } < 20

xez? j=li=l

Combining the above observations there is C3 > 0 such that for any 6 > 0,

1 X gm 3/21 2\m/2
limsup — log Z (#)

n—o0 n

[ba] my1/2
{ [Z# —S1(AD) ﬂSz(A)}} } < G367,

Applying (2.3) in Theorem 4 we can find § > O such that
1 [bn] nb1/2
limsup — log P #1(—=S1(A)) N S2 (A} > < —8A.
msup - ogP| 3 H{(-5180) 1 $:80) = <

Therefore, (4.22) follows from (1.10). [

Let p > 2 be the integer given in Theorem 1 and let g > 1 be the conjugate of p
defined by the relation p~! + ¢~ 1 =1.

THEOREM 8. Let {S(n)} be a symmetric, square integrable random walk
on 7. Let f be a nonnegative, bounded and uniformly continuous function
on R4,

() Asd =2, f € L19(R?) and {b,} satisfies (1.10),

o1 by logn | by,
l}ln_lgéfalogﬂiexp{ ” %1;2 f( ;)C)]l{[x]eS[O,n]}dx}

(4.24)

1
> sup {2n\/det(F) ./RZ f(x)gz(x)dx — EAQ(Vg(x), I"Vg(x))dx}.

g€
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(i) Asd =3, f € L2(R>) and {b,} satisfies (1.12),

o] by | bn
1,1111_1)1021)’[‘5log]Eexp{;/{Z&3 f( gx)]l{[x]GS[O,n]}dx}

2 1
= sup {y(®) [ Fgimdr =3 [ (Ve00. Ve d).

8€F3

(4.25)

PROOF. Due to similarity we only prove (4.24). We first assume that {S(n)} is
aperiodic. By uniform continuity

b,
(4.26) '/ <\/ix>]1{[x]e5[o apdx— Y f<\/: )
xeS[0,n]

where {6, } is a deterministic positive sequence with 6,, — 0 as n — oco. Recall that
t, and A; are defined by (4.16). Notice that

by+1
Eexp {eb” 1:g”:/ae{S[o, n]}} < (Eexp{eb” l;’g”#{sm, z,,]}}) .

< 0,#{S[0, nl},

By Lemma 3,

. 1 b, logn
(4.27) limsup . logEexp {9 #{S[0, n]}} < A(0) @ =0

n—oo n n

where A(6) — 0 as & — 0". By (4.26), (4.27) and a standard argument of
exponential approximation, (4.24) is equivalent to

1 byl | by,
hmmf— logEexp { ogrn Z f( —x) }
o b, n n
xe€S[0,n]

(4.28)

> sup {Zn\/det(l" / f(x)g (x)dx — = 2(Vg(x),l"Vg(x))dx}.

geF

To prove (4.28), notice that

)

[bn]

b
>zzf(\/ ) Y % f( —)
i=1xeS(A)) 1<j<k<[by] x€S(A HNS(AL) n
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Therefore, for any given ¢ > 0,

Eexp{blogn T, b )}

xeS[0,n] n

[bn]
zEexp{b logn< f(\/7)
i=1xeS(A))
by
LR E )
1<j<k=[ba] x€S(AHNS(AL) "
—eb by logn [6n]
(4.29) > e enEexp{ Xy f( )}
i=1xeS(A;)
b,logn [6n]
“elon(EY B o({5)f
i=1xeS(A;)

b
) ) f(ﬁ—"x)zeln ]
1<j<k<[by] x€S(ANNS(AL) n ogn

— (- (say).

By Lemma 5,

hmlnf— log(I) > —e + sup {ZJT\/det(F f f(x)gz(x) dx
% by F4SV D) 2
(4.30) |
-5 [, (V. Vgt dx ).
R2

By the Cauchy—Schwarz inequality,

[bn] 1/2
(n < [Eexp{zb nlogn >y f(\/7 )”
i=1xeS(A})

b 1/2
n
P N = .
X|: {1<'Z Z f( nx)_glogn}]
<Jj<k=[by]xeS(A;)NS(Ak)
Notice that

by
> > f(/;)C>§||flloo > #SAHNSAL

1<j<k=[by]x€S(AHNS(Ar) 1<j<k=[by]

(4.31)
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By Lemma 6,

1 b
(4.32) limsup—logP: > > f(/—nx>28 " }:_oo,
n—o0 bn 1<j<k<[by] x€S(AHNS(AL) n logn

In view of (4.29)—(4.32), it remains to prove

1 2b, logn 2]
lim sup — log E ex < 00.
s gy | PS> ([

i=1xeS(A;)

By the exponential approximation used earlier, this is equivalent to

2b, logn by, Ln]
(4.33) hr?ls;pb—logEexp {T /1;{2 f<‘/ 7)() Z]l{[x]eS(A,-)}dx < Q.

i=1

For any integer m > 1,

b\ bl m
E / L2 ) S Lpescan d
( sz( ”x)l_; ([xles(an) X)

( ) (/ f(x)%ﬂ{[mx]eﬂmd)m

n

m m [bn]
<E) /(RZ)’” dxm( I f(Xk))E [12 Luvamesan

k=1 k=1i=I

N m [bn] pyl/p
“34) <Iflg E) {/( dxy - doy (EHZﬂ{[WXk]es<Ai>}) }

k=1i=1

n (P—l)/pm m [bnl p l/p
. dxi1 --- dx E 1 .
b /(.IR@)’" ! ’"( H Z {[Xk]ES(A,)}> }

k=1i=1

(
(5,)

:||f||$<bi)(pwpm ¥ (Eﬁwi:]ll{xkesmi)}y}l/p
(5,)

X1yeesXm k=1i=1

n \ (p=h/pm P bl my1/p
o) e T T wesan) |
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Similar to (4.23),

. 1 2 ClIfl™ [ bu(logn)P\™/P
lim sup . log Z - ( . )

n—oo Uy m—0

p [bal my1/p
X :E( Z 1_[ 1{xeS_,-(A,~)}> } < 00.

xez? j=li=l

So (4.33) follows from (4.34).
We now prove (4.24) without assuming aperiodicity. Let 0 < n < 1 be fixed and
let {8,},>1 be i.i.d. Bernoulli random variables with the common law:

P8 =0} =1—P{8; =1} =1.

We assume independence between {S(n)} and {6, }.
Define the renewal sequence {oy }x>0 by

=0 and oy =inf{n > oy; 6, =1}.
Then {0} — ok—1}k>1 is an i.i.d. sequence with common distribution
Ploy =n} =1 —nn"" ", n=12,....
Consider the random walk S (n) = S(oy). {S‘ (n)} 1s symmetric with covariance
Cov (S(01). S(o1)) = (Bo)I' = (1 — )~ 'T.
By the fact that
o
P{S(01) =0} = (1 —n) )_n*""P{S(k) =0} > 0,
k=1

{ S (n)} is aperiodic. Applying what we have proved to {S’ (n)},

| by logn by
lyggéfalogEexp{ " /sz< ;x>]l{[x]e§[0,n]}dx}

= sup [2r T [ pogeo dx
geF
50 [ Ve, T Ve ds
> sup {Zn\/det(f‘)/ f(x)gz(x)dx — l/ (Vg(x), FVg(x))dx}.
geFs R2 2 Jr2

Notice that
S[0,n] = {S(00), ..., S(oa)} C S[0, o).



INTERSECTION OF RANGES 1051

Given ¢ > 0,

by logn b
ECXP{ : " /Rz f(\/ ;"X)Jl{[x]eS[o,[aH)nmdX]
by logn bn
> Eexp{ " /RZ f< 7)6) ]l{[x]ei[o,n]}dx]

b, logn b,
_ECXP{ " fsz< ;x 1{[x]e§[o,n]}dx Lio,>(14e)n}-

By Cramér large deviation [Theorem 2.2.3 of Dembo and Zeitouni (1998)] as
(1-— 77)_1 < 1+ € there is u > 0 such that

Plo, > (1+¢&)n} <e ™

for sufficiently large n. By (4.33) [with S(n) being replaced by §(n)] and the
Cauchy—-Schwarz inequality, therefore,

. 1 by logn b
hmsupb—logEexp{ n /Rz f( _”x>1{[x]€§[0?n]}dx}]l{(,"z(lJre)n} = —00.

n—o00 n n n

Hence,

. 'fll 0 by logn by, 1 J
imin E ogexp " /sz 735 {[x1€S[0,[(14-6)n]]} @ X

1
> sup {Zﬂ\/det(f‘)/sz(x)gz(x)dx — E/RZ(Vg(x),FVg(x))dx}.

geF

Replacing [(1 + )n] by n and f(x) by (1 +&)~! £((1 +&)~'/%x), we have

o1 bnlogn [ by,
l%n_l)é%faloglﬁlexp{ " /]RZ f( ;X)ﬂ.{[x]eS[O,n]}dx}

> sup {Zm/det(r‘)(l +e)7! /RZ f)g2(x)dx

geF

1
3 (Vg(x), FVg(X)MX}-
R2

Letting ¢ — 0T gives (4.21). O

We are finally ready to prove (4.1) and (4.2). Due to similarity we only
prove (4.1). Notice that

)4
o= ] Lixes;t0m-

xez? j=1
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For any nonnegative, bounded and uniformly continuous function f on R? with
Il fllg =1, a procedure similar to (4.34) gives

n\P—D/pm | b, "
(b_) EJMHYP > fsz P Lixjeso.nn dx |

m=0,1,....

Therefore,

m! n "

m=0
by logn / by,

>E 0 —x |1 dx .

> CXP{ " - Iy % JLitxlesion) 4
By Theorem 8,

&, 0™ (bylogP n\"/P
11m1nf— log Z (M) (EJ,’,")I/”
n

n—-oo p n

> sup {2n0\/det(r / f(x)g (x)dx —l 2(Vg(x),FVg(x))dx}.

gEF

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f on R? with || fllg =1, the right-hand side becomes

sup {mm ([, 1e0rr dx>1/,, L FVg(X))dx}

g 2 Jr2

(4.35) = (2nH)P/det(T") sup {(fRz |h(x)|2”dx>l/p — %/Rz |Vh(x)|2dx}

geF

_ p—1
_ %(%) 270)P/det(D)k (2, p)**,

where the first equality follows from the substitution g(x) = /| det A|h(Ax) with
the 2 x 2 matrix A satisfying

A'TA = (270)"y/det(D)I,

with I, being the 2 x 2 identity matrix, and the second equality follows from
Lemma A.2 in Chen (2004).

5. Law of the iterated logarithm. We prove Theorem 3 in this section. With
the moderate deviations given in Theorems 1 and 2, the proof of the upper bound
is just a standard practice of the Borel-Cantelli lemma. So we only give proof to
the lower bounds. That is, we prove:
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Asd=2and p > 2,

logn)? 2\7!
(5.1) 1imsup%an(2n)P<—> JdetMe@, p¥  as.
n—oo n(loglogn)p—! p

Asd=3and p =2,

(5.2)  limsup o> y(S)2det(I) %k (3,2)*  as.

1
n—oo /n(loglogn)3
By the technology used in the proof of Theorem 8, which extends the lower bound
established under aperiodicity to the general case, we may assume aperiodicity in
the proof given below.

For given x = (xq,...,xp) € (Z4)P, we introduce the notation P* for the
probability induced by the random walks Si(n),...,Sy(n) in the case when
S1(n),..., Sp(n) start at xy, ..., x,, respectively. The notation E* denotes the
expectation correspondent to IP*. To be consistent with the notation we used before,
we have P00 =P and E©0 = E. Write

I%]l = max |x;|,  ¥=(x1,...,xp) € (R)HP.
I<j<p

LEMMA 7. Under the conditions in Theorem 1,

1 _
liminf —log  inf P* { Jp > A
n=>00 by 7 |\%||<y/n/bn

(5.3) > —§(2n)_p/ (p=1)

b,l;—l}
(logn)?

% det(F)_l/(z(p_l))KQ, p)—zp/(P—l))\l/(P—l) (A > 0).

Under the conditions in Theorem 2,

1 _
liminf —log inf  P*{J, > AvVnb;}
n=>00 by T EI<v/n/by

5.4
©4 > —det()!Py($) 3k 3,2)78323 (v >0).

PROOF. Due to similarity we only prove (5.3). For given y = (y1,...,yp) €
(Z*P and m,n > 1,

- p m
Ey_]’z” — Z 1_[ E 1_[ jl{yj-i-XkGS[OJl]}
k=1

X1seeenXm j=1

P m p\ l/p
= 1_[< > |:El_[]l{yj+Xk€S[0,n]}:| )

j=1 \¥1,Xm L k=1

m p
= > [Enﬂ{xkesw,n]}} =EJ;".

XlyeeesXm k=1



1054 X. CHEN

By (3.1) we have

1 X gm /b oo n\™/ P _ I/p
lim sup b log Z (M> (sup]EyJ,:”>
y

n— 00 n n

_ -1
< 1<M>p (276)P/det(T)k (2, p)*? 0 >0).
p p

It is easy to see from Theorem 4 that we will have (5.3) if we can prove

1 o™ /b, logP n\"™/P _ 1/p
liminf — log Z (ﬂ) < inf JEyJ,’l")
=00 by n 151=v/n7Bn
(5.5)

_ -1
> l(M)” 276)P/det(T)k (2, p)>P
p\  p

for every 6 > 0.

Let ¢ > 0 be fixed for a moment. For any sets A, B C Z?, A + B is defined as
the set {x + y; x € A and y € B}. In particular, x + B = {x} + B for any x € Z>.
Write

B,(x)={y;ly—x|<eyn/b,}, xeZ?
and set B, = B, (0).
For any function f on R?, write

fe(x) = m/{lylss}f(x—i_y)dy

whenever the integral on the right-hand side makes sense.
Define

MOEDY ]_[ <#(B ) xeS,[o,n]+Bn}>-
xez? j=1

Let f be a nonnegative, bounded and uniformly continuous function on R? with

Ifllg =1

/ f bn ! 1 d
—X X

= T {[x—y]eS[0,n]) 4X
R? n ) #(Bn) ‘T

by
_/ Lyxgesio, n]}<#(B ) Z f<\/;(x + y))) dx
yEB,
bn
=(1 0(1))/ {[x]€S[0,n]} fe <\/;x> dx
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where o(1) is bounded by a deterministic sequence that approaches to zero as
n — 0o.
Similar to (4.34), for any integer m > 1,

<£>(p—1)/pm (IEJn(e)m)l/p

by
by, 1 m
= E(/RZ f(\/;x) #(B,) ]]‘{[X]ES[O’”H-Bn} dx)
b m
> (14 o0(1))" (/ L{ix1esio, n]}f8<\/ix> dx) ‘

> g™ (bn log? n

Therefore,

2

m=0

m/
) C®d M

m!

a1
zEexp{(lJro(l))@b :gn/ fs<\/ix)]l{x]e§'0n]}dx}

By Theorem 8,

n

. 6™ (b, log!
hmmf— log Z (M

m/
) " Edem)”

n

> sup {2n9\/det(r) /RZ fg(x)g (x)dx — —/ (Vg(x), FVg(x))dx}

8EF

= sup {ZnG\/det(F) /IRZ f(x)(gz)g(x)dx — —/ (Vg(x), FVg(x))dx}

geF

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f on R? with || fllg =1 gives

X, 0™ by logP n\™/P
hmlnf— log Z <M> (EJy, (8)’")1/p
n

1/
(5.6) > sup {Zne\/det(F ( |(g2)5(x)|pdx) '

geF

/ (Ve(). FVg<x>>dx}
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Take t, = [n/by]. To prove (5.5), notice that

- p "
Ey.],’ln > E(Z 1_[ ]l{yj—|—xe5j[1n,n]}>

X j=1

m
= 2 HE<H y,+xkesm,n1}>
> % 151 T tim0-20-conesnn)

k=1z€B,(yj)

where S’ (k) = S(k +t,) — S(t,) (k=1,2,...). By the identity,

m
]_[ Z Lis@y=2) - Ly —y+aees10.n—1,1)
k=12z€Bu(yj)

m

> Asan=a - [ [ Lyj—s+ues0n-11
veBa(y,) k=1

and therefore by independence,

m
E(l_[ > 1{S(zn>=z}'1{y_,-—z+xkeS’[o,n—rn]})

k=1 ZGBn(yj)
m
Z P{S(t,) =z} - E|: 1_[ :u-{yj—Z+xk€S[Osn_[n]}:|
Z€By () k=1

> min inf {P{S(t,) =2z}} ZE[Hﬂ-xk 2€S8[0,n— z,,]}i|

1<j<pzeBn(y)) = P
m
=Vn Z E[ H :ﬂ'{xk—ZGS[O,n—tn]}:| (say).
z€B, k=1
Hence,
— m P
EY_];" >y” Z <ZE H]lxk 2€S8[0,n— z,,]}i|>
Xlyeees Xm €B, k=1

p m
Z Z 1_[ E|: 1_[ ]]'{Xk—ZJ‘ES[O,n—l‘n]}:|

Xlyeens Xm Z1y..., ZpEBn_/ 1 k=1

14
= Vnp Z Z ]E|: 1_[ ]l{xk—ZJESj[O,n—tn]}:|
k=1j=1

Ll yeees Z];EBn X1seees Xm

3
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p m
=yl Z E(Z H ]]-{x—Z/‘ESj[OJ’l_tn]}>

Z1-sZp€By X j=1

1 m
zy,{’#{Bn}PE<#{Bn}p Z Znﬂx —z;€8;[0,n— t,,J})

,,,,, Zp€B, X j=1

=y #{By }pE(Z [ #{B }1{xes [0,n— t,,]+B,,}) ,

XJl

where the fifth step follows from Jensen’s inequality. By (4.3) (with d =2 and n
replaced by ¢,),

1 1
= — min inf inf |:ex {—— ,F_l }+0 1 } th_l
m= e e Bt Pl™ 2, (y y) (D n

We have proved that there is a 6 = §(e) > 0, such that for any integer m > 0 and
n>1,

- p m
inf Ey.]},:n > SE(Z 1_[ # xeS [0,n— l,,]+Bn}> .
X

I3 1<v/n/by j=1
By (5.6) (with n replaced by n — 1),

>, 6™ (bylogh n\"/P —_——
liminf - log Z (M) ( inf EY J,;")
n— 00 b n IylI<v/n/by

> sup {2n9JdeTr>( [, |(g2>g<x>|f’dx)l/p

geF

1
5 [LVse0, FVg(x))dx}.
RZ

Finally, we let ¢ — 07 on the right-hand side. Then (5.5) follows from (4.35). [J

We only prove (5.1) as the proof of (5.2) is analogous. Let n; = k*. We first
show that for any A < (27r)1’(%)1’_1«/det(1")/<(2, p)?P,

P
(57) Tlimsup —o8Mk+1) #S1 [k e 10N Syl e 1} =2 as.
k—oo Mk+1loglogngiy

We consider the 2 p-dimensional random walk S(n)=(Si(n),..., Sp(n)). By the
Markov property and Lévy’s Borel-Cantelli lemma [see Corollary 5.29 in Breiman
(1992)], (5.7) holds if we have

S loglogni+1
58 IPS(”k){J > ke }: s.
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Indeed, it is easy to see that v/ng loglogn; = o(y/ni+1/loglogny+1) as k — oo.
By the classic Hartman—Wintner law of the iterated logarithm, with probability 1
the events

{ISMON < Vnesr/loglognigr ), k=1,2,...,
eventually hold. Therefore, (5.8) holds if we have

> inf PX{J,,M_M >
k NxI<A/niy1/loglognit
which follows from Lemma 7 with b, = loglogn.
Since

ni+1loglogny }
(logng41)?P

I = #{S1ng, nip 10 -+ N Splng, ngg 1},
letting
p—1

A — (2n)P(%) Vdet(D)k (2, p)?P
in (5.7) proves (5.1).
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