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QUENCHED ASYMPTOTICS FOR BROWNIAN MOTION OF
RENORMALIZED POISSON POTENTIAL AND FOR THE

RELATED PARABOLIC ANDERSON MODELS

BY XIA CHEN1

University of Tennessee

Let Bs be a d-dimensional Brownian motion and ω(dx) be an indepen-
dent Poisson field on R

d . The almost sure asymptotics for the logarithmic
moment generating function

log E0 exp
{
±θ

∫ t

0
V (Bs) ds

}
(t → ∞)

are investigated in connection with the renormalized Poisson potential of the
form

V (x) =
∫
Rd

1

|y − x|p [ω(dy) − dy], x ∈ R
d .

The investigation is motivated by some practical problems arising from the
models of Brownian motion in random media and from the parabolic Ander-
son models.

1. Introduction. Consider a particle doing a random movement in the
space R

d . The trajectory of the particle is described by a d-dimensional Brow-
nian motion Bs . Independently, there is a family of the obstacles randomly located
in the space R

d . Assume that each obstacle has mass 1 and that the obstacles are
distributed in R

d according to a Poisson field ω(dx) with the Lebesgue measure
dx as its intensity measure. Throughout, the notation “P” and “E” are used for
the probability law and the expectation, respectively, generated by the Poisson
field ω(dx), while the notation “Px” and “Ex” are for the probability law and the
expectation, respectively, of the Brownian motion Bs with B0 = x.

The model of Brownian motion in Poisson potential has been introduced to
describe the trajectory of a Brownian particle that survived being trapped by the
obstacles. We refer the reader to the book by Sznitman [24] and the survey [21]
made by Komorowski for a systematic account of this model and the monograph
by Harvlin and Ben Avraham [20] for physicists’ views on the trapping kinetics.
In the usual set-up, the random field (known as potential function)

V (x) =
∫

Rd
K(y − x)ω(dy)(1.1)
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represents the total trapping energy at x ∈ R
d generated by the Poisson obstacles,

where K(x) ≥ 0 is a deterministic function on R
d known as the shape function.

In the quenched setting, where the observation of the system is conditioned on the
environment generated by the Poisson obstacles, the model of Brownian motion
in Poisson potential is often introduced as the random Gibbs measure μt,ω on
C{[0, t];R

d} defined as

dμt,ω

dP0
= 1

Zt,ω

exp
{
−θ

∫ t

0
V (Bs) ds

}
.(1.2)

The integral ∫ t

0
V (Bs) ds

measures the total trapping energy received by the Brownian particle up to the
time t . Under the law μt,ω, therefore, the Brownian paths heavily impacted by the
Poisson obstacles are penalized and become less likely.

Sznitman [24] considers two kinds of shape functions. In one case K(x) = ∞1C

for a nonpolar set C ⊂ R
d , while in another case, the shape function K(x) is as-

sumed to be bounded and compactly supported. The correspondent potential func-
tions are called hard and soft obstacles, respectively. In the case of hard obstacles,
the Brownian particle is completely free from the influence of the obstacles until
hitting the C-neighborhood of the Poisson cloud which serves as the death trap.
In the setting of the soft obstacles, only the obstacles in a local neighborhood of
the Brownian particle act on the particle, and the collision does not create extreme
impact.

According to Newton’s law of universal attraction, for example, the integrals∫
Rd

1

|y − x|d−1 ω(dy) and
∫

Rd

1

|y − x|d−2 ω(dy), x ∈ R
d,

represent (up to constant multiples), respectively, the total gravitational force and
the total gravitational potential at the location x in the gravitational field generated
by the Poisson obstacles in the case when d ≥ 3. Therefore, it makes sense in
physics to consider the shape function of the form

K(x) = |x|−p, x ∈ R
d .(1.3)

A serious problem is that under choice (1.3), V (x) blows up at every x ∈ R
d

when p ≤ d . In a recent paper [9], a renormalized model has been proposed as
follows: First, it is shown ([9], Corollary 1.3) that under the assumption d/2 <

p < d the renormalized potential

V (x) =
∫

Rd

1

|y − x|p [ω(dy) − dy], x ∈ R
d,(1.4)
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can be properly defined and that for any θ > 0 and t > 0,

E ⊗ E0 exp
{
−θ

∫ t

0
V (Bs) dx

}
< ∞.

Consequently,

Zt,ω ≡ E0 exp
{
−θ

∫ t

0
V (Bs) dx

}
< ∞ a.s.(1.5)

Thus, the Gibbs measure μt,ω given as

dμt,ω

dP0
= 1

Zt,ω

exp
{
−θ

∫ t

0
V (Bs) ds

}
(1.6)

is well defined and appears to be a natural extension of μt,ω [given in (1.2)] in the
following sense: When K(x) is compactly supported and bounded, by translation
invariance of Lebesgue measure,

V (x) =
∫

Rd
K(y − x)[ω(dy) − dy] =

∫
Rd

K(y − x)ω(dy) −
∫

Rd
K(y) dy

= V (x) − constant.

So the Gibbs measures generated by V (x) and by V (x) are equal. We call the
random path under the law μt,ω the Brownian motion of the renormalized Poisson
potential V (x). In the case when K(x) is given in (1.3), the renormalized Poisson
potential V (x) in (1.4) appears as the constant multiple of the Riesz potential of
the compensated Poisson field ω(dy) − dy.

One of major objectives of this paper is to investigate the large-t asymptotics for
partition function Zt,ω given in (1.5) with the potential function V (x) be defined
in (1.4).

This problem is also motivated by the parabolic Anderson formulated in the
form of the Cauchy problem{

∂tu(t, x) = κ�u(t, x) + ξ(x)u(t, x),

u(0, x) = 1,
(1.7)

where κ > 0 is a constant called diffusion coefficient, and ξ(x) is a properly chosen
random field called potential.

Among other things, the parabolic Anderson models are used to describe evo-
lution of the mass density u(t, x) distributed in R

d (see, e.g., [9] for the discussion
on this link). The mathematical relevance of the parabolic Anderson models to our
topic is based on two facts: First, by the space homogeneity of the Poisson field,

{ξ(t, x); t ≥ 0} d= {ξ(t,0); t ≥ 0}, x ∈ R
d .(1.8)

Consequently, the focus of the investigation is often on u(t,0). Second, by the
Feynman–Kac representation,

u(t,0) = E0 exp
{∫ t

0
ξ(B2κs) ds

}
= E0 exp

{
(2κ)−1

∫ 2κt

0
ξ(Bs) ds

}
(1.9)
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for sufficiently nice ξ(x).
There are long lists of publications on this model among which we refer the

reader to the monograph [5] by Carmona and Molchanov for the overview and
background of this subject. In the usual set-up, ξ(x) = ±V (x) with V (x) being
given in (1.1). In the existing literature, the shape function K(x) is usually assumed
to be bounded and compactly supported so that the potential function V (x) can be
defined. A localized shape is analogous to the usual set-up in the discrete parabolic
Anderson model, where the potential {V (x);x ∈ Z

d} is an i.i.d. sequence. On the
other hand, there are practical needs for considering the cases, such that when
K(x) = |x|−p , where the environment has a long-range dependency and the ex-
treme force surges at the locations of the Poisson obstacles.

In this paper, we consider the case when ξ(x) = ±θV (x) where V (x) is defined
in (1.4). Given the fact (Proposition 2.7 in [9]) that V (x) is unbounded in any
neighborhood with positive probability, it is unlikely that equation (1.7) is solvable
in the path-wise sense. On the other hand, it has been proved in [9] that u(t, x)

represented by the Feynman–Kac formula is a mild solution to (1.7) [with ξ(x) =
±θV (x)] whenever the quenched moment in (1.9) is finite.

The objects of our investigation are the quenched exponential moments

E0 exp
{
−θ

∫ t

0
V (Bs) ds

}
and E0 exp

{
θ

∫ t

0
V (Bs) ds

}
.(1.10)

According to (1.5), the first exponential moment in (1.10) is almost surely defined.
As for the second exponential moment, it has been proved in recent work [9] that
the correspondent annealed exponential moment blows up, and that, for any θ > 0
and t > 0,

E0 exp
{
θ

∫ t

0
V (Bs) ds

}{
< ∞, if p < 2,
= ∞, if p > 2.

(1.11)

The critical case p = 2, in which d = 3 by the constraint d/2 < p < d , has been
investigated in a more recent paper [10] where it is shown that for any t > 0

E0 exp
{
θ

∫ t

0
V (Bs) ds

}{
< ∞, a.s. when θ < 1

16 ,

= ∞, a.s. when θ > 1
16 .

(1.12)

The main objective of this paper is to investigate the quenched large-t asymp-
totics for the exponential moments given in (1.10) whenever these moments are
finite, except the critical case described in (1.12) (which is studied in [10]). We
point out the references [3–5, 7, 11–14, 17, 18, 22–24, 26, 27] as an incomplete
list related to this topic.

For later comparison, we mention some existing results which are narrowly
relevant to the topic of this paper. Let the potential function V (x) be given in
(1.1). Sznitman ([24], Theorem 5.3, page 196) shows that for the bounded and
compactly supported shape K(·) and θ > 0,

lim
t→∞

(log t)2/d

t
log E0 exp

{
−θ

∫ t

0
V (Bs) ds

}
= −λd

(
ωd

d

)2/d

a.s.-P,(1.13)
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where λd > 0 is the principal eigenvalue of the Laplacian operator (1/2)� on the
d-dimensional unit ball with zero boundary values, and ωd is the volume of the
d-dimensional unit ball. With a slightly different formulation [22], the model of
hard obstacles yields the same pattern of asymptotics.

Under some continuity, boundedness assumptions on K(x) and under some re-
striction on the tail of K(x), Carmona and Molchanov ([6], Theorem 5.1) prove
that

lim
t→∞

log log t

t log t
log E0 exp

{
θ

∫ t

0
V (Bs) ds

}
= dθ sup

x∈Rd

K(x) a.s.-P.(1.14)

The interested reader is also referred to [19] and [17] for the correspondent asym-
totics of the second order.

After the first draft of this paper was completed, the author learned the recent
investigation by Fukushima [15] in the case when K(x) = |x|−p ∧ 1 with d < p <

d + 2, the setting where no renormalization is necessary. Fukushima [15] shows
that

lim
t→∞ t−1(log t)−(p−d)/d log E0 exp

{
−

∫ t

0
V (Bs) ds

}
(1.15)

= −d

p

(
p − d

pd

)(p−d)/d(
ωd	

(
p − d

d

))p/d

a.s.-P.

It should be mentioned that Fukushima also obtained the second asymptotic term
in his setting.

2. Main theorems and strategies. Throughout this paper, let ωd be the vol-
ume of the d-dimensional unit ball. Let W 1,2(Rd) denote the Sobolev space given
as

W 1,2(Rd) = {f ∈ L2(Rd);∇f ∈ L2(Rd)}.
By (A.4) below, when d/2 < p < min{d,2} there is a constant C > 0 such that∫

Rd

f 2(x)

|x|p dx ≤ C‖f ‖2−p
2 ‖∇f ‖p

2 , f ∈ W 1,2(Rd).

Let σ(d,p) > 0 be the best constant in above inequality.
The main theorems are stated as follows.

THEOREM 2.1. Under d/2 < p < d ,

lim
t→∞ t−1(log t)−(d−p)/d log E0 exp

{
−θ

∫ t

0
V (Bs) ds

}
(2.1)

= θd2

d − p

(
ωd

d
	

(
2p − d

p

))p/d

a.s.-P

for every θ > 0.
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THEOREM 2.2. Under d/2 < p < min{2, d},
lim

t→∞
1

t

(
log log t

log t

)2/(2−p)

log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
(2.2)

= 1

2
pp/(2−p)(2 − p)(4−p)/(2−p)

(
dθ σ(d,p)

2 + d − p

)2/(2−p)

a.s.-P

for every θ > 0.

We now make a comparison of “(1.13) versus (2.1)” and “(1.14) versus (2.2).”
First, the quenched exponential moments in our models generate significantly
larger quantities. Second, a heavy shape dependence (or p-dependence) presented
in our theorems sharply contrasts the shape insensitivity appearing in (1.13) and
(1.14). In Theorem 2.1, it is the nonlocality of the shape function that plays a ma-
jor role, while the high peaks of V (x) correspond to small values of the quenched
exponential moment. On the other hand, the asymptotics in Theorem 2.2 is shaped
by the singularity of K(x) = |x|−p at x = 0. In addition, there seems to be a de-
gree of resemblance between (1.15) and (2.1). Based on the comment made about
roles of nonlocality and singularity, it may be possible that (1.15) remains true
even without removing the singularity of K(x) at x = 0. We leave this problem to
future study.

Does the Lebesgue measure in renormalization contribute to the limit laws
stated in Theorems 2.1 and 2.2? The answer is “Yes” to Theorem 2.1, for otherwise
the right-hand side of (2.1) would be negative. The answer is “No” to Theorem 2.2
as the major impact comes from the Poisson points in a very small neighborhood
of the site where the Brownian particle is located [see (2.12) below for a more
quantified analysis on this point].

Associated with the spatial Brownian motion in the classic gravitational field
generated by the Poisson obstacles, the following corollary appears as Theorem 2.1
in the special case d = 3 and p = 2.

COROLLARY 2.3. When d = 3 and p = 2,

lim
t→∞ t−1(log t)−1/3 log E0 exp

{
−θ

∫ t

0
V (Bs) ds

}
= 3 3

√
12πθ a.s.-P(2.3)

for every θ > 0.

Let u0(t, x) and u1(t, x) be the mild solutions to the parabolic Anderson prob-
lems (1.7) that satisfy the Feynman–Kac representation (1.9) with ξ(x) = −θV (x)

and ξ(x) = θV (x), respectively. By the space homogeneity (1.8) and by Theo-
rems 2.1 and 2.2,

lim
t→∞ t−1(log t)−(d−p)/d logu0(t, x)

(2.4)

= θd2

d − p

(
ωd

d
	

(
2p − d

p

))p/d

a.s.-P,
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lim
t→∞

1

t

(
log log t

log t

)2/(2−p)

logu1(t, x)

(2.5)

= 1

2

(
p

2κ

)p/(2−p)

(2 − p)(4−p)/(2−p)

(
dθ σ(d,p)

2 + d − p

)2/(2−p)

a.s.-P

for every θ > 0 and x ∈ R
d .

An immediate observation is that the diffusion coefficient κ does not appear in
(2.4). The same phenomena have been noticed by Carmona and Molchanov [6] in
the case when ξ(x) = θV (x) for the same V (x) appearing in (1.14).

In the following we compare the strategies for the laws given in (1.13), (1.14),
(2.1) and (2.2). To make the discussion more informative, we focus on the lower
bounds and try to describe the behavior of the Brownian particle and the behavior
of the Poisson particle in each strategy. The treatment for (1.13) and (1.14) does not
have to be the same as their original proof. In our discussion, we use the notation
B(x,R) for the d-dimensional ball of the center x and radius R.

The following ingredients on the behavior of the Brownian particle are common
to all strategies: Up to the time t the Brownian particle stays in the ball B(0,Rt )

(referred as “macro-ball”) with the radius Rt roughly equal to t .2 Within a period
[0, ut] (with a very small u > 0), the Brownian particle moves into one of the
roughly td prearranged and evenly located identical micro-balls

Dz ≡ B(z, rt ); z ∈ btZ
d ∩ B(0,Rt ),(2.6)

where rt � bt and rtRt � t . The principle that Brownian particle chooses Dz is
to maximize the positive energy (or to minimize the negative energy) from the
Poisson field.

The main difference among different strategies in the Brownian path is on the
radius rt of the microbes. By the relation rtRt � t and by a classic small ball esti-
mate, the cost for the Brownian particle to choose Dz is (δ > 0 is a small number
here)

P0{The Brownian particle reaches Dz quickly and then stays in Dz up to t}
≥ 1

(2π)d

∫
B(z,δrt )

e−|x|2/(2ut)
P0{Bs ∈ B(z − x, rt ) for 0 ≤ s ≤ (1 − u)t}dx(2.7)

≈ exp{−o(r−2
t t)}P0

{
sup

0≤s≤t

|Bs | ≤ rt

}
≈ exp{−λdr−2

t t}.

Here we recall that λd > 0 is the principle eigenvalue of the Laplacian operator
(1/2)� on the d-dimensional unit ball with zero boundary condition. To make the
cost affordable compared with the deviation scale t (log t)−2/d in the strategy for

2The combination of the word “roughly” and a big number t means tL(t) with L(t) slow-varying
at ∞.
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(1.13), for example, the radius rt should be at least r(log t)1/d with the constant
r > 0. Based on the same principle, the critical radius of the micro-balls in each
strategy are determined as following:

rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(log t)1/d, in the strategy for (1.13),

r

√
log log t

log t
, in the strategy for (1.14),

r(log t)−(d−p)/(2d), in the strategy for (2.1),

r

(
log log t

log t

)1/(2−p)

, in the strategy for (2.2).

(2.8)

We now describe the behavior of the Poisson field in each strategy. For (1.13),
the high peak of the quenched moment occurs when

∫ t
0 V (Bs) ds ≈ 0. To make

this happen, one of the C-neighborhoods D̃z ≡ Dz + C [z ∈ btZ
d ∩ B(0,Rt )] is

obstacle-free, where C ⊂ R
d is the compact support of K(x), and the Brownian

particle spends most of its time in that same micro-ball Dz. In view of (2.7), there-
fore,

E0 exp
{
−θ

∫ t

0
V (Bs) ds

}
� exp{−λdr−2t (log t)−2/d}

on the event {minz ω(D̃z) = 0}, where the relation “�” reads as “asymptotically
greater than or equivalent to.”

On the other hand,

P

{
min

z
ω(D̃z) = 0

}
≈ 1 − (

1 − P{ω(D̃0) = 0})td
= 1 − (1 − exp{−ωdrd log t})td

≈ 1 − exp{−td−ωdrd }.
Hence, a standard way of using the Borel–Cantelli lemma shows that the phase
transition between

P

{
min

z
ω(D̃z) = 0 eventually

}
= 1 and

(2.9)
P

{
min

z
ω(D̃z) ≥ 1 eventually

}
= 1

occurs when r satisfies ωdrd = d . Consequently, this strategy leads to the lower
bound requested by (1.13).

In the strategy for (2.1), only the impact of the Poisson obstacles within the
distance a(log t)1/d from the Brownian particle is counted. To determine con-
stant a > 0, a crucial problem is whether or not the high peak can be captured
by the “empty ball” strategy which means to make the ball B(Bs, a(log t)1/d)
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[≈ B(z, a(log t)1/d) as the Brownian particle stays in Dz] free of the Poisson ob-
stacles. Under the “empty-ball” strategy,∫ t

0
V (Bs) ds ≈

∫ t

0
V1(Bs) ds − t

∫
{|x|≤a(log t)1/d }

1

|x|p dx

≈ −ad−pωd

d − p
t(log t)(d−p)/d,

where

V1(x) =
∫
|y−x|≤a(log t)1/d }

ω(dy)

|y − x|p .

On the other hand, the estimate given in (2.9) shows that the largest radius
R for one of the balls B(z,R) [z ∈ btZ

d ∩ B(0,Rt )] to be obstacle-free is
R = (ω−1

d d)1/d(log t)1/d . By making r > 0 sufficiently large in (2.7), the best
lower bound that the “empty-ball” strategy can offer is

lim inf
t→∞ t−1(log t)−(d−p)/d log E0 exp

{
−θ

∫ t

0
V (Bs) ds

}
≥ θ

d − p
d(d−p)/dω

p/d
d a.s.

under the optimal choice a = (ω−1
d d)1/d . In comparison with (2.1), this bound

gives the right rate but not the right constant.
Based on the above analysis, we conclude that the constant a > 0 has to be

arbitrarily large and that the “empty-ball” strategy is not working well for (2.1).
We now come to (1.14). By the continuity assumption on the shape function and

by homogeneity of the Poisson field, the supremum supx∈Rd K(x) can be achieved
somewhere, and we may assume that K(0) = supx∈Rd K(x) in the following dis-
cussion. To support the limit law given in (1.14), the Poisson field executes a strat-
egy that fills one of the δ-balls {B(z, δ); z ∈ btZ

d ∩ B(0,Rt )} with a high density
of the Poisson points, where the constant δ > 0 is (arbitrarily) small but fixed. By
translation invariance and by continuity of K(x), for any z ∈ btZ

d ∩ B(0,Rt )

V (Bs) =
∫

Rd
K(x − Bs)ω(dx)

=
∫

Rd
K

(
x − (Bs − z)

)
ω(z + dx) � K(0)ω(B(z, δ))

as Bs ∈ Dz. By (2.7), therefore,

E0 exp
{
θ

∫ t

0
V (Bs) ds

}
(2.10)

� exp
{
θK(0)t max

z
ω(B(z, δ)) − λdr−2 t log t

log log t

}
.
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On the other hand, by independence

P

{
max

z
ω(B(z, δ)) ≥ σ

log t

log log t

}
≈ 1 −

(
1 − P

{
ω(B(0, δ)) ≥ σ

log t

log log t

})td

≈ 1 − (1 − exp{−σ log t})td

≈ 1 − exp{−td−σ } ∀σ > 0.

Using the Borel–Cantelli lemma we can prove that

lim
t→∞

log log t

log t
max

z
ω(B(z, δ)) = d a.s.(2.11)

Since r > 0 can be arbitrarily large, (2.10) and (2.11) lead to the lower bound
requested by (1.14).

The strategy that Poisson field executes in (2.2) is to fill one of the balls

B

(
z, δ

(
log log t

log t

)1/(2−p))
; z ∈ btZ

d ∩ B(0,Rt ),

with a high concentration of the Poisson points. In the following we present a
simple algorithm to illustrate the idea. Assume that the Brownian particle spends
most of its time in Dz for some z ∈ btZ

d ∩ B(0,Rt ). Given a fixed a > 0, it is
not hard to show that the impact of the Poisson points which are a-unit away from
the Brownian particle is negligible, and that the “renormalizer” does not make any
noticeable contribution to the limit law in (2.2). Hence,

V (Bs) =
∫

Rd

1

|x − (Bs − z)|p [ω(z + dx) − dx]

≈
∫
|x−(Bs−z)|≤a}

1

|x − (Bs − z)|p ω(z + dx)(2.12)

≥ (δ + r)−p

(
log t

log log t

)p/(2−p)

ω

{
x; |z + x| ≤ δ

(
log log t

log t

)1/(2−p)}
.

Write

Xz = ω

{
y; |z + y| ≤ δ

(
log log t

log t

)1/(2−p)}
.

In view of (2.7),

E0 exp
{
θ

∫ t

0
V (Bs) ds

}

� exp
{
(r + δ)−pθt

(
log t

log log t

)p/(2−p)

max
z

Xz

− λdr−2t

(
log t

log log t

)2/(2−p)}
.
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Similarly to (2.11),

lim
t→∞

log log t

log t
max

z
Xz = d(2 − p)

3 − p
a.s.

Since δ > 0 can be arbitrarily small, the optimal pick

r =
(

2λd(3 − p)

dp(2 − p)θ

)1/(2−p)

leads to the lower bound

lim inf
t→∞

1

t

(
log log t

log t

)2/(2−p)

E0 exp
{
θ

∫ t

0
V (Bs) ds

}

≥ 1

2

(
p

2λd

)p/(2−p)

(2 − p)(4−p)/(2−p)

(
dθ

3 − p

)2/(2−p)

a.s.

This bound is sharp in rate in comparison with (2.2). Due to a lack of information
on the value of σ(d,p), we are not able to compare the constants on the right-hand
sides. However, it looks unlikely that the constant obtained here would match the
one in (2.2). In addition, the argument given in Sections 5 and 6 shows that the
constant r > 0 should be arbitrarily large for the accuracy requested by (2.2).

In summary, the simple strategies given above provide some heuristic pictures
on the behavior patterns of both Brownian particles and the Poisson field and can
be made rigorous for (1.13) and (1.14), but fall short of the accuracy demanded by
(2.1) and (2.2). Some harder computation on the tail estimates for Poisson integrals
is needed for the main theorems in this paper.

We now comment on the methods used in this paper. The Feynman–Kac formula
is essential in this paper for tracking the principal eigenvalues. Among others, the
ingenious approach developed in [16] and [17], which allows one to bound the
principal eigenvalue over a large domain by the maximal of the principal eigenval-
ues over the sub-domains, plays a key role in our argument for the upper bound.
With this approach, we reduce the problem essentially to the tail estimate of the
random Dirichlet form

sup
g∈Fd (B(0,rε1/d ))

{
±θ

∫
B(0,rε1/d )

V (x)g2(x) dx − 1

2

∫
B(0,rε1/d )

|∇g(x)|2 dx

}
,(2.13)

where for any domain D ⊂ R
d , Fd(D) is defined as the set of the smooth functions

g on D with ‖g‖L2(D) = 1 and g(∂D) = 0, the constant r > 0 is large but fixed
and associated with the critical radius rt posted in (2.8), the parameter ε is given
as follows:

ε =
⎧⎪⎨⎪⎩

(log t)−(d−p)/2, in the proof of Theorem 2.1,(
log log t

log t

)d/(2−p)

, in the proof of Theorem 2.2.
(2.14)
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Another important idea adopted in this paper is the Poisson field rescaling. In his
proof of (1.13), Sznitman ([24], Chapter 4) reduces the problem to the investigation
of the “enlarged obstacles”

ω((log t)1/d dx).

It is worth pointing out that the choice of the rescaling factor (log t)1/d links to
the critical radius rt posted in (2.8). What we confront here are the “contracted
obstacles” ω(ε dx) − ε dx with ε > 0 given in (2.14). Under the substitution
g(x) �→ ε−1/2g(ε−1/dx) and by Fubini’s theorem, the variation in (2.13) is equal
to

sup
g∈Fd (B(0,r))

{
±θε−p/d

∫
Rd

[∫
B(0,r)

g2(y)

|y − x|p dy

]
[ω(ε dx) − ε dx]

− ε−2/d

2

∫
B(0,r)

|∇g(x)|2 dx

}
.

The tail probabilities of the compensated Poisson integral appearing here will be
the main topic of the next section.

In comparison to the existing literature such as [2, 17, 25, 26], perhaps the most
substantial difference comes from the fact that in these works, the logarithmic mo-
ment generating function (or the fractional logarithmic moment generating func-
tion)

H(γ ) ≡ log E exp{γV (0)}
exists. As a matter of fact, it is the logarithmic moment generating function H(γ )

(or the fractional logarithmic moment generating function) that plays a decisive
role in these publications in determining the asymptotics for

log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
and

log E ⊗ E0 exp
{
θ

∫ t

0
V (Bs) ds

}
(t → ∞)

through some well-developed algorithms. Unfortunately, this is not our case. In-
deed, we have that

EV
2
(0) =

∫
Rd

dx

|x|2p
= ∞.

Additional challenges we confront are the local unboundedness of V (x), and the
loss of monotonicity of Poisson integrals due to renormalization.

The rest of the paper is organized as follows. In Section 3 we establish the
large deviations for a group of Poisson integrals with respect to the contracted
renormalized Poisson field. In Section 4, some explicit bounds for the Feynman–
Kac formula are established for later application. The upper bounds and the lower
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bounds for our main theorems are proved in Sections 5 and 6, respectively. These
bounds are established simultaneously for Theorems 2.1 and 2.2. In Section 6,
some identities for the relevant integrals and variations are established.

3. Large deviations for Poisson integrals. The functions

ψ(λ) = e−λ − 1 + λ and �(λ) = eλ − 1 − λ (λ ≥ 0)

appear frequently in this section. It is easy to see that ψ(λ) and �(λ) are non-
negative, increasing and convex on [0,∞) with ψ(0) = �(0) = 0. In addition,
ψ(·) ≤ �(·) on [0,∞). According to Lemma A.1,∫

Rd
ψ

(
1

|x|p
)

dx = ωd

p

d − p
	

(
2p − d

p

)
(3.1)

when d/2 < p < d .
The function �(| · |−p) is not integrable on R

d . Under p > d/2, however,∫
{|x|≥c}

�

(
1

|x|p
)

dx < ∞, c > 0.

Throughout this section, D ⊂ R
d is a fixed bounded open set. Write

Gd(D) = {
g ∈ W 1,2(D); ‖g‖2

L2(D)
+ 1

2‖∇g‖2
L2(D)

= 1
}
,(3.2)

where W 1,2(D) is the Sobolev space over D, defined to be the closure of the
inner product space consisting of the infinitely differentiable functions compactly
supported in D under the Sobolev norm

‖g‖H = {‖g‖2
L2(D)

+ ‖∇g‖2
L2(D)

}1/2
.

To reserve continuity we adopt a smooth truncation to the shape function. Let
the smooth function α : R+ −→ [0,1] satisfy the following properties: α(λ) = 1
on [0,1], α(λ) = 0 for λ ≥ 3 and −1 ≤ α′(λ) ≤ 0.

For a > 0 and ε > 0, define

K(0)
a,ε(x) = 1

|x|p α
(
a−1ε(2+d−p)/(d(d−p))|x|),

K(1)
a,ε(x) = 1

|x|p α(a−1(log ε−1)−1/p|x|)

and

L(0)
a,ε(x) = 1

|x|p
{
1 − α

(
a−1ε(2+d−p)/(d(d−p))|x|)},

L(1)
a,ε(x) = 1

|x|p {1 − α(a−1(log ε−1)−1/p|x|)}
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and

G(i)
a,ε(g) =

∫
Rd

[∫
D

K(i)
a,ε(y − x)g2(y) dy

]
[ω(ε dx) − ε dx],

(3.3)
g ∈ Gd(D), i = 0,1,

F (i)
a,ε(g) =

∫
Rd

[∫
D

L(i)
a,ε(y − x)g2(y) dy

]
[ω(ε dx) − ε dx],

(3.4)
g ∈ Gd(D), i = 0,1.

Write

ζε(g) =
∫

Rd

[∫
D

g2(y)

|y − x|p dy

]
[ω(ε dx) − ε dx], g ∈ Gd(D).(3.5)

The main theorems in this section are the large deviations for the Poisson inte-
grals indexed by Gd(D).

THEOREM 3.1. Assume that d/2 < p < d . For any a > 0 and γ > 0,

lim
a→∞ lim sup

ε→0+
ε2/(d−p) log P

{
sup

g∈Gd (D)

∣∣F (0)
a,ε (g)

∣∣ ≥ γ ε−(2−p)/d
}

= −∞,(3.6)

lim inf
a→∞ lim inf

ε→0+ ε2/(d−p) log P

{
inf

g∈Gd (D)
G(0)

a,ε(g) ≤ −γ ε−(2−p)/d
}

≥ −ID(γ ),(3.7)

lim
ε→0+ ε2/(d−p) log P

{
inf

g∈Gd (D)
ζε(g) ≤ −γ ε−(2−p)/d

}
= −ID(γ ),(3.8)

where

ID(γ ) =
(

γ (d − p)

d

)d/(d−p)(
ωd	

(
2p − d

p

))−p/(d−p)

(3.9)
×

(
sup

g∈Gd (D)

‖g‖L2(D)

)−2d/(d−p)
.

Write l(ε) = ε−(2−p)/d log 1
ε
, and

ρ∗
D = sup

g∈Gd (D)

sup
x∈Rd

∫
D

g2(y)

|y − x|p dy.(3.10)

The finiteness of ρ∗
D can be seen from (A.6) in Lemma A.3 and from (A.9).

THEOREM 3.2. Assume d/2 < p < min{2, d}. For any a > 0 and γ > 0,

lim
ε→0+

1

l(ε)
log P

{
sup

g∈Gd (D)

∣∣F (1)
a,ε (g)

∣∣ ≥ γ ε−(2−p)/d
}

= −∞,(3.11)
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lim
ε→0+

1

l(ε)
log P

{
sup

g∈Gd (D)

G(1)
a,ε(g) ≥ γ ε−(2−p)/d

}
= −2 + d − p

dρ∗
D

γ,(3.12)

lim
ε→0+

1

l(ε)
log P

{
sup

g∈Gd (D)

ζε(g) ≥ γ ε−(2−p)/d
}

= −2 + d − p

dρ∗
D

γ.(3.13)

Write

V
(i)

a,ε(x) =
∫

Rd
L(i)

a,ε(y − x)[ω(ε dy) − ε dy], x ∈ D, i = 0,1.

Our approach relies on the following lemma.

LEMMA 3.3. For any a > 0 and θ > 0,

lim
ε→0+ ε2/(d−p) log E exp

{
−θε−p(2+d−p)/(d(d−p)) inf

x∈D
V

(0)

a,ε(x)
}

(3.14)

=
∫

Rd
ψ

(
θ

1 − α(a−1|x|)
|x|p

)
dx,

lim
ε→0+ ε2/(d−p) log E exp

{
θε−p(2+d−p)/(d(d−p)) sup

x∈D

∣∣V (0)

a,ε(x)
∣∣}

(3.15)

=
∫

Rd
�

(
θ

1 − α(a−1|x|)
|x|p

)
dx,

lim
ε→0+

1

l(ε)
log E exp

{
θ

(
log

1

ε

)
sup
x∈D

∣∣V (1)

a,ε(x)
∣∣} = 0.(3.16)

PROOF. Notice that for any a > 0, θ > 0 and x ∈ D,

E exp
{−θε−p(2+d−p)/(d(d−p))V

(0)

a,ε(x)
}

= E exp
{−θε−p(2+d−p)/(d(d−p))V

(0)

a,ε(0)
}

= exp
{
ε

∫
Rd

ψ
(
θε−p(2+d−p)/(d(d−p))L(0)

a,ε(x)
)
dx

}

= exp
{
ε2/(d−p)

∫
Rd

ψ

(
θ

1 − α(a−1|x|)
|x|p

)
dx

}
.

Similarly,

E exp
{
θε−p(2+d−p)/(d(d−p))V

(0)

a,ε(x)
}

= exp
{
ε2/(d−p)

∫
Rd

�

(
θ

1 − α(a−1|x|)
|x|p

)
dx

}
.
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In view of the fact that ψ(·) ≤ �(·) on [0,∞), we conclude that

lim
ε→0+ ε2/(d−p) log E exp

{−θε−p(2+d−p)/(d(d−p))V
(0)

a,ε(x)
}

(3.17)

=
∫

Rd
ψ

(
θ

1 − α(a−1|x|)
|x|p

)
dx,

lim
ε→0+ ε2/(d−p) log E exp

{
θε−p(2+d−p)/(d(d−p))

∣∣V (0)

a,ε(x)
∣∣}

(3.18)

=
∫

Rd
�

(
θ

1 − α(a−1|x|)
|x|p

)
dx.

A similar computation also leads to

lim
ε→0+

1

l(ε)
log E exp

{
θ

(
log

1

ε

)∣∣V (1)

a,ε(x)
∣∣} = 0, x ∈ D.(3.19)

All we need is to take supremum over x ∈ D in the exponent on the left-hand
sides of (3.17), (3.18) and (3.19) and push the supremum through the expectation.
Due to similarity, we only carry out this algorithm to (3.17) and (3.18).

By the boundedness of D, we may assume that D = (−b, b)d for some b > 0.
Let h > 0 be a constant which will be later specified, and let

γ = 2 + d − p

d − p
+ h.

By integration substitution

V
(0)

a,ε(x) = ε−ph/d
∫

Rd
L̃(0)

a,ε(y − ε−h/dx)[ω(ε1+h dy) − ε1+h dy]
(3.20)

= ε−ph/dHε(ε
−h/dx),

where

L̃(0)
a,ε(x) = 1

|x|p {1 − α(a−1εγ/d |x|)}

and

Hε(x) =
∫

Rd
L̃(0)

a,ε(z − x)[ω(ε1+h dz) − ε1+h dz].
For any x, y ∈ D with x �= y, and θ > 0,

E exp
{
θε−pγ/d Hε(x) − Hε(y)

|x − y|
}

= exp
{
ε1+h

∫
Rd

�

(
ε−pγ/d θ

|x − y|
(
L̃(0)

a,ε(z − x) − L̃(0)
a,ε(z − y)

))
dz

}
.
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Switching x and y, one has

E exp
{
θε−pγ/d |Hε(x) − Hε(y)|

|x − y|
}

≤ 2 exp
{
ε1+h

∫
Rd

�

(
ε−pγ/d θ

|x − y|
∣∣L̃(0)

a,ε(z − x) − L̃(0)
a,ε(z − y)

∣∣)dz

}
.

By integration substitution,∫
Rd

�

(
ε−pγ/d θ

|x − y|
∣∣L̃(0)

a,ε(z − x) − L̃(0)
a,ε(z − y)

∣∣)dz

= ε−γ
∫

Rd
�

(
θ

|x − y| |La(z − εγ/dx) − La(z − εγ/dy)|
)

dz,

where

La(z) = 1 − α(a−1|z|)
|z|p .

By the mean value theorem, there is a Ca > 0 such that when ε > 0 is sufficiently
small,

|La(z − εγ/dx) − La(z − εγ/dy)| ≤ Ca

εγ/d |x − y|
|z|p 1{|z|≥C−1

a }, x, y ∈ D.

Summarizing what we have,

E exp
{
θε−pγ/d |Hε(x) − Hε(y)|

|x − y|
}

≤ 2 exp
{
ε−2/(d−p)

∫
{|x|≥C−1

a }
�

(
Caθεγ/d

|z|p
)

dz

}

= 2 exp
{
εγ/p−2/(d−p)

∫
{|x|≥C−1

a ε−γ /(dp)}
�

(
Caθ

|z|p
)

dz

}
.

Let h > 0 satisfy that

h ≥ 3p − d − 2

d − p
or

γ

p
− 2

d − p
≥ 0.

Then for any θ > 0 the quantity

sup
x,y∈D

x �=y

E exp
{
θε−pγ/d |Hε(x) − Hε(y)|

|x − y|
}

is bounded uniformly for small ε > 0. Thus ([8], Theorem D-6), for any θ > 0,

lim
δ→0+ lim sup

ε→0+
E exp

{
θε−pγ/d sup

|x−y|≤δ

|Hε(x) − Hε(y)|
}

= 1.(3.21)
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On the other hand, for any x ∈ R
d and θ > 0,

E exp{±θε−pγ/dHε(x)} = E exp{±θε−pγ/dHε(0)}
= E exp

{±θε−p(2+d−p)/(d(d−p))V
(0)

(0)
}
,

where the last step follows from (3.20). By (3.17) and (3.18), therefore, for any
x ∈ D

lim
ε→0+ ε2/(d−p) log E exp{−θε−pγ/dHε(x)} =

∫
Rd

ψ

(
θ

1 − α(a−1|y|)
|y|p

)
dy,

lim
ε→0+ ε2/(d−p) log E exp{θε−pγ/d |Hε(x)|} =

∫
Rd

�

(
θ

1 − α(a−1|y|)
|y|p

)
dy.

Combine them with (3.21). A standard argument of exponential approximation
leads to

lim
ε→0+ ε2/(d−p) log E exp

{
−θε−pγ/d inf

x∈D
Hε(x)

}
(3.22)

=
∫

Rd
ψ

(
θ

1 − α(a−1|x|)
|x|p

)
dx,

lim
ε→0+ ε2/(d−p) log E exp

{
θε−pγ/d sup

x∈D

|Hε(x)|
}

(3.23)

=
∫

Rd
�

(
θ

1 − α(a−1|x|)
|x|p

)
dx.

Recall that D = (−b, b)d . Using (3.20),

− inf
x∈D

V (0)
a,ε (x) = −ε−ph/d inf

x∈ε−h/dD
Hε(x)

≤ ε−ph/d max
z∈bZd∩ε−h/dD

{
− inf

x∈z+D
Hε(x)

}
.

By the fact that the random variables

inf
x∈z+D

Hε(x); z ∈ bZ
d ∩ ε−h/dD,

are identically distributed,

E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

x∈D
V

(0)

a,ε(x)
}

≤ #{bZ
d ∩ ε−h/dD}E exp

{
−θε−pγ/d inf

x∈D
Hε(x)

}
.

Consequently from (3.22),

lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

x∈D
V

(0)

a,ε(x)
}

≤
∫

Rd
�

(
θ

1 − α(a−1|x|)
|x|p

)
dx.



1454 X. CHEN

In view of (3.17), we have proved (3.14).
Assertion (3.15) follows from (3.18) and (3.23) in the same way. �

3.1. Proof of Theorem 3.1. Let θ > 0 be fixed but arbitrary. By (3.15) and the
inequality

sup
g∈Gd (D)

|Fa,ε(g)| ≤ sup
g∈Gd (D)

∫
D

∣∣V (0)

a,ε(x)
∣∣g2(x) dx

≤
(

sup
g∈Gd (D)

‖g‖L2(D)

)2
sup
x∈D

∣∣V (0)

a,ε(x)
∣∣,

we have

lim sup
ε→0+

ε2/(d−p) log E exp
{
θε−p(2+d−p)/(d(d−p)) sup

g∈Gd (D)

∣∣F (0)
a,ε (g)

∣∣}

≤
∫

Rd
�

((
sup

g∈Gd (D)

‖g‖L2(D)

)2
θ

1 − α(a−1|x|)
|x|p

)
dx.

Consequently,

lim
a→∞ lim sup

ε→0+
ε2/(d−p) log E exp

{
θε−p(2+d−p)/(d(d−p)) sup

g∈Gd (D)

∣∣F (0)
a,ε (g)

∣∣} = 0.

Therefore, (3.6) follows from a standard application of Chebyshev’s inequality.
We now prove (3.8). For any g ∈ Gd(D),

E exp
{−θε−p(2+d−p)/(d(d−p))ζε(g)

}
= exp

{
ε

∫
Rd

ψ

(
θε−p(2+d−p)/(d(d−p))

∫
D

1

|y − x|p g2(y) dy

)
dx

}
.

Given δ > 0,∫
Rd

ψ

(
θε−p(2+d−p)/(d(d−p))

∫
D

1

|y − x|p g2(y) dy

)
dx

≥
∫
{|x|≥δε−(2+d−p)/(d(d−p))}

ψ

(
θε−p(2+d−p)/(d(d−p))

∫
D

1

|y − x|p g2(y) dy

)
dx

≥
∫
{|x|≥δε−(2+d−p)/(d(d−p))}

ψ

(
θε−p(2+d−p)/(d(d−p)) (1 + o(1))

|x|p ‖g‖2
L2(D)

)
dx

= (
1 + o(1)

)
θd/p‖g‖2d/p

L2(D)
ε−(2+d−p)/(d−p)

∫
{|x|≥(1+o(1))δ}

ψ

(
1

|x|p
)

dx

(ε → 0+).
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Since δ can be arbitrarily small, we have

lim inf
ε→0+ ε2/(d−p) log E exp

{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
ζε(g)

}
≥ θd/p

(
sup

g∈Gd (D)

‖g‖L2(D)

)2d/p
∫

Rd
ψ

(
1

|x|p
)

dx(3.24)

= θd/p
(

sup
g∈Gd (D)

‖g‖L2(D)

)2d/p ωdp

d − p
	

(
2p − d

p

)
,

where the last step follows from (3.1).
On the other hand, for any g ∈ Gd(D) and a > 0,

ζε(g) = G(0)
a,ε(g) + F (0)

a,ε (g).(3.25)

Notice that

G(0)
a,ε(g) ≥ −ε

∫
Rd

[∫
D

K(0)
a,ε(y − x)g2(y) dy

]
dx

= −ε‖g‖2
L2(D)

∫
Rd

K(0)
a,ε(x) dx

≥ −Cad−pε−(2−p)/d .

Consequently,

lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
ζε(g)

}
≤ Cθad−p(3.26)

+ lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
F (0)

a,ε (g)
}
.

To deal with the right-hand side, notice that

F (0)
a,ε (g) =

∫
D

V
(0)

a,ε(x)g2(x) dx ≥ ‖g‖2
L2(D)

inf
x∈D

V
(0)

a,ε(x).

Hence,

inf
g∈Gd (D)

F (0)
a,ε (g) = inf

g∈Gd (D)

∫
D

V
(0)

a,ε(x)g2(x) dx ≥
(

sup
g∈Gd (D)

‖g‖2
L2(D)

)
inf
x∈D

V
(0)

a,ε(x)

when infx∈D V
(0)

a,ε(x) ≤ 0, and

inf
g∈Gd (D)

F (0)
a,ε (g) = inf

g∈Gd (D)

∫
D

V
(0)

a,ε(x)g2(x) dx ≥
(

inf
g∈Gd (D)

‖g‖2
L2(D)

)
inf
x∈D

V
(0)

a,ε(x)
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when infx∈D V
(0)

a,ε(x) > 0. Thus,

E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
F (0)

a,ε (g)
}

≤ E

[
exp

{
−θε−p(2+d−p)/(d(d−p)) sup

g∈Gd (D)

‖g‖2
L2(D)

inf
x∈D

V
(0)

a,ε(x)
}
;

inf
x∈D

V
(0)

a,ε(x) ≤ 0
]

+ E

[
exp

{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
‖g‖2

L2(D)
inf
x∈D

V
(0)

a,ε(x)
}
;

inf
x∈D

V
(0)

a,ε(x) > 0
]

≤ E exp
{
−θε−p(2+d−p)/(d(d−p)) sup

g∈Gd (D)

‖g‖2
L2(D)

inf
x∈D

V
(0)

a,ε(x)
}

+ E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
‖g‖2

L2(D)
inf
x∈D

V
(0)

a,ε(x)
}
.

By (3.14) with θ being replaced by

θ sup
g∈Gd (D)

‖g‖2
L2(D)

and θ inf
g∈Gd (D)

‖g‖2
L2(D)

,

respectively,

lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
F (0)

a,ε (g)
}

≤
∫

Rd
ψ

(
θ(1 − α(a−1|x|))

|x|p sup
g∈Gd (D)

‖g‖2
L2(D)

)
dx

≤
∫

Rd
ψ

(
θ

|x|p sup
g∈Gd (D)

‖g‖2
L2(D)

)
dx

= θd/p
(

sup
g∈Gd (D)

‖g‖2
L2(D)

)2d/p
∫

Rd
ψ

(
1

|x|p
)

dx

= θd/p
(

sup
g∈Gd (D)

‖g‖L2(D)

)2d/p ωdp

d − p
	

(
2p − d

p

)
.

Bringing this to (3.26),

lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
ζε(g)

}
≤ Cθad−p + θd/p

(
sup

g∈Gd (D)

‖g‖L2(D)

)2d/p ωdp

d − p
	

(
2p − d

p

)
.
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Letting a → 0+ on the right-hand side leads to

lim sup
ε→0+

ε2/(d−p) log E exp
{
−θε−p(2+d−p)/(d(d−p)) inf

g∈Gd (D)
ζε(g)

}
(3.27)

≤ θd/p
(

sup
g∈Gd (D)

‖g‖L2(D)

)2d/p ωdp

d − p
	

(
2p − d

p

)
.

The combination of (3.24) and (3.27) implies ([8], Theorem 1.2.4) that

lim
ε→0+ ε2/(d−p) log P

{
inf

g∈Gd (D)
ζε(g) ≤ −γ ε−(2−p)/d

}
= − sup

θ>0

{
γ θ − θd/p

(
sup

g∈Gd (D)

‖g‖L2(D)

)2d/p ωdp

d − p
	

(
2p − d

p

)}
= −ID(γ ).

It remains to prove (3.7). By (3.25), for any δ > 0,

P

{
inf

g∈Gd (D)
ζε(g) ≤ −(γ + δ)ε−(2−p)/d

}
≤ P

{
inf

g∈Gd (D)
G(0)

a,ε(g) ≤ −γ ε−(2−p)/d
}

+ P

{
sup

g∈Gd (D)

∣∣F (0)
a,ε (g)

∣∣ ≥ δε−(2−p)/d
}
.

Applying (3.8) on the left-hand side,

−ID(γ + δ) ≤ max
{
lim inf
ε→0+ ε2/(d−p) log P

{
inf

g∈Gd (D)
G(0)

a,ε(g) ≤ −γ ε−(2−p)/d
}
,

lim sup
ε→0+

ε2/(d−p) log P

{
sup

g∈Gd (D)

∣∣F (0)
a,ε (g)

∣∣ ≥ δε−(2−p)/d
}}

.

Let a → ∞ on the right-hand side. By (3.6),

lim inf
a→∞ lim inf

ε→0+ ε2/(d−p) log P

{
inf

g∈Gd (D)
G(0)

a,ε(g) ≤ −γ ε−(2−p)/d
}

≥ −ID(γ + δ).

Letting δ → 0+ on the right-hand side leads to (3.7).

3.2. Proof of Theorem 3.2. Based on (3.16), assertion (3.11) follows from the
same argument used in (3.6).

By the decomposition

G(1)
a,ε(g) =

∫
Rd

[∫
D

K(1)
a,ε(y − x)g2(y) dy

]
ω(ε dx)

− ε

∫
Rd

[∫
D

K(1)
a,ε(y − x)g2(y) dy

]
dx,
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by the uniform [over g ∈ Gd(D)] bound∫
Rd

[∫
D

K(1)
a,ε(y − x)g2(y) dy

]
dx =

(∫
D

g2(y) dy

)(∫
Rd

K(1)
a,ε(x) dx

)

= O

((
log

1

ε

)(d−p)/p)
and by (3.11), all we need is to establish that

lim
ε→0+

1

l(ε)
log P

{
sup

g∈Gd (D)

ηa,ε(g) ≥ γ ε−(2−p)/d
}

= −2 + d − p

dρ∗
D

γ,(3.28)

where

ηa,ε(g) =
∫

Rd

[∫
D

K(1)
a,ε(y − x)g2(y) dy

]
ω(ε dx).

Since K
(1)
a,ε(y − x) = 0 as |y − x| > 3a(log ε−1)1/p , x is limited to a ball with

the center 0 and the radius C(log ε−1)1/p when y ∈ D. Consequently,

sup
g∈Gd (D)

ηa,ε(g) ≤ sup
g∈Gd (D)

∫
{|x|≤C(log ε−1)1/p}

[∫
D

g2(y)

|y − x|p dy

]
ω(ε dx)

≤ ρ∗
Dω{|x| ≤ Cε1/d(log ε−1)1/p}(3.29)

= ρ∗
DZ̃ε,

where Z̃ε ≡ ω{|x| ≤ Cε1/d(log ε−1)1/p} is a Poisson random variable with

EZ̃ε = ωdCdε(log ε−1)d/p.

For any θ > 0

E exp
{
θ

(
log

1

ε

)
Z̃ε

}
= exp{ωdCdε(log ε−1)d/p(eθ log ε−1 − 1)}.

Consequently,

lim
ε→0+

1

l(ε)
log E exp

{
θ

(
log

1

ε

)
Z̃ε

}
= 0, θ <

2 + d − p

d
.

A standard application of Chebyshev’s inequality gives

lim sup
ε→0+

1

l(ε)
log P

{
Z̃ε ≥ γ ε(2−p)/d} ≤ −2 + d − p

d
γ

for every γ > 0. Thus, the upper bound of (3.28) follows from (3.29).
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On the other hand, let x0 ∈ R
d be fixed but arbitrary, and write ωx0(ε dx) =

ω(ε(x0 + dx)). Given δ > 0 and λ > 1, by variable shifting

sup
g∈Gd (D)

ηa,ε(g)

= sup
g∈Gd (D)

∫
Rd

[∫
D

K(1)
a,ε(y − x0 − x)g2(y) dy

]
ωx0(ε dx)

≥ sup
g∈Gd (D)

∫
{|x|≤δ}

[∫
D

K(1)
a,ε(y − x0 − x)g2(y) dy

]
ωx0(ε dx)

≥
(

sup
g∈Gd (D)

∫
D

1

(|y − x0| + δ)p
α

(
a−1(log ε−1)−1/p(|y − x0| + δ)

)
g2(y) dy

)
× ω{|x + x0| ≤ ε1/dδ}

d=
(

sup
g∈Gd (D)

∫
D

g2(y)

(|y − x0| + δ)p
dy

)
ω{|x| ≤ ε1/dδ}

as ε is sufficiently small.
Write Zε = ω{|x| ≤ ε1/dδ} and k(ε) = [γ ε−(2−p)/d ] + 1.

P
{
Zε ≥ γ ε−(2−p)/d} ≥ P{Zε = k(ε)} = e−ωdεδd (ωdεδd)k(ε)

k(ε)! .

By Stirling’s formula, one can show that for any γ > 0,

lim inf
ε→∞

1

l(ε)
log P

{
Zε ≥ γ ε−(2−p)/d} ≥ −2 + d − p

d
γ, γ > 0.

Replacing γ by

γ

(
sup

g∈Gd (D)

∫
D

g2(y)

(|y − x0| + δ)p
dy

)−1

,

we have

lim inf
ε→∞

1

l(ε)
log P

{
sup

g∈Gd (D)

ηa,ε(g) ≥ γ ε−(2−p)/d
}

≥ −2 + d − p

d

(
sup

g∈Gd (D)

∫
D

g2(y)

(|y − x0| + δ)p
dy

)−1

γ.

Letting δ → 0+ and taking x0 ∈ R
d on the right-hand side lead to the lower bound

of (3.28).
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4. Bridging to the eigenvalue problem. Throughout this section, let D ⊂ R
d

be a bounded open domain, and let

Fd(D) =
{
g ∈ W 1,2(D);

∫
D

g2(x) dx = 1
}
.(4.1)

Given a measurable function ξ(x) on R
d , we introduce the notation

λξ (D) = sup
g∈Fd (D)

{∫
D

ξ(x)g2(x) dx − 1

2

∫
D

|∇g(x)|2 dx

}
.

Clearly, λξ (D) ≤ λη(D) whenever ξ(x) ≤ η(x) (x ∈ D).
Write

τD = inf{s ≥ 0;Bs /∈ D}.
It is well known that by the Feynman–Kac formula,

E0

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
≈ exp{tλξ (D)} (t → ∞)

in some proper sense. For the applications to our setting, some more explicit
bounds are needed. This is our objective in this section.

LEMMA 4.1. The inequality∫
D

Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
dx ≤ |D| exp{tλξ (D)}(4.2)

holds regardless whether λξ (D) is finite or infinite.

PROOF. The argument in the case when ξ(x) ≤ N for some constant N > 0
is classic (see the treatment given e.g., in [8], Section 4.1): A standard argument
through a spectral theory [the boundedness of ξ(·) guarantees the boundedness of
the underlined linear operators in the argument] gives that for any g ∈ W 1,2(D)∫

D
g(x)Ex

[
exp

{∫ t

0
ξ(Bs)

}
g(Bt); τD ≥ t

]
dx ≤ ‖g‖2

L2(D)
exp{tλξ (D)}.

In particular, let gn ∈ W 1,2(D) be a monotonic sequence such that 0 ≤ gn(x) ≤ 1
and gn(x) ↑ 1 (n → ∞) for every x ∈ D. Then∫

D
gn(x)Ex

[
exp

{∫ t

0
ξ(Bs)

}
gn(Bt ); τD ≥ t

]
dx ≤ |D| exp{tλξ (D)},

n = 1,2, . . . .

Letting n → ∞ on the left-hand side, the desired bound follows from monotonic
convergence.
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To remove the boundedness assumption, we write ξN(x) = min{ξ(x),N}. By
what has been proved,∫

D
Ex

[
exp

{∫ t

0
ξN(Bs) ds

}
; τD ≥ t

]
dx ≤ |D| exp{tλξN

(D)} ≤ |D| exp{tλξ (D)}.
The conclusion follows from monotonic convergence again as we let N → ∞ on
the left-hand side. �

LEMMA 4.2. For any α,β > 1 satisfying α−1 +β−1 = 1 and λ(β/α)ξ (D) < ∞
[in this case λα−1ξ (D) < ∞] and 0 < δ < t∫

D
Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
dx

≥ (2π)αd/2δd/2tαd/(2β)|D|−2α/β(4.3)

× exp
{−δ(α/β)λ(β/α)ξ (D)

}
exp{α(t + δ)λα−1ξ (D)}.

PROOF. We only need to show that∫
D

Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
dx

≥ (2π)αd/2δd/2tαd/(2β)|D|−α/β exp{α(t + δ)λα−1ξ (D)}(4.4)

×
{∫

D
Ex

[
exp

{
β

α

∫ δ

0
ξ(Bs) ds

}
; τD ≥ δ

]
dx

}−α/β

as, by Lemma 4.1,∫
D

Ex

[
exp

{
β

α

∫ δ

0
ξ(Bs) ds

}
; τD ≥ δ

]
dx ≤ |D| exp

{−δ(α/β)λ(β/α)ξ (D)
}
.

We first consider the case when ξ(x) is Hölder continuous. By the Feynman–
Kac representation,

u(t, x) = Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
solves the initial-boundary value problem⎧⎨⎩ ∂tu(t, x) = 1

2�u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0, t) × D,
u(0, x) = 1, x ∈ D,
u(t, x) = 0, (t, x) ∈ (0,∞) × ∂D.

Let λ1 > λ2 ≥ λ3 ≥ · · · be the eigenvalues of the operator (1/2)�+ ξ in L2(D)

with zero boundary condition and initial value 1 in D, and let ek ∈ L2(D) be an
orthonormal basis corresponding to {λk}. By (2.31) in [17],

Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
δx(Bt ); τD ≥ t

]
=

∞∑
k=1

etλke2
k(x) ≥ etλ1e2

1(x).
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Noticing the fact that λ1 = λξ (D) and integrating both sides we have∫
D

Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
δx(Bt ); τD ≥ t

]
dx ≥ exp{tλξ (D)}.

Replace ξ by α−1ξ and t by t + δ. By Hölder’s inequality,

exp{(t + δ)λα−1ξ (D)}

≤
∫
D

Ex

[
exp

{
α−1

∫ t+δ

0
ξ(Bs) ds

}
δx(Bt+δ); τD ≥ t + δ

]
dx

≤
{∫

D
Ex

[
exp

{
(β/α)

∫ t+δ

t
ξ(Bs) ds

}
; τD ≥ t + δ

]
dx

}1/β

×
{∫

D
Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
δx(Bt+δ); τD ≥ t + δ

]
dx

}1/α

.

Notice that

Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
δx(Bt+δ); τD ≥ t + δ

]
≤ Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
δx(Bt+δ); τD ≥ t

]
= Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
pδ(Bt − x); τD ≥ t

]
,

where

pδ(y) = 1

(2πδ)d/2 exp
{
−|y|2

2δ

}
≤ 1

(2πδ)d/2 .

In addition,∫
D

Ex

[
exp

{
(β/α)

∫ t+δ

t
ξ(Bs) ds

}
; τD ≥ t + δ

]
dx

≤
∫
D

Ex

[
exp

{
(β/α)

∫ t+δ

t
ξ(Bs) ds

}
;Bt ∈ D,τ ′

D ≥ t + δ

]
dx

=
∫
D

[∫
D

pt(y − x)Ey

(
exp

{
(β/α)

∫ δ

0
ξ(Bs) ds

}
; τD ≥ δ

)
dy

]
dx

≤ 1

(2πt)d/2 |D|
∫
D

Ey

[
exp

{
(β/α)

∫ δ

0
ξ(Bs) ds

}
; τD ≥ δ

]
dy,

where

τ ′
D = inf{s ≥ t;Bs /∈ D}.

Summarizing our argument, we have established the bound (4.4).
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We now move to the case when ξ(x) ≥ −N for some N > 0. For any Hölder-
continuous η(x) on D with η(x) ≤ ξ(x) a.e. on D,∫

D
Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]
dx

≥ (2π)αd/2δd/2tαd/(2β)|D|−α/β exp{α(t + δ)λα−1η(D)}

×
{∫

D
Ex

[
exp

{
β

α

∫ δ

0
η(Bs) ds

}
; τD ≥ δ

]
dx

}−α/β

≥ (2π)αd/2δd/2tαd/(2β)|D|−α/β exp{α(t + δ)λα−1η(D)}

×
{∫

D
Ex

[
exp

{
β

α

∫ δ

0
ξ(Bs) ds

}
; τD ≥ δ

]
dx

}−α/β

.

Let

Hξ = {η(·);η(x) is Hölder continuous on D and η(x) ≤ ξ(x) a.e. on D}.
Since ξ(·) ≥ −N , Hξ �= φ. Further, by standard approximation theory, Hξ is rich
enough to approximate ξ . More precisely, the desired bound follows from

sup
η∈Hξ

λα−1η(D) = sup
g∈Fd (D)

{
α−1 sup

η∈Hξ

∫
D

η(x)g2(x) dx − 1

2

∫
D

|∇g(x)|2 dx

}
= λα−1ξ (D).

To remove the boundedness assumption, we write ξN(x) = ξ(x) ∨ (−N). We
have ∫

D
Ex

[
exp

{∫ t

0
ξN(Bs) ds

}
; τD ≥ t

]
dx

≥ (2π)αd/2δd/2tαd/(2β)|D|−α/β exp{α(t + δ)λα−1ξN
(D)}

×
{∫

D
Ex

[
exp

{
β

α

∫ δ

0
ξN(Bs) ds

}
; τD ≥ δ

]
dx

}−α/β

.

Noticing λα−1ξN
(D) ≥ λα−1ξ (D) and letting N → ∞, the monotonic convergence

theorem leads to (4.4). �

LEMMA 4.3. Let 0 < δ < t , and assume 0 ∈ D.

E0

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]

≤
(

E0 exp
{
β

∫ δ

0
ξ(Bs) ds

})1/β

(4.5)

×
{

1

(2πδ)d/2

∫
D

Ex

[
exp

{
α

∫ t−δ

0
ξ(Bs) ds

}
; τD ≥ t − δ

]
dx

}1/α

.
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On the other hand,

E0 exp
{∫ t

0
ξ(Bs) ds

}

≥
(

E0 exp
{
−β

α

∫ δ

0
ξ(Bs) ds

})−α/β

(4.6)

×
{∫

D
pδ(x)Ex

[
exp

{
α−1

∫ t−δ

0
ξ(Bs) ds

}
; τD ≥ t − δ

]
dx

}α

,

where pδ(x) is the density of Bδ .

PROOF. By Hölder’s inequality,

E0

[
exp

{∫ t

0
ξ(Bs) ds

}
; τD ≥ t

]

≤
(

E0 exp
{
β

∫ δ

0
ξ(Bs) ds

})1/β{
E0

[
exp

{
α

∫ t

δ
ξ(Bs) ds

}
; τD ≥ t

]}1/α

.

Write τ ′
D = inf{s ≥ δ;Bs /∈ D}. Claim (4.5) follows from the following proce-

dure via Markov property:

E0

[
exp

{
α

∫ t

δ
ξ(Bs) ds

}
; τD ≥ t

]
≤ E0

[
exp

{
α

∫ t

δ
ξ(Bs) ds

}
;Bδ ∈ D,τ ′

D ≥ t

]

=
∫
D

pδ(x)Ex

[
exp

{
α

∫ t−δ

0
ξ(Bs) ds

}
; τD ≥ t − δ

]
dx

≤ 1

(2πδ)d/2

∫
D

Ex

[
exp

{
α

∫ t−δ

0
ξ(Bs) ds

}
; τD ≥ t − δ

]
dx.

On the other hand,

E0

[
exp

{
α−1

∫ t

δ
ξ(Bs) ds

}
;Bδ ∈ D,τ ′

D ≥ t

]

≤ E0

[
exp

{
−α−1

∫ δ

0
ξ(Bs) ds

}
exp

{
α−1

∫ t

0
ξ(Bs) ds

}]

≤
(

E0 exp
{
−β

α

∫ δ

0
ξ(Bs) ds

})1/β{
E0 exp

{∫ t

0
ξ(Bs) ds

}}1/α

.

Thus, (4.6) follows from Markov property which claims that

E0

[
exp

{
α−1

∫ t

δ
ξ(Bs) ds

}
;Bδ ∈ D,τ ′

D ≥ t

]

=
∫
D

pδ(x)Ex

[
exp

{
α−1

∫ t−δ

0
ξ(Bs) ds

}
; τD ≥ t − δ

]
dx. �
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5. Upper bounds. In this section we establish the upper bounds for Theo-
rems 2.1 and 2.2. More precisely, we prove that

lim sup
t→∞

t−1(log t)−(d−p)/d

(5.1)

× log E0 exp
{
−θ

∫ t

0
V (Bs) ds

}
≤ �0(θ) a.s.-P

when d/2 < p < d , and

lim sup
t→∞

1

t

(
log log t

log t

)2/(2−p)

(5.2)

× log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
≤ �1(θ) a.s.-P

when d/2 < p < min{2, d}, where

�0(θ) = θd2

d − p

(
ωd

d
	

(
2p − d

p

))p/d

,(5.3)

�1(θ) = 1

2
pp/(2−p)(2 − p)(4−p)/(2−p)

(
dθ σ(d,p)

2 + d − p

)2/(2−p)

.(5.4)

The following notation will be used in this and the next sections. For any R > 0,
QR = (−R,R)d .

ht =
⎧⎪⎨⎪⎩

(log t)(d−p)/(2d), for the proof of (5.1),(
log t

log log t

)1/(2−p)

, for the proof of (5.2).
(5.5)

Write Rk = Rk(t) = (Mtht )
k (k = 1,2, . . .) where the constant M > 0 is fixed

but sufficiently large. Write ξ(x) = −V (x) in the proof of (5.1) and ξ(x) = V (x)

in the proof of (5.2).
Finally we recall that for any open domain D ⊂ R

d containing 0,

τD = inf{s ≥ 0;Bs /∈ D}.
Consider the decomposition

E0 exp
{
θ

∫ t

0
ξ(Bs) ds

}
= E0

[
exp

{
θ

∫ t

0
ξ(Bs) ds

}
; τQR1

≥ t

]

+
∞∑

k=1

E0

[
exp

{
θ

∫ t

0
ξ(Bs) ds

}
; τQRk

< t ≤ τQRk

]

≤ E0

[
exp

{
θ

∫ t

0
ξ(Bs) ds

}
; τQR1

≥ t

]
(5.6)
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+
∞∑

k=1

(P{τQRk
< t})1/2

×
{
E0

[
exp

{
2θ

∫ t

0
ξ(Bs) ds

}
; τQRk+1

≥ t

]}1/2

.

The well-known result on the Gaussian tail gives that

(P{τQRk
< t})1/2 ≤ exp{−cR2

k/t} = exp{−cM2t2k−1h2k
t }.

Let α,β > 1 satisfy α−1 +β−1 = 1 with α close to 1. By (4.5) (with δ = 1) and
Lemma 4.1,

E0

[
exp

{
θ

∫ t

0
ξ(Bs) ds

}
; τQR1

≥ t

]

≤ 1

(2π)d/α

(
E0 exp

{
θβ

∫ 1

0
ξR1(Bs) ds

})1/β

×
{∫

QR1

dx Ex

[
exp

{
θα

∫ 1

0
ξ(Bs) ds

}
; τQR1

≥ t − 1
]}1/α

≤
(

R1

π

)d/α(
E0 exp

{
θβ

∫ 1

0
ξ(Bs) ds

})1/β

exp{(t − 1)λθαξ (QR1)}.

Similarly,

E0

[
exp

{
2θ

∫ t

0
ξ(Bs) ds

}
; τQ̃Rk+1

≥ t

]

≤
(

Rk+1

π

)d/α(
E0 exp

{
2θβ

∫ 1

0
ξ(Bs) ds

})1/β

exp{(t − 1)λ2θαξ (QRk+1)}.

Summarizing our estimates since (5.6),

E0 exp
{
θ

∫ t

0
ξ(Bs) ds

}

≤
(

R1

π

)d/α(
E0 exp

{
θβ

∫ 1

0
ξ(Bs) ds

})1/β

exp{tλαθξ (QR1)}
(5.7)

+
(

E0 exp
{

2θβ

∫ 1

0
ξ(Bs) ds

})1/2β

×
∞∑

k=1

(
Rk+1

π

)d/2α

exp{−cM2t2k−1h2k
t } exp

{
t

2
λ2αθξ (QRk+1)

}
.
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To prove (5.1) and (5.2), therefore, all we need is to show that for any θ > 0,

lim
t→∞h−2

t λθξ (Qt) ≤ �(θ) ≡
{

�0(θ), for the proof of (5.1),
�1(θ), for the proof of (5.2).

(5.8)
a.s.-P.

Indeed, we apply (5.8) to the first term on the right-hand side of (5.7) (with
t being replaced by R1 = Mtht and θ being replaced by αθ ). Notice that α can
be arbitrarily close to 1. This term alone does not exceed the limit set in (5.1)
and (5.2) if we let α → 1+ after the limit for t . To control the infinite series on
the right-hand side of (5.7), we apply (5.8) to each term with t being replaced by
Rk+1 = (Mtht )

k+1 and with θ being replaced by 2αθ . In this way, the series is
dominated by

∞∑
k=1

(
Rk+1

π

)d/α

exp{−c′t2k−2h2k
t } = O(1) a.s.-P (t → ∞),

where c′ > 0 is a constant. Here we point out that to control the first term of the
series in (5.7), M > 0 is required to be sufficiently large.

Let δ > 0 be a small number, and write

h̃t = ht

√
u

1 + δ
.

Define

ξt (x) = ±θh̃
p−2
t

∫
Rd

1

|y − x|p [ω(h̃−d
t dx) − h̃−d

t dx],
where “−” corresponds to the proof of (5.1) and “+” corresponds to the proof of
(5.2).

Under the substitution

g(x) �→ h̃
d/2
t g(xh̃t ),

we have that

λθξ (Qt) = h̃2
t sup

g∈Fd (Q
th̃t

)

{∫
Q

th̃t

ξt (x)g2(x) dx − 1

2

∫
Q

th̃t

|∇g(x)|2 dx

}
.

Let r ≥ 2 be large but fixed. By Proposition 1 in [16], or by Lemma 4.6 in
[17], there is a nonnegative and continuous function �(x) on R

d whose support is
contained in the 1-neighborhood of the grid 2rZ

d , such that

λξt−�y (Q
th̃t

) ≤ max
z∈2rZd∩Q2t h̃t+2r

λξt (z + Qr+1), y ∈ Qr,

where �y(x) = �(x + y). In addition, �(x) is periodic with period 2r

�(x + 2rz) = �(x); x ∈ R
d, z ∈ Z

d,
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and there is a constant K > 0 independent of r and t such that∫
Qr

�(x)dx ≤ K

r
.

By periodicity

sup
g∈Fd (Q

th̃t
)

{∫
Q

th̃t

ξt (x)g2(x) dx − 1

2

∫
Q

th̃t

|∇g(x)|2 dx

}

≤ K

r(2r)d
+ sup

g∈Fd (Q
th̃t

)

{∫
Q

th̃t

(
ξt (x) − 1

(2r)d

∫
Qr

�y(x)dy

)
g2(x) dx

− 1

2

∫
Q

th̃t

|∇g(x)|2 dx

}

≤ K

r(2r)d
+ 1

(2r)d

∫
Qr

sup
g∈Fd (Q

th̃t
)

{∫
Q

th̃t

(
ξt (x) − �y(x)

)
g2(x) dx

− 1

2

∫
QQ

th̃t

|∇g(x)|2 dx

}
dy

= K

r(2r)d
+ 1

(2r)d

∫
Qr

λξt−�y (Q
th̃t

) dy

≤ K

2drd+1 + max
z∈2rZd∩Q2t h̃t+2r

λξt (z + Qr+1).

Summarizing our estimates

λθξ (Qt) ≤ uh2
t

1 + δ

{
K

2drd+1 + max
z∈2rZd∩Q2t h̃t+2r

λξt (z + Qr+1)

}
.

Take r > 0 sufficiently large so that the first term on the right-hand side is less than
δu

1+δ
h2

t . We have that

P{λθξ (Qt) ≥ uh2
t } ≤ P

{
max

z∈2rZd∩Q2t h̃t+2r

λξt (z + Qr+1) > 1
}
.(5.9)

By shifting invariance of the Poisson field, the random variables

λξt (z + Qr+1); z ∈ 2rZ
d ∩ Q2t h̃t+2r

,

are identically distributed. Consequently, there is C > 0

P

{
max

z∈2rZd∩Q2t h̃t+2r

λξt (z + Qr+1) > 1
}

≤ C(tht )
d
P{λξt (Qr+1) > 1}(5.10)

= C(tht )
d
P

{
sup

g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx > 1
}
,



BROWNIAN MOTION OF RENORMALIZED POISSON POTENTIAL 1469

where Gd(Qr+1) is defined in (3.2) and the last step follows from Lemma A.2.
We now reach the point of applying Theorems 3.1 and 3.2. In connection with

(5.1),

sup
g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx

= −θh̃
p−2
t inf

g∈Gd (Qr+1)

∫
Rd

[∫
Qr+1

g2(y)

|y − x|p dy

]
[ω(h̃−d

t dx) − h̃−d
t dx].

Taking ε = h̃−d
t and γ = θ−1 in (3.8) leads to

lim
t→∞

1

log t
log P

{
sup

g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx > 1
}

= −
(

u

1 + δ

)d/(d−p)

IQr+1(θ
−1)(5.11)

≤ −
(

u(d − p)

θd(1 + δ)

)d/(d−p)(
ωd	

(
2p − d

p

))−p/(d−p)

,

where the rate function IQr+1(·) is defined in (3.9), and the last step follows from
the obvious fact that

sup
g∈Gd (Qr+1)

‖g‖L2(Qr+1)
≤ 1.

Take u = (1 + 2δ)�(θ). By (5.9), (5.10) and (5.11), there is a ν > 0 such that

P{λθξ (Qt) ≥ (1 + 2δ)�(θ)h2
t } ≤ C(tht )

d exp{(d + ν) log t} = C
hd

t

tν
(5.12)

for sufficiently large t .
We now establish (5.12) for the proof of (5.2). In this case

sup
g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx

= θh̃
p−2
t sup

g∈Gd (Qr+1)

∫
Rd

[∫
Qr+1

g2(y)

|y − x|p dy

]
[ω(h̃−d

t dx) − h̃−d
t dx].

Taking ε = h̃−d
t and γ = θ−1 in (3.13),

lim
t→∞

1

log t
log P

{
sup

g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx > 1
}

= −
(

u

1 + δ

)(2−p)/2 2 + d − p

θ(2 − p)ρ∗
Qr+1

,

where ρ∗
Qr+1

is defined as the second variation in (3.10) with D = Qr+1.
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Write

Gd = Gd(Rd) =
{
g ∈ W 1,2(Rd); ‖g‖2 + 1

2
‖∇g‖2

2 = 1
}
,(5.13)

ρ(d,p) = sup
g∈Gd

∫
Rd

g2(x)

|y|p dy and

(5.14)

ρ∗(d,p) = sup
g∈Gd

sup
x∈Rd

∫
Rd

g2(x)

|y − x|p dy.

Clearly, ρ∗
Qr+1

≤ ρ∗(d,p). By (A.9), ρ∗(d,p) = ρ(d,p).
By (A.7) in Lemma A.2, therefore,

lim
t→∞

1

log t
log P

{
sup

g∈Gd (Qr+1)

∫
Qr+1

ξt (x)g2(x) dx > 1
}

(5.15)

≤ −p−p/2(2 − p)−(4−p)/2
(

2u

1 + δ

)(2−p)/2 2 + d − p

θσ(d,p)
.

Again, (5.12) [in the context of (5.2)] follows forms (5.9), (5.10) and (5.15).
For any γ > 1, (5.12) implies that∑

k

P
{
λθξ (Qγ k ) ≥ (

�(θ) + δ
)
h2

γ k

}
< ∞.

By the Borel–Cantelli lemma,

lim sup
k→∞

h−2
γ k λθξ (Qγ k ) ≤ (1 + 2δ)�(θ) a.s.

Since λθξ (Qt) is monotonic in t and δ > 0 can be arbitrarily small, we have proved
(5.8).

6. Lower bounds. In this section we prove that

lim inf
t→∞ t−1(log t)−(d−p)/d log E0 exp

{
−θ

∫ t

0
V (Bs) ds

}
≥ �0(θ)

(6.1)
a.s.-P

when d/2 < p < d and

lim inf
t→∞

1

t

(
log log t

log t

)2/(2−p)

log E0 exp
{
θ

∫ t

0
V (Bs) ds

}
≥ �1(θ)

(6.2)
a.s.-P

when d/2 < p < min{2, d}; where �0(θ) and �1(θ) are given in (5.3) and (5.4),
respectively.
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Let ht be defined in (5.5), and write ξ(x) = −V (x) in connection with the proof
of (6.1) and ξ(x) = V (x) in connection with the proof of (6.2). Let 0 < q < 1 be
fixed but close to 1. Let α,β > 1 satisfy α−1 + β−1 = 1 with α being close to 1.
By (4.6) in Lemma 4.3,

E0 exp
{
θ

∫ t

0
ξ(Bs) ds

}

≥
(

E0 exp
{
−θβ

α

∫ tq

0
ξ(Bs) ds

})−α/β

×
{∫

Qtq

ptq (x)Ex

[
exp

{
α−1

∫ t−tq

0
ξ(Bs)

}
; τQtq

≥ t − tq
]
dx

}α

≥ 1

(2πtq)αd/2 e−ctq
(

E0 exp
{
−θβ

α

∫ tq

0
ξ(Bs) ds

})−α/β

(6.3)

×
{∫

Qtq

Ex

[
exp

{
α−1

∫ t−tq

0
ξ(Bs)

}
; τQtq

≥ t − tq
]
dx

}α

≥ e−c1t
q
(

E0 exp
{
−θβ

α

∫ tq

0
ξ(Bs) ds

})−α/β

× exp
{−(α2/β)tqλ(β/α2)θξ (Qtq ) + α2tλα−2θξ (Qtq )

}
for large t , where the last step follows from Lemma 4.2 (with δ = tq and t being
replaced by t − tq ), and the positive constant c1 is made to be larger than c for
absorbing all bounded-by-polynomial quantities including those appearing on the
right-hand side of (4.3).

By (5.1), (5.2) and (5.8)

log E0 exp
{
−θβ

α

∫ tq

0
ξ(Bs) ds

}
= o(t) and

λ(β/α2)θξ (Qtq ) = O(h2
t ) a.s.

as t → ∞. Therefore, all we need is to show that

lim inf
t→∞ h−2

t λθξ (Qt) ≥ �(θ) a.s.(6.4)

for every θ > 0, where �(θ) is given in (5.8). Indeed, applying (6.4) to (6.3) with
θ being replaced by α−2θ leads to

lim inf
t→∞ t−1h−2

tq log E0 exp
{
θ

∫ t

0
ξ(Bs) ds

}
≥ α2�(α−2θ) a.s.

Letting α → 1+, the right-hand side tends to �(θ). In addition, htq = q(d−p)/(2d)ht

when applied to (6.1) and htq ∼ q1/(2−p)ht when applied to (6.2). Therefore, with
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probability 1,

lim inf
t→∞ t−1h−2

t log E0 exp
{
θ

∫ t

0
ξ(Bs) ds

}
≥

{
q(d−p)/d�0(θ), when applied to (6.1),
q2/(2−p)�1(θ), when applied to (6.2).

Letting q → 1− on the right-hand side leads to (6.1) and (6.2).
We now prove (6.4). Let u > 0 be fixed but arbitrary. Write ĥt = √

uht and

ηt (x) = ±θĥ
p−2
t

∫
Rd

1

|y − x|p [ω(ĥ−d
t dy) − ĥ−d

t dx],

where “−” is for the proof of (6.1) and “+” is for the proof of (6.2). Under the
substitution g(x) �→ ĥ

d/2
t g(htx),

λθξ (Qt) = ĥ2
t ληt (Qtĥt

).

Consequently,

P{λθξ (Qt) ≤ uh2
t } = P{ληt (Qtĥt

) ≤ 1}
(6.5)

= P

{
sup

g∈Gd (Q
tĥt

)

∫
Rd

ηt (x)g2(x) dx ≤ 1
}
,

where the last step follows from Lemma A.2.
Let s >

2+d−p
d−p

and r > 0 be fixed. When t is large, z + Qr ⊂ Q
tĥt

for each
z ∈ hs

t Z
d ∩ Q

tĥt−r
. Hence,

sup
g∈Gd (Q

tĥt
)

∫
Rd

ηt (x)g2(x) dx

≥ sup
g∈Gd (z+Qr)

∫
Rd

ηt (x)g2(x) dx, z ∈ hs
t Z

d ∩ Q
tĥt−r

.

Thus

sup
g∈Gd (Q

tĥt
)

∫
Rd

ηt (x)g2(x) dx ≥ max
z∈hs

t Z
d∩Q

tĥt −r

sup
g∈Gd (z+Qr)

∫
Rd

ηt (x)g2(x) dx.(6.6)

Let the smooth function α(·): R
+ −→ [0,1] be given as in Section 3. Given

a > 0, write

Kt,a(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α(a−1(ĥt )

(2+d−p)/(d−p)|x|)
|x|p , when applied to (6.1),

α(a−1(d log ĥt )
1/p|x|)

|x|p , when applied to (6.2),
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and

Lt,a(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − α(a−1(ĥt )

(2+d−p)/(d−p)|x|)
|x|p , when applied to (6.1),

1 − α(a−1(d log ĥt )
1/p|x|)

|x|p , when applied to (6.2).

By the equality∫
Rd

ηt (x)g2(x) dx

= (±θ)ĥ
p−2
t

∫
Rd

[∫
z+Qr

Ka,t (y − x)g2(y) dy

]
[ω(ĥ−d

t dx) − ĥ−d
t dx]

+ (±θ)ĥ
p−2
t

∫
Rd

[∫
z+Qr

La,t (y − x)g2(y) dy

]
[ω(ĥ−d

t dx) − ĥ−d
t dx]

= θĥ
p−2
t

(
Az(g) + Bz(g)

)
(say)

and by triangular inequality, the right-hand side of (6.6) is no less than

ĥ
p−2
t

{
max

z∈hs
t Z

d∩Q
ĥt −r

sup
g∈Gd (z+Qr)

Az(g) − max
z∈hs

t Z
d∩Q

ĥt −r

sup
g∈Gd (z+Qr)

|Bz(g)|
}
.

In addition, the random variables

sup
g∈Gd (z+Qr)

|Bz(g)|; z ∈ hs
t Z

d ∩ Q
tĥt−r

,

are identically distributed. Therefore, for any δ > 0,

P

{
max

z∈hs
t Z

d∩Q
tĥt−r

sup
g∈Gd (z+Qr)

|Bz(g)| ≥ δθ−1ĥ
2−p
t

}
≤ #{hs

t Z
d ∩ Q

tĥt−r
}P

{
sup

g∈Gd (Qr)

|B0(g)| ≥ δθ−1ĥ
2−p
t

}
.

Further, since α(·) is supported on [0,3] and s > 2
d−p

,

Az(g) = ±θ

∫
z+Q2−1hs

t

[∫
z+Qr

Ka,t (y − x)g2(y) dy

]
[ω(ĥ−d

t dx) − ĥ−d
t dx]

for all z ∈ hs
t Z

d ∩ Q
tĥt−r

as t is sufficiently large. Consequently, the random vari-
ables

sup
g∈Gd (z+Qr)

Az(g); z ∈ hs
t Z

d ∩ Q
tĥt−r

,
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form an i.i.d. sequence. Therefore,

P

{
max

z∈hs
t Z

d∩Q
tĥt−r

sup
g∈Gd (z+Qr)

Az(g) ≤ 1 + δ

θ
ĥ

2−p
t

}

=
(

P

{
sup

g∈Gd (Qr)

A0(g) ≤ 1 + δ

θ
ĥ

2−p
t

})#{hs
t Z

d∩Q
tĥt−r

}

=
(

1 − P

{
sup

g∈Gd (Qr)

A0(g) ≥ 1 + δ

θ
ĥ

2−p
t

})#{hs
t Z

d∩Q
tĥt−r

}
.

Summarizing our argument since (6.5) and (6.6),

P{λθξ (Qt) ≤ uh2
t }

≤
(

1 − P

{
sup

g∈Gd (Qr)

A0(g) ≥ 1 + δ

θ
ĥ

2−p
t

})#{hs
t Z

d∩Q
tĥt −r

}
(6.7)

+ #{hs
t Z

d ∩ Q
tĥt−r

}P
{

sup
g∈Gd (Qr)

|B0(g)| ≥ δθ−1ĥ
2−p
t

}
.

Once again, we reach the point of using Theorem 3.1 and Theorem 3.2. In con-
nection with (6.1), by definition

sup
g∈Gd (Qr)

A0(g) = − inf
g∈Gd (Qr)

∫
Rd

[∫
Qr

Ka,t (y − x)g2(y) dy

]
× [ω(ĥt dx) − ĥ−d

t dx],
sup

g∈Gd (Qr)

|B0(g)| = sup
g∈Gd (Qr)

∣∣∣∣∫
Rd

[∫
Qr

La,t (y − x)g2(y) dy

]

× [ω(ĥ−d
t dx) − ĥ−d

t dx]
∣∣∣∣.

Taking ε = ĥ−d
t in (3.7) and (3.6),

lim inf
a→∞ lim inf

t→∞
1

log t
log P

{
sup

g∈Gd (Qr)

A0(g) ≥ 1 + δ

θ
ĥ

2−p
t

}

≥ −ud/(d−p)IQr

(
1 + δ

θ

)
,

lim
a→∞ lim sup

t→∞
1

log t
log P

{
sup

g∈Gd (Qr)

|B0(g)| ≥ δθ−1ĥ
2−p
t

}
= −∞,

where the rate functions IQr (·) are defined in (3.9).
By definition,

sup
g∈Gd (Qr)

‖g‖2
L2(Qr)

≤ 1.
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We claim that

lim
r→∞ sup

g∈Gd (Qr)

‖g‖2
L2(Qr)

= 1.(6.8)

Indeed, for a fixed g ∈ Fd(Q1) the function

fr(x) =
(
rd + 1

2
rd−2‖∇g‖2

L2(Q1)

)−1/2

g

(
x

r

)
, x ∈ Qr,

is in Gd(Qr) and

sup
g∈Gd (Qr)

‖g‖2
L2(Qr)

≥ ‖fr‖2
L2(Qr)

= rd

rd + (1/2)rd−2‖∇g‖2
L2(Q1)

−→ 1

(r → ∞).

By (6.8) and by the definition of IQr (·) given in (3.9),

lim
r→∞ IQr

(
1 + δ

θ

)
=

(
(d − p)(1 + δ)

dθ

)d/(d−p)(ωd

d
	

(
2p − d

p

))−p/(d−p)

.

Take u < (1 + 2δ)−1�0(θ). There is a ν(δ) > 0 such that when a and r are
sufficiently large,

P

{
sup

g∈Gd (Qr)

A0(g) ≥ 1 + δ

θ
ĥ

2−p
t

}
≥ exp

{−(
d − ν(δ)

)
log t

} = t−(d−ν(δ))

and

P

{
sup

g∈Gd (Qr)

|B0(g)| ≥ δθ−1ĥ
2−p
t

}
≤ exp{−2d log t} = t−2d

for sufficiently large t .
Being brought to (6.7), our estimates give

P{λθξ (Qt) ≤ uh2
t }

≤ (
1 − t−(d−ν(δ)))#{hs

t Z
d∩Q

tĥt −r
} + #{hs

t Z
d ∩ Q√

utht−r}t−2d(6.9)

≤ exp
{−c1t

ν(δ)h
−d(s−1)
t

} + c2t
−d .

For any γ > 1 and u < (1 + 2δ)−1�0(θ), therefore,∑
k

P{λθξ (Qγ k ) ≤ uh2
γ k } < ∞.

By the Borel–Cantelli lemma,

lim inf
k→∞ h−2

γ k λθξ (Qγ k ) ≥ (1 + 2δ)−1�0(θ) a.s.

Since λθξ (Qt) is monotonic in t and δ > 0 can be arbitrarily small, we have proved
(6.4) associated with (6.1).
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As for (6.2), by (3.11) and (3.12) (with ε = ĥ−d
t ),

lim
t→∞

1

log t
log P

{
sup

g∈Gd (Qr)

|B0(g)| ≥ δθ−1ĥ
2−p
t

}
= −∞,

lim
t→∞

1

log t
log P

{
sup

g∈Gd (Qr)

A0(g) ≥ 1 + δ

θ
ĥ

2−p
t

}

= −ud/(d−p) 2 + d − p

(2 − p)ρ∗
Qr

1 + δ

θ
≥ −ud/(d−p) 2 + d − p

(2 − p)ρQr

1 + δ

θ
,

where ρ∗
D is defined in (3.10) and

ρQr = sup
g∈Gd (Qr)

∫
Qr

g2(x)

|x|p dx.

Clearly, ρQr is nondecreasing in r and ρQr ≤ ρ(d,p), where ρ(d,p) is defined in
(5.14). We claim that

lim
r→∞ρQr = ρ(d,p).(6.10)

Indeed, let α(·) be the smooth truncation function introduced in Section 3. For any
f ∈ Gd(Rd), write

fr(x) = f (x)α(3r−1|x|).
The function

gr(x) = (‖fr‖L2(Qr)
+ 2−1‖∇fr‖L2(Qr)

)−1/2
fr(x)(6.11)

is in Gd(Qr). Thus, by the fact that α(·) ≥ 1[0,1](·)

ρQr ≥
∫
Qr

g2
r (x)

|x|p dx ≥
(
‖fr‖2

L2(Qr)
+ 1

2
‖∇fr‖2

L2(Qr)

)−1 ∫
{|x|≤r/3}

f 2(x)

|x|p dx.

Notice that ‖fr‖2
L2(Qr)

≤ ‖f ‖2
2 and

|∇fr(x)| ≤ 3r−1|α′(3r−1|x|)| · |f (x)| + α(3r−1|x|)|∇f (x)|
≤ 3r−1|f (x)| + |∇f (x)|,

where the last step follows from the fact that |α(·)| ≤ 1 and |α′(·)| ≤ 1.
Thus,

lim inf
r→∞

(‖fr‖2
L2(Qr)

+ 1
2‖∇fr‖2

L2(Qr)

)−1 ≥ (‖f ‖2
2 + 1

2‖∇f ‖2
2
)−1 = 1.(6.12)

Summarizing our argument,

lim inf
r→∞ ρQr ≥

∫
Rd

f 2(x)

|x|p dx.



BROWNIAN MOTION OF RENORMALIZED POISSON POTENTIAL 1477

Taking supremum over f ∈ Gd on the right-hand side leads to (6.10).
By (6.10) and (A.7), therefore,

lim
r→∞ρQr =

(
2 − p

2

)(2−p)/2

pp/2σ(d,p).

Similarly, the above discussion leads to (6.4) [corresponding to (6.2)], again by
the Borel–Cantelli lemma.

APPENDIX

LEMMA A.1. Under d/2 < p < d ,∫
Rd

[
exp

{
− 1

|x|p
}

− 1 + 1

|x|p
]
dx = ωd

p

d − p
	

(
2p − d

p

)
,(A.1)

where ωd is the volume of the d-dimensional unit ball.

PROOF. By the sphere substitution,∫
Rd

[
exp

{
− 1

|x|p
}

− 1 + 1

|x|p
]
dx = dωd

∫ ∞
0

[
exp

{
− 1

ρp

}
− 1 + 1

ρp

]
ρd−1 dρ

= dωd

p

∫ ∞
0

[e−γ − 1 + γ ]γ −(d+p)/p dγ,

where the second step follows from the substitution ρ = γ −1/p .
Applying the integration by parts twice (under the assumption d/2 < p < d),∫ ∞

0
[e−γ − 1 + γ ]γ −(d+p)/p dγ = p

d

∫ ∞
0

[1 − e−γ ]γ −d/p dγ

= p2

d(d − p)

∫ ∞
0

γ −(d−p)/de−γ dγ

= p2

d(d − p)
	

(
2p − d

p

)
.

We have proved identity (A.1). �

Recall that for any domain D ⊂ R
d ,

Gd(D) = {
g ∈ W 1,2(D); ‖g‖2

L2(D)
+ 1

2‖∇g‖−2
L2(D)

= 1
}
,

Fd(D) = {
g ∈ W 1,2(D); ‖g‖L2(D) = 1

}
.

In particular, Gd = Gd(Rd) and Fd = Fd(Rd).
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LEMMA A.2. Let the functional Z(g2) [g ∈ W 1,2(D)] satisfy Z(cg2) =
cZ(g2) for every g ∈ W 1,2(D) and c > 0. Then

sup
g∈Fd (D)

{
Z(g2) − 1

2

∫
D

|∇g(x)|2 dx

}
> 1

if any only if supg∈Gd (D) Z(g2) > 1.

PROOF. For any g ∈ Fd(D),

Z(g2) ≤
(

sup
f ∈Gd (D)

Z(f 2)
)(

1 + 1

2

∫
D

|∇g(x)|2 dx

)
.

Hence,

sup
g∈Fd (D)

{
Z(g2) − 1

2

∫
D

|∇g(x)|2 dx

}

≤ sup
g∈Fd (D)

{(
sup

f ∈Gd (D)

Z(f 2)

)(
1 + 1

2

∫
D

|∇g(x)|2 dx

)
− 1

2

∫
D

|∇g(x)|2 dx

}
.

Therefore, supg∈Gd (D) Z(g2) > 1, if

sup
g∈Fd (D)

{
Z(g2) − 1

2

∫
D

|∇g(x)|2 dx

}
> 1.

On the other hand, assume supg∈Gd (D) Z(g2) > 1. Then there is g0 ∈ Gd(D)

such that Z(g2
0) > 1. Write f0(x) = g0(x)/‖g0‖L2(D). We have f0 ∈ Fd(D) and

Z(f 2
0 ) − 1

2

∫
D

|∇f0(x)|2 dx > ‖g0‖−2
L2(D)

− ‖g0‖−2
L2(D)

(
1 − ‖g0‖2

L2(D)

) = 1. �

It was shown (see [1], (1.19)) that for every λ > 0,

M(λ) ≡ sup
g∈Fd

{
λ

∫
Rd

g2(x)

|x|p dx − 1

2

∫
Rd

|∇g(x)|2 dx

}
< ∞(A.2)

under d/2 < p < min{2, d}.
Further, by rescaling g(x) �→ ad/2g(ax) for suitable a > 0, one can show that

M(λ) = λ2/(2−p)M(1).(A.3)

LEMMA A.3. Under d/2 < p < min{2, d}, there is a constant C > 0 such
that ∫

Rd

f 2(x)

|x|p dx ≤ C‖f ‖2−p
2 ‖∇f ‖p

2 ∀f ∈ W 1,2(Rd).(A.4)
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Further, let σ(d,p) be the smallest (infimum) among above C. Then

M(λ) = 2 − p

2
pp/(2−p)(λσ(d,p))2/(2−p), λ > 0.(A.5)

In addition,

ρ(d,p) ≡ sup
{∫

Rd

g2(x)

|x|p dx;g ∈ Gd

}
< ∞(A.6)

and

ρ(d,p) =
(

2 − p

2

)(2−p)/2

pp/2σ(d,p).(A.7)

PROOF. In view of (A.3) we may take λ = 1 in (A.5). For any f ∈ W 1,2 with
‖f ‖2 = 1, let ∫

Rd

f 2(x)

|x|p dx = Cf ‖∇f ‖p
2 .

Given γ > 0, let g(x) = γ d/2f (γ x). Then ‖g‖2 = 1, ‖∇g‖2 = γ ‖∇f ‖2, and
therefore∫

Rd

g2(x)

|x|p dx = γ p
∫

Rd

f 2(x)

|x|p dx = γ pCf ‖∇f ‖p
2 = Cf ‖∇g‖p

2 .

Thus

M(1) ≥ Cf ‖∇g‖p
2 − 1

2‖∇g‖2
2 = Cf γ p‖∇f ‖p

2 − 1
2γ 2‖∇f ‖2

2.

Since γ > 0 is arbitrary, the variable γ ‖∇f ‖2 runs over all positive numbers.
Consequently,

M(1) ≥ sup
x>0

{
Cf xp − 1

2
x2

}
= 2 − p

2
C

2/(2−p)
f pp/(2−p).

By homogeneity, we have proved (A.4) with

M(1) ≥ 2 − p

2
pp/(2−p)σ (d,p)2/(2−p).

On the other hand, for any g ∈ Fd∫
Rd

g2(x)

|x|p dx − 1

2

∫
Rd

|∇g(x)|2 dx ≤ σ(d,p)‖∇g‖p
2 − 1

2
‖∇g‖2

2

≤ sup
x>0

{
σ1(d,p)xp − 1

2
x2

}

= 2 − p

2
pp/(2−p)σ (d,p)2/(2−p).
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We have proved (A.5).
Obviously, (A.6) follows from (A.4). Take

Z(g2) = 1

ρ(d,p)

∫
Rd

g2(x)

|x|p dx, g ∈ W 1,2(Rd).

We have that supg∈Gd
Z(g2) = 1. By (A.3), the function M(λ) is continuous and

increasing. By Lemma A.2, we must have

M

(
1

ρ(d,p)

)
= 1.(A.8)

Finally, (A.7) follows from (A.5) and (A.8). �

Another variation appearing in this paper is

ρ∗(d,p) = sup
g∈Gd

sup
x∈Rd

∫
Rd

g2(y)

|y − x|p dy.

We now claim that

ρ∗(d,p) = ρ(d,p).(A.9)

Indeed,

ρ∗(d,p) = sup
x∈Rd

sup
g∈Gd

∫
Rd

g2(y)

|y − x|p dy = sup
x∈Rd

sup
g∈Gd

∫
Rd

g2
x(y)

|y|p dy

≤ sup
g∈Gd

∫
Rd

g2(y)

|y|p dy = ρ(d,p),

where gx(y) = g(x + y), and the inequality follows from the fact that gx ∈ Gd as
soon as g ∈ Gd .
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