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We prove central limit theorems and related asymptotic results for
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where W is a Wiener process and Sy are partial sums of i.i.d. random variables
with mean 0 and variance 1. The integrability and smoothness conditions made
on f are optimal in a number of important cases.
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1 Introduction

Let X1, X5,... be ii.d. random variables with EX; =0, EX? =1 and let S,, =
X1+ ...+ X,. In the past decade several papers investigated the asymptotic
properties of sums

1 Sk
(1.1) S —f (—)
pen k vk
for various classes of measurable functions f : R — R. In particular, considerable

effect has been devoted to finding the most general conditions under which the
relation

. 1
(12) Jim N

l ﬁ>: e d s. § 11
k%“”(\/lg /_oo f(z)p(z)dr as. for all x

holds, where ¢(z) = (2r)~*/2¢~*"/2 is the standard normal density. Brosamler [3]
and Schatte [13] proved (1.2) (assuming also E|X;|” < +oo for some v > 2) for
indicator functions f while Lacey and Philipp [12] obtained (1.2) for a large class
of smooth bounded functions f. For results in the unbounded case see Schatte
[14], Berkes, Csédki, and Horvath [1], Ibragimov and Lifshits [10]. In particular,
Ibragimov and Lifshits [10] proved that (1.2) holds if f : R — R is a continuous
function satisfying

(1.3) / (@) é(z)dz < +oo

o0

and
(1.4)  f(|z|) is nondecreasing and f(|z|)e " is nonincreasing for some ¢ > 0.

They also showed that condition (1.3) itself is not sufficient for (1.2) even for
continuous f (see [10], Example 3) and thus some regularity condition of the
type (1.4) is needed.

The purpose of the present paper is to prove central limit theorems and related
asymptotic results for sums (1.1) and to get, in a number of important situations,
essentially optimal results. In the case of indicator functions f, CLT’s for (1.1)
were proved by Weigl [15] and Cs6rgé and Horvéth [6]; these results were extended
for large classes of bounded functions f by Horvath and Khoshnevisan (8], [9] and
Berkes and Horvath [2]. In this paper our main interest is the case of unbounded
f and we shall prove the following results:



Theorem 1.1 Let {W (t),t > 0} be a Wiener process and f : R — R a measur-
able function satisfying

(1.5) /::0 fA(z)¢(x)dx < +oo and /_:o f(z)p(x)dx = 0.
Then 1 1 W(t
i 1 1, (W() B

(1.7) h;n_)s;p (21og T logloglog T')1/2 /1 ;f (7) di=op a5
and

.. .(logloglogT 1/ s1 , (W(t) o
(1.8) thiloro}f (W) Jpax /1 ;f (7) dt‘ = %O'f a.s.
where o 1 .
(1.9) 0F =4y o () <4 [ P@)e(e)da

1 - 0o

and (hp,m > 0) are the Hermite polynomials defined by

ho(e) =1, hula) = (1) (), n=19,

The inner product {-,-) is meant in the Hilbert space £%(R, ¢(x)dz).

It is worth comparing Theorem 1.1 with a result of Brosamler [3] stating that
if f satisfies (1.3) then

(1.10) lim lo;T/1T %f (WT(?> dt = /_;oof(:c)gb(z)dx as.

This result is optimal in the sense that nothing beyond the existence of the integral
on the right hand side of (1.10) is assumed. Theorem 1.1 gives a similarly optimal
result for the CLT and LIL where nothing beyond the natural second moment
condition (1.5) is assumed. By the well known connection between Brownian mo-
tion and the Ornstein-Uhlenbeck process, (1.6)—(1.8) are equivalent, respectively,
to the limit laws (2.1)—(2.3) in Theorem 2.1 for the additive functionals of the
Markov chain associated with the Ornstein-Uhlenbeck process in our situation.
Hence condition (1.5) is best possible, since it requires nothing more than a finite
energy for the function f.




Theorem 1.2 Let Xy, Xy, ... be i.i.d random variables with EX; =0, EX? =1
and E| X1V < +oo for somev >2. Let S, = X1 +...+ X, and let f: R > R
be a measurable function satisfying (1.5) and

(1.11) /::o sup |f(z +1) — f(z)|e*"/?dz = O (( 1

— for some a > 1.
|t|<h log %)

Then

(1.12) (logN {log N)172 > f (\/_> N(0,0%) as N = oo

k<N

1
1.13) i _ B
(L13) - i (o  TogTogTog N)1/2 I;N 3 (f) op  as
and 1
. . .[logloglog N \? ™ 1 o7
(1.14) lﬁvﬁtﬂf<w) %, |2 7S (—)‘—%af

where o is defined by (1.9).

The smoothness condition (1.11) in Theorem 1.2 is essentially sharp, as the
following theorem shows:

Theorem 1.3 Let X1, Xs,... be i.i.d. random wvariables with P(X; = 1) =
P(Xy = —-1) =1/2 and let S, = X1 + ... + X,,. There erists a continuous
function f: R — R satisfying (1.5) such that

(1.15) /_J:o sup |f(z +1) — f(z)|e “dz = O (%)

It|<h log %)a

for some ¢ >0, a >0 and

1.16 lim su =400 a.s.
(1.16) Mpmgw,c% f< f)

and consequently (1.12)—-(1.14) are false.

The moment condition F|X;|” < 400, v > 2 in Theorem 1.2 can be weakened
at the cost of strengthening the smoothness condition (1.11). In fact, we have



Theorem 1.4 Let X1, Xo, ... be i.i.d. random variables with EX, =0, EX? =1
and EH(|X1]) < 400 where H is a continuous, nonnegative function on [0, 00)
such that H(t)/(t*loglogt) is nondecreasing and H(t)/t® in nonincreasing. Let
Spn=X1+4+...+ X, and let f : R = R be a measurable function satisfying (1.5)
and

[ 5w 1 +1) = fa) e 2dn = O(w(w)

o |t[<h

/100 %w (H\/I%(t)> dt < +oc0.

Then relations (1.12), (1.18), and (1.14) hold.

where

For example, if X1, Xy, ... are i.i.d. random variables with EX; = 0, EX? =1
and EX?(log™ | X;])? < 400 for some 3 > 2 then relations (1.12)—(1.14) hold if
(1.5) is valid and

+00

/ sup |f(z +1) — f(z)|e ®/*dz = O(R?) for some ~ > 2/8.
o0 [t[<h

In conclusion we note that the method of the proofs of Theorems 1.1-1.4

provides new information also on the law of large numbers (1.2). In fact, we have

Theorem 1.5 Let X, Xo, ... be i.i.d. random variables with EX, =0, EX? =1
and E| X1V < +oo for somev > 2. Let S, = X1 +---+ X, and let f: R > R
be a measurable function satisfying (1.3) and (1.11). Then (1.2) holds. If instead
of (1.11) we assume only that (1.15) holds for some ¢ > 0, a > 0, then (1.2) is
generally false.

Thus, under the additional moment condition F|X;|” < 400, v > 2, the
monotonicity condition (1.4) of Ibragimov and Lifshits can be replaced by the
smoothness condition (1.11) and this condition is essentially sharp.

2 Proofs

The proof of Theorem 1.1 is based upon the following result for functionals of
positive recurrent Markov chains.

Theorem 2.1 Let {X,}n>0 be a positive recurrent Markov chain with the state
space (E, &) (where £ is countably generated), transition probability P(x, A) and
wnwvariant distribution m. Let f : E — R be a measurable function satisfying
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(i) /f w(dz) =0 and /f dzr) < 400

(i1) i FOPFF() converges in L(E,E, ).

Then .
(2.1) nY23" (X)) 2 N(0,0%)
k=1
(2.2) hmsup (2nloglogn)~1/? Zf Xi) =05 a.s.
k=1

and

.. . [loglogn k m
(2.3) lim inf - I?fi“;f(){])‘ = %af a.s.
where

(2.4) af_/ﬂ 7(dz) +22/f )P f (2)7 (dz).

Proof. (2.1) and (2.2) are given in Corollary 1.4 of Chen [4]; (2.3) is given in
Theorem 1.1 of Chen [5].

We now consider a 1-dimensional Ornstein-Uhlenbeck process X; with the
infinitesimal generator

It is well known that
(a) X; is a positive recurrent Markov process with invariant distribution ¢(z)dz
(b) X; has the representation X; = e~"/2W (e?).

Under the variable substitution s — logs, therefore, the limit laws stated in
Theorem 1.1 are equivalent, respectively, to

% / CF(X)ds 25 N(0,0%)

lim sup ———— s)ds =05 a.s.

tsoo /2t log logt /



.. loglogt s T
htrgglf” ; ()Irslgéf‘/() f(Xu)du‘ = %Uf a.s.

We prove these laws by skeleton approximation. Namely, we apply Theorem 2.1

X, = (Xn,/

n—1

to the Markov chain

n

F(X,)ds).

One can verify that this chain is positive recurrent with its k-step transition P*
(k > 1) given by

PH((e,9).) = (X, [ F(X)ds) €} (ny) €R?

and invariant distribution 7 defined by

)=/ Pm{(Xl,/Olf(Xs)ds) e Jo(a)dz.

—00

Let f : R? — R be the canonical projection given by f (z,y) = y. We prove
that f satisfies conditions (i) and (ii) in Theorem 2.1. Indeed,

/f(xay)?f(d(x,y)) = /o:o EJ;[/O1 f(Xs)dg]d,(x)dgC —0
and
(2.5) /P(x’yﬁ(d(ﬂf,y)) =/oo E;c[/olf(Xs)dS]Qqﬁ(x)dx

< fA(x)p(z)dr < oo.
Hence we have (i). To show (ii), it is enough to prove

> [ 1P @) - 1P f @) 7(d(z,y) < oo.
k=1

Note that .
Priay) = [ Pf(@)ds



further

[ 17wl 1P, ) 7(d(z, )

e :f<

X)ds|-| [* PO o()dr

(2.6)
< / /]c 1 / 2)| - Bo| Pof (X1 $(w)de] dtds
<irl [ ([ °; P (@) o(w)da)
and
| F@y)Pfay)Fd(a,y)
(2.7)

_//k 1 / 2) Py f (2) () da] dids

where {P;} (s > 0) is the transition semigroup of the Ornstein-Uhlenbeck process
X;. On the other hand, it is known that

and

+oo 1 ) n! m=n
/ hun () By (2) =€~ dz = {
o 2m 0 m#n.

Let e, = (n!)~Y/2h,,. Then {e, }n>0 is a standard orthogonal basis of L?(R, ¢(z)dx).
Since f is orthogonal to ey,

i (fex) e
k=1
and -
= ([, ex) Pey()
(2.8) '“: N
kz:l frer) eey(z) = ;(f cer)exp{ — 2 'kt}er(w).



By the Cauchy-Schwarz inequality

Pl < (i) (el -kde)

= 5l S exp{ ~ kndei(@)

Hence by (2.6),
[ 17, y)|- 1P* ) 7(d(z, )

<UAIE [ (3 exnitry)

ko exp{—27't}
=713 |, o exproapy

Consequently

> [ 1)l 1P, ) (G, )

exp{—2"'t}

<7 [ = ey =TIV < oo

which gives (ii). Therefore, Theorem 2.1 applies to the Markov chain {Xvn}nzo

and function f that gives
s Jy f(Xs)ds B> N(0,07)

lim sup s)ds =0y a.s.

S
n—oo y/2nloglogn Jo

.. loglogn
lim inf max
n—00 n 0<s<n

/05 f(Xu)du| = %O’f a.s.



It remains to identify o7. By (2.4), (2.5), (2.7), (2.8) we have

~ [ Ptz + 2i [ F@. 0Pyt )

:/O;Ew[/olf( ))ds dx+2// / 2)Pryrs f (2) $()dz] dids
=2 / /0 e [ /_ (@) P f (2)9(x)da deds
+2/1/: [/_Oo 1 (z)P,f (2)(x)da] deds

1

= 2/000 [/O:Of(iv)Ptf( Yo (z dx]dt ij% (f, er)?

=4 k) <4 [ Pa)ss

and Theorem 1.1 is proved.

Theorem 1.2 can be easily deduced from Theorem 1.1 by using the Komlds-
Major-Tusnddy approximation theorem (see [11]). Indeed, EX; = 0, EX? =1
and E|X,|¥ < +o00, v > 2 imply that there exists a Wiener process {W (¢),¢t > 0}

such that setting S(t Z X we have
1<k<t
(2.9) |S(t) — W (t)| = o(t'/")  as. ast— oco.

Noting that |[¢]71/2 —#~/2| < 2¢=3/2 for t > 2 and |S(t)|/t*/? = O(1) a.s., relation
(2.9) implies
S@t) W)

[t]l/Q $1/2
and thus there exists a T = T'(w) such that

=o(tY"7V?)  as. ast— oo

W)

(2-10) [t]1/2 t1/2

<tV gf > T

We show that
(2.11) I:= /100 . ‘f ( i](f%) —f (Zf?) ‘ dt < 4o as.
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Indeed, I < I + I, where

n= [ ()
L)

<C

T |h‘<t1/y 1/2

by using (2.10). Thus by (1.11) we get

1
EIQSC’/ ~-E  sup
1

‘h,|<t1/”_1/2

/ : /_+°o sup | f(z+h) — f(z)|¢(z)dz

|h|<t1/” 1/2

o0 1
< C”/ g(logtl/zfl/”)*adt < +00
1

using o > 1. Hence we see that I, < +00 a.s. On the other hand, f(S(¢)/[t]'/?) is
constant over each interval [k, k+1) and thus t 72| f(S(t)/[t]/?)| is integrable over
any finite subinterval of [1,4+00). The same holds for ¢ | f(W (t)/t*/?)|, since

(2.12) E/Ll‘f(tw)‘dt /Ldt/ z)dz < +o0

for any 1 < L < 400 by (1.5). Thus we see that I; < +oo a.s. and (2.11) is
proved. As a consequence we have

% ] S(t) W (t)
o L) () s ns
and a computation similar to (2.12) shows that
o ] W(t)
(2.14) /1 " f( 2 >‘dt < 400 as.
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which, together with (2.13), gives

)

Thus for any N > 1 we get

5 (o) - 3 ()

k<N

| ()= [ ()
<" (=) G o= 3 () -2 ()
< S () () - () o

= 0(1)7
since the last two integrals are finite by (2.15) and (2.11). Hence Theorem 1.2
follows from Theorem 1.1. The proof of Theorem 1.4 is essentially the same,
just instead of the a.s. approximation (2.9), valid under EX; = 0, EX? = 1,
E| X1 < 400 (v > 2), we use the approximation

(2.16) [S(t) =W (t)| = O(H (t))

valid under EX; = 0, EX? = 1, EH(|X1]) < +oo (provided the regularity
conditions made on H hold). For a proof of the general a.s. invariance principle
(2.16) we refer to Einmahl [7].

We finally prove Theorem 1.3. In the construction that follows, we utilize
the basic idea of Example 3 of Ibragimov and Lifshits [10], but the details are
considerably more complicated. Let 1), ,(z) denote the function in (—oo, +00)
which equals 1 for x = a, equals 0 for t < a — h and x > a + h and is linear in
the intervals [a — h, a] and [a,a + h|. Let §; = (224k)_6 and define the function f
by

2.17 _y 24Y2yy .
(2.17) f(z) ’;(id):bo,zquﬂ( )w\/y,ak(x)

2k=3<, fifj<ok+1

12

< 400 a.s.




Let X5, X5,... be i.i.d. random variables with P(X; =1) = P(X; = —1) = 1/2.
We show that

(2.18) [ Pas)d < +oo

—Q

(2.19) [ sup @ 1) - f)eda = 0 (%)

|t|<h log %)a

for some ¢ > 0, > 0 and

2.20 lim su =400 a.s.
oo piey 5 ¢ ()
Letting u = [*2° f(2)¢(z)dx and replacing f by f—pu, we get a function satisfying

all requirements of Theorem 1.3.
To prove (2.18) let

k
Hy={\/i/j:i>0,1<;j<22 }n[2k3 28+
k
Observe that if two rational numbers i/j and #'/j' satisfy 4,7 > 0,1 < 7, j' < 22",
then either i/j =14'/j' or
1 1
i/ —1i/5'>=>
i/j —14'/5'] T

This implies that any two different elements of the set Hj have distance

[q i/5 —i'/5'| 1
|\/7 \/7| \/7 \/,/7 > (224k)22k+2

and thus the functions 1 N (z) in the inner sum of (2.17) have disjoint sup-

k
ports. It also follows that the cardinality | Hy| of the set Hy, is at most (22° )222k+3,

Since
—+0o0

g (e <227

we get

- k=1
o0 o0
S\/iz@m )_1(24k)222k+3< const 2(22 ) 1/2 < +00
k=1 k=1
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proving (2.18).
To prove (2.19) if suffices to show that for any g(z) = (24k)2¢\/i/—j b (z) in the
inner sum in (2.17) we have
C —
(2.21) sup |g(z +1) - g(a)| < —wet
[t|<h (log E)

for all real z and all 0 < A < 1 where ¢; > 0,0 < ¢ < 90 and 0 < a < 1 are
absolute constants. Indeed, the support of such a g(x) is C [2¥73, 2k*1] and thus
the factor e** ™" in (2.21) is < e*” in this interval. Hence (2.21) implies

+oo ona2 C3
2.22 / sup |g(z +1t) — g(x)]e " dr < —=—.
(2.22) . |t|Sh| (@ +1) — g(2)] (fog 1)
Now the functions N (x) in the inner sum of (2.17) have disjoint supports
and thus (2.22) will hold also for the function

k
g =gk = Z (24 )2¢M’5k (l‘)
(4,§): i>0, 15j§224k
k=3 /fifj<okH

Finally, the supports of gx and g, are disjoint if |k — £| > 4 and thus (2.22) will

be valid also for g = > gy.
k=1
To prove (2.21) it suffices, in view of the graph of g, to verify that

C1 602419—3

(log%)a
Vili <z <a+h<\[ifj+35.

Replacing h by Ah for some 0 < A < 1, the left hand side of (2.23) will be
multiplied by A and the right hand side will be multiplied by

log+ \* N
<1 i) >\ >\,
08 3

(2.23) l9(z + h) — g(z)| <

for

Thus is suffices to verify (2.23) for the maximal value of A, i.e. for z = 4/i/j,
h = 4k, when

1
9@ +h) —g(@) = 2")",  logy =6log2-2"
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and thus (2.23) holds if 0 < a < 1 is small enough and ¢, > 128log2 ~ 88.7...
Finally, to prove (2.20) it suffices to show that

S i) L
(2.24) P{jﬁ;mjf(\ﬁ > on 1.0.}—1.

In order to establish (2.24), we note that Strassen’s LIL implies that a.s. for
infinitely many n we have

1 .
(2.25) 5,/logn < i\ff < 2¢/logn  forall 2" < j < 2m
J

Choose such an n and let £ > 1 be defined by o4t t <n< 24" Then (note that

log2 =~ 0.69...)
k-2 < v/1ogn < ok
and thus by (2.25)

(2.26) k=3 < \i[ < 2kl forall 277l < j < 2™

J

Also, in (2.26) we have S;/\/j = /S7/j = y/i/j for some integers i > 0 and

1<5< 97" Moreover, (2.26) shows that 2873 < ,/i/j < 251 and thus S;/+/7
belongs to the set Hy. Hence by the definition of f we have

S; k
f (—J > (2Y)2>n? forall 2"t <j< 2™
Vi
Consequently,
22 lf<i> > n2 22 1>1n2
j:2n—1+1 .7 \/.7 j:2n—1+1 .7 2

and (2.24) is proved.
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