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1. Introduction and main result

1.1 Motivation

Quantities measuring the amount of self-intersection of a random walk, or of mutual intersection of
several independent random walks have been studied intensively for more than twenty years, see e.g.
[DV79, LG86, La91, MR97, HK01, Ch04]. This research is often motivated by the rôle these quantities

play in quantum field theory, see e.g. [FFS92], in our understanding of self-avoiding walks and polymer
models, see e.g. [MS93], or in the analysis of stochastic processes in random environments, see e.g.
[HKM06, GKS07, AC07, FMW08]. In the latter models dependence between a moving particle and a

random environment frequently comes from the particle’s ability to revisit sites with a (in some sense)
attractive environment, and therefore measures of self-intersection quantify the degree of dependence
between movement and environment. Typically, in high dimensions this dependence gets weaker, as

the movements become more transient and self-intersections less likely.

In their influential paper [KM94], Khanin, Mazel, Shlosman and Sinai make the surprising observation
that even in high dimensions the random variables counting the total number of intersections of
two independent simple random walks have subexponential tails at infinity. They argue that this
observation is intimately related to the fact that a random walk in random potential has subdiffusive

behaviour in all dimensions. Similar observations were made at around the same time by Sznitman in
a continuous setting, see [Sz93]. In their analysis of intersection measures of high-dimensional random
walks, Khanin et al. obtain estimates for the tails at infinity, but there are still significant gaps

between the given upper and lower bounds, which despite considerable effort have not been resolved
in the past ten years. In this paper we make a contribution to the closure of these gaps.

To be precise, let (X(1)(n) : n ∈ N), . . . , (X(p)(n) : n ∈ N) be p independent identically distributed
random walks taking values in Z

d. The number of intersections of the walks can be measured in two

natural ways: The intersection local time,

I :=
∞∑

i1=1

· · ·
∞∑

ip=1

1l{X(1)(i1) = · · · = X(p)(ip)},

counts the times when the paths intersect, whereas the intersection of the ranges,

J :=
∑

x∈Zd

1l{X(1)(i1) = · · · = X(p)(ip) = x for some (i1, . . . , ip)},

counts the sites where the paths intersect. Obviously, we always have J ≤ I.
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Moreover, under suitable conditions on the random walk, it is well known that

P{I < ∞} = P{J < ∞} =

{
1 if p(d − 2) > d,
0 otherwise.

The lower bounds here are easy and hold for all symmetric, aperiodic random walks with finite variance,

while the upper bounds hold for simple, symmetric walks by a celebrated result of Dvoretzky and
Erdős [DE51]. We assume throughout this paper that p(d − 2) > d, i.e. we are assuming that we are
in supercritical dimensions. Then, in the case of simple, symmetric random walks, Khanin et al. show

in [KM94] that there exist constants c1, c2 > 0 such that, for all a large enough,

exp
{
− c1a

1
p
}
≤ P

{
I > a

}
≤ exp

{
− c2a

1
p
}
.

Interestingly, the upper tails of J are substantially lighter. Khanin et al. show that, for all ε > 0 and

all sufficiently large a,

exp
{
− a

d−2
d

+ε
}
≤ P

{
J > a

}
≤ exp

{
− a

d−2
d

−ε
}
.

The challenging question lies in understanding the difference of these behaviours, providing sharp

estimates for the tails, and understanding the underlying ‘optimal strategies’.

The most important recent progress on this problem was made by van den Berg, Bolthausen and den

Hollander [BBH04] for the spatially and temporally continuous analogue of J : Let W ε
1 (t) and W ε

2 (t)
be the ε-neighbourhoods of two independent Brownian paths starting at the origin and running for t
time units, and use | · | to denote Lebesgue measure. They show that, for d ≥ 3,

lim
t↑∞

1

t(d−2)/d
log P

{∣∣W ε
1 (θt) ∩ W ε

2 (θt)
∣∣ ≥ t

}
= −Iε

d(θ),

and, if d ≥ 5, there exists a critical θ∗ such that Iε
d(θ) = Iε

d(θ∗) for all θ ≥ θ∗. This strongly suggests
that, in the supercritical case d ≥ 5,

lim
t↑∞

1

t(d−2)/d
log P

{∣∣W ε
1 (∞) ∩ W ε

2 (∞)
∣∣ ≥ t

}
= −Iε

d(θ∗),

but the techniques of [BBH04] are strongly reliant on Donsker-Varadhan large deviation theory and,
mostly for this reason, do not allow the treatment of infinite times. Therefore this problem, like its

discrete counterpart, remains open for the time being.

In the present paper we focus on the intersection local time I, working directly in the discrete setting.
We provide sharp estimates for the tail behaviour of I, in other words we identify the limit

lim
a↑∞

1

a1/p
log P

{
I > a

}
,

which is given in terms of a natural associated variational problem. The important progress here lies
in the fact that our method avoids the use of Donsker-Varadhan large deviation theory and instead
allows a direct treatment of infinite times. The proofs provide new insight into the optimal strategies

leading to the event {I > a}. An interpretation of the results is that the bulk of the intersections
contributing to large values of I are attained in a bounded subset of Z

d. Naturally, this strategy does
not lead to large values of J , which therefore have to be obtained by a different, more expensive,

strategy.
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1.2 Statement of the main results

1.2.1 Intersection local times for discrete time random walks. Let (X(1)(n) : n ∈ N), . . . , (X(p)(n) :
n ∈ N) be p independent identically distributed random walks started at time n = 0 in the origin
and taking values on the lattice Z

d. Suppose that the walks are aperiodic, have symmetric increments

and finite variance, and that d is sufficiently large to satisfy p(d − 2) > d, i.e. we are in supercritical
dimensions.

Let G be Green’s function associated to the random walk, defined by

G(x) :=

∞∑

n=1

P{X(1)(n) = x}.

Note that we are following the (slightly unusual) convention of not summing over the time n = 0,
which only influences the value G(0). We first state integrability and boundedness of some operators

associated with Green’s function.

Lemma 1. Let q > 1 be the conjugate of p defined by p−1+q−1 = 1. For every nonnegative h ∈ Lq(Zd)
a bounded, symmetric operator Ah : L2(Zd) → L2(Zd) is defined by

Ahg(x) =
√

eh(x) − 1
∑

y∈Zd

G(x − y)g(y)
√

eh(y) − 1 .

Moreover, we have G ∈ Lp(Zd) and for the spectral radius, or operator norm,

‖Ah‖ := sup
{
|〈g,Ahg〉| : ‖g‖2 = 1

}
= sup

{
〈g,Ahg〉 : g ≥ 0, ‖g‖2 = 1

}
(1)

of the operator Ah we have the inequality

‖Ah‖ ≤ ‖G‖p

(
e‖h‖q − 1

)
. (2)

Note that the alternative description of the spectral radii of Ah, for nonnegative h ∈ Lq(Zd), on the

right hand side of (1) holds trivially because Green’s function is nonnegative. The next theorem,
which is our main result, shows that this family of spectral radii can be used to describe the upper
tail constant of the intersection local time. Its proof will be given in Section 2.

Theorem 2. The upper tail behaviour of the intersection local time I is given as

lim
a↑∞

1

a1/p
log P

{
I > a

}
= −p inf

{
‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1

}
, (3)

and the right hand side is negative and finite.

Remark 1.

(a) Heuristically, the optimal strategy for the random walks to realise the event {I > a} is to spend

each about a1/p time units in all points of a finite domain A ⊂ Z
d, which is not growing with a. This

leads to a typical intersection local time I ≈ a on this domain alone. As a ↑ ∞ the intersection sites

do not spread out in space when the random walks are conditioned on {I > a}, hence this strategy
makes I large without making J large. This explains the fundamental difference between these two
quantities in supercritical dimensions.

(b) Our proof provides the following evidence for this behaviour: Suppose A ⊂ Z
d is a finite set and

I(A) :=

∞∑

i1=1

· · ·
∞∑

ip=1

1l{X(1)(i1) = · · · = X(p)(ip) ∈ A},

the number of intersections in the set A. Then we show, as a by-product of the proof of Theorem 2, that
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lim
a↑∞

1

a1/p
log P

{
I(A) > a

}
= −p inf

{
‖h‖q : h ≥ 0, supph ⊂ A with ‖Ah‖ ≥ 1

}
. (4)

It is easy to see that, as A ↑ Z
d, the right hand side in (4) converges to the right hand side in (3), and

thus for large A the tails of I(A) come arbitrarily close to those of I.

(c) A further interesting feature of our result is that the rate of decay of P{I(A) > a} is invariant
under spatial shifts of A, in other words, at the given scale the random walks show no preference for

locating their intersections near their starting point. This fact causes considerable difficulty in the
proof of the upper bound, as the rate of P{I(Ac) > a} does not increase when A is getting large
so that, loosely speaking, the problem is not exponentially tight. The technique to get around this

problem is one of the main technical innovations in this paper.

Remark 2. From (2) we easily obtain an upper bound for the constant in (3), namely

−p inf
{
‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1

}
≤ −p log

(
1 + ‖G‖−1

p

)
.

For a lower bound, we define the potential operator

Gf(x) :=
∑

y∈Zd

G(x − y)f(y),

and note that, as G ∈ Lp(Zd), this defines a bounded, symmetric operator

G : L
2p

2p−1 (Zd) −→ L2p(Zd) .

We thus get, using eh − 1 ≥ h for h ≥ 0, that

−p inf
{
‖h‖q :h ≥ 0, sup

‖g‖2=1
〈g,Ahg〉 ≥ 1

}

≥ −p inf
{
b : sup

‖g‖2=1
‖h‖q=1

〈√
hg,G

√
hg

〉
≥ 1/b

}

= −p/ sup
{
〈f2p−1,Gf2p−1〉 : ‖f‖2p = 1

}
.

Neither of these bounds are sharp.

1.2.2 Intersection local times for continuous time random walks. It would be desirable to bring the

variational formula on the right hand side of (3) into a form naturally interpretable as a competition
between a probabilistic cost and benefit factor, and interpret the optimiser in terms of the optimal
strategy of the walks. However, the present formula cannot be easily transformed to such a form, an

artefact which we believe is due to the discrete time structure of the random walk.

We therefore provide a more transparent result for continuous time random walk for comparison. Let

(X(1)(t) : t ≥ 0), . . . , (X(p)(t) : t ≥ 0)

be independent, identically distributed continuous time random walks and let A be their generator,
defined by

Af(x) = lim
t↓0

Exf(X(1)

t ) − f(x)

t
.

We assume that the random walks are aperiodic, and symmetric with finite variance. Then A is a
nonpositive definite, symmetric operator. Based on Green’s function

G(x) :=

∫ ∞

0
P{X(t) = x} dt ,
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we define the potential operator G as in the discrete time case, see Remark 2. Under our standing

assumption of supercriticality, d(p − 2) > d, it is easy to see that G ∈ Lp(Zd), and again that the
potential operator is a bounded operator

G : L
2p

2p−1 (Zd) −→ L2p(Zd) .

We define the intersection local time as

Ĩ :=

∫ ∞

0
dt1 · · ·

∫ ∞

0
dtp 1l{X(1)(t1) = · · · = X(p)(tp)},

which is finite in the supercritical regime. As before, we ask for its upper tail behaviour.

Theorem 3. The upper tail behaviour of the intersection local time Ĩ is given as

lim
a↑∞

1

a1/p
log P

{
Ĩ > a

}
= −p/ sup

{
〈f2p−1,Gf2p−1〉 : ‖f‖2p = 1

}
, (5)

where the right hand side is negative and finite.

Remark 3. Under some additional conditions, the formula on the right can be reformulated in an
appealing way. Denote the supremum on the right hand side of (5) by ̺. Given ǫ > 0 choose f ≥ 0
such that ‖f‖2p = 1 and 〈f2p−1,Gf2p−1〉 ≥ ̺ − ǫ. Then one can use that −A ◦ G =id and the fact

that, by Hölder’s inequality,

‖Gf2p−1‖2p ≥ ‖f‖−
2p

2p−1

2p

〈
f2p−1,Gf2p−1

〉
≥ ̺ − ǫ,

to obtain that

̺ ≥ 〈Gf2p−1, f2p−1〉 = 〈Gf2p−1,−AGf2p−1〉 = (̺ − ǫ)2
〈

Gf2p−1

̺ − ǫ
,−A

Gf2p−1

̺ − ǫ

〉

≥ (̺ − ǫ)2 inf
{〈

g,−Ag
〉

: ‖g‖2p = 1
}
,

whence, for ǫ ↓ 0, we get
1

̺
≥ inf

{〈
g,−Ag

〉
: ‖g‖2p = 1

}
.

For the converse inequality, we assume that the generator A is such that there exists a positive

minimiser g for the variational problem on the right hand side1. A simple perturbation calculation
then yields the Euler-Lagrange equation −ρAg = g2p−1, where 1/ρ denotes the minimum. Together
with −A ◦ G =id, this implies that, for some u with Au = 0, we have ρ g = Gg2p−1 + u. Note that u

is vanishing at infinity and hence, assuming that A allows a maximum principle, we infer that u = 0.
Therefore,

1

ρ
=

〈
g,−Ag

〉
=

1

ρ2

〈
Gg2p−1, g2p−1

〉
≤ ̺

ρ2
.

Hence we obtain that the right hand side in (5) equals

−p inf
{∥∥√−Ag

∥∥2

2
: ‖g‖2p = 1

}
.

In this form, the constant has a natural interpretation: At least heuristically, the optimal strategy for
each random walk is to build up a local time field

ℓ(j)(x) :=

∫ ∞

0
1l{X(j)(t) = x} dt ≈ a1/pg2(x) for all j ∈ {1, . . . , p},

which implies

Ĩ =
∑

x∈Zd

p∏

j=1

ℓ(j)(x) ≈
∑

x∈Zd

p∏

j=1

a1/p g2(x) = a .

1This assumption is generally nontrivial to verify, even for explicitly given A.
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The probability of a random walk achieving such a local time is

≈ exp
{
− a1/p

∥∥√−Ag
∥∥2

2

}
,

which is reminiscent of the rate functions in Donsker-Varadhan theory.

Remark 4. The proof of Theorem 3 follows a similar strategy as in the discrete time case but,
thanks to the absence of some combinatorial difficulties arising from the discrete time structure, it is

considerably easier. Following the arguments analogous to Theorem 2 gives

lim
a↑∞

1

a1/p
log P

{
Ĩ > a

}
= −p inf

{
‖h‖q : h ≥ 0 with ‖Bh‖ ≥ 1

}
,

where the operator Bh : L2(Zd) → L2(Zd) is defined by

Bhg(x) =
√

h(x)
∑

y∈Zd

G(x − y)g(y)
√

h(y) .

Then one can observe that

inf
{
‖h‖q : h ≥ 0, sup

‖g‖2=1
〈g,Bhg〉 ≥ 1

}
= inf

{
b : sup

‖g‖2=1
‖h‖q=1

〈√
hg,G

√
hg

〉
≥ 1/b

}

= 1/ sup
{
〈f2p−1,Gf2p−1〉 : ‖f‖2p = 1

}
.

2. Random walks in discrete time: Proof of Theorem 2.

In Section 2.1 we provide the proof of Lemma 1. The proof of Theorem 2 is divided into six steps,
presented in Sections 2.2 to 2.7 below. We now give a brief overview over these steps and the main

techniques of the proof.

By Lemma 2.3 in [KM02] we have, for any nonnegative random variable X,

lim
k↑∞

1

k
log E

[ Xk

(k!)p

]
= −κ ⇐⇒ lim

a↑∞

1

a1/p
log P{X > a} = −peκ/p . (6)

Moreover, it is elementary to show that

∞∑

k=1

θk

k!
E

[
Xk

] 1
p = ∞ for θ > eκ/p ⇐⇒ lim sup

k↑∞

1

k
log E

[ Xk

(k!)p

]
≥ −κ .

Hence the lower bound in Theorem 2 is proved once we show that

(i) the limit κ := − lim
k↑∞

1
k log E

[
Ik

(k!)p

]
exists,

(ii) if there exists h ≥ 0 with ‖h‖q = θ such that ‖Ah‖ > 1 then
∑∞

k=1
θk

k! E
[
Ik

] 1
p = ∞.

The proof of (i) is accomplished in Section 2.2 using a subadditivity argument. As a by-product of
this proof we see that for the upper tail behaviour of I it is irrelevant whether we start summation in
the definition of I at time zero or one. The proof of (ii) is based on the precise formula (11) for the
integer moments, which we derive in Section 2.3. Here the peculiarities of the discrete time structure

can be quickly explained: It is easy to see that

E
[
Ik

]
=

∑

x1,...,xk∈Zd

( ∑

i1,...,ik

E

k∏

ℓ=1

1l{X(iℓ) = xℓ}
)p

,
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where X is a random walk with the same law as X(1), . . . ,X(p). To evaluate the expectation we need

to keep track of indices with ik = iℓ with k < ℓ as

1l
{
X(ik) = xk, X(iℓ) = xℓ

}
=

{
1l{X(ik) = xk} if xk = xℓ,
0 if xk 6= xℓ.

This ‘diagonal effect’ cannot be neglected and we need to keep track of the number of equal indices
in (i1, . . . , ik). This leads to a significantly more complicated combinatorial structure of the moment

formula and, ultimately, to the difference between the tail behaviour in the discrete and continuous
time case. Having formulated a moment formula which keeps track of this effect, in Section 2.4,
we insert it in the exponential series in (ii) and verify divergence of the series using first Hölder’s

inequality and then a spectral argument. This completes the proof of the lower bound in Theorem 2.

The proof of the upper bound is more delicate. We again use (i) and the formula (11) to reduce the
problem to studying the large moment asymptotics of an explicit analytical quantity. However the

use of spectral arguments, which was so successful for the lower bound, now seems to be confined to
studying intersection local times in finite sets. Using similar ideas we show in Section 2.5 that, for
any finite set A ⊂ Z

d,

lim sup
k↑∞

1

k
log

1

k!
E[I(A)k] ≤ −p log inf

{
‖h‖q : h ≥ 0, supph ⊂ A with ‖Ah‖ ≥ 1

}
.

As indicated in Remark 1(c), the extension of the result from finite sets A to the entire lattice is
highly nontrivial, because the problem is not exponentially tight. To overcome this difficulty, we need

to project the full problem onto a finite domain by wrapping it around a torus. More precisely, in
Section 2.6 we let A = [−N,N)d for a large integer N and show that

lim sup
k↑∞

1

k
log

1

k!
E[Ik] ≤ −p log inf

{
‖h‖q : h ≥ 0, supph ⊂ A with ‖Ãh,N‖ ≥ 1

}
,

where in the definition of the operator Ãh,N the kernel G has been replaced by G̃N defined by

G̃N (y) =
{ ∑

z∈Zd

G
p
(
2Nz + y

)} 1
p

for any y ∈ Z
d .

In Section 2.7 we let the period of the torus go to infinity and prove that

lim sup
N→∞

inf
{
‖h‖q : h ≥ 0, supph ⊂ A with ‖Ãh,N‖ ≥ 1

}
≥ inf

{
‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1

}
,

which leads to the required upper bound.

2.1 Proof of Lemma 1.

We start by showing that G ∈ Lp(Zd). Indeed, by [Uc98, (1.4)], we have (using only finite variance of
the increments and the fact that the walk is aperiodic),

G(z) ≤
∑

x∈Zd

π(x)

1 + |x − z|d−2
for all z ∈ Z

d,

where (π(x) : x ∈ Z
d) is a summable family of nonnegative weights. Hence, as p(d − 2) > d,

( ∑

z∈Zd

G
p(z)

) 1
p ≤

∑

x∈Zd

( ∑

z∈Zd

πp(x)

(1 + |x − z|d−2)p

) 1
p

=
( ∑

x∈Zd

π(x)
) ( ∑

z∈Zd

1

(1 + |z|d−2)p

) 1
p

< ∞ .
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To prove that the operator Ah is bounded note that, whenever ‖g1‖2 = ‖g2‖2 = 1 and g1, g2 ≥ 0, by

Hölder’s inequality,

〈g1,Ahg2〉 =
∑

x,y∈Zd

g1(x)
√

eh(x) − 1 G(x − y)
√

eh(y) − 1 g2(y)

≤
( ∑

x,y∈Zd

G
p(x − y)

{
g1(x)

√
eh(x) − 1 g2(y)

√
eh(y) − 1

} p
2p−1

) 1
p

×
( ∑

x,y∈Zd

{
g1(x)

√
eh(x) − 1 g2(y)

√
eh(y) − 1

} 2p
2p−1

) 1
q
.

(7)

Using again Hölder’s inequality, the second factor on the right hand side of (7) is bounded by
( ∑

x∈Zd

{
g1(x)

√
eh(x) − 1

} 2p
2p−1

) 1
q
( ∑

x∈Zd

{
g2(x)

√
eh(x) − 1

} 2p
2p−1

) 1
q

≤
( ∑

x∈Zd

g2
1(x)

) 1
q+1

( ∑

x∈Zd

g2
2(x)

) 1
q+1

({ ∑

x∈Zd

(
eh(x) − 1

)q
} 1

q

) 2
q+1

,

whence we use that ‖g1‖2 = ‖g2‖2 = 1 and

{ ∑

x∈Zd

(
eh(x) − 1

)q
} 1

q ≤
∞∑

k=1

‖h‖k
q

k!

{ ∑

x∈Zd

(h(x)

‖h‖q

)kq} 1
q ≤ e‖h‖q − 1 .

By a shift of coordinates the first factor on the right hand side of (7) equals
( ∑

x∈Zd

G
p(x)

∑

y∈Zd

{
g1(x + y)

√
eh(x+y) − 1 g2(y)

√
eh(y) − 1

} p
2p−1

) 1
p

,

and, using the Cauchy-Schwarz inequality, a further shift and Hölder’s inequality,
∑

y∈Zd

{
g1(x + y)

√
eh(x+y) − 1 g2(y)

√
eh(y) − 1

} p
2p−1

≤
( ∑

y∈Zd

{
g1(x + y)

√
eh(x+y) − 1

} 2p
2p−1

) 1
2
( ∑

y∈Zd

{
g2(y)

√
eh(y) − 1

} 2p
2p−1

) 1
2

≤
( ∑

y∈Zd

g2
1(y)

) p
4p−2

( ∑

y∈Zd

g2
2(y)

) p
4p−2

( ∑

y∈Zd

{
eh(y) − 1

}q
) p−1

2p−1 ≤
(
e‖h‖q − 1

) q
q+1 .

Combining all these estimates we obtain that

〈g1,Ahg2〉 ≤
( ∑

y∈Zd

G(y)p
) 1

p (
e‖h‖q − 1

)
,

which implies that Ah is bounded and its spectral radius satisfies (2).

2.2 Existence of the high moment limit of intersection local time

We define the ‘augmented’ intersection local time I0 by

I0 :=

∞∑

i1,...,ip=0

1l{X(1)(i1) = · · · = X(p)(ip)} .

Lemma 4. The limit κ0 := − lim
k→∞

1

k
log

E[Ik
0 ]

(k!)p
exists.
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Proof. By the subadditivity lemma it suffices to show that, for any k, l ≥ 1,

E
[
Ik+l
0

]1/p ≤
(

k + l

k

)
E

[
Ik
0

]1/p
E

[
I l
0

]1/p
. (8)

By X we denote a random walk with the same law as X(1), . . . ,X(p) and define its local time in x by

ℓ(x) :=
∑∞

j=0 1l{X(j) = x}. Then

E
[
Ik+l
0

]
=

∑

x1,...,xk+l∈Zd

{
E

k+l∏

j=1

ℓ(xj)

}p

=
∑

x1,...,xk+l∈Zd

{ ∞∑

i1,...,ik+l=0

E

k+l∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=1

ℓ(xj)

}p−1

=
∞∑

i1,...,ik+l=0

∑

x1,...,xk+l∈Zd

{
E

k+l∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=1

ℓ(xj)

}p−1

.

For any two vectors (j1, . . . , jk) and (jk+1, . . . , jk+l) we write

(j1, . . . , jk) ≺ (jk+1, . . . , jk+l) ⇐⇒ max{j1, . . . , jk} ≤ min{jk+1, . . . , jk+l} .

Instead of choosing the vector (i1, . . . , ik+l) directly, we may first pick k out of k + l coordinates, then
pick two vectors (j1, . . . , jk) ≺ (jk+1, . . . , jk+l) and fill the chosen k coordinates successively with the

entries of (j1, . . . , jk) and the remaining coordinates with the entries of (jk+1, . . . , jk+l). Using this
procedure and the permutation invariance we get

E
[
Ik+l
0

]
≤

(
k + l

k

) ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

∑

x1,...,xk+l

{
E

k+l∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=1

ℓ(xj)

}p−1

.

Thus, using Hölder’s inequality in the second step,

E
[
Ik+l
0

]
≤

(
k + l

k

) ∑

x1,...,xk+l

{ ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=1

ℓ(xj)

}p−1

≤
(

k + l

k

){ ∑

x1,...,xk+l

( ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}
)p} 1

p
{ ∑

x1,...,xk+l

(
E

k+l∏

j=1

ℓ(xj)

)p} p−1
p

.

As the last factor equals (E[Ik+l
0 ])

p−1
p we get

(
E

[
Ik+l
0

]) 1
p ≤

(
k + l

k

){ ∑

x1,...,xk+l∈Zd

( ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}
)p} 1

p

. (9)

Writing i∗ = max{i1, . . . , ik} we have

E

k+l∏

j=1

1l{X(ij) = xj} =

{
E

k∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=k+1

1l{X(ij − i∗) = xj − xi∗}
}

,
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and therefore

∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}

=

∞∑

i1,...,ik=0

{
E

k∏

j=1

1l{X(ij) = xj}
}{ ∞∑

ik+1,...,ik+l=0

E

k+l∏

j=k+1

1l{X(ij) = xj − xi∗}
}

=

∞∑

i1,...,ik=0

{
E

k∏

j=1

1l{X(ij) = xj}
}{

E

k+l∏

j=k+1

ℓ(xj − xi∗)

}
.

Thus

∑

x1,...,xk+l∈Zd

{ ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}
}p

=
∑

x1,...,xk+l∈Zd

p∏

h=1

( ∞∑

ih1 ,...,ih
k
=0

{
E

k∏

j=1

1l{X(ihj ) = xj}
}{

E

k+l∏

j=k+1

ℓ(xj − xih∗
)

})

=
∑

x1,...,xk∈Zd

( p∏

h=1

∞∑

ih1 ,...,ih
k
=0

{
E

k∏

j=1

1l{X(ihj ) = xj}
}) ∑

xk+1,...,xk+l∈Zd

p∏

h=1

{
E

k+l∏

j=k+1

ℓ(xj − xih∗
)

}
.

By Hölder’s inequality

∑

xk+1,...,xk+l∈Zd

p∏

h=1

{
E

k+l∏

j=k+1

ℓ(xj − xih∗
)

}

≤
p∏

h=1

{ ∑

xk+1,...,xk+l∈Zd

{
E

k+l∏

j=k+1

ℓ(xj − xih∗
)

}p}1/p

= E
[
I l
0

]
,

and thus

∑

x1,...,xk+l∈Zd

{ ∑

(i1,...,ik)

≺(ik+1,...,ik+l)

E

k+l∏

j=1

1l{X(ij) = xj}
}p

≤ E
[
I l
0

] ∑

x1,...,xk∈Zd

p∏

h=1

∞∑

ih1 ,...,ih
k
=0

{
E

k∏

j=1

1l{X(ihj ) = xj}
}

= E
[
I l
0

]
E

[
Ik
0

]
,

which together with (9) proves (8) and thus completes the proof. �

Lemma 5. The limit κ := − lim
k→∞

1

k
log

E[Ik]

(k!)p
exists and is equal to κ0.

Proof. To make the passage from I0 to I first note that I ≤ I0, and hence we have

lim sup
k→∞

1

k
log

1

(k!)p
E

[
Ik

]
≤ −κ0 .

Hence only the converse inequality needs to be proved. Define the local times

ℓj(x) :=
∞∑

k=0

1l{X(j)(k) = x} for x ∈ Z
d .
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Then we obtain

I0 ≤ I +

p∑

j=1

p∏

i=1
i6=j

ℓi(0) ,

and thus, by the triangle inequality,

E
[
Ik
0

]1/k ≤ E
[
Ik

]1/k
+ E

[( p∑

j=1

p∏

i=1
i6=j

ℓi(0)
)k]1/k

. (10)

For the second term we get, using the multinomial theorem,

E

[( p∑

j=1

p∏

i=1
i6=j

ℓi(0)
)k]

=
∑

k1+···+kp=k

k1,...,kp≥0

k!

k1! · · · kp!

p∏

i=1

E
[
ℓi(0)

P

j 6=i kj
]
.

As X = ℓi(0) is a geometric random variable and hence E[eλX ] < ∞ for some λ > 0, we get

E
[
ℓi(0)

n
]
≤ n! E[eλX ]λ−n.

Hence, for a suitable constant C > 0,

E

[( p∑

j=1

p∏

i=1
i6=j

ℓi(0)
)k]

≤ E
[
eλX

]p
λ−k(p−1)

∑

k1+···+kp=k

k1,...,kp≥0

k!

k1! · · · kp!

p∏

i=1

( p∑

j=1
j 6=i

kj

)
! ≤ Ck (k!)p−1 ,

which implies

lim inf
k→∞

1

k
log

1

(k!)p
E

[( p∑

j=1

p∏

i=1
i6=j

ℓi(0)
)k]

= −∞ .

The result thus follows from (10). �

2.3 The integer moments of intersection local time

We define, for any 1 ≤ m ≤ k, the family of all m-partitions of the set {1, . . . , k} as

Em :=
{
π = (π1, . . . , πm) : πj 6= ∅ with πi ∩ πj = ∅ for all i 6= j and

⋃m
j=1 πj = {1, . . . , k}

}
,

where we assume that the elements π1, . . . , πm of an m-partition are ordered by increasing order of
their minimal elements. To any (i1, . . . , ik) ∈ N

k we associate

• a tuple (i∗1, . . . , i
∗
m) of distinct natural numbers such that {i1, . . . , ik} = {i∗1, . . . , i∗m} and ele-

ments in the tuple (i∗1, . . . , i
∗
m) appear in the order in which they appear first in (i1, . . . , ik);

• an m-partition (π1, . . . , πm) ∈ Em with ij = i∗ℓ whenever j ∈ πℓ.

Conversely, given a tuple (j1, . . . , jm) of distinct natural numbers and an m-partition π we can find
(i1, . . . , ik) ∈ N

k such that the induced m-tuple is (j1, . . . , jm) and the induced m-partition is π.

Define the family of k-tuples of points in Z
d associated to some π ∈ Em by

A(π) :=
{
(x1, . . . , xk) ∈ (Zd)k : xi = xj for all i, j ∈ πℓ and ℓ ∈ {1, . . . ,m}

}
.

For any (x1, . . . , xk) ∈ A(π) and for any 1 ≤ ℓ ≤ m, we use xπℓ
for the common value of {xj : j ∈ πℓ}.

Observing that

X(iℓ) = xℓ for all ℓ ∈ {1, . . . , k}

⇔ (x1, . . . , xk) ∈ A(π) and X(i∗ℓ ) = xπℓ
for all ℓ ∈ {1, . . . ,m} ,
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we get that

E
[
Ik

]
=

∑

x1,...,xk∈Zd

( ∑

i1,...,ik

E

k∏

ℓ=1

1l{X(iℓ) = xℓ}
)p

=
∑

x1,...,xk∈Zd

( k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

j1,...,jm
distinct

E

m∏

ℓ=1

1l{X(jℓ) = xπℓ
}
)p

,

and therefore, using Sm to denote the symmetric group on m elements,

E
[
Ik

]
=

∑

x1,...,xk∈Zd

( k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G
(
xπσ(ℓ)

− xπσ(ℓ−1)

))p

, (11)

where we use the convention that xπσ(0)
:= 0.

2.4 The lower bound in Theorem 2

Based on (11) we now complete the proof of the lower bound in Theorem 2. We will repeatedly make

use of the following two simple facts:

• For any π ∈ Em, the map

Φ: A(π) → (Zd)m, (x1, . . . , xk) 7→ (xπ1 , . . . , xπm)

is one-to-one and onto, i.e. a bijection.

• For any j1, . . . , jm ≥ 1 with j1 + · · · + jm = k, we have

#
{
π = (π1, · · · , πm) ∈ Em : #(πℓ) = jℓ for all ℓ ∈ {1, . . . ,m}

}
=

1

m!

k!

j1! · · · jm!
.

Recall from our outline that, given Lemma 5, in order to verify the lower bound in Theorem 2 it
suffices to establish the following lemma.

Lemma 6. If there exists h ≥ 0 with ‖h‖q ≤ θ such that ‖Ah‖ > 1, then

∞∑

k=1

θk

k!
E

[
Ik

] 1
p = ∞.

Proof. Let h ≥ 0 with ‖h‖q ≤ θ. Then, using Hölder’s inequality in the first step,

θk
E

[
Ik

] 1
p ≥

∑

x1,...,xk∈Zd

( k∏

j=1

h(xj)
) k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

=

k∑

m=1

∑

σ∈Sm

∑

π∈Em

∑

x1,...,xk∈Zd

( m∏

ℓ=1

h(xπℓ
)#(πℓ)

)( m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

)

=
k∑

m=1

∑

σ∈Sm

∑

π∈Em

∑

x1,...,xm∈Zd

( m∏

ℓ=1

h(xℓ)
#(πℓ)

)( m∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1))

)
,
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where we use the convention xσ(0) := 0, and the last step follows from the one-to-one correspondence

between A(π) and Z
m. Therefore,

θk
E

[
Ik

] 1
p ≥

k∑

m=1

m!
∑

x1,...,xm∈Zd

∑

π∈Em

( m∏

ℓ=1

h(xℓ)
#(πℓ)

)( m∏

ℓ=1

G(xℓ − xℓ−1)

)

=
k∑

m=1

∑

x1,...,xm∈Zd

∑

j1+···+jm=k

j1,...,jm≥1

k!

j1! · · · jm!

( m∏

ℓ=1

h(xℓ)
jℓ

)( m∏

ℓ=1

G(xℓ − xℓ−1)

)
,

where we use the convention x0 := 0. Thus

∞∑

k=1

θk

k!
E

[
Ik

] 1
p ≥

∞∑

m=1

∞∑

k=m

∑

x1,...,xm

{ ∑

j1+···+jm=k

j1,...,jm≥1

1

j1! · · · jm!

( m∏

ℓ=1

h(xℓ)
jℓ

)}( m∏

ℓ=1

G(xℓ − xℓ−1)

)

=

∞∑

m=1

∑

x1,...,xm

{ m∏

ℓ=1

∞∑

j=1

h(xℓ)
j

j!

}( m∏

ℓ=1

G(xℓ − xℓ−1)

)

=

∞∑

m=1

∑

x1,...,xm

m∏

ℓ=1

(
eh(xℓ) − 1

)
G(xℓ − xℓ−1) .

(12)

Now assume that h additionally satisfies ‖Ah‖ > 1. Fix ε > 0 such that ‖Ah‖ > eε and g ≥ 0 with
‖g‖2 = 1 such that 〈g,Ahg〉 > eε. By monotone convergence we may find a finite set A ⊂ Z

d such that

〈
g1lA,Ah

(
g1lA

)〉
> eε and ‖g1lA‖2 > e−ε,

and additionally, but without loss of generality, g, h > 0 on A. We infer that there exists δ > 0 with

(
inf
y∈A

G(y)
) (

eh(x) − 1
)
≥ δ g2(x) 1lA(x) for all x ∈ Z

d.

Hence

∑

x1,...,xm∈Zd

m∏

ℓ=1

(
eh(xℓ) − 1

)
G(xℓ − xℓ−1)

=
∑

x1,...,xm∈Zd

G(x1)
√

eh(x1) − 1
[ m∏

ℓ=2

√
eh(xℓ−1) − 1 G(xℓ − xℓ−1)

√
eh(xℓ) − 1

]√
eh(xm) − 1

≥ δ
∑

x1,...,xm∈Zd

g(x1)1lA(x1)
[ m∏

ℓ=2

√
eh(xℓ−1) − 1 G(xℓ − xℓ−1)

√
eh(xℓ) − 1

]
g(xm)1lA(xm)

= δ
〈
g1lA,Am−1

h (g1lA)
〉
.

By the spectral theorem, see for example [He82, 79.1], for any g̃ ∈ L2(Zd) with ‖g̃‖2 = 1 there exists

a probability measure µg̃ such that, for every k ≥ 0,

〈
g̃,Ak

hg̃
〉

=

∫ ∞

−∞
θk µg̃(dθ) ,

and consequently, at least for even k,

〈
g̃,Ak

hg̃
〉

=

∫ ∞

−∞
θk µg̃(dθ) ≥

( ∫ ∞

−∞
θ µg̃(dθ)

)k
= 〈g̃,Ahg̃〉k.
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We infer that

lim inf
m↑∞
m odd

1
m log

∑

x1,...,xm∈Zd

m∏

ℓ=1

(
eh(xℓ) − 1

)
G(xℓ − xℓ−1)

≥ log
〈
g1lA,Ah(g1lA)

〉
+ log ‖g1lA‖2 > 0 .

Combining this with (12) we see that the series
∑ θk

k! E
[
Ik

] 1
p diverges, as claimed. �

2.5 The upper bound for intersections in a finite set

We now assume that A ⊂ Z
d is a finite set and consider the intersection local time restricted to the

set A, which is defined as I(A) in Remark 1(b). The arguments of Section 2.3 show that

E[I(A)k] =
∑

x1,...,xk∈A

[ k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

]p

.

We now provide an upper bound for the asymptotics of this expression as k ↑ ∞, replacing (for later
reference) Green’s function wherever it occurs by an arbitrary symmetric kernel.

Lemma 7. Suppose G : Z
d → (0,∞) is symmetric. Then

lim sup
k↑∞

1

k
log

1

k!

∑

x1,...,xk∈A

[ k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

]p

≤ −p log inf
{
‖h‖q : h ≥ 0, supph ⊂ A with ‖Ah‖ ≥ 1

}
,

where the operator Ah is associated with the kernel G.

Remark 5. With this lemma we have completed the proof of Remark 1(b). Indeed, the lower bound
for the asymptotics of the intersection local times I(A) in a finite set A follows from the arguments in
Sections 2.1 and 2.3 simply replacing Z

d by A. For the upper bound use Lemma 7 with G = G. �

Proof. Fix a vector x = (x1, . . . , xk) of length k with entries from the set A and associate its empirical

measure Lx

k by letting

Lx

k :=
1

k

k∑

j=1

δxj
.

For each τ ∈ Sk and π ∈ Em we denote by τ(π) ∈ Em the partition consisting of the sets τ(π)ℓ := τ(πℓ)
for ℓ ∈ {1 . . . ,m}. Then, for any τ ∈ Sk and x = (x1, . . . , xk), we get

k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

=
∑

y1,...,yk∈A

1l{x = y ◦ τ}
k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(τ(π))}
∑

σ∈Sm

m∏

ℓ=1

G(yτ(πσ(ℓ)) − yτ(πσ(ℓ−1)))

=
∑

y1,...,yk∈A

1l{x = y ◦ τ}
k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

) ,

where we use the conventions yτ(πσ(0)) := 0, yπσ(0)
:= 0.
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Observe that, abbreviating µ = Lx

k and assuming Ly

k = Lx

k , we have

∑

τ∈Sk

1l{x = y ◦ τ} =
∏

x∈A

(
kµ(x)

)
! ,

and hence summing the previous expression over all permutations τ ∈ Sk gives

k!

k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

=
∏

x∈A

(
kµ(x)

)
!

∑

y1,...,yk

1l{Ly

k = µ}
k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

) .

Write φµ(x) = µ(x)1/q for all x ∈ A and note that

∑

y1,...,yk

1l{Ly

k = µ}
k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

)

≤
( ∏

x∈A

φµ(x)−kµ(x)
) ∑

y1,...,yk

φµ(y1) · · · φµ(yk)

k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(π)}

×
∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

) .

Simplifying and finally using the expression for #Em, we obtain

∑

y1,...,yk

φµ(y1) · · · φµ(yk)

k∑

m=1

∑

π∈Em

1l{(y1, . . . , yk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

)

=

k∑

m=1

∑

π∈Em

∑

y1,...,yk

1l{(y1, . . . , yk) ∈ A(π)}
{ m∏

ℓ=1

φµ(yπℓ
)#(πℓ)

} ∑

σ∈Sm

m∏

ℓ=1

G(yπσ(ℓ)
− yπσ(ℓ−1)

)

=

k∑

m=1

∑

π∈Em

∑

y1,...,ym

{ m∏

ℓ=1

φµ(yℓ)
#(πℓ)

} ∑

σ∈Sm

m∏

ℓ=1

G(yσ(ℓ) − yσ(ℓ−1))

=
k∑

m=1

m!
∑

y1,...,ym

{ ∑

π∈Em

m∏

ℓ=1

φµ(yℓ)
#(πℓ)

} m∏

ℓ=1

G(yℓ − yℓ−1)

=

k∑

m=1

∑

y1,...,ym

{ ∑

j1+···+jm=k

j1,...,jm≥1

k!

j1! · · · jm!

m∏

ℓ=1

φµ(yℓ)
jℓ

} m∏

ℓ=1

G(yℓ − yℓ−1).

Further, using Stirling’s formula, we obtain a fixed polynomial P (·), depending only on the cardinality
of A, such that

{ ∏

x∈A

(
kµ(x)

)
!

}{ ∏

x∈A

φµ(x)−kµ(x)

}
≤ P (k) k!

{ k∏

j=1

µ(xj)
1
p

}
.
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Summarizing all what we have got so far

k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

≤ P (k) k!

{ k∏

j=1

µ(xj)
1
p

} k∑

m=1

∑

y1,...,ym∈A

{ ∑

j1+···+jm=k

j1,...,jm≥1

1

j1! · · · jm!

m∏

ℓ=1

φjℓ
µ (yℓ)

} m∏

ℓ=1

G(yℓ − yℓ−1) .

Summing over all possible vectors x = (x1, . . . , xk) gives

Ik :=
∑

x1,...,xk∈A

[ k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G(xπσ(ℓ)
− xπσ(ℓ−1)

)

]p

≤ P (k)p (k!)p sup
µ∈Pk(A)

[ k∑

m=1

∑

y1,...,ym∈A

( ∑

j1+···+jm=k

j1,...,jm≥1

1

j1! · · · jm!

m∏

ℓ=1

φjℓ
µ (yℓ)

) m∏

ℓ=1

G(yℓ − yℓ−1)

]p

,

where Pk(A) stands for the set of probability densities ν on A such that ν(x) is of the form i/k. Recall

that φµ ≥ 0 satisfies ‖φµ‖q = 1 and hence we may replace the supremum by one over all Lq-normalised
nonnegative functions on A. Thus, for every θ > 0,

θk

k!

(
Ik

) 1
p ≤ P (k) sup

‖f‖q=1

∞∑

n=1

θn
n∑

m=1

∑

y1,...,ym∈A

( ∑

j1+···+jm=n

j1,...,jm≥1

1

j1! · · · jm!

m∏

ℓ=1

f jℓ(yℓ)

) m∏

ℓ=1

G(yℓ − yℓ−1)

= P (k) sup
‖h‖q=θ

∞∑

m=1

∑

y1,...,ym∈A

{ m∏

ℓ=1

∞∑

j=1

h(yℓ)
j

j!

} m∏

ℓ=1

G(yℓ − yℓ−1)

= P (k) sup
‖h‖q=θ

∞∑

m=1

∑

y1,...,ym∈A

{ m∏

ℓ=1

(
eh(yℓ) − 1

)} m∏

ℓ=1

G(yℓ − yℓ−1).

Let g(x) = [#A]−1/2 for all x ∈ A and note that ‖g‖2 = 1. Using that 0 ≤ h(x) ≤ θ we obtain

∑

y1,...,ym∈A

{ m∏

ℓ=1

(
eh(yℓ) − 1

)} m∏

ℓ=1

G(yℓ − yℓ−1)

≤
(

sup
y∈A

G(y)
) (

eθ − 1
) ∑

y1,...,ym∈A

m∏

ℓ=2

{√
eh(yℓ−1) − 1G(yℓ − yℓ−1)

√
eh(yℓ) − 1

}

=
(

sup
y∈A

G(y)
) (

eθ − 1
) [

#A
] 〈

g, A
m−1
h g

〉

≤
(

sup
y∈A

G(y)
) (

eθ − 1
) [

#A
]
‖Ah‖m−1 .

Suppose that θ < inf{‖h‖q : supph ⊂ A, ‖Ah‖ ≥ 1}, then there exists ǫ > 0 such that every h with
‖h‖q = θ satisfies ‖Ah‖ < 1 − ǫ. We infer that

θk

k!

(
Ik

) 1
p ≤ P (k)

(
sup
y∈A

G(y)
) (

eθ − 1
) [

#A
]

sup
‖h‖q=θ

∞∑

m=1

‖Ah‖m−1.

As the suprema on the right hand side are both finite, we obtain

lim sup
k→∞

1

k
log

Ik

(k!)p
≤ −p log θ ,

as required to complete the proof. �
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2.6 Wrapping the random walks around the torus

We now look back to the full lattice Z
d and discuss how to project the problem onto a finite set. We fix

a large integer N an let AN := [−N,N)d. Then every x ∈ Z
d can uniquely be written as x = 2Nz + y

for z ∈ Z
d and y ∈ AN . Hence, using Hölder’s inequality in the second step,

E
[
Ik

]
=

∑

y1,...,yk∈AN

∑

z1,...,zk∈Zd

[ k∑

m=1

∑

π∈Em

1l{(2Nz1 + y1, . . . , 2Nzk + yk) ∈ A(π)}

×
∑

σ∈Sm

m∏

ℓ=1

G
(
2N(zπσ(ℓ)

− zπσ(ℓ−1)
) + (yπσ(ℓ)

− yπσ(ℓ−1)
)
)]p

≤
∑

y1,...,yk∈AN

[ k∑

m=1

∑

π∈Em

∑

σ∈Sm

{ ∑

z1,...,zk∈Zd

1l{(2Nz1 + y1, . . . , 2Nzk + yk) ∈ A(π)}

×
m∏

ℓ=1

G
p
(
2N(zπσ(ℓ)

− zπσ(ℓ−1)
) + (yπσ(ℓ)

− yπσ(ℓ−1)
)
)}1/p]p

.

From the uniqueness of the decomposition x = 2Nz + y we infer that

1l{(2Nz1 + y1, . . . , 2Nzk + yk) ∈ A(π)} = 1l{(y1, . . . , yk) ∈ A(π)} 1l{(z1, . . . , zk) ∈ A(π)}.
Therefore,

∑

z1,...,zk∈Zd

1l{(2Nz1 + y1, . . . , 2Nzk + yk) ∈ A(π)}
m∏

ℓ=1

G
p
(
2N(zπσ(ℓ)

− zπσ(ℓ−1)
) + (yπσ(ℓ)

− yπσ(ℓ−1)
)
)

= 1l{(y1, . . . , yk) ∈ A(π)}
∑

z1,...,zk∈Zd

1l{(z1, . . . , zk) ∈ A(π)}

×
m∏

ℓ=1

G
p
(
2N(zπσ(ℓ)

− zπσ(ℓ−1)
) + (yπσ(ℓ)

− yπσ(ℓ−1)
)
)

= 1l{(y1, . . . , yk) ∈ A(π)}
∑

z1,...,zm∈Zd

m∏

ℓ=1

G
p
(
2N(zσ(ℓ) − zσ(ℓ−1)) + (yπσ(ℓ)

− yπσ(ℓ−1)
)
)

= 1l{(y1, . . . , yk) ∈ A(π)}
m∏

ℓ=1

G̃
p
N (yπσ(ℓ)

− yπσ(ℓ−1)
) ,

where we define

G̃N (y) =
{ ∑

z∈Zd

G
p
(
2Nz + y

)} 1
p

for any y ∈ Z
d .

Summarizing, we have shown that

E
[
Ik

]
≤

∑

x1,...,xk∈AN

[ k∑

m=1

∑

π∈Em

1l{(x1, . . . , xk) ∈ A(π)}
∑

σ∈Sm

m∏

ℓ=1

G̃N (xπσ(ℓ)
− xπσ(ℓ−1)

)

]p

.

We can now apply Lemma 7 and obtain

lim sup
k↑∞

1

k
log

1

k!
E[Ik] ≤ −p log inf

{
‖h‖q : h ≥ 0, supph ⊂ AN with ‖Ãh,N‖ ≥ 1

}
,

where the self-adjoint operator Ãh,N : L2(Zd) → L2(Zd) is defined by

Ãh,Ng(x) =
√

eh(x) − 1
∑

y∈AN

G̃N (x − y)
√

eh(y) − 1 g(y) .
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2.7 The upper bound in Theorem 2

The proof of Theorem 2 is complete once we have proved the following lemma.

Lemma 8.

lim sup
N→∞

inf
{
‖h‖q : h ≥ 0 with ‖Ãh,N‖ ≥ 1

}
≥ inf

{
‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1

}
.

Proof. Fix positive integers M < N and define the annulus

EN :=
{
x ∈ AN : |x| ≥ N − M

}
.

We decompose G = G+ + G− with G+(x) = G(x)1l{|x| > M} and G−(x) = G(x)1l{|x| ≤ M}. In

analogy to G̃N we define symmetric, periodic functions G̃+ and G̃− by

G̃±(y) =
{ ∑

z∈Zd

G
p
±

(
2Nz + y

)} 1
p

for any y ∈ Z
d .

By the triangle inequality we have G̃N ≤ G̃+ + G̃−. The induced operators Ãh,± : L2(AN ) → L2(AN )
are defined by

Ãh,±g(x) =
√

eh(x) − 1
∑

y∈AN

G̃±(x − y)
√

eh(y) − 1 g(y) .

For the spectral radius of these operators we thus obtain

‖Ãh,N‖ ≤ ‖Ãh,+‖ + ‖Ãh,−‖ .

Suppose now that h : AN → [0,∞) is given and let h0 : Z
d → [0,∞) its extension to the whole of Z

d

defined by letting h0(x) = 0 for x ∈ Z
d \ AN . We next show that

‖Ãh,N‖ ≤ ‖Ah0‖ +
(
e‖h‖q − 1

){{ ∑

|x|>M

G
p(x)

} 1
p

+ 2
{ ∑

x∈Zd

G
p(x)

} 1
p

[ #EN

(2N)d

] p−1
p

}
. (13)

Using (13) we complete the proof by the following argument: For any t > 0 let

ϕ(t) := inf
{
‖h‖q : h ≥ 0 with ‖Ah‖ ≥ t

}
.

Note that, using that G ∈ Lp(Zd), by choosing first a large M and then an even larger N , we can
make the expression in the curly bracket on the right hand side of (13) as small as we wish. Hence

lim sup
N→∞

inf
{
‖h‖q : h ≥ 0 with ‖Ãh,N‖ ≥ 1

}
≥ ϕ(1 − ε),

for any ε > 0. As 1
1−ε

(
eθ − 1) ≤ exp{ θ

1−ε} − 1 we obtain, from the definition of Ah that

‖A h
1−ε

‖ ≥ 1
1−ε ‖Ah‖ ,

whence ϕ(1 − ε) ≥ (1 − ε)ϕ(1), so that the statement of Lemma 8 follows by letting ε ↓ 0.

To prove (13) first fix g : AN → [0,∞) with ‖g‖2 = 1. For notational convenience we extend both g
and h periodically to the whole lattice Z

d. We claim that there exists x0 ∈ AN such that

∑

x∈EN

{
g(x + x0)

√
eh(x+x0) − 1

} 2p
2p−1 ≤

(
e‖h‖q − 1

) p
2p−1

#EN

(2N)d
. (14)
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Indeed, this follows readily from

∑

x∈EN
y∈AN

{
g(x + y)

√
eh(x+y) − 1

} 2p
2p−1 ≤

{ ∑

x∈EN
y∈AN

g2(x + y)

} p
2p−1

{ ∑

x∈EN
y∈AN

(
eh(x+y) − 1

) p
p−1

} p−1
2p−1

≤
[
#EN

]{ ∑

y∈AN

(
eh(y) − 1

) p
p−1

} p−1
2p−1

≤
[
#EN

] (
e‖h‖q − 1

) p
2p−1 .

We write h̄(x) = h(x + x0) and ḡ(x) = g(x + x0). Then
∑

x,y∈AN

g(x)
√

eh(x) − 1 G̃−(x − y)
√

eh(y) − 1g(y) =
∑

x,y∈AN

ḡ(x)
√

eh̄(x) − 1 G̃−(x − y)
√

eh̄(y) − 1 ḡ(y)

≤
∑

x,y∈AN\EN

ḡ(x)
√

eh̄(x) − 1 G̃−(x − y)
√

eh̄(y) − 1 ḡ(y)

+ 2
∑

x∈EN
y∈AN

ḡ(x)
√

eh̄(x) − 1 G̃−(x − y)
√

eh̄(y) − 1 ḡ(y) .

From the fact that G̃−(x − y) = G−(x − y) when x, y ∈ AN \ EN , we infer that
∑

x,y∈AN\EN

ḡ(x)
√

eh̄(x) − 1 G̃−(x − y)
√

eh̄(y) − 1 ḡ(y) ≤ ‖Ah0‖ .

Moreover, from Hölder’s inequality,
∑

x∈EN
y∈AN

ḡ(x)
√

eh̄(x) − 1 G̃−(x − y)
√

eh̄(y) − 1 ḡ(y)

≤
{ ∑

x,y∈AN

G̃
p
−(x − y)

(√(
eh̄(x) − 1

)(
eh̄(y) − 1

)
ḡ(x)ḡ(y)

) p
2p−1

} 1
p

×
{ ∑

x∈EN
y∈AN

(√(
eh̄(x) − 1

)(
eh̄(y) − 1

)
ḡ(x)ḡ(y)

) 2p
2p−1

} p−1
p

.

To treat the first factor, note that, by periodicity,

∑

x,y∈AN

G̃
p
−(x − y)

(√(
eh̄(x) − 1

)(
eh̄(y) − 1

)
ḡ(x)ḡ(y)

) p
2p−1

=
∑

x∈AN

G̃
p
−(x)

∑

y∈AN

(√(
eh̄(x+y) − 1

)(
eh̄(y) − 1

)
ḡ(x + y)ḡ(y)

) p
2p−1

.

Moreover, arguing as before using Hölder’s inequality,

∑

y∈AN

(√(
eh̄(x+y) − 1

)(
eh̄(y) − 1

)
ḡ(x + y)ḡ(y)

) p
2p−1

≤
{ ∑

y∈AN

(
ḡ(x + y)

√
eh̄(x+y) − 1

) 2p
2p−1

} 1
2
{ ∑

y∈AN

(
ḡ(y)

√
eh̄(y) − 1

) 2p
2p−1

} 1
2

≤
{ ∑

y∈AN

g2(y)

} p
2p−1

{ ∑

y∈AN

(
eh(y) − 1

) p
p−1

} p−1
2p−1

≤
(
e‖h‖q − 1

) p
2p−1 .
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For the second factor we obtain, using (14),

∑

x∈EN
y∈AN

(√(
eh̄(x) − 1

)(
eh̄(y) − 1

)
ḡ(x)ḡ(y)

) 2p
2p−1

=

{ ∑

x∈EN

(
ḡ(x)

√
eh̄(x) − 1

) 2p
2p−1

}{ ∑

y∈AN

(
ḡ(y)

√
eh̄(y) − 1

) 2p
2p−1

}
≤

(
e‖h‖q − 1

) 2p
2p−1

#EN

(2N)d
.

Summarizing, we have that

‖Ãh,−‖ = sup
‖g‖2=1

∑

x,y∈AN

g(x)
√

eh(x) − 1 G̃−(x − y)
√

eh(y) − 1 g(y)

≤ ‖Ah0‖ + 2
(
e‖h‖q − 1

) { ∑

x∈Zd

G
p(x)

} 1
p [ #EN

(2N)d

] p−1
p

.

In a similar fashion as above, or indeed as in Lemma 1, we also obtain that

‖Ãh,+‖ ≤
{ ∑

y∈AN

G̃
p
+(y)

} 1
p (

e‖h‖q − 1
)

=

{ ∑

|x|>M

G
p(x)

} 1
p (

e‖h‖q − 1
)
.

This proves (13) and hence completes the proof of the lemma. �

3. Random walks in continuous time: Proof of Theorem 3

3.1 Tail behaviour of the intersection local time

In this section we prove that

lim
a↑∞

1

a1/p
log P

{
Ĩ > a

}
= −p

̺
, (15)

where ̺ is as in Remark 3. As this is essentially a simpler version of the proof of Theorem 2, we only
give a sketch, further details can be filled in easily by copying the methods of our main result. The
proof is carried out in four steps.

In the first step we reduce the problem to an analytic problem. By (6) it suffices to prove

lim
k↑∞

1

k
log E

[ Ĩk

(k!)p

]
= p log ̺ .

Using the convention that xσ(0) := 0, we get

EĨk = E

[ ∑

x∈Zd

p∏

j=1

∫ ∞

0
1l{X(j)(t) = x} dt

]k
=

∑

x1,...,xk∈Zd

[
E

∫ ∞

0
dt1 · · ·

∫ ∞

0
dtk

k∏

ℓ=1

1l{X(tℓ) = xℓ}
]p

=
∑

x1,...,xk∈Zd

[ ∑

σ∈Sk

∫ ∞

0
dt1

∫ ∞

t1

dt2 · · ·
∫ ∞

tk−1

dtk E

k∏

ℓ=1

1l{X(tℓ) = xσ(ℓ)}
]p

=
∑

x1,...,xk∈Zd

[ ∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ−1) − xσ(ℓ))
]p

,

and hence it suffices to prove that

lim
k→∞

1

k
log

1

(k!)p

∑

x1,...,xk∈Zd

[ ∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ−1) − xσ(ℓ))

]p

= p log ρ . (16)
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In the second step we provide the lower bound for (16). Let q be the conjugate of p, and use Hölder’s

inequality to obtain, for any nonnegative h ∈ Lq(Zd) with ‖h‖q = 1,

1

k!

( ∑

x1,...,xk∈Zd

[ ∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ−1) − xσ(ℓ))

]p)1/p

≥
∑

x1,...,xk∈Zd

k∏

ℓ=1

h(xℓ)G(xℓ − xℓ−1).

For any nonnegative f ∈ L2p(Zd) with ‖f‖2p = 1 we define h := f2p/q and g := fp and note that

‖g‖2 = ‖h‖q = 1 and f2p−1 =
√

hg. If we also fix a finite set A ⊂ Z
d, we can find a constant δ > 0

(depending on f and A) such that h(x) ≥ δg2(x) for all x ∈ Z
d, and G(x) ≥ δ for all x ∈ A. Then

∑

x1,...,xk

k∏

ℓ=1

h(xℓ)G(xℓ − xℓ−1)

≥ δ2
∑

x1,...,xk

g(x1)1lA(x1)
[ k∏

ℓ=2

√
h(xℓ−1) G(xℓ − xℓ−1)

√
h(xℓ)

]
g(xk)1lA(xk)

= δ2
〈
g1lA,Bk−1

h g1lA
〉
.

From the spectral theorem we infer that

lim inf
k↑∞

1

k
log

〈
g,Bk−1

h g
〉
≥ log〈g1lA,Bhg1lA〉 + log ‖g1lA‖2

A↑Z
d

−→ log〈f2p−1,Gf2p−1〉 ,

and the lower bound in (16) follows as f was arbitrary from the positive unit ball of L2p(Zd).

In the third step we show that, for any finite set A ⊂ Z
d,

lim sup
k→∞

1

k
log

1

(k!)p

∑

x1,...,xk∈A

[ ∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1))

]p

≤ p log sup
{
〈f2p−1,Gf2p−1〉 : for f : Z

d → [0,∞) with supph ⊂ A and ‖f‖2p = 1
}

,

(17)

where (for later reference) we replace Green’s function wherever it occurs by an arbitrary symmetric
kernel G : Z

d → [0,∞). The same tilting technique as in Lemma 7 gives, for a suitable polynomial P ,

µ = Lx

k and φ(x) = µ(x)1/q,

∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1)) ≤ P (k) k!
{ k∏

j=1

µ(xj)
1
p

} ∑

y1,...,yk∈A

φ(y1) · · · φ(yk)
k∏

ℓ=1

G(yℓ − yℓ−1) .

Therefore we obtain

1

(k!)p

∑

x1,...,xk∈A

[ ∑

σ∈Sk

k∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1))

]p

=
∑

x1,...,xk∈A

exp
{
k

∑

z∈A

µ(z) log µ(z) + o(k)
} [

sup
‖φ‖q=1

∑

y1,...,yk∈A

φ(y1) · · · φ(yk)
k∏

ℓ=1

G(yℓ − yℓ−1)

]p

= eo(k)

[
sup

‖φ‖q=1

∑

y1,...,yk∈A

φ(y1) · · · φ(yk)
k∏

ℓ=1

G(yℓ − yℓ−1)

]p

.
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Let g(x) := [#A]−1/21lA(x) so that ‖g‖2 = 1. Using that φ(x) ≤ 1 for all x ∈ A, we obtain

∑

y1,...,yk∈A

φ(y1) · · ·φ(yk)
k∏

ℓ=1

G(yℓ − yℓ−1) ≤ [#A]
〈
g,Bk−1

φ g
〉
≤ [#A] ‖Bφ‖k−1,

from which the result readily follows.

In the fourth step we extend the result from finite sets to the full lattice Z
d. Projection on a torus as

in Section 2.6 gives

∑

x1,...,xk∈Zd

[ ∑

σ∈Sm

k∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1))

]p

≤
∑

y1,...,yk∈AN

[ ∑

σ∈Sk

k∏

ℓ=1

G̃N (yσ(ℓ) − yσ(ℓ−1))

]p

,

where

G̃N(x) :=
[ ∑

z∈Zd

G
p(2Nz + x)

]1/p
.

Using (17) for this kernel gives

lim sup
k→∞

1

k
log

1

(k!)p

∑

x1,...,xk∈Zd

[ ∑

σ∈Sm

k∏

ℓ=1

G(xσ(ℓ) − xσ(ℓ−1))

]p

≤ p log sup
{
〈f2p−1,GNf2p−1〉 : for f : Z

d → [0,∞) with suppf ⊂ AN and ‖f‖2p = 1
}

,

(18)

where the operator GN stands for convolution with the kernel G̃N . Exactly as in the proof of (13) one
shows that, for 0 < M < N ,

sup
{
〈f2p−1,GNf2p−1〉 : for f : Z

d → [0,∞) with suppf ⊂ AN and ‖f‖2p = 1
}

≤ sup
{
〈f2p−1,Gf2p−1〉 : for f : Z

d → [0,∞) with ‖f‖2p = 1
}

+
[ ∑

|x|>M

G
p(x)

]1/p
+ 2

[ #EN

(2N)d

] p−1
p

[ ∑

x∈Zd

G
p(x)

]1/p
,

where EN := {x ∈ AN : |x| > N −M}. The first term on the last line can be made arbitrarily small by

choice of M . For any M the second term converges to zero as N ↑ ∞. This shows that, as N ↑ ∞, the
variational problem on the right hand side of (18) converges to ̺, thus completing the proof of (15).

4. Conclusion

We believe that the method of this paper opens up new avenues for the treatment of a wide range
of intersection problems in supercritical dimensions, which are by no means limited to random walk.
The major advantage of our approach over the established Donsker-Varadhan theory is its direct

applicability to problems with an infinite time horizon. However, studying the upper tail behaviour
of the intersection of the ranges requires additional ideas and is subject of ongoing research.
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[LG86] J. F. Le Gall. Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local
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