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CONDITION FOR INTERSECTION OCCUPATION MEASURE
TO BE ABSOLUTELY CONTINUOUS*
YMOBA ABCOJIIOTHOI HEIIEPEBHOCTI MIPU BIJIBI/ITYBAHb IIEPETHHIB

Given the iid. R%-valued stochastic processes Xi(t),...,X,(t), p > 2, with the stationary increments, a minimal
condition is provided for the occupation measure

m(B):/ 15 (X1 (s1) — Xa(s2), .. Xp1(8p1) — Xp(sp))ds1 ... dsp, B CRU™D),
[0,t]P

to be absolutely continuous with respect to the Lebesgue measure on R¥®~) | An isometry identity related to the resulting
density (known as intersection local time) is also established.

J171s1 He3aJIeKHUX OTHAKOBO PO3IOTUTEHIX R?-3HAYHUX BUMAIKOBHX npoueciB X1 (t),...,Xp(t), p > 2 3i craunionapauMH
IPUPOCTaMK HAaBEICHO MiHIMAJIbHY YMOBY, KOJIM Mipa BiIBilyBaHb IICPETUHIB

m(B):/ 15(X1(s1) — X2(52), -+, Xpo1(sp-1) — Xp(sp))ds1...dsp, BC R
(0,41

a0CONIOTHO HeTepepBHa BiTHOCHO Mmipu JleGera Ha RUP~V | Takox noBezneHo I30METPUYHY TOTOXHICTh, TIOB’sI3aHy i3
BiJIOBITHOO IIUIBHICTIO (BiZIOMOIO SIK JIOKQJIBHUH Yac MEPETHHIB).

1. Main theorem. Let X (¢) be a stochastic process taking values in R? with X (0) = 0 and let
pi(z) (z € RY) be the density function of X (¢). Assume that, for any 0 < s < ¢,

4

X(t) - X(s) L X(t - s). (1.1)

Let Xi(t),...,X,(t) be independent copies of X (t). Given t1,...,t, > 0 and x € R¥P~1) the
intersection local time «(t1,...,%,,x) of Xi(t),..., X,(t) formally written as

t1 tp
a(tl,...,tp,x) ://5X(X1(81> —XQ(SQ),...,Xp_l(Sp_l) —Xp(8p>>d81...d8p (12)
0 0

is defined as Radon —Nikodym derivative of the occupation measure

131 tp
Ntl,...,tp(B) = /.../1B(X1(81) —XQ(SQ),...,Xp_l(Sp_l) —Xp(sp))dsl...dsp (1.3)
0 0

with respect to the Lebesgue measure on RUP—1) The most-investigated setting is when X (t) is
a Brownian motion. The criteria on the mutual intersection of independent Brownian motions was
completed by Dvoretzsky, Erdos and Kakutani [3, 4] in 1950s. Their work was followed by the
extensive investigations either on the trajectory properties of the Brownian intersection local times
(see, e.g., [1, 7, 8]), or on the extension to some other stochastic processes (see, €.g., [2, 5, 6]).

* This paper was partially supported by the Simons (Foundation No. 585506).
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CONDITION FOR INTERSECTION OCCUPATION MEASURE ... 1305

A critical step to construct intersection local times is to establish the absolute continuity of
Mtl,...,tp(') with respect to the Lebesgue measure on RA(P-1) 1n literature, this is mostly done ei-
ther for Gaussian processes [2, 6] or for Markov processes [5] with Gaussian/Markovian property
being used as the main tool. In this short notes, we carry this step out without the help from
Gaussian/Markovian property. The main result of this paper is the following theorem.

Theorem 1.1. Under (1.1), assume that there exists 0 > 0 such that

00 p
/ /e_tht(:U)ds dr < 0. (1.4
Rd LO
Then
P {,utl’,,_,tp is absolutely continuous for all tq,...,t, > O} =1. (1.5)
Further, the density a(ty,. .., t,, x) given in (1.2) lives in L*-space, i.e.,
P / [a(tl,...,tp,x]zdx<ooforalltl,...,thO =1 (1.6)
Rd(p—1)
and satisfies the isometry identity
p
2
E / [a(tl, .. ,tp,x)] dx = / H/ —s {ps +ps(—x)}ds dx (1.7)
Rd(p—1) rd L7=10

SJorany tq,...,t, > 0.

Remark 1.1. In the special case, when X (t) is symmetric, i.e., X (—t) L X(t) (or ps(z) =
= ps(—x)) for every t > 0, the isometry identity (1.7) becomes

E / [a(tl,...,tp,x)] x—2p/ H/ $)ps(z)ds | dz. (1.8)
0

RA(p—1) rd LI=1

Proof of Theorem 1.1. For any measure 1 on R4P~1)  its Fourier transform is defined as

LA, Apmt) = / exp Zx\mj p(dzy ... dep_1).
Rd(p—1)

For any 6 > 0, define the random measure
wo(B) = / exp —Gth [ty,...t, (B)dty ... dtp.

Notice the fact that
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1306 XIA CHEN

fity,...1, () < exp ngjt po(-), ti,....t, > 0.

To show (1.5) and (1.6), all we need is to establish the almost sure absolute continuity for py (for
some # > 0) and square integrability for the consequential density of the measure j4(-). According
to Plancherel — Parseval theorem (Theorem B.3, in [1, p. 302]), this is validated by the integrability

/ Elfo(A1, - -5 Ap—1)[2dA1 ... dN\,—1 < 00 (1.9)
(Rd)pfl

To establish (1.9) and the isometry (1.7), we first prove that

Elfity,..t, (M, s Ape1)[PdAy . dApog =

(Rd)p—1
p
= (2r / H/t—s{ps +ps(—x) s | dz,  ti,....t, > 0. (1.10)
Rd j=1 0
Notice that
p—1
ﬂtl,...,tp(kla e ,)\pfl) = / exp ) )\j (Xj(Sj) — Xj+1(8j+1)) d51 e dSp =
[0,£1]%...[0,p)] J=1

- H /exp {i(/\j - Aj—l)Xj(S)}dS.
=1}

Here and elsewhere we follow the convention that Ao = A, = 0.

Therefore,
‘,&th...,tp ()\17 e 7)‘[7—1)‘2 - ﬂtl,...,tp(A17 cevy Ap—l),atl ..... tp()\la sy Ap—l) -
t] t]
= //exp{ (Aj—Aj1 ( j(s) — j(r))}dsdr.
=190

Take expectation on the both sides. By the independence of Xi,..., X, and by the increment
stationarity given in (1.1), we get

B\, .. Ap-1)]? =

tjty

H /Eexp{ A1) (X;(s) — X;(r)) }dsdr =

Jj=17

p

_ H / / Eexp {i(\j — A\j—1)X(s— 1)} +

=1
J {0<r<s<t;}
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i / / Eexp{ —i(Aj = Xj-1)X(r — ) pdsdr p =

{0<s<r<t;}

tj

p
zzpn/ ©s(Aj — Aj_1) ds_QPHQt Aj1), (1.11)
0

j=1 j=1

where

et(A) =

t
% {Eei/\X(t) i Ee—i/\X(t)} — R RAX(®) / (t — 8)ps(
0

and R is a Bernoulli random variable independent of X (¢) with the distribution
P{R=1}=P{R=-1} =1/2.

Integrating on the both sides, we get

/ Elfity,..t,(Ms -y Ap—1)PdA1 .. dNpo1 =

(R
II(Qt Ajo)dAr . dhp oy =
(Rd)p 1 J=1
-
=2P / Qt, (=71 — . —Yp-1) H Qt; (vj)dm - dyp-1, (1.12)
(Rd)p—l =

where the last step follows from the substitution v1 = A1, 72 = Ao — A1, ..., Yp—1 = Ap—1 — A\p—2
(recall the convention A\g = A\, = 0),
Set

Gi(z) = /(t — S)st.
0

The following steps are set for the justification of using Fubini’s theorem. Notice that

t t

/Gt(:c)da::/(t—s) /de ds:/(t—s)ds:t22<oo.
)

0 Rd 0
Since
Q:(\) = /ei)"IGt(w)dx,
]Rd

we have |Q¢()\)| < ¢2/2. In particular, for any £ > 0,
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Gy (z H]Qtj exp{—f|)\k]}d/\l...d/\p_ldxg

(R4)P—1xRd
p t2 c -1
< ng /exp{—QMz}d}\ < 0.
Jj=1 Rd
This justifies the use of Fubini’s theorem in the following way:
p—1 c
/ Qu, (=11 — - = w-1) [ ] @1, (3) exp {_§|’Yj|g} dyi ... dyp1 =
j=1

Rd)p 1

p—1
— iyt €
= / /e Ot Fw-0Gy (2)dx | | Qtj(Wj)eXP{—ghjg}d’Yl---d’Yp—1 =

RY)p-1 LRd =1

p—1
/th H/ e TQ, exp{—f\)\\ }d)\ da =

J]= 1Rd

p—1
= (2m)%P=1) / Gy, () [[(Gy, * ¢c) (x)da
R =1

where ¢.(x) is the density of the d-dimensional normal distribtion N (0,elixq) (Igxq is the (d x d)
identity metrix) and the last step follows from Fourier inverse transform.
We now let € — 0T on the both sides. First, from (1.11) one can see that

Qu(-mn = =110 [[ Q) =0 ¥(n,...,%-1) e RMPY
=1
with a proper variable substitution. By monotonic convergence, therefore, the left-hand side increases
to

p—1
/ Qt, (=71 — 7'Yp71)HQtj(7j)d71'--d'ypfl
j=1

del

regardless finity or infinity of the limit.
In view of (1.12), to prove (1.10), it suffices to show that

P
Eli%L/th Gt « de)(x )dx—/ H dz. (1.13)
Rd \J=!
Indeed, for any 6 > 0
/e_eth(fC)dt = /te_etdt /e_etpt(x) +2ps(_$)dt =
0 0 0
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_ Q—Q/e—otpt(@ +2p8(_$)dt.
0

Therefore, by the condition (1.4), we obtain

/fo(:r)dx < oo Vt>0.
Rd

By Lemma 2.2.2 in [1, p. 28],

e—0t

This clearly leads to (1.13).
It remains to prove (1.9) and (1.7). For (1.9), simply notice that

/ Elio(A1, -« Ap—1)[2dA1 ... dNp—1 =

(Rd)pfl
p 2
= / E / dtl...dtpexp —Gth ﬂtl 77777 tp(>\17--~7)\p—1)
(Ré)Pp=1(RF)P =t
p 2
S G*P / dtl e dtp exp —9 Z t] / E ﬂt1,---,tp (Al, ey )\p—l)
(RT)? =)

J

lim/‘(th*gﬁa)(x)—th(a:)‘pda;:O, j=1,....,p—1.
Rd

Ay ... d)\y 1 <

1309

(1.14)

dAr...d\, =

= (27T)d(p—1)9—p / dty ... dtp exp —Gth / H /(tj — S){ps($) +ps(_$)}d8 dr =
— =19

(R*)P J Re LI=1

= (2m)P=Dg=3p ﬁ e_et{pt(a:) + pe(—) }dt | do <
1

j=1
o0 p
< 2P(2mr)4P=1)g=3p / / e (x)dt| da,
Rd LO

where the second, the third and the fouth steps follow from Jensen inequality, (1.10) and (1.14),

respectively. Therefore, (1.9) follows from (1.4).
We have established (1.5) and (1.6). Further, by Parseval’s identity, we have

[a(ts, ..., tp,x)] 2dx = (2m)~4P—1) /

RA(p—1) (Rd)p—1

This, together with (1.10), proves the identity (1.7).
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1310 XIA CHEN

Theorem 1.1 is proved.

We end this section with the following comment: The density «(t,...,t,,x) addressed in
Theorem 1.1 exists only in the form of equivalent class — a fact that brings some inconvinience when
it comes to application. For instance, it becomes ambguous to talk about a(t1,...,t,,0) for given
t1,...,tp as a(ty,...,tpy,0) represents a class of random variables such that any two members of this
class are equal to each other with probability 1. The treatment is to find a continuous modification
of a(t1,...,tp, x). A standard procedure by Kolmogorov extension theory requires the local Hélder
type of moment continuity

m
Ela(ty, ... tp,X) —alss,...,s5,y)| <C{|t—s||+]|x—y[}’ (1.15)

for some m > 0 and 8 > d + 1. This can not be achieved without extra assumption. In the setting
when X (t) is Gaussian, for example, (1.15) can be installed under some nonlocal determinism
conditions (Theorem 2.8 in [6]).

2. Applications to Gaussian processes. Let X (¢) be a R%-valued stochastic process satisfying
our point-wise increment-stationarity given in (1.1). In addition, assume that X (¢) is point-wisely
Gaussian:

X(t) ~N(0,2(t), t>0, 2.1)
where 3(¢)) is a nonnegative definite (d x d)-matrix.

Theorem 2.1. Assume that (1.1) and (2.1) are true. The condition (1.4) is satisfied if

-1
/e_et det (E(t))prPdt < 0o for some 0 > 0. (2.2)
0

Consequently, all statements in Theorem 1.1 hold under (2.2).
Proof. Notice that

0o p 0o 0o
P
/ /eetpt(x)dt dr = / . / dty ... dtpef(tﬁ"*tp) / Hptj (x)dx <
re L0 0 0 ra J=1
o) [e%¢} p 1/17
p
S/.../dtl...dtpH /(ptj(.%')> dz =
0 0 j=1 Rd
0 1/p p
= /eet / (pt(a:))pdx dt
0 Rd

From (2.2), X(¢) is positive-definite allmost everywhere in ¢. Therefore,
L —dp/2 ~p/2 p —1 _
pe(x) ) dx = (27) det (X(1)) exp —i(x,Z(t) x)pdr =
Rd R4

ISSN 1027-3190.  Vkp. mam. oxcypn., 2020, m. 72, Ne 9



CONDITION FOR INTERSECTION OCCUPATION MEASURE ... 1311

= p_d/2(27r)_ ( (t))f 2 ae
Hence, by the condition (1.14) we get
%] p o) p
_ —1
/ /e_etpt(:v)dt dzx < p_d/2(27r)_d<p2 = /e_et det (E(t))prPdt < 0.

Rd LO 0

In the rest of this section, we consider two examples.

Example 2.1. Let X(t) be a d-dimensional fractional Brownian motion with the Hurst parame-
ter (Hy,...,Hy), (Hi,...,Hy) € (0,1). That is, the components B{Jl (t),... ,Bf‘i(t) of X (t) are
independent mean-zero Gaussian process with the covariance functions given as

Cov (B (1), BV (5)) = (415 + 3285 — [t = sf2), j=1,....p.
In particular, () is diagonal with diagonal elements |¢|2/1, ... |t|>/¢. Hence
p
det ( H t[2Hi = 2+t Ha) oy > )

Thus, the condition (2.2) is equivalent to

Hi+...+Hy< Ll
To compare it to the known result, we consider the special case when H; = ... = H; = H. In this
case the above inequality becomes
dH < Ll

This is the condition given in [2] ((5.7)) for existence of intersection local times of fractional Brow-
nian motions with identically distributed components.

Example 2.2. An 1-dimensional Ornstein—Uhlenbeck process Uj(t) is a mean-zero stationary
Gaussian process with covariance function

Cov (U1(0), U1 (1)) = e %2, t>0. (2.3)

A d-dimensional Ornstein — Uhlenbeck process U (t) = (Ui (t), ..., Uq(t)) takes i.i.d. 1-dimensional
Ornstein — Uhlenbeck processes U (t),...,Uq(t) as components. In the following discussion, U (t)
is a d-dimensional Ornstein — Uhlenbeck process. Set

X(t) = /U(s)ds, £>0.
0

Then X (t) satisfies (1.1) and (2.1). To compute det (2(¢)), notice that

t

¢ ¢
/C ))dsdr = /exp{—]s—ﬂ}ldxddsdrz
00 0

0
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1312 XIA CHEN
=4t —2(1 = )| Lua,
where Iy is the (d x d) identity matrix and the second inequality follows from (2.3). Hence,
det ((1) = 4°[t —2(1 ~ )]

In particular,
det (2(t)) ~ 2 (¢t — 0™).

So, the condition (2.2) is equivalent to

In other words, (2.2) holds if and only if d = 1.
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