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In this paper, we investigate the hyperbolic Anderson equation generated
by a time-independent Gaussian noise with two objectives: The solvability
and intermittency. First, we prove that Dalang’s condition is necessary and
sufficient for existence of the solution. Second, we establish the precise long
time and high moment asymptotics for the solution under the usual homo-
geneity assumption of the covariance of the Gaussian noise. Our approach is
fundamentally different from the ones existing in literature. The main contri-
butions in our approach include the representation of Stratonovich moment
under Laplace transform via the moments of the Brownian motions in Gaus-
sian potentials and some large deviation skills developed in dealing effec-
tively with the Stratonovich chaos expansion.

1. Introduction. At the core of the development of stochastic partial differential equa-
tions (SPDE) there are two major concerns: The degree of tolerance of the singularity brought
by random noise and the impact of such singularity on the behaviors of the system. The for-
mer is to establish the solvability of the system under the best possible condition that controls
the roughness of the noises. The latter is to understand the system disorder (the phenomena
is also known as intermittency) caused by singularity of the random noise. When the noise
is Gaussian, the system is often interpreted between the Skorohod and Stratonovich settings.
The Skorohod solution is more accessible for quantitative analysis and is more tolerant to
noise singularity, while the Stratonovich one is more physically relevant but harder for pre-
cise mathematical treatment.

To study magnetic impurities embedded in metals, the physicist Philip Warren Anderson
([1]) adds a multiplicative Gaussian noise to the heat equation. Due to its close links to other
physical models such as KPZ equation ([26]), especially in the wake of the breakthrough of
[20], the study of this equation has been rapidly developed. Today, the equation is known
as parabolic Anderson model in literature. We refer the interested readers to [24] and the
references therein for the general information on this subject.

With the heat operator being replaced by the wave operator, there are some compelling
reasons for considering hyperbolic Anderson models. Instead of analyzing the rate of the
change Ou/0t of the stochastic system, the set-up of the hyperbolic Anderson models are
concerned with the acceleration of the system evolution (especially for the models relevant
to the Newton’s second law). Deterministic hyperbolic equations arise from acoustics, elec-
tromagnetism, fluid dynamics and many other fields (e.g. [14, 18]) and have been extensively
studied until present. For the hyperbolic equations in a random environment, in particular, the
hyperbolic Anderson model, we point out the publications [3], [4], [5], [6], [12], [13], [16]
for an incomplete list of recent development on the study of hyperbolic Anderson models.
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Compared with the parabolic Anderson models, much less has been known for the hyperbolic
Anderson models due to (partially, at least) the absence of Feynman-Kac formula that allows
the representation of the parabolic solution in terms of Brownian motions.

In this paper we consider the hyperbolic Anderson equation

9%u

— (t,x) = Au(t,r) + W(z)u(t,z), (t,z)eRT xR?
(1.1) ot

u(0,z) =up(z) and %—?(O,m) =ui(r), zeR?

run by a time-independent, mean zero and possibly generalized Gaussian noise W(a:) with
the covariance function

(1.2) Cov (W(a:),W(y)) =z —y), z,yeR?.

As a covariance function the non-negative definiteness of «(-) implies that it admits a spectral
measure j(d¢) on R? uniquely defined by the relation

(1.3) () :/ ST p(de), zeRe.
Rd

Throughout this work, we assume that «(-) > 0 and d = 1,2, 3. The system is set up in
Stratonovich regime in the sense that the product in (1.1) is interpreted as the ordinary (in-
stead of Wick) one. The equation (1.1) will be approximated appropriately by classical wave
equations run by the smoothed Gaussian noise WE(:U) We shall provide the details of the
construction of the solution in Section 2.

Our first concern is the condition to ensure the existence of solution. It is often formulated
in terms of the integrability of the spectral measure p(d€). In the Skorohod regime, where
the product between W () and u(t,z) in (1.1) is understood as Wick product, the condition
([4, Theorem 1.6], [13, Remark 3.4] ) that (1.1) has a unique solution is

1 3/2
(1.4) /Rd <1+|£|2> pu(dé) < oo

Back to the Stratonovich regime and still in the time independent setting, Balan ([3]) re-
cently proved that in the dimensions d = 1,2 Equation (1.1) has a solution if

1 1/2

In the setting of time-space Gaussian noise, Chen, Deya, Song and Tindel ([12]) establish the
existence/uniqueness under a condition comparable to (1.5).

Our first main result is to obtain the best condition for the existence of the solution, which
is to remove the square root in (1.5). We can also allow the spatial dimension to be three as
well.

THEOREM 1.1. Let d=1,2,3 and assume that uo(x) =1 and ui(x) =0in (1.1).

(1) Under Dalang’s condition

1
(1.6) / ——=u(d€) < oo
the equation (1.1) has a solution in the sense of Definition 2.1 given in Section 2.
(ii) If the equation (1.1) has a square integrable solution u(t, ) that admits the Stratonovich
expansion (see (2.10)) for some t > 0, then Dalang’s condition (1.6) must be satisfied.
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Roughly speaking, the system (1.1) in Stratonovich regime can be viewed as a randomiza-
tion of the deterministic wave equation
0%u + o Rd
- w(t,x) =Au(t,z)+ f(x)u(t,z), (t,z)eRT xR

u(0,2) =up(x) and %—?(O,x) =ui(xr), zcR?

with a deterministic potential function f(z) on R%. To this regard, it is hard not to notice
the stochastic representation constructed by Dalang, Mueller and Tribe ([16]). We devote the
subsection 3.3 below to address this link and to add some new elements to the representation
theory for wave equations.

Our next topic is the intermittency of the equation (1.1). Here, the word "intermittency"
refers to the phenomena (caused by the singularity of the noise) that the solution u(t,x)
(or |u(t,z)|) takes predominantly low or modest values in the space R¢ with rare but endless
exceptions of sudden and impulsive high peaks. The mathematical definition of intermittency
is based on the asymptotic behaviors (see Remark 1.3 below for details) of the moments

EuP(t,z) and E|u(t,z)”

ast— oo orasp— oo.
In the next theorem, we assume the homogeneity for the covariance structure:

(1.8) y(ex)=c%y(z), zeR%, ¢>0
for some o > 0. Taking f(\) = (1 4+ A?)~! and v(d€¢) = p(d€) in [13, Lemma 3.10] yields

1 B d. Tl dp
/}Rdwu(dﬁ)—au{&éﬂkﬂfgl}/o L+ p2pl=

as far as either of the above two sides is finite. This shows that under the homogeneity (1.8)
on the noise covariance condition, Dalang’s condition (1.6) becomes “«a < 2”. In addition
(Remark 1.4, [13]), the fact that v(-) is non-negative and non-negative definite (for being
qualified as covariance function) requires that o < d. Further, the only setting where “o0 = d”
is allowed under @ < 2 is when o = d = 1, or when 7(-) is a constant multiple of Dirac
function (i.e., W is an 1-dimensional spatial white noise, see Corollary 1.4 below for inter-
mittency in this case).

THEOREM 1.2.  Under the homogeneity condition (1.8) with 0 < o < 2 A d or with o =
d =1 and under the initial condition uo(x) =1 and ui(x) = 0, the following limits hold:

_4-a 3—a aa(2MV2\ e
(1.9) lim ¢~ 5« logEuP (t,z) = 2ap3—”<M ) y p=1,2,-13

t—o0 4 —

4—a —_— 4—a 2 1/2 431:72

(1.10) lim p~ 575 log Blu(t, 2)P — o — ¢ ( 2M . Yi>0,
p—>00 2 41—«
where
1/2
(1.11) M = sup {</ v(z —y)92(fﬁ)g2(y)dxdy> —/ IVg(l‘)IQdfﬂ}
gEFa Rd xRd Rd

and

Fa= {g e w2 @Y, [ |g(x)de = 1} ,

Rd

where W2 is the Sobolev space.



REMARK 1.3. Intermittency is defined with slight difference in literature. The most re-
strictive version requests the limit in (1.9) to exist for all p=1,2,--- and to have a super-
linear growth in p. Intermittency can also be defined similarly for fixed ¢ > 0. Therefore, (1.9)
and (1.10) implies that under (1.8), the system (1.1) has an intermittent solution.

An interesting special case is when W(a:) (xz € R) is a white noise that symbols the deriva-
tive of a two sided Brownian motion W (z) on R. The corresponding covariance () = do(-)

is the Dirac delta function and the spectral measure p(d§) = d¢/(27) is a multiple of the
Lebesgue measure on R. In this case by [8, Theorem C.4, p.307] (with p=2 and 6 = 1), we

have
1./3
M—4\/;

COROLLARY 1.4. When W (x) (x € R) is an 1-dimensional white noise

Thus we can write

1.,/3
o 4—3/2 p _ - a/2,.3/2 —
(1.12) th_glot log EuP(t, x) S\ 2P P 1,2,
: -3/2 L.,/3 3/2
(1.13) lim p logE|u(t,z)|P = =4/ =t7%, Vt>0.
p—00 2V 4

In Skorohod regime ([4]), the high moment asymptotic theorem takes the same form as
(1.10), while the long time asymptotic theorem takes the form

R , 33—« i (2MY2N 5=
(1.14) tlggot s=a logE|u(t,z)|P = Tp(p —1)3 < Ao
for p > 2.

We now comment on the possibility of more general initial conditions. First notice that the
expansion (2.10) in the next section is resulted from the iteration of the mild equation (2.1).
Due to the fact that G(¢,2) > 0 and ~(-) > 0, the type of algebra carried out in Section 2
concludes that for any p =1,2,---, EuP (¢, ) is monotonic in ug(¢,x) (defined in (2.3)). By
comparing ug(t,x) with 1, therefore, one can reduce the problem to the setting ug(z) = 1
and u; (x) = 0. In this way, the workable conditions on ug(x) and u;(z) can be the ones that
produce the needed bounds of (¢, x). We refer an interested reader to Proposition 2.6, [13]
for some existing treatment.

We now mention some new ideas that are introduced in this paper. As usual, the solution
can be formally written in terms of Stratonovich expansion (2.10). Therefore, the level of
investigation is largely determined by our capability of handling the Stratonovich multiple
integral Sy, (gn(-,¢,2)) (see (2.12) for its definition) for fixed n and for large n as well. To
this regard, the most significant observation made in this paper is the moment representation
given in Theorem 3.3 that associates the study of .S, (gn(-, t, :c)) to the problem of Brownian
motions in Gaussian potential. Another notable input is the algorithm development related
to the Wick’s formula (2.15), which is crucial to, among other things, the establishment of a
moment inequality (Lemma 5.3) for the lower bound of the high moment asymptotics given
in (1.10). Last but not least, some skills on large deviations and Laplacian transforms are
developed for dealing with Stratonovich expansion.

Unfortunately, the idea of moment representation developed in this paper does not work,
at least in its current form, in the setting of time-dependent Gaussian noise where W (z) in
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(1.1) is replaced by a time-dependent Gaussian noise W(t, x). This subject remains widely
open and challenged and we leave it to the future study.

Here is the organization of the paper. In next section (Section 2), we introduce the mul-
tiple Stratonovich integral and formally express the solution as Stratonovich expansion. In
Section 3, we establish the Stratonovich integrability for the functions g, (+,¢,x), develop the
Fubini theorem for the multiple Stratonovich integration and represent the Laplace transform
of the multiple Stratonovich integral .S, (gn(-, t, x)) in terms of Brownian motions in Gaus-
sian potential. Section 4 and Section 5 are devoted to the proofs of Theorem 1.1 and 1.2,
respectively. Some relevant results about the moment bound of Brownian intersection local
times and about multiple Stratonovich integrals are provided in the appendix.

2. Stratonovich expansion and approximations. As usual by the Duhamel principle
the mathematical definition of the hyperbolic Anderson equation (1.1) will be the following
mild form

2.1 u(t,z) = up(t, ) —|—/

Rd

t
[ttt s | was).
0
where
(i) G(t,x) is the fundamental solution defined by the deterministic wave equation

0*G

W(t,x) =AG(t,x)

(2.2)

G(0,z) =0 and aaf(o,x)zéo(:c), reR?.

(ii) uo(t,x) is the solution to the deterministic part of the equation (1.1):

)
(2.3) ug(t, ) = G(t,r —y)uo(y)dy + y G(t,x —y)ui(y)dy.

R O
Under the initial condition given in Theorem 1.1 and Theorem 1.2, ug(¢,z) = 1;

(iii) the stochastic integral on the right hand side of (2.1) is interpreted as Stratonovich one
(see discussion below for details).

2.1. Green’s function. The fundamental solution G(¢,z) associated with (2.2) plays a
key role in determining the behavior of the system (2.1). Let us recall some basic facts.
Taking Fourier transform in (2.2) we get the expression for the fundamental solution

2.4) Gt w)eie g — SRUEN)
R I3

in its Fourier transform form. In the dimensions d = 1, 2, 3, the fundamental solution G (¢, )
itself can be expressed explicitly as

, (1,8 eRT xR?

¢ 1
5 Hlel<ty d=1
1 1<y
(2.5) G(t,z) = gim d=2
1
—oy(dx) d=3,

4t
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where o(dz) is the surface measure on the sphere {x € R3; |z| = t}. We limit our attention
to d = 1,2,3 in this work because the treatment developed here requires G(t,z) > 0. A
scaling property we frequently use (especially in the proof of Theorem 1.2) is

(2.6) Gt,z) =t~ Vg, t'z), (t,z)eRt xRY.

2.2. Stratonovich integral. Before giving the definition of the mild solution we need to
give a meaning to the Stratonovich integral appeared in (2.1). We shall do this by smoothing
the noise as follows

2.7) We(z)= | W(yp:(y—a)dy, e>0, x€R?,
Rd

_ =2

where p.(z) = (2me) "% exp ( 27) is the heat kernel [This specific mollifier p.(-) of the

noise is not critical. Instead, one can pick the mollifier h(z) = e %h(e~'z) for any rea-
sonably good probability density i (z) and the results are independent of the choice of the
mollifiers.] The covariance of Wy (x) is

2.8) E | We (@)W (2)| =7e(z— ).

where 7z () = [pu 7(2)p<(x — 2)dz. Given a random field ¥(z) (z € R?) such that
/}Rd U(x)We(x)dz € L2(Q, F,P) Ve>0,

We define the Stratonovich integral of {¥(z),z € R} as

2.9) / W)W (dr) 2 tim [ 0(@)We(2)da

R4 e—0% JRd
whenever such limit exists in £2(£2, F,P). We can also use the convergence in probability in
above definition. But as in most works on SPDE, £2(2, F,P) norm is easier to deal with so
that we choose the £2(92, F,P) convergence throughout this work. Notice that this definition
implicates that u(t,z) as a solution to (2.1) is in £2(2, F,P) for all (¢,2) € R* x R% After
defining the Stratonovich integral, we can give the following definition about the solution.

DEFINITION 2.1. A random field {u(t,z),t > 0,z € R%} is called a mild solution to

(1.1) if fg G(t — s,z — y)u(s,y)ds is well-defined and is Stratonovich integrable such that
(2.1) is satisfied.

To prove Theorem 1.1, we shall use the Stratonovich expansion (see [22], [21] and refer-
ences therein for the multiple Stratonovich integrals). Formally iterating (2.1) infinitely many
times we have heuristically a solution candidate

(2.10) u(t,z) = Sn(gn(-t,7))
n=0

with So(go(+,t,x)) = 1. Here is how the notation Sy, (gn(-,¢,2)) is justified: The iteration
procedure creates the recurrent relation

(2.11) Sn+1(gn+1(-7t,:c)):/ [/0 G(t — 5,2 —y)Sn(gn(- s, 9))ds| W(dy).

Rd
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Iterating this relation formally we have

(2.12) S (gn(-t,))

:/ [/ er(t_Tnayn_x)"'G(7“2_7“1ay2_yl)}W(dyl)"'W(dyn)
(RE)™ [0,¢]2

k=1
:/ gn(xlv'" ,I‘n,t,fE)W(dl‘l)W(dl'n) (SaY)’
(R4)"

where [0,¢]2 :={(s1,---,sn) €[0,¢]" satisfying 0 < s1 < s2 <---< s, <t}, and the con-
ventions zop = x and sp = 0 are adopted and the above second equality follows from the
substitutions s =t — rp—k4+1 and xx = Yp—p+1 —x (k=1,---  n).

Thus, the notation “S, (gn(-,t,x))” is reasonably introduced for a n-multiple Gaussian
integral of the integrand

(213)  galzy, - 7xn,t,x)=/

[0,¢]2

< H G(sk — Sgp—1, Tk — 5%-1)) dsy---dsy,
k=1

(n=1,2,---).In Section 3, the Stratonovich integrability of g, (-, t,z) shall be rigorously es-
tablished (see Theorem 3.8 and Theorem 6.2 for Stratonovich integrability of general kernels)
and the Fubini’s theorem posted in (2.11) shall be mathematically ratified (Remark 3.10).

The above argument gives us the impression that the existence of system (2.1) can be
implied by the convergence of the random series defined by (2.10) in a certain appropriate
form. This will be justified rigorously in Section 4 after we have more understanding of the
multiple Stratonovich integral Sy, (gy, (-, ¢, x)) with the specific kernel (2.13).

The multiple Stratonovich integration is defined as follows.

DEFINITION 2.2. Let f: R™ — R be measurable so that for every € > 0

n
[ st ) (T Welon) Yo, < 0.7,
(Ré)m k=1
Then we define the n-multiple Stratonovich integral of f as

(2.14) Sn(f) ::/(Rd)n flar - z)W(day) - W (day,)

= lim flay - ,xn)(ﬁws(xk)> dxy ---day

T
e—0 (Ré)n Pt}

whenever the limit exists £2(€2, F,P).

REMARK 2.3. Along with the set-up of our model, the Stratonovich integrand f is given
as a measure in the dimension three (d = 3). Indeed ([28]), Definition 2.2 can be extended to
the setting of generalized functions f. A detail is provided near the end of this section for the
construction needed in d = 3.

The following lemma provides a convenient test of Stratonovich integrability that we shall
use in this work.



LEMMA 2.4. The n-multiple Stratonovich integral S,,( f) exists if and only if the limit

E’gjin0+E{/ ) f(x,- (H >d331 d$n}
(R)" k=1
X / :L'l, < Wg/ >d$1 -dx n}
{ (]Rd)n H

k=1

exists

PROOF. The existence of the limit in (2.14) is another way to say that the family

ZEZ/ f(xluajn)(HWé(xk))dxldxnu 6>07
R k=1

is a Cauchy sequence in £2(Q, F,P) as ¢ — 0%, which is equivalent to the lemma. (]

We refer to Theorem 6.2 for the exact conditions on f so that the multiple Stratonovich
integral S,,(f) exists in L.

Definition 2.2 can be extended to a random field f(x1,---,z,) in an obvious way. Most
of the time in this paper, however, we deal with a deterministic integrand and demand some
effective ways to compute the expectation of multiple Stratonovich integral of deterministic
integrands. To this end let us recall an identity [27, p.201, Lemma 5.2.6] known as Wick’s
formula which states that

EHgk— > I Egio
Dell,, (j,k)€D
(2.15)
2n—1
E H g =0
k=1
where (g1, -, gon) is @ mean zero normal vector, and II,, is the set of all pair partitions of

{1,2,---,2n}. As a side remark, #(II,,) = (Qn) . Applying (2.15) to gx, = W¢, (z) in the
case of deterministic integrand f, and taking the e-limit, we have

(2.16) E !/( ) f(wl,--- ,l‘Qn_l)W(dQZl)---W(dafgn_l)] =0
Rd 2n—1
and

2.17) E

/ Fer, e wom)W (das) - W(d@n)]
(Rd)Qn

=2 Jun

< ( j—xk)>f(iv1,‘“71‘2n)d1‘1“'d$2n
Dell, (j.k)ED

under the Stratonovich integrability on the left hand sides. In particular, the expectation of a
(2n)-multiple Stratonovich integral is non-negative if the integrand is non-negative.

Since Dalang’s condition (1.6) encompasses the cases where the covariance function 7(-)
exists only as a generalized function (e.g., v(-) = do(+) in d = 1), the meaning of the multiple
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integral on the right hand side of (2.17) needs to be clarified. Indeed, by (2.15)

2n
E/ f($1,~.. ,IZ'Qn)HWG(gjk)
(Rd)Zn Pt
R%)2

where, we recall

%(@Z/Rdv(y)pe(x—y)dy, e>0, zeR?,

Inspired by (2.14), we therefore define

(2.18) /(R) ( H v(z —$k)f(ﬂfl,"',$2n)d$1"'d$2n

(4,k)eD

A
= lim < H Yoe(@j — )f(xla"'7$2n)dx1"'d$2n
Rd 2n

e—0t
(4,k)eD

whenever the limit exists.

According to Theorem 6.2 and Remark 6.3, the £2-convergence in (2.14), Definition 2.2
implies the £P-convergence for any p € [2, 00). Consequently, for any integers l1,- -+, [, > 1
and the /;-multiple variate functions f; (1 < j < m), the Stratonovich integrability of
fi,+-, fm implies the Stratonovich integrability of f; ® - -+ ® f,,, and

m
(2.19) Sttty (L@@ f) =[] S0, (f5)-
According to (2.16), in particular,
m
(2.20) E H Si,(fj) =0 whenever Iy + --- + I, is odd.
j=1
Given two Stratonovich integrable functions f(z1,---,xy,) and g(z1,--- ,x,), by (2.17)

and (2.19) (with m = 2),

(2.21) ESn(f)Sn(g)

Z/ ---dx2n< I —:Jck>f(x1,~~,:vn)g(xn+1,---,wzn)-
Dell, (j,k)eD

To end this section we take the chance to address an inconvenient fact from (2.5) where
G(t,x) is defined as a measure rather than a function in d = 3 dimensional Euclidean space.
In this case, we can combine g, (z1, -+ ,%n,t,z) and dx1 - - - dx,, together to have that

gn(zlu'” ,xn,t,x)dxl d.’En :/

& 1
( H Tl e — o N\ Tsk—sk (.Tk_l, dwk)) dSl cee dSn
o2 \ oy 4 )

m(Sk — Sk—1

£ b (day -+~ day)
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defines a measure on (R3)", where o4(z, dy) represents the surface measure on the sphere
{y € R3; |y — x| =t}. For example, in defining Sy, (gn (-, ¢, z)) by (2.14) we use the conven-
tion

[ REI § § (AN LR O ) (AT IS CE)
(R3)m k=1 R N\ .2

It will be verified in the future that as € | 0+, the above sequence converges in L?(§2, F,P)
and the limit is denoted still by

/ gn(ﬂfl,“‘ ,$n,t,l‘)W(dI1)W(dxn)
(RS)’!L

with
(2.22)

2
(R3)2n

Dell,

= Z/ < II ’Y(xj—l‘k)>uﬁim(d$1"'dﬂfn)ﬂfix(dfﬁn+1,"'>d$2n)a
(RS)Z‘” (]7k»)eD

and the integral on the right hand side of (2.22) will be justified (Lemma 3.6) together with
dimensions d = 1, 2 by the approximation procedure proposed in (2.18).

3. Stratonovich moments. In the following discussion, B(t), Bi(t), Ba(t),- -+ are in-
dependent d-dimensional Brownian motions. We assume independence between W and
the Brownian motions and use the notation E, for the expectation with respect to the
Brownian motions with starting point x. We adopt the notation ¢ = (g1,--- ,&,,) and € =
(€nt1,-- - ,€2p) fOr e, -+ 9, > 0 and set

B Snclgn(-t2)) :/

(Rd)n

gn(@1,- - ’$nvtax)(H ng(xk)>dxl e dxy, .
k=1

For any pair partition D € I1,,, set

(32) Fe?e’(tlth) :/ d$1d$2n< H ’yej_;,_gk(fﬁj —l'k)>
(Reyze (4.k)€D
X gn($17 e 7xnatla 0)gn(xn+17 e 7$2n7t2a 0) .

Again,d=1,2,3.
3.1. Stratonovich moment representation.

LEMMA 3.1. Letn=1,2,---. Under Dalang’s condition (1.6),
(i) Foranyn>1,¢€1, -+ ,6,>0and A >0

(3.3) /OO eiAtSme(gn(Wtax))dt

0
2

= ;(;)n/ooo exp{ - %t}Ez /[071:]2 dsy - .-dsnklillWek (B(sk)) a.s.
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(ii) For any A1, o >0

e} o0
(34) / / e_Altl_)QtQFe,,De’ (tl,tg)dtldtQ
0 0

AMAg s1\2n [0 [ A2t 4+ A3t
< 172 (*) / / dtldtgexp{ s e 1 2 2}
4 2 o Jo 2

x By / dsi-wdson [T 1(Bugy)(s)) = Buy (s))
[0,t2]2 x[0,¢] (j.k)ED

where the map v: {1,2,--- ,2n} — {1,2} is defined as: v(k) =1 for 1 <k <nandv(k)=
2forn+1<k<n.
(iii) For any A1, Ao >0

o0 o
(3.5) lim / / e MRl ED () to)dty dt
0 0

€,e—0

=R [ e {2

X Eo/ dsy---dsop H ’)/(Bv(j)(Sj) — Bv(k) (Sk)) .
[0,¢1]2 x[0,22]2 (j.k)eD

REMARK 3.2. Under Dalang’s condition (1.6), the intersection local times (Lemma A.1,

(9D
/()t1/0t2 v(B(s) — B(r))dsdr and /0t1/0t2 ¥(Bi(s) = Ba(r))dsdr,  t1,t5>0

are properly defined, so are the multiple time integral on the right hand sides of (3.4) and
(3.5) in the spirit of Fubini’s theorem. By Lemma 6.1, the moments of the intersection local
times have (at most) polynomial increasing rate in ¢1,t2. Consequently, the right hand sides
of (3.4) and (3.5) are finite for any A1, Ay > 0.

PROOF. The reason behind (3.3) is the simple fact that

& 1 [ 2
(3.6) / e MG(t,x)dt = 2/ e N 2p(t,x)dt, xeR?
0 0
for any A > 0, where p(t, x) is the density of B(t):
1 jz?
p(t,x)zw)dmexp{%}, (t,$)€R+XRd

Indeed, both sides have the same Fourier transform

; > > i t 1
i§x / 7/\tG t dt:|d / — At Sln’§| dt
e e ,T r = e =
/]Rd [ 0 () 0 i A2+ ¢

I B e 1o _/ it 1/00 222
—2/0 e exp{ 2[5\ t}dt— Rde 3/, e p(t,x)dt|dx

for every £ € R%.
Recall the identity (Lemma 2.2.7, p.39 in [8])

3.7) / e M / dsi---dsp [ [ en(sk —si—) =2 ]] / pr(t)eMdt
0 [0,¢]2 k=170

k=1
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with the convention sy = 0. Using it twice,

(3.8)

o
/ eiAtgn(Il)”' ,l‘n,t,.l?)dt
0

[e's) n
=/ dte—”/ d81-~d8n<HG(Sk — Sk—1, T} —xk—1)>
0 [0, P

n 0o 1\ n o0 2
=\ H / e MG(t,xp — wp—r)dt = <§> A H / e N 2p(t,wp — wpy)dt
k=10 k=170

A/LI\n /OO —>\2t/2/ < - )
=—(= dte dsy---dsy, P(Sg — Sk—1,Tk — T—1) | -
2 <2) 0 0.4]7 11 :

k=1
Hence,

/ e_AtSn,s (gn(-,t,x))dt

0
:/ dte)‘t/ dzy - dxpgn(z1,--- ,xn,t,x)<HW5k(xk)>
0 (R4)™ _
n [0 2
:é<l> / dtexp{—)\t}/ dsy---dsy
2327 Jo 2 2 oz
X/( | d$1-"dﬂfn<np(5k;—Sk—1,$k—iﬂk—1)><HWsk($k)>-
Ra)" k=1

k=1
Given (s, , sp) € [0,t]", the random vector (B(s1),--- , B(sy)) has the joint density

A n
f511"'78n(x17 T VTTL) = Hp(sk — Sk—1,Tk — xk*l) .
k=1
So we have
/ dX( Hp(Sk — Sp_1,Tk — l’k—1)> (H We, (%)) =E, H We, (B(sk)) -
(R)" k=1 k=1 k=1

This completes the proof (3.3).
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By (3.8) we have
oo o0
/ / e_Altl_)\ztnggl (tl,tz)dtldtg
0o Jo

om oo OO 2 2
4 727 Jo Jo 2 [0,t2]% X [0,£2]7

X / dl‘ldx2n< H ’Y€j+6k(l‘j .’Ek))
(Re)2n (j.k)ED

X (P $1,21) P(Sk — Sk—1, Tk — Sﬂkl))
2n
X (p Sn+1,Tn+1) H P(Sk — Sk—1, Tk — Tp— 1))
k=n+2
For fixed (s1,- -, S2n), the function
f(ila"' ,JJQn)
n 2n
= (p(Sl,m) [ p(sk — sk, 20 — ﬂfk—1)) <10(8n+1,96n+1) 1T p(sk—sp1,2 - l’k—1))
k=2 k=n+2

is the density of the random vector (B1 (1), -+, B1(sn); B2(Sn+1),- - BQ(SQn)). We have

o0 o0
/ / €7A1t1*A2t2FE7DE, (tl,tz)dtldtQ

2 2
4 2 [0,t2]7 X [0,t2]7

x Eg H %_,»+ek(3v(j)(8j)—Bu(k)(Sk))-

(J:k)eD

By Fourier transform

Eo [ e (Bug)(55) = Bogiy (sk))

(4,k)eD
€ —|—e
:/ < H M(dfﬂﬂ) exp{ - Z 2= i ’gj ‘2}
®D™ X (jk)eD (j.k)ED
x Eg eXP{ Z Eik - (s5) — Bv(k)(sk))}
(4,k)eD
[+
:/ < 11 M(déj,k)> exp{ - > . 5 Ek’fj,k\Q}
B)™ X (jk)eD (j,k)eD
1
xexp{ —2Var< Z fjk (s5) — Bv(k)(sk)))}.
(4,k)eD

We have
(o] o]

(3.9) / / e MR ED (4 to)dtdty
0 0
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)\1)\2 / / /\2t1 -+ )\Qtz /
dt1dte exp —_ == dsy -+ dson
4 . { 2 } [0,£4] X [0,¢2]7 ' ?
€;+¢€
x/ ( H p,(déj,k)> exp{— Z ! k’fg, }
R)™ \ (;k)eD (j.k)eD
1
XeXp{—zVar< Z e (Bug(sj) — Bv(k)(sk))>}-
(4,k)eD

Therefore,

o0 (o)
/ / e—Altl—)\QtzFe?El (t17t2)dt1dt2
0 0

Ao s1\2n [ [ A2t + A3t
< 1 2(7> / / dtldtQGXp{—M}/ dSl“‘dSQn
4 \2/  Jo Jo 2 [0,4] X [0,8]2

X/(Rd)n< H u(déj,k)> exp{—;var< D Gk (Bug(ss) — Bv(k)<3k))>}

(4.k)eD (j,k)eD
2 2
AW / / dt dt exp{ M}Eo / dsy---dson
4 2 [0,42]2 X [0,t2]2
H U(] Bv(k) (Sk’)) :

(J:k)eD

We have proved (3.4). Finally, taking limit in (3.9)
(0.9] o
lim / / €_>\1t1_>\2t2 Fe?e/ (tl, t2)dt1dt2

e,e’—0

)\ A 2n Aty + N3t
1 2 / / dtldtz exp { y} / d81 te d82n
4 2 [0,2]7 x[0,2]2

X /Rd) ( p(d&;, k)) exp{ - %Var ( > G (s5) — Bv(k)(sk))>}

(4,k)ED (j,k)eD

AR [ e - M)

XE/ dsy---dsop, Y(By(i(55) — B, s '
" [0,41]7 % [0,22]7 ! 2 H (Bu(y)(s5) ) (51))

(4,k)eD

This proves (3.5). [J

THEOREM 3.3.  Under Dalang’s condition (1.6), the function gy (-,t, ) defined in (2.13)
is Stratonovich integrable in the sense of Definition 2.2. Furthermore,

(3.10)
2

/000 T SnlonC )= 71!;@)”/0%@@{ -, [/otW (B(S))ds]ndt

almost surely for any A > 0.



STRATONOVICH HYPERBOLIC ANDERSON EQUATIONS 15

PROOF. We first explain the time integral appearing on the right hand side of (3.10). It is
defined as

/tW(B(s))dsélim th(B(s))ds in £2(Q, F,P, @ P),
0

e—0t 0

where the existence of the limit on the right hand is established in Lemma A.1, [9] under
Dalang’s condition (1.6). Conditioning on the Brownian motion B, it is a mean zero normal

random variable with the variance
t ot
/ / ~v(Bs — B;)dsdr
0J0

whose distribution does not depend on the starting point = of the Brownian motion. So we
have

(3.11) E@Ex[/OtW(B(s))dsr

WEO [fofo v(Bs — B )dsdr] when n is even;

0 when n is odd .

The above n-th moment is finite ((6.1), Lemma 6.1 below) for alln =1, 2, - - - . Consequently,

the quenched moment
t n
E, [/ W(B(s))ds]
0

exists almost surely. In addition, the bound provided in (6.1) in the Lemma 6.1 below makes
the right hand side of (3.10) well-defined for any A > 0.
Taking €; = - - - = €9, = 4 in (3.3), we have

/OooeAtSnyg(gn(-,t,x))dt:;(;)ni'/ exp [/ W5 ] dt.

We now let § — 01 on both sides. Notice that

lim E, [/Ot W(;(B(S))ds]n:EI[/OtW(B(S))dS]n in £2(Q, F,P).

d—0+t

In addition, by Cauchy-Schwartz and Jensen inequalities

E{EI[/Oth(B(s))ds]n}QgIED@IE{/OtW(;(B(s))ds} "

5/ 5 (y )Eo®E[/OtW(y+B(s))dsrndy:E0®E{/(:W(B(S>)d8]zn

_EOU/ ))dsdr]n.

By Lemma 6.1, the right hand side has at most a polynomial increasing rate in ¢. By the
dominated convergence theorem, we have

o] n o] )\2 t n
li ——t W dt = ——t,E, W(B(s))ds| dt
i ) oo =] [ wsmena] a= [Fen{-Foje] [ e
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in £L2(Q, F,P).

The Stratonovich integrability of g,,(-,t,z) shall be established in Theorem 3.8 below to
make sense of left hand side of (3.10). By stationarity in z, all we need is the following
convergence

lim e—”sn,e(gn(-,t,O))dt—/ e M8, (gn (-, t,0))dt in L2(Q, F,P).
0

6—0+ 0

This is given in Part (ii), Theorem 3.8. [

COROLLARY 3.4. Assume Dalang’s condition (1.6). Let p > 1 and n > 1 be any integers.
Given A1, -+, A, >0,

(3.12) /(R+)pdt1.--dtpexp{—ZAjtj} 3y IEHSZ (g1, (- 15,0))

3=1 lLittl,=2n j=1
1\3n 1 p s ) »
() LY [ e - 30)
j=
P t; ti n
XEO|:Z/O ; ’Y(Bj(S)—Bk(T))dsdr] ,

where B (t),--- , By(t) are independent d-dimensional Brownian motions starting at 0.
PROOF. By Theorem 3.3,

p
/(Rﬂpdtl..-dtpexp{;)\jtj} Z HSZ q, ,t70

i+ +Hlp=2nj=1

= Y H/ NSy (g1, (+,t5,0))dt

Li++l,=2n7=1
p

- X <H2j<)j>jl£[1lj!/0°°dteAit/@o[/otW(B(s))ds]lj

Loty =2n \j=

:@)2”(12[123) /(Rﬂpdtl--'dtpexp{ ZA EO{Z/ rn,

J:
where the last step follows from Newton’s multl—nomlnal formula. By the fact that condition-

ing on the Brownian motions,
p t;
> / W (B;(s
j=1"0

is normal with zero mean and the variance

tr
/ / k(r))dsdr
7,k=1
we have

(3.13) ]E[zp:/oth(Bj(s))dsrn: (2272‘3,'[210: /tj " (By(s) - Bu(r))dsdr| -

0 JO
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Thus, we have proved (3.12). [

COROLLARY 3.5. (1) Forany A\, A0 >0

(3.14) / / dtydtse 1 BES, (g (- 11, 0)) S (g -+ 12,0))
0 0
_(1)”)\1)\2 1
S \4/) 4 (n))?

x E®Eq Uot W(Bl(s)ds]n [/Ot W(Bg(s))ds}

(2) Forany e = (€1, -« ,€,) and € = (€41, ,€21)

(3.15) / / dtrdtse ™ NES, (ol 11,0))Sne (g0 (- 12,0))
0 0

)\%tl + Aato }

dtldtg exXp { — 9

n

S// dtldtge_’\ltl_’\thESn(gn(-,tl,0))Sn(gn(-,t2,0)).
0 0

PROOF. (3.14)is a direct consequence of Theorem 3.3. By the definition of S, (( gn(-st, a:))
given in (3.1),

ESn,e (gn('; t1, 0))Sn,e’ (gn(y ta, O))

2n
:E/( dzy dx2ngn(x1u"' 7xn)t170)gn(xn+17"' 7x2n7t2)0) HWek(xk)
]Rd 2n
k=1
z/ d( T e >)
Dell, (4,k)eD
X gn(xlv T 7xn7t170)gn($n+17 T 7x2n7t270)
= > Fh.(t1,ta),
Dell,

where the second equality follows from the Wick’s formula (2.15) with g, = Wek (x) and
FP,(t1,t2) is given in (3.2). By (3.4), we see

/ / dt1dtse 0 NEES, (g0(-11,0)) S (g0 £2,0))
0 0

Ao /1\2n [O© [ A2t 4+ N2t
<M 2(,) // dtldtzexp{_@}
4 \2) Jo Jo 2

x Eqg Z / dsy---dsap H Y(Bu) (55) = Buy (s8)) -
Detr,, 7 [0:t:]2 x[0,t2]2 (j.k)ED

For any permutation o on {1,---,2n} with o({1,---,n}) = {1,---,n} and o({n +
17"' 72n}):{n+17 ,27’L}

Z/ dsi---dson [] 7(Bug)(50()) = Buti)(So(r)))
pett,, 7 [0:t]2 x[0.t2]2 (j.k)eD

= Z/ dsy---dsa, H ’Y(By(j)(sj)_Bv(k)(Sk»'
Detl, ¥ [0:41]2 x[0,t2]% (j,k)eD
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Therefore

dsy - dsop, B.i(s))— B,
2 /[O,tl]z o 1T (B (s9) ) (51))

Dell, (j,k)eD

E Z/O 1+ dsgp H Y(Bug) (55) = Buy (sx)) -

pert, 7 [0:1:]"x[0 tQ]" (j.k)ED

A crucial observation is that

dsi---dsopn Y( By (85) — By (Sk
/{WHX[OW vecdson [ v(Bug)(59) = Buwy (51))

(j,k)eD

toi) o)
H / / U(] Bv(k)(r)))dsdr.

(4,k)eD

Applying the Wick’s formula (2.15) conditionally on the Brownian motions to the 2n-

dimensional normal vector
n n

(/Oth(B1(s))ds,...7/0th(31(5))¢9, /OtQW(BZ(S))dS,.. 7/0t2W(Bz(s))ds>

the right hand side is equal to

E[/Otl W(Bl(S))dsr[/OtQW(BQ(s))dsr,
/OOO/OOO dt1dt26—/\1t1_/\2t2[}35n76 (gn(',tl, 0))57%6, (gn(',t270))

A [ - 0
><E0®E[/Ot1W(Bl(s))ds]n[/OtQW(BQ(s))ds]n

Finally, (3.15) follows from (3.14). [J

In summary

3.2. Stratonovich integrability and Fubini’s theorem. Recall that the function F, 61?6, (t1,t2)
is defined in (3.2).

LEMMA 3.6. Under Dalang’s condition (1.6), the limit
(316) lim F (tl,tz)

66*)

exists for any n > 1, t1,to > 0 and any pair partition D € 11,,. Further, the limiting function
is continuous in t1,to.

REMARK 3.7. In view of (2.18), Lemma 3.6 justifies the definition

/ dml . -dxgn <
(Rd)2n

A .
= lim dxldx2n< H ’Ye >gn($1, : axnatbx)gn(xn—l-la"' >$2n7t270)'
e—0+ (Re)2n
(j,k)eD

I @ — >gn(:r1,-~~,xn,t1,a?)gn(xn+1,--- , Tan, 12,0)
(4,k)eD
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PROOF. Clearly, FL,(t1,t3) is non-negative, non-decreasing and continuous on R* x R+,
By (3.5), Lemma 3. 1 the limit

00 poo
lim / / eiAltlf}\thFeDe/ (tl,tg)dtldtg
676/—)0 0 0 )

exists for any A1, Ao > 0.

By continuity theorem for Laplace transform [25, Theorem 5.2.2], therefore, the function
FP(t1,t5) weakly converges to a non-negative, non-decreasing and right continuous function
FP(ty,t3) on (RT)2,ie.,

lim 2. (t,t) = FP(t1,t2)

€,e'—0
for any continuous point (t1,t) of FP and

3.17)
00
limO/ / _Altl )‘thFD (tl tQ dtldtz —/ / _)‘ltl /\2t2FD(t1 tQ)dtldtQ
6,6’—) 0 0

(Actually, Theorem 5.22, [25] is stated for probability measures on (R*)?. The case of gen-
eral measures on (R*)? can be derived as in the proof of [19, Theorem 2a, Section 1, Chapter
XIII]. Although this theorem only considers measures on R* its extension to (R*)? is rou-
tine).

To establish the existence for the limit in (3.16) and therefore to complete the proof, all we
need is to show that F'P(ty,t5) is continuous on (R*)? so

(3.18) lm FD(t1,t) = FP(t1,t2), Vt1,t2>0.

66—>

We shall do it by establishing
(319) lim sup{ tl,tQ) FD ( 1—51,t2—52)}=0

61,62*}0‘*’ €,€’
Write
D
F€7€/ (tl, t2)

(Rd)2n (jK)ED [0,t1]% x[0,t2]%
X (G(Shltl) HG(SZ —851-1,T — 9611)

=2
2n

X (G(8n+1,$n+1) H G(s; — s1-1, 2 — wk-l)
k=n+2

= 5676/([0,&]2 X [0,152]2) (say) .

To prove (3.19), all we need is

lim sup&¢ <{[O,t1]z X [O,tQ]Z} \ {[O,tl —61]% x [0,t2 —51]2}) =0.

01,0o—07F €€’

By the extension G(t,z) = 0 for ¢ < 0, we can extend & ¢ (+) from a measure on (R*)2 x
(RT)2 to a measure on (R™)™ x (R™)" in an obvious way. Applying the general set identity

(A1 X AQ) \ (Bl X Bg) = (Al X (A2 \ BQ)) N ((A1 \ Bl) X Az)
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with By C A; and By C Ao, we have
{10, 4]2 > [0,22] 2 }\ {0,281 — 61]2 x [0, 82 — 612 }

([0 t1]% x {[0,t2)™ \ [0, — ) ({0t1 0,1 — 61]2}X[O,tz]’l)

([0 tl X{Otgn 1 [tg—(sg,tg ) ( Otln 1 —(51,t1]}><[0,t2]7<l>,
where the second step follows from the relations

[O,ti]z \ [O,ti — 52]2 C [O,ti]z_l X [ti — 52',15@'] 1= 1,2.

Indeed, “(s1,---,sp) € [0,£1]2 \ [0,¢1 — 61])%” means “0 < 51 < --- < s, <t;” and “sp, >
— 07 for some 1 < k <n”. Since s,, > s >t; — 01, we have (s1,---,8,) € [O,tl]z_l
[tl — 51, tl].
Therefore, the problem is further reduced to
(3.20) Jim supé..c ({o,tl]z % [0,t2)1 x [t — 6, tg]) —0
and
(3.21) lim sup&e.e ([o,tl}z—l % [t — 0,11] x [o,t2]z> ~0.
0—=0F ¢ ¢

Due to similarity, we only prove (3.20). By Fubini’s theorem

56,6/([o,t1]z % [0, 1)1 x [t — 6, tg])

=/ dml‘”dmn—1< H Ve, e (L5 — ))/ dsy---dsan—1
(R)zn—1 [0,64]2 X [0,82] 27

(4,k)eD’

n 2n—1
X (G(Shﬂ?l)HG(Sz — 811, —335—1> (G(5n+1a$n+1) 11 G(Sz—b’z-l,xk—ﬂik—1>

=2 k=n-+2

ta
X / dTon Ve, +exn (T2n — xjo)/ G(S2n — S2n—1, Tan — Tan—1)ds2n ,
R4 tg*(;
where 1 < jo < 2n — 1 satisfies (jo,2n) € D and where D’ € I,,_; is given by D' =D \

(j07 2”) .
By Fourier transform and Fubini’s theorem

to
/ dTon Ve, +ean (T2n — Tj) / S G(s2n — S2n—1,T2n — T2—1)dS2n
R4 to—

ta—Son_1
= / dTonYe;y+e2n (T2n — Tj,) / G(8,Tan — Tan—1)ds
Rd O\/(tQ_SQTL_l—(S)

0+€2n to—San—1
= [ tagyexp { - 25 2ep} [ ds
Rd 0V(t2—52n71—6)

X / exp {25 (zon — acjo)}G(s,xgn — Top—1)dxop, .
Rd
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Using (2.4), the right hand side is equal to

€jy + €21 ) to—S2n—1
[ wtag)exn{ = ST i a2y} [ ds
R4 0

V(ta—San—1—0)

X / exp {i€ - (w2n — Ton—1) } G (s, Ton — T2p—1)daan
Rd
A + €ap, to—Son_1 :
= /R ey exp{ — L e (az0 —2)} sin(lels) g,

V(ts—san—8) Il
to—Son—1 :
o [ ) |
Rd 0

Vtz Son— 1—6) |§’
Notice that

/tz—le sm(|§] ) s — cos (0 V (ta — Son—1 — 0)|&] — cos(ta — san—1)[€]
O\/(tz*Sznflfé) ’é“ ‘5’2

2 [€l((t2 = s20-1) = OV (t2 — 8201 — 0))

= ——sin
145 2
« sin 1€]((t2 = s2n—1) + 0V (t2 — s2p—1 — 9)) ‘
2
By the bounds 0 < (tg — SQn_l) -0V (tg — Sop_1 — 5) < ¢ and |sin9| < |9|
t2—82n-1 sin(|€]s 1
wa)| [ ) i) <ansullg < M2 [ Lt
]Rd OV(ta—ssn_1—8)  |€] (e1=ny 1€l
for any N > 0.
In summary, there is a 3(8) > 0 independent of (e, ¢’) such that
to
/ dTonYe;,+es, (T2n — T5,) G(S2n — S2n—1,T2n — Tan—1)ds2, < B(6)
R4 t2—6

and that 3(6) — 0 as § — 0. Consequently,

Eeir (10,12 X 0, 12]271 X [t = 6,12] ) < BO) A (b1, ),
where
Ace(t1,t2) = / dxy - -dron—_1 ( H Ve, +en (L5 — )) / dsy -+ -dsan_1

Rzt GieD [0,42]2 x[0,82]27"

n 2n—1
X (G(Sl,xl) [[G (s = sier,a - $Z—1> (G(Sn+1,$n+1) I Gesi—sicamn— xk—1> :
1=2 k=n+2

To establish (3.20) and therefore to complete the proof, it suffices to show that
(3.22) sup Ac e (t1,t2) < o00.

€€
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Indeed, by a Computation similar to the one used for (3.4)

/ / (t,1)dtdi
2n+1 00 _ nt
*) / / dtdtexp{ — M}EO/ ds S, dSanl
2 o Jo 2 n [0,

x [T 7(Butiy(55) = Bugay (1)

(J,k)ED’

for any e, ¢’. The above right hand side is finite by the fact (Lemma 6.1) that the moments of
Brownian intersection local times have polynomial increasing rates in time.

Finally, by non-negativity and monotonicity of A¢ . (t, t) in t and %, (3.20) follows from
the bound

supAE e (t1,t2) <exp{ti +t2} sup/ / —i= tAE et (t,t)dtdt < oo.

66

This completes the proof. [

Keep in mind that the proof of Theorem 3.3 depends on the Stratonovich integrability of
gn(-,t, ) and the L£L2-convergence of the Laplace transform

o
/ e M8, . (gn(-,t,2))dt ase—0
0
that are installed in the following:

THEOREM 3.8. Under Dalang’s condition (1.6),
() the L2-limit

3.23 lim / n(T1, T by < W, (x >d$ o da,,
( ) 617'“76n*>0+ (Rd)ng ( 1 ) kg- ( k) 1

exists for any n > 1 and (t,z) € RT x R% Consequently, g, (-,t,x) is integrable in the
sense of Definition 2.2 and the limit in (3.23) is Sy, (gn(-, t, 1’))
(ii) for any X\ >0,

N Ay _ [T ‘ 2
(3.24) 21_13% ; e Snys(gn(,t,a:))dt—/o e Sn(gn(,t,:z:))dt in L2(Q, F,P).

PRrROOF. By Lemma 2.4, all we need is to show

(3.25) lim ES, E(gn( ))Sn,e/ (gn(-, t, x)) ,
€,e/ =0t
exists, where Sy ¢ (gn(-,t,2)) is defined in (3.1) and where € = (€41, - , €2,,). We have

ESpc(9n(-+t,)) Sne (9u(- 1. ))

2n
_/( ) dwl"'deHQTL(xlv"' 7wn7t70)gn(‘rn+17'” 7x2n7t70)]E<HW€k(xk)>
Re)zn k=1

= Z/ dl’ldlﬂn( H 'Ye]Jrek _xk)>gn(x17"'7xn7ta0)gn(xn+1a"'7$2n7t70)
R4

pert, 7 (R (j.k)ED
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where the second step follows from the Wick’s formula (2.15) with g5 = Wek (zg) (k=
1,---2n). Therefore, the existence of the limit in (3.25) follows from Lemma 3.6.
We now come to Part (ii). Notice that

E{/OO e M S e (gn(-:1, ))dt_/oooeMsn(gn('vtﬁ'«“))d’f
/ / MOHDES e (gn (- 11,0)) Sne (gn (- t2,0)) dtrdts

2

- 2/ / e_A(tl—i_tQ)ESn,e (gn(7t170))5n(gn(7t210))dt1dt2
0 0
+/ / e_)\(t1+t2)]ESn(gn('atla0))Sn (.gn(at2a0))dtldt2 .
0 0

For the first term,

/ / dtldt267/\(tl+t2)ESn,€ (gn('7t170))S’I’L,E (gn(7t270))dt1dt2
0

Z / / _)‘(t1+t2 FD (tl,tg)dtldtg

Dell,
In view of Remark 3.7, the function F'P(t1,t,) appearing in (3.18) is identified as
FD(tlatZ):/ dwl"'d$2n< I @ )
(]Rd)Zn ]Jg)E’D
X gn(mla ceyXn, T, 0)9n(£n+17 ey Ton, T2, 0) .

By (3.17) with A\; = Ay = A, therefore,

lim/ / dtldt2e_)\(t1+t2)ESn,e(gn(‘vtla0))Sn,e(gn('at2;0))dt1dt2

e—0
Z/ / dtidtee™ A(“HQ)/ dm1~--dm2n< H Y(x —l‘k:)
(Rd)2"

Dell, (4,k)eD

X gn(xla"' 7$n7t170)gn(xn+17"' ,.’Bgn,tg,O)
0o 0O
= [ dtrdeae XIS, g, 2,0)) S (g 12, 0)) s,
0 0

where the last step follows from Stratonovich integrability stated in Part (i) and the identity
in (2.21).
Using Part (i),

ES?LE (gn(’atla 0))57’1 (gn('7t270) = ElliinmES’/LE (gn(’7t170))57’l,€/ (gn<7t270)) .
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By the fact that ES,, (gn(~, t1, O))Sn (gn(', to, O)) > 0 and by Fatou’s lemma,

lim inf / / dirdtze N TDES, (gn(-,11,0)) Sn (gn (-, t2,0))
0 0

e—0

> / / dtidtae ™M) liminf ES,  (gn (-, t1,0)) Sn (g (- 22,0))
0 0 e—0

=[] dtdeae0) tim B (gn111,0) S (9n(-112,0))
0 0 €,e’—=0

:/ / dtldt2€7A(tl+t2)ESn(Qn(Ht170))Sn(gn(‘7t270)) )
0 0

where we have used Part (i) in the last two steps.
Summarizing our argument,
2

limE[/ e_’\tSnve(gn(-,t,O))dt—/ e S, (gn(,t,0))dt| =0.
0 0

e—0

This competes the proof. []

We now establish Fubini’s theorem for the multiple Stratonovich integral with the inte-
grand gn(a t, :E)

LEMMA 3.9. Under Dalang’s condition (1.6), we have
(3.26)

i S,c(onto) = [ (] G- 5= )81 a1 ) ) V2, )y

€9, ,en—0 Rd
and
(3.27)
t
lim ( / G(ts,yx)Sn1(gn1<-,s,y>>ds>wsl<y>dy=sn(gnc,t,x)),
e1—0t R4 0

where the limits are taken in LP (), F,P) for any p > 1.
REMARK 3.10. The identity (3.27) mathematically confirms the relation (2.11).

PROOF. Part (i) in Theorem 3.8 shows that .S,, (gn(-, t, x)) L?-converges to S, (gn(-, t, :1:))
as € = (€1, -+ ,€,) — 0. By Theorem 6.2 this convergence also holds to L? for any p > 1.
Thus, the set

{’Sn,e(gn(-,t,:c))|1’,ei €(0,1],i=2,---,d}

is bounded in L? for any p > 1 (and for any fixed £; > 0), and hence it is uniformly integrable.
Therefore, by [2, p. 297, Theorem 7.5.4] all we need for establishing (3.26) is to prove it with
the convergence in £1(€2, F,P) instead. By the Fubini theorem

Sne(gn (1t 7)) _/

R

. </Ot G(t— s,y —x)Sn—1(gn-1( S,y))ds) We, (y)dy

where

Sn—1,(gn-1(,t,2)) 2/ / dsy---dsp_q
ey ozt
n—1 n—1

X < H G(Sk — Sk—1,T — $k1)> H Wsk+1($k)d«73k
k=1

k=1
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with notation € = (eg,--- ,&,). So we have

Suclontet0) = [ ([ 66— sy 00Ss(nsCsads ) W )

t
= [ s [ [Sure(nmr5) = Sua(gua o) W )Gl sy — )y,
By the Cauchy-Schwartz inequality

Blsucntetio) = [ ([ 6= 080 (g0mss)s W)

1/2

S{ /dS/Rd n—1.2(gn-1(15,9)) — Sn—1(gn—1('7373/))rG<t—Syy—x)dy}
x{ ds/ W () 2G (¢ — s, y—x)dy}1/2
{=f

1/2
dSE n— 1,5(971—1('7370)) _Sn—l(gn—l('asyo))}2/Rd G(t—s,y—x)dy}

1/2
< B, o)) {/ s [ Ge-sy-aaf .
Rd
where the last step follows from the facts that IEH/VE1 (y) |2 = E|W€1 (0) |2 and

2 2
E [Snfl,é(gnfl('a S, y)) _Snfl (gnfl('v S, y))} =E [Snfl,g(gnfl('a S, O)) _Snfl (gnfl('a S, 0))] .
Further,
/ Gt—s,y—x)dy=t—s
Rd
We have the bound

Blsncnte o)) = [ ([ 6= 080 (gmess)is W)

1/2 1/2
3/2
< 2t {EIW..(0)12}

2
{ / E[Sn—l,s (gn—1<'7370)) - Sn—l(gn—l('asao))] ds}
0
By Part (i) of Theorem 3.8 (with n being replaced by n — 1),

2
lim +E|:S’n—1,5(gn—1('7370)) _Sn—l(gn—l('7870):| :07 OSSSt

€a,,&n—0

In addition
2
E |:Sn—175(gn—1(', S, O)) — Sn—1 (gn—l(‘7 S, 0))]

< E[Sn—l,é(gn—l('a 370))]2 + E[Sn—l(gn—l('7 S, 0))]2
< E[Sn—l,é(gn—l('7t70)>]2 + E[Sn—1(gn—1(‘,t,0))]2 :

By dominated convergence we see

lim /tE [Sn,Lg (gn,l(-, s, ())) —Sn_1 (gn,l(-, s, 0))] 2als =0

€2,,n—0% J

This proves the (3.26). Finally, (3.27) follows from (3.26) and Theorem 3.8. [
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3.3. Link to Dalang-Mueller-Tribe’s work. The discussion in this sub-section does not
contribute to the proof of the main theorems in this paper. Rather, it helps the interested reader
to better understand the true nature of Stratonovich solution and provide a new representation
to the Laplace transform of the deterministic system (1.7) for possible future investigation.

Let N(t) (t > 0) be a Poisson process with parameter 1 and {7 };>1 be the jumping times
of N (t) with definition 79 = 0. The stochastic process X; (¢ > 0) is defined as follows: First,
{X7, }r>1 is arandom sequence whose finite-dimensional distribution of (X, ,--- , X7, ) has
the conditional distribution (conditioning on {71, -+, 7,})

n

(H(Tk - Tk_l)_lG(Tk — Th—1,Tk — xk_1)>da:1 codxy, .

k=1

Set X, = Xo = . The process X is defined as the linear interpolation of { X, }r>0.
Dalang, Mueller and Tribe (Theorem 3.2, [16]) prove that the function

N(t)
(3.28) u(t, .%') = eth !u0(t - TN(t)7XTN(t)) H (Tk - Tkl)f(XTk)]
k=1

solves the wave equation (1.7), where u(t, ) appears in (2.1). For the purpose of compari-
son, we consider the case when ug (¢, ) = 1 and write

ut,z) =y e"P{N(t) = n}E, [H(Tk — To—1) f (X7, ) [N (2) = n]
n=0 k=1
=3 DB T~ meen) P60 [N (1) = n] .
n=0 " k=1
By the classic fact that conditioning on { N (¢) = n}, the n-dimensional vector (71, -+ ,7y)

is uniformly distribution on [0, ¢]Z,

u(t,x):Z/ dsl---dsn/ dml---dacn<HG(sk—Sk_l,xk—xk_1)> Hf(xk)
n—0" [0,t]2 (Re)m k=1 k=1

L 0% i1

with the convention sy = 0 and zg = x. Comparing this with (2.2) and (2.12) we see the
deterministic root of stochastic model (1.1) in the Stratonovich setting.
Similar to (3.10), the same computation leads to

(3.30) /e‘”/ dry - dangn (1, .t x) [ £
0 (Re)m k=1

_ ;;(;)n/()ooexp{ - );t}IEx [/Otf(B(s))ds]ndt.

Summing both sides over n, we obtain the following representation

0o A o0 )\2 1 t
(3.31) /0 e Mu(t,z)dt = 2/0 exp{ - ?t}Ex exp {2/0 f(B(s))ds}dt

in the sense that finiteness of one side leads to finiteness of the other side, and to the equality.
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The classic semi-group theory (see, e.g., Section 4.1, [8]) claims an asymptotically linear
growth of the logarithmic exponential moment

1 t
logE, exp {2 / f(B(s))ds} (t — o0)
0
for a class of functions f. In this case, the right hand side of (3.31) is finite for large A.

On the other hand, the representation (3.31) unlikely makes sense for the stochastic wave
equation (1.1). Under the assumption in Theorem 1.2, we have ([9])

log E exp {; /OtW(B(s))ds} ~ C(tlogt) s aus.

for some constant C'(y) > 0 as ¢ — co. So (3.31) almost surely blows up for any A >0 when
f(+) is replaced by W (-) (or, when the deterministic system (1.7) is replaced by our model
(1.1))

4. Proof of Theorem 1.1.

PROOF OF THEOREM 1.1. To show that the Stratonovich expansion (2.15) converges in
L2%(Q, F,P), by the triangle inequality and by the fact that u(t, ) (if defined) is stationary in
x, all we need is

@.1) Z{E[Sn(gn(-,t,O))]2}1/2<oo, V> 0.

The procedure starts at Corollary 3.5. By the Cauchy-Schwartz inequality

E® Eq Uot W(Bl(s)dsr Uot W(BQ(S))dsr

el v fen{ fron )
_ {Eo[/otl/otlfy(B(s) —B(r))dsdrr}l/Q{Eo[/OtQ/()tzfy(B(s) —B(T))dsdr]n}l/z.

Let ¢ > 0 be fixed. Taking \; = Ay =nt ! in (3.14), Corollary 3.5:

/OOO Ooodtldtgexp —f(t1 +t2)}E[S( (1 11,0)) S (gn (- £2,0))]
SE ))2 3”/ / dtldthxp -5 2(t1+t2)}
« {EOUOM/;H(B(S) —B(r))dsdr]n}l/Q{Eo[/tQ/t2’y(B(s) —B(T))dsdrr}lﬂ
ik G ) [ o= g} ([ [ [ - monaa] )}

Recall ((1.5), Theorem 1.1, [11]) that under Dalang’s condition (1.6), the limit

1
lim =logE, exp{ // ))dsdr}
i—soo t




28

exists and is finite. This means there is a constant C' such that

Eg exp { / / ))dsdr} <exp{Ct}.
By the relation

n't” [ / / ))dsdr} <Eoexp{ / / ))dsdr}

for any £ > 0, we have the bound that is uniform in £ and n:

Eq [ / / ))dsdrr < i exp{Ci} .

/0 exp{ — 55 <Eo{ / / ))dsdr] )1/2df

<(n .)1/2/0 exp{—gt}t”ﬂdt (n .)1/2(g)n+11“(§+1).

Thus, by the Stirling formula we get the bound
4.2)

o o0 Cn
/ / dtydty exp{ - %(tl +t2)}E [Sn(gn(+1,0)) S (gn (-, 12,0))] < f't2"+4.
0 0 n.

By the fact that the moment

is non-negative and non-decreasing in ¢; and ¢, we have

/OO/OO dtldtQ exp{ — %(tl + tg)}E [S’n(gn(-,tl,0))Sn(gn(',t2,0))] dtldtg
0 0

Hence,

>E [Sn(gn(-,t,O))}z/t /t dtldtgexp{ — %(tl —l—tg)}dtldtg

2
= %6_2”}3 [Sn (gn('vtv 0))]2

Comparing this with (4.2) we get the bound
2 Cg 2n+2
(4.3) E [Sn(gn(-t,0))]" < —rT =12,

This leads to (4.1) and therefore to the £2-convergence of the Stratonovich expansion in
(2.10).

In view of (3.15), the bound (4.3) remains true for E [Sme (gn(-,t,O))]2 for any € =
(€1, - ,€n), 1.,

)P Sz g
E[Sne(ga(-1,0))]" < —H*2, n=12,

forany ¢t > 0. Let €9, - -+ , €, — 0T on the left hand side. By (3.26), Lemma 3.9,

/Rd (/OtG(t — S,y — %’)Sn—1(gn_1(-,s,y))ds> W, (y)dy

n
(4.4) E < sz' (242
n:
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foranyn=1,2-.-,any ¢t > 0 and any €; > 0.
To show that {u(t, )} is a solution in the sense of Definition 2.1 and therefore to complete
the proof of Part (i) of Theorem 1.1, we only need to show

(1) For any ¢ > 0 and x € RY, the random field V (y) = fg Gi—s(x — y)u(s,y)ds is
Stratonovich integrable, or

i, g (/Ot Gts(m—y)U(s,y)d8> Wsl(y)dyz/Rd </Ot Gts(:v—y)U(s,y)d5> W(dy)

in £2(Q, F,P).
(2) Equation (2.1) is satisfied with ug(t,z) = 1.

Because of (4.3) and (4.4), to show (1) and (2) one has only to show that for all fixed
n>1, [pa (fg Gi—s(@ — y)Sn—1(gn-1(-,5,9))ds) Wz(y)dy converges to Sy, (gn(-,,x)) in
L£2(2, F,P). This is done in Lemma 3.9, Equation (3.27).

To prove Part (ii) of Theorem 1.1, all we need is to show that Dalang’s condition is neces-
sary for

E[S5(g2(-1,0))]* < o0
with any ¢ > 0. Indeed,

E[S2(g2(-,t,0))]”

= Z /( ) dxlda:degdm( H V(xj—a:k)>gz(a:1,x2,t,O)gz(xg,M,t,o)
Rd)4

Dell, Dell,

> /( | dzrydxadrsdryy(r1 — x2)y(x3 — 24)g2(21, 22, t,0)g2(23, 24,1, 0)
Rd

2
— </( ) fy(:pz—xl)g(xl,xg,t,O)d:Uld:m)
Rd 2

and

/( | v(xo — x1)g(x1,22,t,0)dr1d2o
Rd 2

= / dSldSQ/ v(xe — 21)G(s1,21)G (82 — $1,22 — x1)dr1dTs
[0,t]2 (R4)2

= /[Oi]z< </Rd G(sl,x)da;> (/Rd v(z)G(s2 — sl,m)dw> dsidssy
 fog L e = [ [ wtra]n

:/Otsl[/w 1_COS(‘SL(t_Sl))M(dﬁ)}dsl.

Clearly, the finiteness on the right hand side leads to Dalang’s condition (1.6). [J

REMARK 4.1. By the moment bound (4.3) and by the expansion (2.10), we get the mo-
ment bound

(4.5) Eu?(t,z) < CeC?t
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Using the equality (3.12) instead of (3.14) and slightly modifying the estimation in this sec-
tion, one can extend (4.5) to the £,-bound
(4.6) Elu(t,z)|P < Ce  p=1,2,---

Notice that é:—g < 2 for 0 < o < 2 and that the equality holds if and only if a = 2. It shows
that without assuming homogeneity (1.8) one still can have some moment bound for the
solution that is weaker than what is offered in Theorem 1.2 (where a < 2).

5. Proof of Theorem 1.2. From the expansion (2.10) and the stationarity of the
Stratonovich moment in x, a formal algebra leads to

Eul(t,z)=> Y EJ[S,(g,t0)=>"" > EJ[S,(g,(.t0),
7j=1

n=0104+l,=n n=0104+l,=2n j=1

p

where the second equality follows from the fact ((2.20)) that

P
E H Slj (glj ('7 t 0)) =0
j=1

whenever [y + --- 4 [, is odd. Moreover, the expansion for EuP(t,x) appears as a positive
series. Consequently Eu?(1,z) > 0.

Mathematically, under Dalang’s condition (1.6) the Stratonovich expansion (2.10) con-
verges in LP (), F,P) for any p > 0. Indeed, it is enough to exam this for all even numbers
p. This follows from the estimate

Z Sn(gn('atvo)) < Z Z EHSlj (glj("t’O)) '

n=N+1 n2n>N+11+-+1,=2n j=1

N+m P
E ’

Therefore, the claimed £P-convergence relies on the fact

izﬁj

n=010++1,=2n

p
SlJ (glj ('7t7 0)) <00
1

which appears as a direct consequence of (5.1) and (5.3) below.
By (1.8) and (2.6), in addition, one can verify that

5.D
p P
> EIISu(o,(t0) =t 3" ET] S, (9,4 1,0),  VE>0.
Littl,=2n  j=1 Littl,=2n  j=1
Therefore, foreachp=1,2,---,

(5.2) Eup(t,:r):Zt(4_a)"< > EHS’lj(glj(-,l,O))>
n=0

Littl,=2n  j=1
whenever the series on the right hand side converges.

PROOF OF THEOREM 1.2. First, we claim
(5.3)

1 ,a ? L\3=o o (2M/2) 00
s b5 T n0)) s () e (20)

Lit-+l,=2n j=1
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for each integer p > 1. In next subsections we shall prove the upper bound part of this claim
in (5.15) and the lower bound part in (5.22).

After we established (5.3) the proof of (1.9) is easy and can be seen through the following
computation: From (5.2) and then (5.3) it follows

54
00 p
m 5 log uP — lim ¢t 5= (4—a)n :
tin gt = i og (S BT 100
n= 1+ p=2n J]=

. e oo t(4—o¢)n 1\ 3—a a 2M1/2 4—a\ n
_t]ggot 5-a 10gnZ:0(n!)3_a<(2) p <4—oz> >

33—« i:w(z/w/?)ﬁ::z
N 4—« ’

2

where the last step follows from the following elementary fact of the asymptotics of the
Mittag-Leffler function (Lemma A.3, [4]):

im b~/ 2 : — ~O/
(5.5) blggo b log 2 i ~0* 78>0

with ¥ = 3 — o and with b = t4~,
The proof for the upper bound of (1.10) is given in (5.7) of Lemma 5.1; and the lower
bound is established in (5.27). [

5.1. Upper bounds of (5.3) and (1.10).

LEMMA 5.1. Under the condition in Theorem 1.2, we have the following statements.
(1) forany \1,--- ,A\p>0andp=1,2,---
(5.6)

1 1
limsup — log —
n—oo N n! (R+)P

p p
j=1 Lit+l,=2n  j=1
P A log A

4—a 4 —
<log2M™= + .

j=1
(2) foranyt >0,

3—q ie (2/\41/2)3‘—3

(5.7) limsupjzfg%z log E|u(t,0)P < t3=e 1
-«

p—>00 2
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PROOF. The proof starts with the moment representation in Corollary 3.4. On the right
hand side of (3.12), we perform the estimation by Fourier transform

)2 1/ /tk ~ By(r))dsdr
:/Rd“( p

—<t1+---+tp>/ o)

tj 2
€B;() 1g

t] 1 t 2

t—i— —i—tt

p t.
1 [t
S(ti4--+1p) g tj/ w(d§) / '€ Bi(9) g
jZl Rd tj 0

— (b4 +1p i;//'yB Bj(r))dsdr

j=1"

Lty4-+tp itﬁ // Bj(r))dsdr.
=1

The advantage of the above inequality is to replace the sum of dependent quantities by the
sum of independent ones, where the last step follows from scaling

tj rt; 4—a 1 1
/O/O'y(Bj(s)—Bj(r))dsdritj"’ /O/O'y(Bj(s)—Bj(r))dsdr, j=1,---,p

and the independence of the Brownian motions.
Combining the above result with (3.12) gives

p p
/(+> dt1~~~dtpexp{—§ Ajtj} S E]]S (9,0 15,0))
R+)P j=1

L+t tl,=2n j=1

2

<@ H(I) [ e {350}
xEO{Xp:t;T /01/017(33(3)—33(7~))d5drr
j=1
- <j1i[1 ;j) (% 3nll+_;p:n ! : l v{gEo[/ol/OIV(B(S) ( ))dsdr]lj}

(5.8)

<
Il
—

<
Il
-
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By [11, Theorem 1.1], we see

lim flogIEO exp{(/ / ))dsdr>1/2}
:ﬁ%KAWﬂWﬂW@ﬂWMJ@éAmmm%}

=27 M,

where the last equality follows from the one-to-one map F; — F; defined as
a4 2
o) 2759 (2750)) g

By (1.8) and the Brownian scaling,

[ [0 B 2% [ [ (w61~ sy

we can rewrite it as

1/2
(5.9 hm flogEoeXp {t 1 (/ / ))dsdr) }:240&/\/1'

On the other hand, by Taylor’s expansion and the positivity of v(-), we have

o[ [ s
<Mw4“(// meﬂ

:exp{(1+0(1))2ﬁ/\/1t} (t — 00).
For a fixed 6 > 0, taking t = 0n

Eo U / ))dsdr} '

< (2n)1(0n)” T " exp { (1+ 0(1))221/\4(971)}

=(1+ o(l))”(n!)o‘/zllnell;y”exp{ e P (1+ 0(1))22’2aM9n}

as n — oo, where the last step follows from Stirling’s formula. Thus,

hmsup—log (n!) 04/2E0[/ / ))dsdr}
n—oco N

4—a . 4—a
g—T+1og4+2aMe—

log .
Picking the minimizer

0 = _4fa

33
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yields

VRN
- ) —a/2 < a7 ) 2
hﬂsolépnlog n!) Eo[/ / ))dsdr] <log2 (4—a> .

Suggested by a referee, we provide the following instructive exposition on how we come
up with the idea ¢t = #n. Comparing the large deviations in (5.5) (with b = t75 and v = ﬁ)
and in (5.9), by the Taylor’s expansion we believe that the asymptotic pattern

- [ / / ))dsdr]nﬂz(mc)’j;a (n — 00)

The rest is to find the dominant term(s) in the limit (from (5.5))

ol Kt
i s D0 () T =m0

It is easy to see (by considering Poisson distribution, for example) that the domination occurs
4 4
at n ~ C'1-=t. It therefore justifies the choice ¢t = 0n with § = C'™ -«

Returning to our proof, we conclude that for any given § > 0 there is C's > 0 such that

Eo[// ))dsdr] gcg(u)a/2<(1+5)24(zfoé>ﬁ>l, 1=1,2,.

Substituting this bound into (5.8) gives

p
(5.10) /(Rﬂpdtl---dtpexp{—;Ajtj} > EHSl a1, (-11.0))

Ltotl,=2n j=

(%) (0+0(2)™) v (Iur=)

j=1 Littly=n S j=1

p 2—a
></(R+)pdt1---dtp(t1+---—|—tp exp{ ZAQtJ}jI;[lth L

For each (l,---,l,), we can write the above multiple integral as

. 1 p p QTTalJ
/(R+)pdt1"'dtp(t1—|—"-+tp) 6Xp{—22)\j2'tj}1_‘[tj
]:

n! P k42
= —_— dti---dt t”
Z kil k! /(R+)p 1 P<j11 j

ki+-+k,=n 7=1
P 2—a
n! 2\ ki+=521+1 2—«
= E —_ | | — ki +—1:+1).
N ( 2.) ( J J )
kit +kp=n Fale bl S A 2

In the sequel, we shall use the Stirling formula of the following form:

n"e " <I'(n+1)<n"le™  n=12 ...
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By using this type of Stirling’s formula and by routine simplification

P p P
> <H(lj!)220) /(R+)P diy - - dip(ta +‘“+tp)"exp{ - %ZA?’%‘} Htjil
bt otly=n \j — :

J=1

]:
p 2—« 2a
kj + 2500 kj+ 25500\ 7l g
<X M) () e

al 7 ’
ey 4oethey=n =1 PR
li4+lp=n

where C' > 0 is a constant independent of n and p, and

1 1\-11
9j=<)\2+ +A2> 2 J=Llep
J

It is straightforward to check that the Lagrange problem

d 1 N\ L 1 i\ Yi
max{l—[(xy-i-yg) <mj+yj> .0;;,-+yj; w14+ ap,=n,

e Yj

2—«
and y1+---+yp:7n,x1,~- s Tpy Y1y Yp >0
has the solution
2—«

Tj= 9]'71 and Y; = 5

ejn) ]Zlvvp
Therefore, since Z’-’: 6;=1

ﬁ<k + 3 “l) <k +22al>2 AR

2—a J
2ZJ

p 2-ap.n
4—a\Oin /4 —aq\ 2 7" d-ap,
< 6.2 "’
_H< ) (2—a> J
Jj=1
_(4—Oé)n 4_06 Tnﬁellzaejn_ 4_06 %n 2 %Tan p 947?066]'”
S\ 2 2 -« i J S\ 2 2—« J

uniformly over Iy, -+, lp;k1, -+, kp.
Summarizing our steps since (5.10) and noticing

> =)

L+ tly=n

we have the bound

p

p
(5.11) /(Rﬂpdtl---dtpexp{—;Aﬂj} > Il 00)

Ltotl,=2n j=1

cona (") (I (oo (29 7)

J=1
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T

This leads to (5.6) as § > 0 can be made arbitrarily small.

The bound (5.11) can also be used to the proof of (5.7). To see this we can allow p tends to
infinity only along integer points. This does not compromise the claim there by the following
interpolation argument: For any real and large p > 1, let (p/2) be the smallest integer larger
than or equal to p/2. Then, by Holder’s inequality we have

{E|u(t,0)|p}1/p < {Eu2<p/2> (15,0)}2“3”> .

Thus, it suffices to show (5.7) along the positive integers p and with Eu?(¢,0) instead of
E|u(t,0)|P.
By monotonicity of g, (+,¢,0) in ¢,

Z EHSZ gl tj,O) Z EHS’l (gl ° mlg tJ,O))

Li++lp=2n j=1 bt +lp=2n j=1
(4—a)n
= E EHSl g1, ,1,0 (mlnt) ,
1<5<p
LitHl,=2n  j=1

where the last step follows from (5.1). Thus,

p 4
/(Rﬂpdtl...dtpexp{—th} Z EHSlj(glj(,',tj,O))

=1 " L+-+l,=2n j=1

> ETT S, (g1, (1 dty---d e

B <11+--§l‘2:2n ]]._[1 ’ gl o0 )/(R+)p e tpexp{ Zt }(1r<nj1£1pt ) '

By the fact that given i.i.d. exponential times 71, - -- , 7, of parameter 1, min 7; is an expo-

1<5<p
nential time with parameter p,

p
(4—a)n o0
5.12 dty---dt N, t - —pty(d=ajn gy
i [ aneden =3 k()= [

= p_(4_°‘)”f‘<1 +(4- a)n) .
In summary, we have

(5.13)

> IEHSZ (g1,(-,1,0))

lhi++l,=2n j=1
p

p(4—oz)n P
: (14 (4—a)n) /(R+)P dty - diy exp { B Zt]} Z E H S, (91,(;++15,0))

i=l T Ltetl=2n =1

CC(S pntp— 1 2 n!p(4—a)n ( 4&>n
< —= 2(149 2
_( 2 ) < p—1 ) L(1+(4—a)n) (1+M 7

where the second step follows directly from the bound (5.11) with Ay =--- = A, = 1.
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Using (5.1) and (5.2) we then have
COs\Px= (n+p—1 2 n!(pt)4-n aa\"
EuP(t,0) < [ —= 2(1+6 2
ur(t, )—< 2 ) ;( p—1 > T(1+ (4—a)n) 1+ oM

CCs; 0 2= nl(pt)d=n ( ) 4&>”
< 2
<(F7) ;F(1+(4_Q)n) 26°(1+ M)

where 6 > 1 is arbitrary, and the second step follows from the estimate

n+p— k(k+p—1 ( 0 )p
0" 0 =—) .
() =z (500)- G5
By the Stirling formula, I'(1 4 (4 — a)n) is replaceable by
(n!)4—o¢(4 o a)(4—o¢)n )
By the asymptotics of the Mittag-Leffler function (5.5) with vy =3 — a and b = p*~*, and 0
172\ *T @
being replaced by ¢4~ (292(1 +9) <M / > ) , we have

lim suppiﬁ log EuP(¢,0)
p—00
sa (pt)d—ain ) ML/2\4—a\ "
pl;rglop logzi) 260 (1—1—(5)(4_@)

4—a M1/2 41—« 3—%
—= — 3—«a 2
—(3—a)t <2e (1+5)(4 a) > .

Letting 6 — 0" and 6 — 1T on the right hand side gives (5.7). [J

We end this subsection by the following statement: First, taking A\; = --- = A, = 11in (5.6)
leads to
1 P
hmsup log— dtl---dtpexp{—th}< Z EHSZ a1, (-, t5,0 ))
n—oo T (R+)? = Lot l,=2n -
(5.14)
<log2M 3"

Second, applying (5.13) to the setting of fixed integer p > 1 yields the upper bound of
(5.3)

hmsupnlog(n') ( Z EHSl q,,(-,1,0) >

n—o0 Lttl,=2n _

1\3-a , 2M1/2 -
(5.15) §log<§> P a<4_a) .

5.2. Lower bound for (5.3). In this subsection we start by the lower bound correspondent
to (5.14).
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LEMMA 5.2. Under the condition in Theorem 1.2, we have

1. 1 &
liminf — log— dl---dtpexp{—th} Z EHSl a, ( t],O
j=1

n—oo N
(R+)” Lt tl,=2n j=1

(5.16) >log2M 3
forp:1,2,---

PROOF. Notice

= 1/ / tk = Bulr))dsdr = /R du(df)}g /0 Y e (o
= [ /R du(c%)f(i)(jé /0 eig~Bj<s>ds>]2
- LE: /R du(dé)f(£)< /0 ’ ez‘eBxs)dS)r

for any non-negative f(£) with

(5.17) /R NF©PuEg) =1.

Therefore, we have

EO[Z/ /tk — Bi(r) dsdr} >E0[Z/ (de) f </ Z’E'BNS)ds)rn

j,k=1

g el )]

Lol =2

—@n Y H/ £>(I£[1f(£k>)/[0t]<dsﬂexp{ S’“‘;‘”éa

y

Litetp,=2n j=1 k=1
Taking Ay = --- = A, = 1 in Corollary 3.4 and inserting the above computation into the
obtained expression yield
(5.18)

p
/ dtl---dtpexp{—th} Z EHS[ gl tj,
(R+)P j=1 Litotlp=2n j=1
p
> -]

(3 Q)% ], oae{ 33
[

;
<D H/d)l (ﬁf(&))/ ldsﬁexp{—sk‘;“é&
o

DN |

2}
L, =2n j=1 0612 k=1

() s I

Li++l,=2n j=1

l;

k]lf(&:))
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l; 1.
" atetr2 Tow{ - %213 qf)

X/o dte /[07t]l<jdskljlexp{ 5 ‘;gl
1\P+3n (2n)! : o ;
()" % H/ (ljf@k))k / et/zGXp{_Q

Li++l,=2n j=1

S s 1) e (Tle)

li4-+lp=2nj=1

SO T d5<ﬁf@k>)

Li4+lp=2nj=1 k=1 k=
By the computation in [7, (3.7)-(3.9)]

(5.19) nnrgioréfilog/( <Hf§k) {1+]Z£Z }

Zlognsﬁ?il/w [/ \/1+!n!) (171:\?%!2)}

A
=logp(f).
For a given § > 0, therefore, there is C's > 0 such that

fuao (T r0) LT e

Therefore,

j]i[l/(w)“u (Hf&) {1+’Z&

forany ly,---,l, > 0 with [y + --- 4+ [, = 2n. In addition, by Stirling’s formula,

} >0 (0 -0)p() . 1=1.2-

} > e (-5

<1>p+n@ =(14o0(1))"2"n! (n—o0).

2 n!
Together with (5.18), one has
1 1
liminf — log — dty---dt exp{— E t-} E EHSZ gl ot 0
| P J 7
n—oo T nt Jw+yr = bt lo=2n 21

> log2((1-8)p(1))

Letting 6 — 0" and taking supremum over all non-negative functions f satisfying (5.17) on
the right hand side, we have

1 1
hmlnf—log— dty---dt,exp t E Sl (01,(+£;,0))
>log?2 sup / M(d&‘) |: 90( ) (77+€) :|2.
llell2=1JRe \/ T+ DA +E+1P)
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Finally, the proof is completed by Theorem 1.5, [7] (with p= =2, 0 =« and | - |~“ being
replaced by 7(+)) that states

(Mp(n+§) ? i—a
(5.20) d [ 14 ] - M5,
uf?il/w“( N e ST mP A+ )

This completes the proof (5.16). [J

Combining (5.14) with (5.16) yields

p
nhﬁ]ogonlogi dtl--‘dtpexp{—th}Q Z EHSZ gl t],0)>

(R*)? i=1 ot =2n =1
(5.21)
=log2M N
We are not able to establish the lower bound correspondent to (5.6) as Ay, ---, A\, are not
equal, nor is (5.6) with different A{,---, A, needed for the upper bound (5.15). The only

reason to keep possibly different Aq,---, A, in (5.6) is for the installation of the following
lower bound that corresponds to the upper bound (5.15).

LEMMA 5.3.  Under the condition in Theorem 1.2, we have

1
S N3—«
(5.22) hnnggfnlog(n.) <l E EHSZ g1, (-,1,0) >

1++=2n j=1
13~ 2M1/2\ e
> log (*) P (i
2 44—«

PROOF. We adopt some idea from the proof for the lower bound of Girtner-Ellis large de-

viations (Theorem 2.3.6, p. 44, [17]). The crucial observation made here is the concentration
(4—a)n

behavior t1,--- 1, ~ (as n — 00) in a dynamics that creates (5.21). To show it, we

define the probability measures on (RT)? as follows

/Adtl...dtpexp{—(t1+-~-+t,,)} > IEHSZ (g1, (-, ,0))

lLitt+l,=2n j=1

/()dtl---dtpexp{—(t1—|—~~~+tp)} > EHSl a1, (-,,0))
R+)pr

Lt tl,=2n j=

pn(A) =

forn=1,2,---. Notice that for any 01,---,0, <1,

/ exp{91t1 —|—---+9ptp)}un(dt1---dtp)
RF)?

/(R+)pdt1---dtpexp{—zp:(l—ej)tj}(l > EHS, a1, (15,0 ))

B =1 =2 j=

- p
/ dt1~~dtpexp{—ztj}( Z EHSz (g, ( tg,O))
(RF)» j=1 L+-+lp=2n j=1

and the right hand side blows up as long as /; > 1 forany 1 < j <p.
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By (5.6) and (5.21), we see

(5.23) lim sup — log/ dtl---dtpexp{91t1—I—--'+9ptp)}un(dt1-~dtp)
n—oo 1 (R+)P
SA(Hly 79]))
for any (61,--- ,6,) € RP, where
d—ag~ (1-6;)" 21og(1—9) 2 ,
P SNy s g m = AL UESUAS
A(b1,---,0p) = 1
o0 otherwise .

By the upper bound of Girtner-Ellis theorem (Theorem 2.3.6 (a), p.44, [17])

(5.24) lim sup — log pn(nF) < inf  A*(ty,---,tp)
n—o00 (t1,~--,tp)EF

for any close F' C (R*)P, where

A* (-, tp) =, suep 1{29 it — 91,---,9p)}, t1,- b, >0.
<

In fact, the statement of Theorem 2.3.6 (a), p.44, [17] requires the equality in (5.23). However,
a careful reading of its proof finds that (5.23) is sufficient for (5.24).

Finding the close form of A*(6y,---,6,) might not be easy. On the other hand, some
properties of A*(6q,---,6,) as a rate function exists even in the general context. For ex-
ample, A*(6q,---,6p) is non-negative, lower semi-continuous and has compact level sets
(goodness). What important to our purpose is that

4 — 4—
(5.25) A*(ty, -+ 1) >0, V(tl,m,tp);é( @ O‘).
b p
Indeed, assume that A*(t1,--- ,t,) =0 for some (¢1,- - ,t,). Then we have that

u 4—a )2 log(1 — 60;)~2
D> bity < 2 2 1—0 24+ (1-6,)2
j= j=1 1 p
for any 61,---,0, < 1. For fixed 1 < j <p, taking 05, = 0 for all k£ # j, the above inequality
gives
4—a  (1-0;)72

2 p—1+(1-6,)2
for any 6; < 1. So we have that

(1—0;)?
p—1+(1-6;)?

Ojt; < log(1—6;)* = (4—a) log(1—6;)~"

(1-6;)? 1 -1
ti<(4—a) P11 (16,20, log(1 —6;) as0; >0
and
(1-0;)"? 1 -1
> (4— 1 i <0.
tj > ( a)p_1+(1_0) 25, og(1—6y) as ; <0
By the fact that

1
lim = log(1 —6)" ' =1
sm g los(1 =)
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we have t; = 4770‘ (j=1,---,p). This shows the claim (5.25).
By (5.25), the lower semi-continuity and goodness we have

inf  A*(ty,-- ,tp) >0

(tlf"'vt )QG
for any open neighborhood G of ( I p 2=2). For any given small § > 0 taking
G(;:( —a— 67 4—04—1—5)11
p p

and F' = G in (5.24) yields

limsup — log pn(nGS) <

n—0o0

Consequently,

[ dtl...dtpexp{_ztj}( S B[]S, (0 (-4.0) ))

(F=2=2n, =2ton)r j=1 Littly=2n  j=1
(5.26) N/ dtl---dtpexp{th}< 3 EHSl g, (+;,0) )>

(RF)» j=1 Lt+lp=2n j=1
as n — oo.
When (t1,---,t,) € (47;%7571, 4= g*‘s ) it is easy to see that
4—a+5 4—a+5
I = D 4 a— 5lr<nlcl£1p J P

and by the scaling property (5.1) we have

! 4 5
IR CXPTEMIES S | CACHCE == D)

Li++l,=2n j=1 Ltotly=2n j=1
4—a+90 (4—a)n p
T i t) EllS. (g.(1,0)).
= (1—a—p in > s[18 (0,0 10)
L4 +l,=2n  j=1
Therefore,

p p
\/( d-a=§ pd4-a+d)y dtl-"dtpexp{ o th} Z EHSU (gn('vtja()))
R =1 1

14t =2n  j=1

<{ 2 Eﬁslj(gzj(-,l,o))}<w>(4a)n
J=1

L+ +ly=2n

P —a)n
{2 Eﬁ5~<gu<»1,o>>}<i::t§>““>"<1><“>"r<1+<4_a>n>,
=1

L+ +lp=2n p

where the last step follows from (5.12). Finally, (5.22) follows from the above inequality
together with (5.21), (5.26) and the Stirling formula. [



STRATONOVICH HYPERBOLIC ANDERSON EQUATIONS 43

5.3. Lower bounds for (1.10). In this subsection we prove the lower bound part of (1.10):

4-a _ see [ ;1’:73
(5.27) liminfp~ 3= logE]u(t, 0),}7 > 3 atﬁ \/,/V .
p—00 2 4 —

It should be pointed out that the Gértner-Ellis type argument used for the proof of Lemma
5.3 is good only for fixed p. Different from the approaches used so far, the treatment below
is independent of the Stratonovich moment representation developed in Section 3.

Let ‘H be the Hilbert space given as the closure of the space

{f BSR [ @ -)f@))dedy < oo}
R xR
under the inner product

<ﬂ®w=4ﬂwvw—yﬁ@mwmwy

The space H may contain generalized functions (distributions). For each integer n > 1, we
write H®" for the n-th product with inner product

(528) <f7 g>H®" = /(Rd)2 dXdY< H PY('I]C - yk)) f(xlv T 7xn)g(y17 Tt yn) .
" k=1

LEMMA 5.4. Given any real number p > 1,

(5-29) ||u(t7 O)HP > exp{ - 2(])1_1)”]0”%-[} Z<f®n,gn(-,t70)>q.[®n

foranyt>0and f € H with f(-) > 0.

n=0

PROOF. Let ¢ > 1 be the conjugate of p. By Holder’s inequality
Ju(t, 2)llp = Eu(t, z) X]

for any random variable X with || X ||, = 1. Take

-1
X:

eo{ [ sawan}] e [ semwan]

q

—ep{ - Lislfew ] [ semian]
Then for any f € H,

(5.30)

lu(t,0)lly = exp { - ;’HfH%}Euu,mexp{ 9 f(x)W(dfv)}

cep{ - Y S {0 ke ( [ sew @) it t00))
0

n=0 * [=

00 2n

—ep{ - 3} {0 ke ( [ s @) Su (o i)
l

n=0 =0
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Zexp{—gufua}fj{i; B [ sewi )>’52n_l(g%_l<.,t,o>)}

n=0 ~ l=n
00 n 1 n+l
=en{ I} S (L AW @) sl

where the second equality follows from (2.20), and the second inequality follows from the
fact that all terms are non-negative.
Foreach 0 <[ <n, by (2.17) and (2.19)

n+l
IE< f(x)W(dac)> Sn—1(gn-1(,1,0))
R4
2n

:E/(Rd)zn Gn_i(x1, - Tn_q,t,0) (k:H+1f(azk)) W (day) - W (dwan)

= /Rd dX< IT ~@ —:ck)gn (w1, 2yt 0)( ﬁ f(:zk)>.

Dell, (4,k)eD k=n—I1+1

We now count how many pair partitions D € 11, that make

(5.31)
2n
/ <H v(x; — ) >gnz(9€17"',$nl7t70)< 11 f(l‘k))
(e (J:k)eD k=n—I+1
n—l n—l
ST R 01 G PRTRL 10 | )] S

To produce such D, we first partition {n — [+ 1,--- ,2n} into two disjoint sets A; and Ay
such that #(A;1) =n — [ and #(Az) = 2l. The number of ways to carry out this step is

(")

Then we use the elements in A; to make n — [ pairs with the numbers 1,--- ,n — [, there are
(n — 1)! ways to do this step. Finally, we pick a pair partition Dy on Ay together with the
earlier n — [ pairs to form a pair partition D € II,, —there are (22,11),! ways to finish this step.
By the Fubini theorem, one can see that the pair partitions D produced in such way satisfy
(5.31). By multiplication principle, there are at least

<n+l> (n—1) (20! (n+1)!

21 U T2l

pair partitions that make Equation (5.31) happen.
Write

n—I n—l
/(Rd)2(n_l) dXdY( H Y(Tg — yk))Qn—l(xl, e Ty, t,0) < H f(l/k:))

k=1
= <f®("_l),gnfz(',t, 1)) Een
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In summary,
n+l
n+1)! n—
B|( [ s@wn) sn_z(gn_l<-,t,o>)]>( D AR, a0
Therefore,

n=0

n

> { ) “2;||f||%<f®(”_l),gn—z(',t,0)>H®<nl>}
n=0 ~ [=0

{ i n!12n Hf\l?l”}{ i(f@’”,gn(-,t, 0)>H®n}

= exp {;Hfl%}{ i<f®”,gn(-,t,0)>mn} .

n=0

In view of (5.30), we have completed the proof of the lemma. [J

[

PROOF OF (5.27). Replacing f(x) by
fol@) = (0= 1) (- 1)1)7oa)

in Lemma 5.4 we get

o0

Lol b DoA™ gt 0

n=0

Ju(t,0)lp 2 exp{ — 50—
Set
tp=(p— 1)3%‘75?%2 .
First notice that
1pll3 = (0~ 1) 1715,
and by time change and homogeneity of v(-) and G(¢,x),

S S g1, 0))30n = S (L Gty 0) ) on
n=0 n=0

Hence,

Jutt 0)llp > exp{ — ZIFI3} S0 0n 1, 0o

n=0

t n
Z eXp{ - §p||f||%{}<f® 7gn('7tp70)>’H®" ) n= 071727' o

Let a > 0 be fixed but arbitrary. Take supremum over || f||% = a. The action can be taken
alternatively as f is replaced by a f and supremum is over || ||y = 1:

t
632 ut.0)lp 2 exp{ = Fa'fa" s (7" gulstp O

t d—a
:exp{ — §pa2}a"tp2 " sup {(f®", gn(-,1,0))pen ,
(| £ll=1
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where the last step follows from the scaling property
(5.33) sup (f®" gn(-,t,0))pyen = £ sup (2" gn(-,1,0))0n,  VE>0.
I £ll3=1 I £ll2=1

Here we should mention that the supremum should be taken over the functions f with
|| fll% = 1 and f > 0 where the constraint “f > 0 is inherited from Lemma 5.4. We removed
“f > 0” from the above discussion as g, (-, 1,0) > 0 and therefore

sup <f®nagn('7t? 0)>H®" = Sup <f®nvgn('at>0)>7'l®"‘
1f]|2=1 Il fll#=1
f=0

Let 0 < 6 < 1 be fixed but arbitrary. Multiplying (1 — 6)8™ on the both sides of (5.32) and
summing up both sides over n =0,1,2,---,

t - izay, n
634 Nult.0lly 2 (L= exp{ = Fa?} 32007 " sup (7" 90,1, 0))nen-
n=0 n=l

On the other hand,

/ dteit sup <f®n7gn('7t70)>7'[®"2 sup / dt€7t<f®n7gn('7t70)>7'[®"
0 Ifll=1 Ilf]l+=10

n —1

= sup /(Rd)ﬂ@"(d&)(Hf(f)(@))£{1+\§£j!2} ,

[ f1l2=1 k=1

where
FUNO= [ e fa)do
R
is the Fourier transform of f and the last step follows from a treatment similar to the one
conducted in (5.18). In view of the scaling identity (5.33), this inequality can be written as

sup <f®nvgn('7170)>'H®"
[Ifll2=1

0o -1 n n n 9 -1

> —t “TTand ®n(q < F > {1 . }

>(/O e 't t> fsipl/(Rd)u (d2) kl;ll (&) kl;[l +‘j§&‘

n

:r(1+4;an)_l sup /(R(i)li@n(df)(klillf(f)(fk))H{1+’§€j’2}

-1

| fll2=1 k=1
By (5.19), (5.20) and the Stirling formula

4—a

1 IMI2N =
liminf —log(n!) = sup <f®”,gn(-,1,0)>H®nZlog(4M > '

noee n [[fll2=1 —a

14—«
2

Hence,

1, dca
liminf —log» (fa)"t,* " sup (f*", gn(-,1,0))3e
P00ty At I £ll2=1

. 1 > _4-«a 2M1/2 4_7& H“T“n
> lim glogZ(n!) 2 <(9a)< 4_@) > tp

PpP—00
n=0

4—« 2ML/2\ 52\ 7o 21
= 2 = 4—a /2
5 <0a< R ) ) (Ba) e M2
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4—«

where the second step follows from (5.5) with v = and b= tp%a .

By (5.34), therefore,
1 1 2
liprgioréf 0 log [|u(t,0)], > —§a2 + (fa) T M2,
Letting # — 1~ yields
1 1 2
liprgggfglog [ut, 0}l > —5a* + ai=a M2,

Taking the supremum over a > 0 on the right hand side,

1 — AN
(5.35) liminf — log u(t,0)|, > 30‘( M ) .
p—oo 1

2 4—q«
By definition of t,, this is (5.27). [

6. Appendix.

6.1. Moment bounds for Brownian intersection local times. Let B(t), B1(t), Ba(t) be
independent d-dimensional Brownian motions.

LEMMA 6.1. Assume Dalang’s condition (1.6). There is a constant C > 0, independent
of n and t, such that

6.1) Eo [/Ot/otv(B(s) - B(r))dsdr]n <OtV )", n=1,2,--

(6.2) Eo[/ot/otw(Bl(s)—B2(r))dsdrrgC(n!)2(tVt2)", n=1,2

Zy = </Ot/0t'y(B(s)—B(T))dsdr>1/2, t>0.

To prove (6.1) all we need is the bound
(6.3) EoZP <nlC™(VtVH)", n=1,2,--

First, Z; is non-decreasing, almost surely continuous with Zy = 0. From (A.9), [9] Z; is sub-

PROOF. Write

additive: For any t1,t > 0, there is a random variable Z;_ such that Z;_ 2 7, and Z; is
independent of {Zs; s <t;}. By (1.3.7), p.21, [8], therefore,

Po{Zs, > a+b} <Po{Zs, > a}Po{Zs, > b}
for any tg, a,b > 0. Thus, for any integer m > 1,
Zy \"
eEoZt>

EoZ = (eIEOZt)"E()(

= (eEoZ;)"n / b IPy{Z;, > ebEoZ; }db
0

1 o9
= (eEOZt)"{n/ bnildb + TZ/ PQ{Zt > eb]EoZt}db}
0 1

o0 b—1
< (eEOZt)n{l + n/ bt (PO{Zt > €EOZt}> db} .
1
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The claimed bound (6.3) follows from the following estimation

> b-1 1 —b
/ prt (]P’O{Zt > eEoZt}> db < e/ b" e ’db = en!
1 0

and the bound ((A.6), Appendix, [9])
1/2 1/2
EoZ, < (EOZE) < (C(tth)) .

We now prove (6.2). Let W(x) be a Gaussian noise independent of B, B, By and having
covariance 7y(+). Conditioning on the Brownian motions

E[/;W(Bl(s))ds} [/;W(Bz(s))ds] :/Ot/otfy(Bl(s)—Bg(r))dsdr.

In addition, by the Cauchy-Schwartz inequality

IE{ /O tW(Bl(s))ds] [ /0 tW(BQ@))dS]
< {E[/OtW(Bl(s))ds]2}1/2{1@[/;14'/(32(3))413]2}1/2
:{/Ot/otfy(Bl(s)—Bl(r))dsdr}l/Q{/Ot/otfy(Bg(s)—Bg(r))dsdr}l/z.
Hence,

/ot/ot”Y(Bl(S) — By(r))dsdr g{ /Ot/ot’Y(Bﬂs) B B1(T))dsdr}l/2

t pt 1/2
X {// 'y(BQ(S)—Bg(r))dsdr} .
0J0
By the independence between By and Bo,

EO[/Ot/OtW(Bl(s) —Bg(?“))dsdr]n < {Eo[/ot/oty(B(s) —B(r))dsdr} W}Q
SEO[/Ot/Oty(B(s) —B(r))dsdrr

Therefore, (6.2) follows from (6.1). []

6.2. Hu-Meyer formula. Although Lemma 2.4 gives a way for us to show the existence
of a multiple Stratonovich integral we also need to know what kind general conditions to
impose on f so that its multiple Stratonovich integral Sy, (f) exists, namely the approximation
in (2.14) has a limit in £2(Q, F,P). If the multiple Stratonovich integral S, (f) exists in
L£2(Q, F,P), then according to general Ito-Wiener’s chaos expansion theorem it admits a
chaos expansion and it is interesting to find this chaos expansion. For this we shall establish
a Hu-Meyer formula along the line of [22, 23]. If f € H®" is a (generalized) symmetric
function of n-variables such that

Hf”%—[@" ::/(Rd)Qn f(mla' o 7xn)f(y1>' o ,yn)

Xy(x1 —y1) - Y(wp — yn)drrdy - - - drpdy, < 00,
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then its multiple [t6-Skorohod integral exists and is denoted by
)= [ H oW ) oW ).
Rd)n

where W denotes the Itd-Skorohod stochastic integral. To precisely define H®", we can
complete the set of all symmetric smooth functions with compact supports under the Hilbert
norm defined by (6.4). It is well-known that the Hilbert space H®" contains generalized
functions (see e.g. [28]).

Recall our definition (2.7) that W () = [p. pe(x — y)W (dy) = I1(pe(x — -)). From [21,

Corollary 5.1, Equation 5.3.15], it follows that the chaos expansion of [[}/_, Wx(xzy) is

n k
[[Wew= 3 S I/ pelos =99 2aloy — =)y

k=1 kSn/211<]1771k<]k /=1

Lok (Niy gy oo sinsje @me1 Pe(Tm — )

k
= Z Z H’Yze(xu —xj,)

k<n/2i1<j1,,ix<Jr £=1

(6.5) In—ok (i gy e inse @m=1 Pe(Tm — ).,

where

(i) The set of distinct elements i1 < ji,--- , i < j is a subset of {1,2,--- ,n} and the sum-
mation Zil i <iin is over all such distinct pairs;

(ii) The function A;, j, ... i, jr ®1—1 Pe(@m — -) is defined as the symmetrization of the func-
tion

H pe(xm - ym)
me[L,n)\{i1,51, yir,jr }

over the variables (ym; m e [1,n]\ {i1, 51, - ,ik,jk}), ie.,

n 1
Ail»jl:"' gt Om=1 Pe(Tm — Ym) = m Z H Pe(Tm — ya(m)) )

o me[L,n]\ {151, ir,dr}

where the summation is over all permutations o on [1,n] \ {41,741, - , ik, Jx }. When k =
0, in particular, we follow the natural convention that

1 n
Ailvjlv"'vikvjk ®%:1 pé(xm - ym) = a Z H pa(xm - ya(m)) )

Toexn, m=1

where Y,, is the permutation group on {1,--- ,n}.
(iii) I,—ox(---) is the multiple It6-Wiener (Itd-Skorohod) integral with the integration vari-

ables {ym, m e []_,’I’L] \{ilajla"' 7Zk:7]k‘}}

With the above chaos expansion (6.5) we see that the chaos expansion of the approximated
Stratonovich integral is

Suclh)= [, s [ .o ),

k=1

= Z Z /(Rd)nf(xl,--- ,xn)<£[1’72s(iﬁu - xje))

k<n/2i1<J1, " ,ix<Jk
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6.6) Ny — (A] e @1 De(m — ~))d:c1 e dn.

By the symmetry of f on x1,--- ,x, and with a combinatorial analysis as in [23] the above
equation can be written

! k
Sne(f)= > 2’%'(:——21@ n—2k (/(Rd)zn Flar,-an) [ e (wae1 — w20)

k<n/2 (=1

6.7) X H pe(zj —))dzy -+ dzy,
j=2k+1

Since the approximated multiple integral can be decomposed to finite sum of multiple
It6-Wiener integrals which are orthogonal, we see that the convergence in £2(Q, F,P) of
(2.14) is equivalent to that each of the multiple 1t6-Wiener integrals in (6.7) converges in
L£2(Q, F,P). Thus, we have the following theorem which is used to justify (2.19).

THEOREM 6.2. Let f € H®" be deterministic and symmetric. If the trace

TrF f(Yors1, o yn) = ilg(l] - flzy, - ,xn)H725($2e—1 — )
R)m =1
(6.8) X H pe(z ))day - - day,
j=2k+1

exists in HO"=2K) for all k < n/2, then the Stratonovich integral Sy (f) exists as an
L2(Q, F,P) limit of S, (f) as € — 0 and we have the following Hu-Meyer formula:
n!
6. w(f) = T, o(Tx"f).
(6.9) Sulf)= D sepin —amin-2+ ()

k<n/2

Conversely, if Sn-(f) is a Cauchy sequence in L*(Q, F,P), then the right hand side of
(6.8) is a Cauchy sequence in H®"=2K) for all k <n /2, whose limit is denoted by the left
hand side of (6.8) and Sy, .(f) converges to Sy, (f) defined by (6.9) in L*(Q, F,P). More-
over, if Sn.c(f) converges to Sy(f) in L2(Q, F,P), then this convergence also takes place in
LP(Q, F,P) for any p € [1,00). This means that S,,(f) is in LP(Q2, F,P) for any p € [1, 00).

REMARK 6.3. It is obvious that if f is the symmetrization of f , then by the above defi-
nition it is easy to verify that S,,(f) = S, (f).

PROOF OF THE THEOREM. Denote
gn,k7€(y2k+17 T ayn) = / xla y L H’72s T20—-1 _-r% H ps dxl ~dxy, .
(Re)2n J=2k+1
Equation (6.8) means ||gp ke — Tr” f|lgem-2r — 0 as & — 0. By the It6 isometry,
E|In—2k(gn,k,a) - n 2k:( kf)|2 E|In—2k(gn,k,a - Trkf>|2

=(n—2k)!|gn e — Tr* flI300-20) = 0
by (6.8). Equation (6.7) tells that S, .( f) converges to S, (f) given by (6.9).

(6.10)



STRATONOVICH HYPERBOLIC ANDERSON EQUATIONS 51
Now we assume that S,, . (f) is a Cauchy sequence in £2({, F,P). With our notation
Jn, ke WE Can write
n!
S = T =l [ .
n,s(f) Z Qkk!(n — 2](?)! n—2k (gn,k,e)

k<n/2

Thus, by the orthogonality of multiple 1t6-Wiener integrals,

2
E [Sn,e(f) - Sn,e’(f)}Q = Z <2kk'(n‘)‘> E [In—Qk (gn,k,a) - In—2k (gn,k,a’)]2

n—2k
k<n/2
n! 2 9
B Z <2kk'(n—2k:)‘> (n = 2k)!|gn.e = Gn ke 3gom-20 -
k<n/2 ) )

This can be used to prove the second part of the theorem easily.
Recall that if F' ="~ I,(f,) is the chaos expansion of F’, then the second quantization
operator (e.g. [21]) of a number « € [—1, 1] is defined as

T()F =Y a"In(fa).
n=0

Now for any p > 2, let a = 4 /p%l and let

" ) |:In—2k (Inke) — In_%(Trkf)} '

. n—-2k__ '
611)  Fae= Y (1/a) FKl(n — 2k

k<n/2

Then by the hypercontractivity inequality (e.g. [21, p. 54, Theorem 3.20], we have

(ElSnc(f) —Sn(F)IP)? = (BIT(0) Fynel?) P < (E|Fyncl?)?
1/2
|
=Bl 32 e ey [ () = Tnan (1) P

k<n/2
1/2

IN

E 1 2n—4k (n')2 ElI . T k 2
( /Ck) 22k(k')2((n — 2]{7)‘)2 |: n—2k (gn,k,a) n72k< I f)i|
k<n/2

which converges to 0 by (6.10). This proves the theorem. []
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