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In this paper, we investigate the hyperbolic Anderson equation generated
by a time-independent Gaussian noise with two objectives: the solvability and
intermittency. First, we prove that Dalang’s condition is necessary and suffi-
cient for the existence of the solution. Second, we establish the precise long
time and high moment asymptotics for the solution under the usual homo-
geneity assumption of the covariance of the Gaussian noise. Our approach is
fundamentally different from the ones existing in literature. The main contri-
butions in our approach include the representation of Stratonovich moment
under Laplace transform via the moments of the Brownian motions in Gaus-
sian potentials and some large deviation skills developed in dealing effec-
tively with the Stratonovich chaos expansion.
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1. Introduction. At the core of the development of stochastic partial differential equa-
tions (SPDE), there are two major concerns: the degree of tolerance of the singularity brought
by random noise and the impact of such singularity on the behaviors of the system. The for-
mer is to establish the solvability of the system under the best possible condition that controls
the roughness of the noises. The latter is to understand the system disorder (the phenomena
is also known as intermittency) caused by the singularity of the random noise. When the
noise is Gaussian, the system is often interpreted between the Skorohod and Stratonovich
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settings. The Skorohod solution is more accessible for quantitative analysis and is more tol-
erant to noise singularity, while the Stratonovich one is more physically relevant but harder
for precise mathematical treatment.

To study magnetic impurities embedded in metals, the physicist Philip Warren Anderson
[1] adds a multiplicative Gaussian noise to the heat equation. Due to its close links to other
physical models such as the KPZ equation [26], especially in the wake of the breakthrough
of [20], the study of this equation has been rapidly developed. Today, the equation is known
as the parabolic Anderson model in literature. We refer the interested readers to [10, 15, 22]
and the references therein for general information on this subject.

With the heat operator being replaced by the wave operator, there are some compelling
reasons for considering hyperbolic Anderson models. Instead of analyzing the rate of the
change du/dt of the stochastic system, the set-up of the hyperbolic Anderson models are
concerned with the acceleration of the system evolution (especially for the models relevant to
the Newton’s second law). Deterministic hyperbolic equations arise from acoustics, electro-
magnetism, fluid dynamics and many other fields (e.g., [14, 18]) and have been extensively
studied until present. For the hyperbolic equations in a random environment, in particular, the
hyperbolic Anderson model, we point out the publications [3-6, 12, 13, 16] for an incomplete
list of recent development on the study of hyperbolic Anderson models. Compared with the
parabolic Anderson models, much less has been known for the hyperbolic Anderson models
due to (partially, at least) the absence of Feynman—Kac formula that allows the representation
of the parabolic solution in terms of Brownian motions.

In this paper, we consider the hyperbolic Anderson equation

2
0 %(r,x):Au(t,x)—i—W(x)u(t,x), (t,x) e RT x RY,
u(0,x) =ug(x) and E;—Z(O,x) =ui(x), xeR?

run by a time-independent, mean zero and possibly generalized Gaussian noise W (x) with
the covariance function

(1.2) Cov(W(x), W) =y(x —y), x,yeR%

As a covariance function the nonnegative definiteness of y (-) implies that it admits a spectral
measure 1 (d€) on R uniquely defined by the relation

(1.3) y(x)szdeif'm(ds), xeR?.

Throughout this work, we assume that y(-) > 0 and d = 1,2, 3. The system is set up
in Stratonovich regime in the sense that the product in (1.1) is interpreted as the ordinary
(instead of Wick) one. Equation (1.1) will be approximated appropriately by classical wave
equations run by the smoothed Gaussian noise W, (x). We shall provide the details of the
construction of the solution in Section 2.

Our first concern is the condition to ensure the existence of solution. It is often formulated
in terms of the integrability of the spectral measure p(d£). In the Skorohod regime, where the
product between W(x) and u(¢, x) in (1.1) is understood as the Wick product, the condition
([4], Theorem 1.6, [12], Remark 3.4) that (1.1) has a unique solution is

(14) /R d(ﬁf@@@ - .

Back to the Stratonovich regime and still in the time independent setting, Balan [3] recently
proved that in the dimensions d = 1, 2 equation (1.1) has a solution if

(1.5) /};@(%@lz)mmds) < c0.
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In the setting of time-space Gaussian noise, Chen, Deya, Song and Tindel [13] establish the
existence/uniqueness under a condition comparable to (1.5).

Our first main result is to obtain the best condition for the existence of the solution, which
is to remove the square root in (1.5). We can also allow the spatial dimension to be three as
well.

THEOREM 1.1. Letd =1, 2,3 and assume that ug(x) =1 and u;(x) =0 in (1.1).

(i) Under Dalang’s condition,

1
(16) Lo i gands) <oe.

equation (1.1) has a solution in the sense of Definition 2.1 given in Section 2.
(ii) If equation (1.1) has a square integrable solution u(t, x) that admits the Stratonovich
expansion (see (2.10)) for some t > 0, then Dalang’s condition (1.6) must be satisfied.

Roughly speaking, the system (1.1) in Stratonovich regime can be viewed as a randomiza-
tion of the deterministic wave equation

2
(1.7) %(I’x) = Au(t,x)+ f()u(t,x), (t.x)eRT xRY,

0
u(0,x) =up(x) and 8—1:(0,x)=u1(x), x e R4

with a deterministic potential function f(x) on R¥. To this regard, it is hard not to notice
the stochastic representation constructed by Dalang, Mueller and Tribe [16]. We devote Sec-
tion 3.3 below to address this link and to add some new elements to the representation theory
for wave equations.

Our next topic is the intermittency of the equation (1.1). Here, the word “intermittency”
refers to the phenomena (caused by the singularity of the noise) that the solution u(z, x) (or
lu(t, x)|) takes predominantly low or modest values in the space R¢ with rare but endless
exceptions of sudden and impulsive high peaks. The mathematical definition of intermittency
is based on the asymptotic behaviors (see Remark 1.3 below for details) of the moments

Eu”(t,x) and Elu(t,x)|’

ast — oooras p— 00.
In the next theorem, we assume the homogeneity for the covariance structure:

(1.8) y(ex)=c %), xeR%c>0

for some o > 0. Taking f(A) = (1 + 22)~!and v(d€) = u(d§) in [12], Lemma 3.10, yields

1 dp
1+,02 pl—a

1 00
Lo T epnas) =ants e g < 1)
as far as either of the above two sides is finite. This shows that under the homogeneity (1.8)
on the noise covariance condition, Dalang’s condition (1.6) becomes “a < 2.” In addition
(Remark 1.4, [12]), the fact that y (-) is nonnegative and nonnegative definite (for being qual-
ified as covariance function) requires that « < d. Further, the only setting where “o =d” is
allowed under @ < 2 is when o« = d = 1, or when y (-) is a constant multiple of Dirac function
(i.e., W is a 1-dimensional spatial white noise, see Corollary 1.4 below for intermittency in
this case).
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THEOREM 1.2. Under the homogeneity condition (1.8) with 0 <o <2 Ad or with a =
d = 1 and under the initial condition ug(x) = 1 and u1(x) =0, the following limits hold.

7(, 3—q e 2MV2\ T

(1.9) lim =3¢ log EuP (¢, x) = ap§Ta< )3 =12,

1—00 2 44—«

N 3o aa (2MV2\ T
(1.10) pll)ngop 3o logE|u(t, x)|P = 3 t3—a(4_a) vt >0,
where

5 9 1/2 )
(L11) M=sup{(/ y(x - 1gAn)g <y>dxdy) - [ 9500l dx}
gery L \JRIxRE Rd

and

Fu= {g IS Wl’z(Rd); A;d|g(x)|2dx = 1},

where W12 is the Sobolev space consisting of the functions f € L>(R?) such that V f €
L2(RY).

REMARK 1.3. Intermittency is defined with slight difference in literature. The most re-
strictive version requires the limit in (1.9) to exist for all p = 1,2, ... and to have a super-
linear growth in p. Intermittency can also be defined similarly for fixed ¢ > 0. Therefore,
(1.9) and (1.10) implies that under (1.8), the system (1.1) has an intermittent solution.

An interesting special case is when W(x) (x € R) is a white noise that symbols the deriva-
tive of a two sided Brownian motion W (x) on R. The corresponding covariance y (-) = §o(-)
is the Dirac delta function and the spectral measure pu(d§) = d&/(2m) is a multiple of the
Lebesgue measure on R. In this case by [8], Theorem C.4, page 307 (with p=2and 0 = 1),
we have

143

Thus we can write the following.

COROLLARY 1.4. When W(x) (x € R) is a 1-dimensional white noise

1 ;/3
L =32 P _ 142 3 _
(1.12) tl_l)rgot logEu (t,)c)_2 4p , p=1,2,...,
(1.13) lim p~3/logE|u(t x)|"—l 35302 Vi >0
‘ ool £ N 2V4 '

In Skorohod regime [4], the high moment asymptotic theorem takes the same form as
(1.10), while the long time asymptotic theorem takes the form

4—a

2MV2N 5
4—«a )

(1.14) lim t_g_glogE|u(t,x)|p:3;ap(p—l)3la<
t—00 2
for p > 2.
We now comment on the possibility of more general initial conditions. First, notice that the
expansion (2.10) in the next section is resulted from the iteration of the mild equation (2.1).
Due to the fact that G(¢,x) > 0 and y(-) > 0, the type of algebra carried out in Section 2
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concludes that forany p =1, 2, ..., Eu”(t, x) is monotonic in uo (¢, x) (defined in (2.3)). By
comparing uo(t, x) with 1, therefore, one can reduce the problem to the setting ug(x) =1
and u(x) = 0. In this way, the workable conditions on ug(x) and u#{(x) can be the ones that
produce the needed bounds of ug(z, x). We refer an interested reader to Proposition 2.6 [12]
for some existing treatment.

We now mention some new ideas that are introduced in this paper. As usual, the solution
can be formally written in terms of Stratonovich expansion (2.10). Therefore, the level of
investigation is largely determined by our capability of handling the Stratonovich multiple
integral S, (g, (-, 1, x)) (see (2.12) for its definition) for fixed n and for large n as well. To
this regard, the most significant observation made in this paper is the moment representation
given in Theorem 3.3 that associates the study of S, (g, (-, f, x)) to the problem of Brownian
motions in Gaussian potential. Another notable input is the algorithm development related
to the Wick’s formula (2.15), which is crucial to, among other things, the establishment of a
moment inequality (Lemma 5.4) for the lower bound of the high moment asymptotics given
in (1.10). Last but not least, some skills on large deviations and Laplacian transforms are
developed for dealing with Stratonovich expansion.

Unfortunately, the idea of moment representation developed in this paper does not work,
at least in its current form, in the setting of time-dependent Gaussian noise where W (x) in
(1.1) is replaced by a time-dependent Gaussian noise W (z, x). This subject remains widely
open and challenged and we leave it to future study.

Here is the organization of the paper. In next section (Section 2), we introduce the mul-
tiple Stratonovich integral and formally express the solution as Stratonovich expansion. In
Section 3, we establish the Stratonovich integrability for the functions g, (-, ¢, x), develop the
Fubini theorem for the multiple Stratonovich integration and represent the Laplace transform
of the multiple Stratonovich integral S, (g, (-, ?, x)) in terms of Brownian motions in Gaus-
sian potential. Section 4 and Section 5 are devoted to the proofs of Theorem 1.1 and 1.2,
respectively. Some relevant results about the moment bound of Brownian intersection local
times and about multiple Stratonovich integrals are provided in the Appendix.

2. Stratonovich expansion and approximations. As usual by the Duhamel principle,
the mathematical definition of the hyperbolic Anderson equation (1.1) will be the following
mild form:

t
2.1 u(t,x)=uo(t,x)+ /]Rd [/0 G(t—s,x —y)u(s,y) ds}W(dy),

where

(i) G(t, x) is the fundamental solution defined by the deterministic wave equation

82—G(t x)=AG(t,x)
2.2) a2 T ’

G
G0,x)=0 and E(o,x)=50(x), xeRY,

(i1) uo(t, x) is the solution to the deterministic part of equation (1.1):

0
@y w0 = [ SGCx =) dy+ [ G —yun()dy.

Under the initial condition given in Theorem 1.1 and Theorem 1.2, ug(¢, x) = 1.
(iii) The stochastic integral on the right-hand side of (2.1) is interpreted as Stratonovich
one (see discussion below for details).
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2.1. Green’s function. The fundamental solution G (¢, x) associated with (2.2) plays a
key role in determining the behavior of the system (2.1). Let us recall some basic facts.
Taking Fourier transform in (2.2), we get the expression for the fundamental solution
sin(|€]7)

&l

in its Fourier transform form. In the dimensions d = 1, 2, 3, the fundamental solution G (z, x)
itself can be expressed explicitly as

(t,&) e RT x R?

(2.4) /R G, x)e ¥ dx =

1

RGED d=1,
I i<

2.5) Gi,x)=]——F—"—==, d=2,
21 /t2_|x|2
1
— o,(dx), d=3,
4m‘6t( %)

where o;(dx) is the surface measure on the sphere {x € R3; |x| = ¢}. We limit our attention to
d =1, 2, 3 in this work because the treatment developed here requires G (¢, x) > 0. A scaling
property we frequently use (especially in the proof of Theorem 1.2) is

(2.6) G(t,x)=t"“9"VG(1,r %), (1,x) eRT xR

2.2. Stratonovich integral. Before giving the definition of the mild solution we need to
give a meaning to the Stratonovich integral appeared in (2.1). We shall do this by smoothing
the noise as follows:

@7) W) = [ WOIpey—x)dy, o> 0.x <Y,

where p.(x) = QQme)~4/2 exp(—%) is the heat kernel [This specific mollifier p.(-) of the
noise is not critical. Instead, one can pick the mollifier i (x) = e 4h(ex) for any rea-
sonably good probability density A (x) and the results are independent of the choice of the
mollifiers.] The covariance of WS (x)1is

(2.8) E[We () We ()] = 2 (x — ),
where v, (x) = [ga ¥ (2) pe(x — z) dz. Given a random field W (x) (x € R?) such that

/d W(x)We(x)dx € L2(Q, F,P) Ve>0.
R
We define the Stratonovich integral of {W(x), x € R} as

(2.9) /Rd W (x)W(dx) 2 821})1+ /Rd W (x) We (x) dx

whenever such limit exists in £2(2, F,P). We can also use the convergence in probability
in the above definition. But as in most works on SPDE, £2(2, F, P) norm is easier to deal
with so that we choose the £?(2, F, P) convergence throughout this work. Notice that this
definition implicates that u(z, x) as a solution to (2.1) is in L2(Q2, F,P) forall (1, x) e RT x
RY. After defining the Stratonovich integral, we can give the following definition about the
solution.

DEFINITION 2.1. A random field {u(z, x), ¢ > 0, x € R?} is called a mild solution to (1.1)
if fé G(t —s,x — y)u(s, y)ds is well defined and is Stratonovich integrable such that (2.1)
is satisfied.
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To prove Theorem 1.1, we shall use the Stratonovich expansion (see [21, 23] and refer-
ences therein for the multiple Stratonovich integrals). Formally iterating (2.1) infinitely many
times, we have heuristically a solution candidate

(2.10) u(t,x) = Su(ga(-.1,x))

n=0
with So(go(-, ¢, x)) = 1. Here is how the notation S,(g,(-,?,x)) is justified: The iteration
procedure creates the recurrent relation

t
e SuileiCr) = [ 160 = sx =085, 30) ds | Wiy
Iterating this relation formally, we have
Sn(g}’l(a z, -x))

_ [/ er(t—rn,yn—x)---G(rz—n,yz—yl)]W(dyn---W(dyn)
(Rd)n [0,2]%

(2.12) n
= iy |:,/[0,z]’; dS(l_[ G(Sk — Sk—1, Xk — xk1)>:|W(dX1) W (dxy)

k=1

= gn (X1, X, 1, X)W(dxy) --- W(dxn) (say),

(R)n
where [0, 1] := {(s1, ..., sn) € [0, ¢]" satisfies 0 < 51 <52 <--- <, <}, and the conven-
tions xo = x and so = 0 are adopted and the above second equality follows from the substitu-
tions sy =t — rp—g+1 and xx = y—k+1 —x (k=1,...,n).

Thus, the notation “S;, (g, (-, ¢, x))” is reasonably introduced for an n-multiple Gaussian
integral of the integrand

n
(]_[ G (Sk — Sk—1, Xk — xk—l)) dsy -+ dsy
k=1

(n=1,2,...). In Section 3, the Stratonovich integrability of g,(-, ¢, x) shall be rigorously
established (see Theorem 3.8 and Theorem A.2 for Stratonovich integrability of general
kernels) and the Fubini’s theorem posted in (2.11) shall be mathematically ratified (Re-
mark 3.10).

The above argument gives us the impression that the existence of system (2.1) can be
implied by the convergence of the random series defined by (2.10) in certain appropriate
form. This will be justified rigorously in Section 4 after we have more understanding of the
multiple Stratonovich integral S, (g, (-, ¢, x)) with the specific kernel (2.13).

The multiple Stratonovich integration is defined as follows.

(2.13) gn(xl,...,xn,t,X)zf
[07111

<

DEFINITION 2.2. Let f: R" — R be measurable such that for every ¢ > 0,

/(Rd) flx,.. .,x,,)(l_[ Wg(xk)> dxy---dx, € L2(Q, F,P).

k=1
Then we define the n-multiple Stratonovich integral of f as

S0 = [

(RY

y fOa, o xp)Wdxy) - Wdxy)

(2.14) n
= lim f(x1,...,xn)(1_[ Wg(xk)>dx1---dxn

e—0Tt (Rd)n k=1

whenever the limit exists £2(2, F, P).
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REMARK 2.3. Along with the set-up of our model, the Stratonovich integrand f is given
as a measure in the dimension three (d = 3). Indeed [28], Definition 2.2 can be extended to
the setting of generalized functions f. A detail is provided near the end of this section for the
construction needed in d = 3.

The following lemma provides a convenient test of Stratonovich integrability that we shall
use in this work.

LEMMA 2.4. The n-multiple Stratonovich integral S, (f) exists if and only if the limit

lim E{/(Rd)n f(xl,...,xn)(l_[ Wg(xk)> dx1-~-dxn}

NS
e,8/—=0 k=1

X !/(]Rd)" f(xl,...,xn)<1—[ Wg/(xk)> dxj--- dxn}

k=1

exists.

PROOF. The existence of the limit in (2.14) is another way to say that the family
n
Ze = /(Rd)n Sfx, ---,xn)<]_[ Ws(xk)) dxy---dx,, €>0,
k=1

is a Cauchy sequence in £2($2, F, P) as ¢ — 0T, which is equivalent to the lemma. [

We refer to Theorem A.2 for the exact conditions on f so that the multiple Stratonovich
integral S, (f) exists in L.

Definition 2.2 can be extended to a random field f(xi,..., x,) in an obvious way. Most
of the time in this paper, however, we deal with a deterministic integrand and demand some
effective ways to compute the expectation of multiple Stratonovich integral of deterministic
integrands. To this end, let us recall an identity ([27], page 201, Lemma 5.2.6) known as
Wick’s formula, which states that

E]_[gk— > T1 Esgje

Dell,
(2.15) 2n 1 €M, (j.k)eD
E ] g=0
k=1
where (g1, ..., g2,) 1S @ mean zero normal vector, and I, is the set of all pair partitions of

{1,2,...,2n}. As a side remark, #(I1,) = (22,,'2, Applying (2.15) to gk = W, (xx) in the case
of deterministic integrand f, and taking the e-limit, we have

(2.16) E[/ f(xlwwaxZn—l)W(dxl)”’W(dx2n—1)] =
(Rd)Zn—l
and

E[/ f(xl,---,X2n)W(dX1)---W(dxzn)}
(Rd)zn

Z/ ( I1 V(xj'—Xk)>f(X1,...,xzn)dx1---dxzn

Dell, (j,k)eD

2.17)
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under the Stratonovich integrability on the left-hand sides. In particular, the expectation of a
(2n)-multiple Stratonovich integral is nonnegative if the integrand is nonnegative.

Since Dalang’s condition (1.6) encompasses the cases where the covariance function y (+)
exists only as a generalized function (e.g., y (-) = do(:) in d = 1), the meaning of the multiple
integral on the right-hand side of (2.17) needs to be clarified. Indeed, by (2.15),

2n
E F@rn o xon) [ Welxr)

(Rd)Zn k=1

= < ]_[ yze(xj'—Xk))f(m,...,xzn)dxl---den,

(Rd)Zn (j,k)ED

where we recall
v = [ yOIpelx =)dy. €>0.x R

Inspired by (2.14), we therefore define

/(Rd)zn( 1_[ V(xj_xk)>f(xl,...,xzn)dx1---den

(j,k)eD

2 lim /(Rd)Zn( [1 J/ze(xj—xk))f(x1,---,X2n)dX1---dX2n

5
=0 (j.k)eD

(2.18)

whenever the limit exists.

According to Theorem A.2 and Remark A.3, the £?-convergence in (2.14), Definition 2.2
implies the £7-convergence for any p € [2, 00). Consequently, for any integers I1, ..., L, > 1
and the /;-multiple variate functions f; (1 < j < m), the Stratonovich integrability of
f1, ..., fm implies the Stratonovich integrability of 1 ® --- ® f;, and

(2.19) Sttty (F1 ® - ® f) =[] S1; (f)-
j=1

According to (2.16), in particular,

m
(2.20) EJ]S;(f)=0 wheneverlj+---+1l, is odd.
j=1
Given two Stratonovich integrable functions f(xi,...,x,) and g(x1,...,x,), by (2.17)
and (2.19) (with m = 2),
ESn(f)Sn(g)
2.21
DS / L dx - dxzn( [T v, —xk>)f<x1,...,xn>g<xn+1,...,x2n>.
per, * ®D™ (j.k)eD

To end this section we take the chance to address an inconvenient fact from (2.5) where
G (¢, x) is defined as a measure rather than a function in d = 3-dimensional Euclidean space.
In this case, we can combine g, (x1, ..., X,,t, x) and dx1 - - - dx, together to have that

1 1
) (1‘[ oy (s dxk>) dsy -+ ds,

X1, ..., X, t,x)dx)---dx =/
&n(x n )dx; n a1 47 (st — sk1)

[0,7]

A
£ b (daxy -+ doy)
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defines a measure on (R3)", where o, (x, dy) represents the surface measure on the sphere
{ye R3; |y — x| = t}. For example, in defining S, (g, (-, t, x)) by (2.14), we use the conven-
tion

n n
. - i [,X “ e
/(HW gn(xl,...,xn,t,x)(]_[ Wg(xk)> dxy--- dx, _/(R3)’1<| [ Wg(xk))un (dxi -+ dxy).

k=1 k=1

It will be verified in the future that as ¢ | 0+, the above sequence converges in LZ(Q, F,P)
and the limit is denoted still by

/ gn(-xla"'a-x}’hta-x)”(d-xl)"'”(d-xn)
(]R3)"
with

2
B [ 80510t OW ) W)

- 2 /<R3>2"(

Dell,

(2.22)

H y(xj — xk))Mf{x(dxl e dx)pul dxngt, ..., dxoy),
(j.k)eD

and the integral on the right-hand side of (2.22) will be justified (Lemma 3.6) together with
dimensions d = 1, 2 by the approximation procedure proposed in (2.18).

3. Stratonovich moments. In the following discussion, B(¢), Bi(t), B2(t), ... are in-
dependent d-dimensional Brownian motions. We assume independence between W and the
Brownian motions and use the notation E, for the expectation with respect to the Brownian
motions with starting point x. We adopt the notation & = (g1, ..., &,) and € = (€41, ..., €2)
for g1, ..., &2, > 0 and set

3.1) Sn,g(gnc,r,x)):/

(RY)

ngn(xl, ---»xn,t,x)(l_[ Wé‘k(-xk)) dxl dxn-

k=1

For any pair partition D € I1,, set

F.n) = [

(]Rd )2n

dx - dm( T et — xk))
(3.2) (j,k)eD
X gn(xh ey xl’l’ t17 O)gn(xn—i-l, ceey x2n, t27 0)

Again,d =1,2,3.
3.1. Stratonovich moment representation.

LEMMA 3.1. Letn=1,2,.... Under Dalang’s condition (1.6),

(i) Foranyn>1,€1,...,6, >0and A > 0,

0
f e M8, (gn(-t,x))dt
0

3.3) /1

n proo )LZ no
=515 ——I]E/ dsy---d W. (B N
A B RS (e
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(ii) For any L1, Ay >0,

Rl A A D
/ / e M~ 222F€ ef(tl,l‘z)dtl dt
0 0 ’

Ao [ 1\2" /00/00 { )ﬁtl+)§tz}
<—=(= dty dt B
S -4 <2) o Jo 1anexp 2
x Eo dsy--- dsoy ]_[ ¥ (Bu(j)(s)) — By (s1)),

[0,[1]'2)([0,[2]’2 (j,k)ED

where the map v: {1,2,...,2n} — {1,2} is defined as v(k) =1 for 1 <k <nand v(k) =2
forn+1<k<n.
(iii) For any Ay, Ay > 0,

o[> A A D
lim /0 /0 e M~ ztzFe’e/(l‘l,tg)dtl dn

€,e—0

Mg (1\21 oo oo x%z1+x§zz}
=——(= dt dt =
3.5) 1 (2> /0 /0 1 zexp{ 7

x Eo . , ds1e-dson [T v(Bui)(sj) — By (s0)).-
[0,£1]% x[0,] (jkyeD

REMARK 3.2. Under Dalang’s condition (1.6), the intersection local times (Lemma A.1,

9D
I3 1) 1 15}
/0 /0 y(B(s) — B(r))dsdr and /0 /(; y(Bi(s) — Ba(r))dsdr, t1,tp>0

are properly defined, so are the multiple time integral on the right-hand sides of (3.4) and
(3.5) in the spirit of Fubini’s theorem. By Lemma A.1, the moments of the intersection local
times have (at most) polynomial increasing rate in #1, ;. Consequently, the right-hand sides
of (3.4) and (3.5) are finite for any A, Ay > 0.

PROOF. The reason behind (3.3) is the simple fact that
® L o d
3.6) / e MG(t,x)dt = 5/ et pt,x)dt, xelR
0 0

for any A > 0, where p(z, x) is the density of B():

! Jx? + o Rd
p(l‘,X)—WeXp{—y}, (t,X)GR x R%.

Indeed, both sides have the same Fourier transform

. o o0 1 t 1
/ elEx |:/ e MGt x) dt:| dx =/ e M sin |5 dt = — 5
R4 0 0 13 A=+ &
1 oo 1
- 5/0 e_)“zt/zexp{—§|é|2t}dt

_ iex[1 [ 2
= e e p(t,x)dt |dx
R4 2Jo

for every £ € RY,
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Recall the identity (Lemma 2.2.7, page 39 in [8])

%) n n %)
(3.7) / e—“/ dsy - dsy [ | orlsk — se—1) = 27" ]‘[/ (e M dt
0 [0, k1’0

k=1

with the convention so = 0. Using it twice,

o
/ e_)”’gn(xl,...,xn,t,x)dt
0

o0 n
=/ dle—“/ dSl"'dsn(l_[ G(sk—sk—l»xk—xk—l))
0 [0,712

k=1

n 00
k=1
N g [ a2
= <5> A 1_[/0 e p(t, xp — xp—1) dt
k=1

— S ce S S S —_ ,x x —_ .
) _2 0,61 1 n k k—1, Xk k—1

k=1

Hence,

* _a
| e Snclear ) s

o0 n
= dte_M/ dxy---dx,gn (X1, ..., Xy, t, X W, (x
| oy A1 dn )(1‘[ o m)

k=1
A1\ [ A2
=—<—) / dtexp{——t}/ dsy---dsy
2\2 0 2 (0,11

X /(Rd)n dxy--- dxn(l_[ p(Sk — Sk—1, Xk —Xk—l)) (1_[ ng(xk))

k=1 k=1
Given (s1, ..., sp) € [0, t], the random vector (B(s1), ..., B(s,)) has the joint density

n
A
Fotvsn@1s oo xn) = T pOsk = sk—10 Xk — x3—1).

k=1
So, we have
n n n
/ dX(l_[ P(Sk = Sk—1, Xk —xkl)) (l_[ Wsk(xk)> =E, [ | We (B(st)).
@D\ k=1 k=1

This completes the proof (3.3).
By (3.8), we have

[ ait—an D
/ / e M- 2t2F€ o, n)dtdn
0 0 ’

My (120 oo oo A3t + A2e
=1_2(_) / / dtld,zexp{_M}/ dsi - dsy,
4 \2 o Jo 2 (0,711 x[0,221"

X/(\Rd)Zn dxl"'dx2n< 1_[ Vq—l—ek(xj_xk))

(j.k)eD
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X (P(Sl,m) [ pCsk—se—1.xx — Xk—1)>

k=2
2n
X (P(Sn+1,xn+1) [T plsk—se—1.xx— Xk—1)>-
k=n+2
For fixed (s, ..., $2,), the function

FOx, . xom) = (P(Sl, x) [ pCsk = sk—1. xx — xk—l))

k=2
2n
X (P(Sn+1,xn+1) [T plsk—sk-1.xx —xk—l))
k=n+2

is the density of the random vector (B1(s1), ..., B1(sn); B2(Sy+1), - .., B2(s2,)). We have

Rl A A D
/ / e M~ 2l‘zFé 6/(tl,l‘z)dtl dt
0 0 ’

AMAp (1\21 poo roo At + A3t
:1—2<_> / / dtldl‘zexp{_g}/ dsl"’dSZ}'l
4 \2 o Jo 2 [0,11]% x[0,52]%

xEo 1 vere(Buih(s)) — Bugy(s1)).-
(j,k)eD

By Fourier transform,

Eo [I ve+ea(Bogh(s)) — Bug(s0))
(jk)eD

= ( I1 u(déj,k))exp{— > Ej;rek@j,klz}

®RY"\(j e (j.k)eD

x Eo exp{i Z ik (Bugjy(sj) — Bv(k)(sk))}

(j,k)eD

= ( I1 M(déj,k))exp{— > Ej;rek@j,klz}

®RY"\(j yeD (j.K)eD

X eXP{——Vaf< > gk ( v(j)(sj)—Bv(k)(sk))>}-

(j,k)eD

We have
o0
/ / o—hn )uztzFD (t1, ) dt dtr
o Jo

MAy [1\21 poo poo A2+ A%t
=g(_) f / dn dtzexp{_M}/ dsi - ds,
4 \2 o Jo 2 (0,711 x[0,72]"

N [ (T wgo)en]- © 95 %e,0]

(jk)eD (j.k)eD

X CXP{——Var< > &k ( v(j)(sj)_Bv(k)(sk))>}-

(j.k)eD
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Therefore,

o[> A A D
/ / e M~ 2I‘ZFE E/(l‘l,tg)dtl dt
0 0 ’

A [1\2n poo poo At + A3t
51_2(_> / / dtldtzexp{—g}/ dsy--- dsyy,
4 \2 o Jo 2 [0,11]% x[0,52]"

X/(Rd)n( I u(déj,k)>e><p{—%Var< > Ej,k-(Bv(j>(Sj)—Bv(k>(Sk)))}

(j,k)eD (j,k)eD

My [1\21 oo oo A2t + A2r
:l—2<_> / / dtldtzexp{_g}ﬂio/ dsl”’dSZI’L
4 \2 o Jo 2 [0,¢11% x[0,12]

X H ¥ (Bu(j)(s7) — By (s1))-

(j,k)eD

We have proved (3.4). Finally, taking limit in (3.9),

[ =ty D
lim/ /0 e MNTRRES (11, 1) dty di

€,e’—=0J0

MAa [1\21 oo oo A2t + A3t
=g<_> / / dtld,zexp{_g}/ dsi -+ dsa,
4 \2 o Jo 2 [0,711% x [0, 121"

<[ (T e oo =5 var( X &0 (Bugy (6 = B0

(j,k)eD (j,k)eD
Ay [1\2 poo poo A2t + A3t
_ g<_) / / drydis exp{_g}
4 2 o Jo 2
x Eo dsy - ds ]_[ ¥ (Bu(j)(s7) — By (s1))-

[0,1‘1]"<X[0,l‘2]"< (j,k)eD

This proves (3.5). [

THEOREM 3.3. Under Dalang’s condition (1.6), the function g, (-, t, x) defined in (2.13)
is Stratonovich integrable in the sense of Definition 2.2. Furthermore,

© LA\ e 22 t "
(3.10) fo e tSn(gn(-,t,x))dt_EE<§)/O exp{—?t}Ex[/(; W(B(s))ds] dt

almost surely for any X > 0.

PROOF. We first explain the time integral appearing on the right-hand side of (3.10). It is
defined as

t t,
/ W(B(s))ds 2 lim / We(B(s))ds in 52(9, F, P, ®P),
0 =0t Jo
where the existence of the limit on the right-hand side is established in Lemma A.1, [9] under

Dalang’s condition (1.6). Conditioning on the Brownian motion B, it is a mean zero normal
random variable with the variance

t t
/ / y(Bs — By)dsdr
0 JO
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whose distribution does not depend on the starting point x of the Brownian motion. So, we
have

E@Ex[/ot W(B(s))ds}n

(3.11) n! ot 1 ‘
= 2n/2(n/2)!E0[/0 /0 V(Bs_Br)der:| when 7 is even;

0 when 7 is odd.

The above nth moment is finite ((A.1), Lemma A.1 below) foralln =1, 2, ... . Consequently,
the quenched moment

n

E, [/(: W (B(s)) ds}

exists almost surely. In addition, the bound provided in (A.1) in the Lemma A.1 makes the
right-hand side of (3.10) well defined for any A > 0.

Taking €] = - -- = €2, = § in (3.3), we have
/ Mg (gn(: 1 ))dt_k<1)n 1/ { )th E [/t ! (B(s))d ]ndt
nelgnC,t, ==|=) — expl ——1 E, W .
0 ¢ €\8 x 2\2/ n!'Jo P 2 0 s\78))as

We now let § — 0T on both sides. Notice that
n

[ n r o,
BEIS+EX[[) Wg(B(s))ds} =Ex[f0 W(B(s))ds| in L*(Q,F,P).

In addition, by Cauchy—Schwarz and Jensen inequalities,

2n

E{]Ex [/Ot Ws(B(s)) dsr}z <Ey® E[/Ot Ws(B(s)) ds}
< [ o] [ s+ Bo)as]| "y
=EO®E[/(: W(B(s))ds]zn

:Eo[/(;t /Ot y(B(s) — B(r))ds dri|n.

By Lemma A.1, the right-hand side has at most a polynomial increasing rate in ¢. By the
dominated convergence theorem, we have

) o0 22 ro, n o0 22 r o, n
51_1)r{)1+ A exp{—jt}Ex[/(; Wg(B(s))ds] cit:/O exp{—jt}Ex[/o W(B(s))ds:| dt
in £2(Q2, F,P).

The Stratonovich integrability of g, (-, ¢, x) shall be established in Theorem 3.8 below to
make sense of left-hand side of (3.10). By stationarity in x, all we need is the following
convergence:

(o¢] o0
Jim | e M Spe(gn(-,1,0))dt = /O e M Su(gnC,1,00)dt in L2(Q, F, P).

This is given in part (ii), Theorem 3.8. [
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COROLLARY 3.4. Assume Dalang’s condition (1.6). Let p > 1 and n > 1 be any integers.
Given Ay,...,Ap >0,

p p
/(.IRH)P dtl..-dtpexp!—ZKjtj} Z EHSlj(glj(.vtjaO))
j=1

Li+-tlpy=2n  j=1

3.12 (1)3n : H 4 / dr - dt : ixzt
. = — —_ —_ ex —_— 1

[Z/ f (B; (s)—Bk(r))dsdr:| :

j.k=1

where B(t), ..., By(t) are independent d-dimensional Brownian motions starting at 0.

PROOF. By Theorem 3.3,

p p
-/(‘]R*')I’ dtl..-dtpexp{—ijtj} Z HSlj(glj("tj’o))
=1

L4+, =2n j=1

=y Hf S (g1, (17, 0)) d

li+-+p=2n j=1
p ; p 1 00 B t l;
- ¥ 1—[_J< )’ ]‘[_/ dre X?l/zEOU W(B(s))ds]j
p L 2\2 -1t Jo 0
1+ Hlp=2n \j= j=1
1 2n [/ P A
:<_) 1_[_] f dtl"'dtp
2 = 2 ) Jw+yr

p

xexp{ IZ }(2;1)' [Zf (Bj(5)d Tn,

where the last step follows from Newton’s multinominal formula. By the fact that condition-
ing on the Brownian motions,

Zf (Bj(s))d

is normal with zero mean and the variance
4 1ot
> / / v(Bj(s) — Bi(r))ds dr
j=1’0 Jo

we have

2n

2n)! Zj "
(3.13) [Zf W(Bj(s))d } (2”) [ f / (Bj(s) — Bk(r))dsdr] .

Thus, we have proved (3.12). [
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COROLLARY 3.5.

(1) Forany A1, A >0,

o0 [ee)
/ / dty dize ™1V 2EES, (g, 11, 0)) Sy (g0 (- 12, 0))
0 0

1IN" A1 A2 kztl + k%tz
3.14 == dn dr _
G149 (4) 4 <n')2f f ! zexp{ 2 }

xE® Eo[/o W (B (s) ds}n[/otz W(Ba(s)) dsr.

(2) Forany e = (€1, ...,€,) and € = (€11, ..., €nm),

o0 o0
/ / dty die T RRES, (g,( 11, 0))Sp.e (g0 (1 12, 0))
(3.15) 0

0 o0
< / / dty diye 1 2RES, (g, (-, 11, 0)) Sy (g0 (- 12, 0)).
0 0

PROOF. (3.14) is a direct consequence of Theorem 3.3. By the definition of S, «((g,(:,
t,x)) given in (3.1),

ESne(gn( tlvo)) ne(gn( thO))

2n
= E (Rd)Zn d-xl e dengn(xlv R} -xl’lv tl ’ O)gn(xl’l-l—]a L) x2n, t27 O) 1_[ Wék(xk)
k=1
-y f die dxzn( [T e ra; —xk))
pert, Y R (jk)eD
X gl’l(-xla AL ] xn, lla O)gn(xn+l» oo 7~x2na t2’ O)
= > FE.(t.n),
Dell,

where the second equality follows from the Wick’s formula (2.15) with g; = Wek (xx) and
Fge/(tl, 1) is given in (3.2). By (3.4), we see

o0 0
f / dty dire M1 RRES, (g0 11,0))Sner (g0 (- 12, 0))
0 0

Ao [1\21 poo poo xzz A3t
4 2 0o Jo 2

x Ko Z/ . , s dsoy [T v(Bugh(s)) — Buy(s)).-
Dell, [0,£1]% x[0,2]™ (jkyeD

For any permutation ¢ on {1,...,2n} with ({1, ...,n}) ={1,....,n}and c({n + 1, ...,
2n))={n+1,...,2n}

Z/ o dsiedsa [T v(Buy o) — Bu (o)
DeTl, [0,711% x[0,12] (j,k)eD

= Z/ dsy--- dsay, l_[ ¥ (Buj)(s7) — By (s1))-
Derl, [0,172 x[0,22] (j,k)eD
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['herefore,
E f ) s1--- dsa, H ¥ (Bu(j) (8) — Bugr (s1))
per,, ¥ (011 x[0.]% (jb)eD
!2 Z / " n S- - dson H ¥ (Bu(j)(5) — B (s1))-
(n) perl, /100117 x[0.12] (e

A crucial observation is that

/ dsi - dsa ] v(Buiiy(s) — Buo(s0))
[0,[1]"><[0,t2]" (j k)GD

tj) [t
" f v / O (Bu(iy () — Bugo (r)) ds dr.

(j.k)eD

Applying the Wick’s formula (2.15) conditionally on the Brownian motions to the 2n-
dimensional normal vector
n n

(/Otl W(Bl(s))ds,...,/otl W(Bl(s))ds,/otzW(Bz(s))ds,...,/OQW(BZ(S))ds>

the right-hand side is equal to

no. nroet | n
E[/OIW(Bl(s))ds] |;/02W(Bz(s))ds} )
/O /O dny diye™ 1 REES, (g4(111,0))Sp.er (g0 (1 12, 0)

Aha (12 Azt A2t
4 \2 (n')2 2

x Eg ®EUO 1 vi/(zel(s))arsr[fot2 W(Bz(s))ds]n.

Finally, (3.15) follows from (3.14). [

In summary,

3.2. Stratonovich integrability and Fubini’s theorem. Recall that the function F 6,(1‘1 1)
is defined in (3.2).

LEMMA 3.6. Under Dalang’s condition (1.6), the limit

(3.16) hm F (11, 12)

€,6/—

exists for any n > 1, t1, to > 0 and any pair partition D € I1,,. Further, the limiting function
is continuous in ti, ty.

REMARK 3.7. In view of (2.18), Lemma 3.6 justifies the definition

[ e dxan( TT 0 =50 )Gt 11,0080 Gt X20012,0)
RS (j.k)eD

A L.
=hm/ dxy---dx ( Xi—X )
Ry 1 2n l_[ Ye(x;j k)

+
e—>0 (j,k)eD

X gn(xl, ---,xn,tlvo)gn(xn-l—l» ---7x2n’t2,0)-
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PrROOF. Clearly, Fepe,(tl, 17) is nonnegative, nondecreasing and continuous on R™ x R*.

By (3.5), Lemma 3.1, the limit

% =ty gD
lim‘/o /0 e M- ztzFé’G,(h,tz)dt]dtz

€,e/—0

exists for any Ay, Ax > 0.

By continuity theorem for Laplace transform [25], Theorem 5.2.2, therefore the function
F, GD (t1, 1) weakly converges to a nonnegative, nondecreasing and right continuous function
FP(t1,12) on (RT)2, that is,

lim FZ(n,0)=FP (1, 1)
€,e'—

for any continuous point (¢1, #2) of F? and

[ =t D
lim /0 /O e MNTRREE (11, 1) dty diy

€,e/—0

o0 [o° A A D
:/ / e M~ p (11, ) dt dr.
0 0

(Actually, Theorem 5.22, [25] is stated for probability measures on (R*)“. The case of gen-
eral measures on (R+)d can be derived as in the proof of [19], Theorem 2a, Section 1, Chap-
ter XIII. Although this theorem only considers measures on R its extension to (R1)? is
routine).

To establish the existence for the limit in (3.16) and, therefore, to complete the proof, all
we need is to show that FP(¢1, 1) is continuous on (R1)?2 so

(3.17)

(3.18) lim OFfef(n, n)=FP(t1,1) V1,0 >0.

€,e/—

We shall do it by establishing
(3.19) lim sup{FX. (t1.n) — FX..(t1 — 81,10 — 82)} =0.

81,8,—07F €€
Write
D
Fg’e/ (tl ) t2)

- dxl---dxzn< I ye,-+ek<x,~—xk>)

o dsy--- dsy,
) (j.k)eD

/[O,tll'i x[0,n2]%

X (G(Sl, x)[[Glsi = si-1. 51— xl—l))

1=2
2n
X (G(Sn+1,xn+1) [T GGt —si-1. 3 —Xk—1)>
k=n-+2

=& (10,1112 x [0,12]2)  (say).

To prove (3.19), all we need is

lim  sup& ¢ ({[0, 11 x [0, 222} \ {[0, 11 — 811 x [0, 72 — 811" }) =0O.

81,8,—07F €€

By the extension G (¢, x) =0 for t < 0, we can extend & ¢ (-) from a measure on (R*’)’i X
(R™)™ to ameasure on (RT)" x (RT)" in an obvious way. Applying the general set identity

(A1 x A2) \ (B1 x By) = (A1 x (A2\ B2)) U ((A1\ B1) x A7)
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with B € A| and B, C A;, we have

{10, 1112 x [0, )2} \ {[0, 11 — 8117 x [0, 10 — 811}
= ([0, 112 x {[0, 2] \ [0, 22 — 821 }) U ({[0, 1112 \ [0, 11 — 811} % [0, £2]2)
C (10, 111" x {[0, 21 x [12 — 82, 21}) U ({0, 617571 x [t — 81, 111} x [0, 12]™),

where the above second step follows from the relations

[0, 51" \[0,2; — 81" C [0, 61 x [1; = 8i, 1], i=1,2.

Indeed, “(s1,...,s,) € [0, 1] \ [0,#1 — 81].” means “0 <s1 <--- <5, <117 and “s; >
t1 — 81 forsome 1 < k <n.” Since s;,, > s; > t; — 61, we have (s, ..., s,) € [0, tl]’f] X [t —
31, 11].
Therefore, the problem is further reduced to
(3.20) lim supE o (10, 1% x [0, 2] X [12 = 8, 10]) =
€, €’
and
(3.21) SJim, sup e ¢ ([0, ] x [1p =8, 1] x [0, 1,]%) =
€, €’

Due to similarity, we only prove (3.20). By Fubini’s theorem,
Ee.e (10,112 X [0, 2] x [12 = 8, 12])

= dxy---dxy _1< . (x‘—xk))/ dsy---dsy,_q
(Rl ' (LEED/ Forrat (0,011 X[0,21%! !

X (G(Sl,xl) [1GG—sim1.x - xz—l))

1=2
2n—1

X (G(Sn+1,xn+1) [T GGt —si-1.x —xk—l))
k=n+2

o}
< [ Aoty ren, o =x) [ Gloan = 520120 = x20-1) dsan
h—

where 1 < jo < 2n — 1 satisfies (jo,2n) € D and where D’ € I1,,_ is given by D' =D \

(Jo, 2n).
By Fourier transform and Fubini’s theorem,

n
fRd dXonYej)+ern (X2n — X o) 5 G (s2n = 201, X2n — X20—1) dS2n
_ .
12—52n—1

= dxon Ve, +er, (Xon — Xjg) G(s,x2n — X2n—1)ds
/Rd Jocn 07 Jovitr—san_1—8)

12 —S2n—1
T e A

V(t2—520—1—6)

x [ explig - (ran = x4} G s, 20 = x20-1) .
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Using (2.4), the right-hand side is equal to

€+ € . =521
[, nasexpl =T P i oy i | [ ds

V(t2—S$2,—1—F)
X fRd exp{i& - (x2n — X20—1)}G (8, X2n — X20—1) dX2p

=51 Sln(|gls)

V(t2—521—1—F) t3

€jo t €2

= fo el =L EeP e et - wi

=521 sm(|§ |S)
szdes)VO ‘“"

V(t2—520—1—9) 13

ds

Notice that
/’Z‘S’Z"l sin([§]s) ds — cos(0V (12 — s2p—1 — §)|§| — cos(tr — s2,-1)[§]|
OV(—san_1—-8)  |&] &2
2 g2 —s20-1) =0V (12 — 524—1 — )
= —2 Sin
€] 2
. EI(t2 = $20-1) + 0V (12 — $20—1 — 95))
X Sin 2 .

By the bounds 0 < (f — s2,—1) =0V (2 — 52,1 —8) <8 and |sinf| < |6|
2=52n—-1 sin(|§s) 1
[, was)| [ SR as| <ansu(e =My +2 [ o ude)
R? Ov(—su-1—8) &l {Ig1=N} 1§ ]

for any N > 0.
In summary, there is a 8(8) > 0 independent of (¢, €’) such that
n
/Rd dXon Ve ter, (X2n — X jg) 5 G(s2n — S2n—1, X2n — X2p—1) ds2n < B(6)
h—

and that B(§) — 0 as § — 0T. Consequently,

Ee.e (10,1117 X [0, ]! X [12 — 8, 12]) < B(8) A (11, 1),

where

Ae,e/(tl )= /

(Rd)anl

dX1'--dX2n—1( [1 Vej—l-ek(xj_xk))

(J.k)eD’

n
X _/ AR dszn—1<G(Sl,X1) [1GG1—si-1,x - XI—1)>
(0,112 x[0,121%

[=2
2n—1
X (G(Sn+1,xn+1) [] Gi—si-1.x —Xk—1))-
k=n+2

To establish (3.20) and, therefore, to complete the proof, it suffices to show that

(3.22) sup A¢ e (11, 12) < 00.

€€
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Indeed, by a computation similar to the one used for (3.4),

o o0 ~ - -
f / e T A (8, D) dt di
o Jo

1 2n+1 rpo0 poo 5 l‘-i-f
< (—) / / dtdt exp{——}Eof dsy---dsop—1
2 o Jo 2 [0.12 % [0,7]%!

x [T vBug(sj) — Buy (1))
(j,k)eD’

for any €, €’. The above right-hand side is finite by the fact (Lemma A.1) that the moments
of Brownian intersection local times have polynomial increasing rates in time.

Finally, by nonnegativity and monotonicity of A, . (¢,7) in ¢ and 7, (3.20) follows from
the bound

o o0 ~
sup A¢ ¢ (11, 12) < exp{t1 + 12} sup/0 /0 e T A (1, T)dt di < oo.
6,

/
€,€ €,

This completes the proof. [

Keep in mind that the proof of Theorem 3.3 depends on the Stratonovich integrability of
gn(-, 1, x) and the £-convergence of the Laplace transform

o0
/ e M8y c(gn(t,x))dt ase—0
0
that are installed in the following.

THEOREM 3.8. Under Dalang’s condition (1.6):
(i) The L£2-limit
n
(3.23) lim / gn(x1,...,xn,t,x)<1_[ Wek(xk)) dxy--- dxy,
k=1

exists for any n > 1 and (t, x) € Rt x RY. Consequently, g, (-, t, x) is integrable in the sense
of Definition 2.2 and the limit in (3.23) is S, (g, (-, 1, X)).
(i) Forany A >0,

o0 o0
(324)  lim A e—*fs,,,e(g,,(-,t,x))dtzfo e M8, (gn (1, x))dt  in L2(Q, F,P).

PROOF. By Lemma 2.4, all we need is to show

(3.25) Jim ESye(8nC1,00)Sn,e(8n (11, ))
exists, where Sy, ¢ (g, (-, 7, x)) is defined in (3.1) and where €' = (€41, . .., €2,). We have

ESn,e (gn(" z, x))Sn,e/(gn(" z, x))

2n
= dxi - dxongn (X1, ..., X, 1,000 (Kng1, - o Xon, 1, OE( [ We, ()
(Rd)2n k=1

= Z / dxy--- dx2n< 1_[ Vej—l—ek(xj - xk))
Dell (Rd)Zn Gk
n Js )eD

X gn(xl, ,xn,t,o)gn(xn—l—l, ---,x2n,t»0)

= > Fl..n),

Dell,
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where the second step follows from the Wick’s formula (2.15) with gx = Wek (xr) (k=
1,...,2n). Therefore, the existence of the limit in (3.25) follows from Lemma 3.6.
We now come to part (ii). Notice that

o Ry
E|;/(; e Snyé(gn(-,t,x))dt—‘/(; e Sn(gn(-,t,x))dt]

2
o8} [ee}
=/0 /(; e MRS, (g4(-,11,0))Sp.e(gn (-, 12, 0)) dty d

oo roo
— 2/0 /(; e—)»(ll-‘rtz)ESn,e (gn(-, 1, 0))Sn (gn(., t, 0)) dt dt

o0 0
+ /0 fo e MRS, (g.(. 11, 0)) S (gu (- 12, 0)) 11 d1.
For the first term,

[ee] o
/ / dty dire M HIES, (g0(-+ 11, 0))Suc (g0 (-, 12, 0)) diy dis
0 0

R R YRE )
= Zf / e 1 2F€’€(l‘1,t2)dt1dt2‘
per, 70 0

In view of Remark 3.7, the function FP(¢1, 12) appearing in (3.18) is identified as

FD(tl,t2)=/ dX1~--dX2n< I1 )/(xj—xk)>
(Rd)Zn ok
Jj.k)eD
X gn(XI»---7xn,t1»0)gn(xn+l7---,x2n»t2ao)-

By (3.17) with A1 = A = A, therefore,
o0 o0
tim [ [ dn dtne OIS, (0011, 0) e (80, 12, 0)) di iy
0 0

e—>0

o o0
= dn dt e_k(“'m)/ dxi---dx < Xi—X )
> /0 /o 1dn gy 91 wl [T v&—x

Dell, (j.k)eD

X gn(xl» ---,xn,tl’o)gn(xn—kl, ---ax2n7t250)

o0 [ee]
- / / dty dire M HIES, (g,(-, 12, 0)) Sy (gn (- 12, 0)) d1y di,
0 0

where the last step follows from Stratonovich integrability stated in part (i) and the identity
in (2.21).
Using part (i),

ESn,e(gn(‘, 11, O))Sn (gn(-,1,0) = JEPOESn,e(gn('a 11, 0))Sn,e/(gn('a B, O))

By the fact that ES,, (g, (-, 1, 0))Sn (gx (-, £2,0)) > 0 and by Fatou’s lemma,
o0 [e.e]
timint [ [ dt1 dise MBS, (80111, 00)S (g 12,0)
0 0

e—0
[ —At1+12) 1im
> drydne minfES, ¢ (8,(-, 11, 0))Sn(8n (-, 12, 0))
0 0 e—>0

o0 o0
- f / iy dize™ ) Tim ESy (g1, 0))Spe (80 2. 0)
0 0 €,e/—

o0 0
_ / f dty dire M HIES, (g, (-, 11, 0))Sn (g -+ 12, 0)),
0 0

where we have used part (i) in the last two steps.
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Summarizing our argument,
oo oo 2
lim E[/ M8, (gn (-1 1,0)) di —/ e M8, (gn (- t,O))dt} —o0.
e—>0 0 0

This competes the proof. [

We now establish Fubini’s theorem for the multiple Stratonovich integral with the inte-
grand g, (-, 7, x).

LEMMA 3.9. Under Dalang’s condition (1.6), we have

lim S, X
18n n,s(gn( ))
(3.26)

t .
= [L([[ 60 =53 =08, 1(ga165. ) ds )Wy 02 dy

and

t .
(327) lim (/O G(r—s,y—x)sn_l(gn_l(-,s,y))ds)wgl(y)dy=Sn(gn<-,z,x>),

61—>0+ Rd

where the limits are taken in LP (2, F,P) for any p > 1.
REMARK 3.10. The identity (3.27) mathematically confirms the relation (2.11).

PROOF. Part (i) in Theorem 3.8 shows that S, (g, (-, ¢, x)) Ez—converges to S, (gn(,
t,x)) as € = (€1,...,€,) = 0. By Theorem A.2, this convergence also holds in L? for any
p > 1. Thus, the set

{|Sn,e(gn(’,t,x)) pvgl' e (0’ 1]9l =27 ad}

is bounded in L2 for any p > 1 (and for any fixed &; > 0), and hence it is uniformly integrable.
Therefore, by [2], page 297, Theorem 7.5.4, all we need for establishing (3.26) is to prove it
with the convergence in £!(2, F, P) instead. By the Fubini theorem,

t .
Suclento0) = [ ([ 66 =5y =08, 15(ga1 (o5 0) ds )Wy () .

where
SicrilgCorn)=[ [ s ds,
(]Rcl)n—l [O,Z]Z
n—1 n—1 .
X <]_[ G (sk — Sk—1, Xk —Xk—l)) [T Wer Gn) dxi
k=1 k=1
with notation & = (&, ..., &,). So, we have

Suc(ento0) = [ ([ 60 =55 = 08,m1(grm1 s, 30)ds )i ) dy

t
= [ ds [ [S11a(gn-15030) = Suct(8ao1 Cos )IWe, (DG = 5.y = x)dy.
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By the Cauchy—Schwarz inequality,

t .
B[S,.c(enot0) = [ ([ 60 =50y =081 (60m1os.30) ds ) 00y

t ) 1/2
{2 [Mas [ Sinele1Cos) = Sui(gmi GGG = sy —x)dy
t _ 12
X {]E/; ds/Iz&d]ng(y)FG(t—s,y—x)dy}
: 12
= {E [ dsBS,1.(00-1€05.0) = Sis (i (s ) [ Gl =,y =0y}

: 2012 1 172
x {E|W, (0|} {/ ds/ G(t—s,y—x)dy} ,
0 Rd
where the last step follows from the facts that E| ng MI?=E| ng (0)|? and
E[Sn—l,é(gnfl ('7 s, }’)) - Snfl (gn*] ('7 Sa y))]2
= E[Sn—l,é(gn—l(‘a s, 0)) - Sn—l (gn—l(', s, O))]2
Further,
/ G(it—s,y—x)dy=t—s
R4
We have the bound

t .
BlSuclento0) = [ ([ 66 =50y =081 (@015 ) ds )Wy )]
< Lo, 0Py [ Els.. 0) — S o)Pas|
_Et {E|W,, (0)]7} A [Sn—1.(8n=1(,5,0)) — Sp—1(gn—1(, 5,0))] ds
By part (i) of Theorem 3.8 (with n being replaced by n — 1),

llm O+E[Sn—1,§(gl’l—l(7 s, 0)) - Sl’l—l(gl’l—l($ s, 0)]2 = 07 0 S N S t.

In addition,
E[Sy—1(8n-1C.5.0) = Su1(gn-1(.5,0))]’
<E[Sy—1.:(8n-1C. 5. 0)]" +E[Su—1(ga—1(. 5. 0)]
<E[Sy-1,:(8n-1C.1,0)]* + E[Su1(gn-1C. 7, 0))].

By dominated convergence, we see

t
lim /0 E[Sy1 (g0—1 (25, 0)) — Sa1(gn_1(-»5,0))[2ds = 0.

£2,...,en—>07F

This proves the (3.26). Finally, (3.27) follows from (3.26) and Theorem 3.8. [J

3.3. Link to Dalang—Mueller—Tribe’s work. The discussion in this subsection does not
contribute to the proof of the main theorems in this paper. Rather, it helps the interested reader
to better understand the true nature of Stratonovich solution and provide a new representation
to the Laplace transform of the deterministic system (1.7) for possible future investigation.

Let N(¢) (¢t = 0) be a Poisson process with parameter 1 and {tx};>1 be the jumping times
of N(¢) with definition g = 0. The stochastic process X; (¢ > 0) is defined as follows: First,
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{X¢, }k>1 1s a random sequence whose finite-dimensional distribution of (X, ..., X, ) has
the conditional distribution (conditioning on {z1, ..., t,})

n
(H(Tk —7t—1) ' Gtk — Te—1. Xk —xk—l)) dxy---dxy

k=1

Set X, = Xo = x. The process X; is defined as the linear interpolation of {X, }i>0.
Dalang, Mueller and Tribe (Theorem 3.2, [16]) prove that the function

N(t)
(3.28) u(t,x) =e'E, [uo(l — N Xoye) [ [ (e — Tk—l)f(th)}
k=1

solves the wave equation (1.7), where ug(¢, x) appears in (2.1). For the purpose of compari-
son, we consider the case when ug (¢, x) = 1 and write

o0 n
ut,x)=>y_ e'P{N(1)=n}E, []_[ (tk — =) f (X7 )|N (1) = n}
n=0 k=1
lJ’l
= Z —Ex {H(rk — 1) f (X)) [N (1) = n}
By the classic fact that conditioning on {N (¢) = n}, the n-dimensional vector (ty, ..., T,) is
uniformly distribution on [0, 7]",

(3.29)

u(t,x) = Z /0 " /(Rd)n dxi---dx, (kl:[] G (sk — Sk—1, Xk —xk—l)) kljl J (xx)
—Z/ ”'dxngn(xlyw-axn:t’x)Hf(xk)
R k=1

with the convention sp = 0 and xg = x. Comparing this with (2.2) and (2.12), we see the
deterministic root of stochastic model (1.1) in the Stratonovich setting.
Similar to (3.10), the same computation leads to

~ n
/ e—m/ dxl...dxngn(xl,...,xn,t,x)Hf(xk)
0 (Ra’)n k=1

) [ ool S o]

Summing both sides over n, we obtain the following representation:

00 A [0 22 !
(3.31) /0 e‘“u(z,x)dr:ifo exp{—?t}E exp{Z/O f(B(s))ds}dt

in the sense that finiteness of one side leads to finiteness of the other side, and to the equality.
The classic semigroup theory (see, e.g., Section 4.1, [8]) claims an asymptotically linear
growth of the logarithmic exponential moment

(3.30)

1 t
logExexp{E/Of(B(s))ds} (t — 00)

for a class of functions f. In this case, the right-hand side of (3.31) is finite for large A.
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On the other hand, the representation (3.31) unlikely makes sense for the stochastic wave
equation (1.1). Under the assumption in Theorem 1.2, we have [9]

1 rt.. 2
logExexp{E/O W(B(s))ds}~C(y)t(logt)4a a.s.

for some constant C(y) > 0 as t — oo. So, (3.31) almost surely blows up for any A > 0 when
f () is replaced by W (-) (or, when the deterministic system (1.7) is replaced by our model
(1.1))

4. Proof of Theorem 1.1. PROOF OF THEOREM 1.1. To show that the Stratonovich
expansion (2.15) converges in £2(S2, F,P), by the triangle inequality and by the fact that
u(t, x) (if defined) is stationary in x, all we need is

(4.1) S UE[Su(gn (1, 0)]7} 7 <00 V1> 0.

n

The procedure starts at Corollary 3.5. By the Cauchy—Schwarz inequality,

o, n o, n
E®E0UO W(B1(s)dS] [/0 W(Bz(S))dS}

n o, 2n11/2 n . 2ny1/2
§{E®Eo[/0 W(B(s)ds] } {E@Eo[fo W(B(s)ds] }

_ {Eo[fotl /0” y(B(s) — B(r))ds dr]n}l/z{Eo[/(;tz /Otz y(B(s) — B(r))ds dr]n}l/z.

Let ¢ > 0 be fixed. Taking A = A, =nt~! in (3.14), Corollary 3.5 yields

/0/0 dtldtzexp{—é(tl+t2)}IE[Sn(gn(-,tl,O))Sn(gn(.,tz’O))]
Qn)! [ n\2/1\3" oo oo 2
S(n!)2<5> (5) fo /0 dfldfzexp{—ﬁawtz)}
ot ny1/2 th rh ny1/2
X{EOUO /0 V(B(s)_B(r))de”} } {EOUO /0 V(B(S)—B(r))dsdr} }

= %(%)2(%>3n{/000 dfexp{—;—:zf} (Eo[/o;/(jy(B(s) — B(r))ds dr}n)l/zr.

Recall ((1.5), Theorem 1.1, [11]) that under Dalang’s condition (1.6), the limit

_ 1 1 ri rt
lim :log]Eoexp{?/(; /0 y(B(s)—B(r))dsdr}

t—oo I

exists and is finite. This means there is a constant C such that

Eoexp{%/(j/ofy(B(s) — B(r))ds dr} <exp(Cf}.

By the relation,

! Pt n | (7T
Eo[/o /0 J/(B(s)—B(r))dsdr} SEoexp{?/O /0 J/(B(S)—B(r))dsdr}

nlin
for any 7 > 0, we have the bound that is uniform in 7 and n:

EO[/(:/;;/(B(S) _ B(r))ds dr]n < nli" exp(Ci).



STRATONOVICH HYPERBOLIC ANDERSON EQUATIONS 2171

ool [ morana] )

00 2 . B 4t2 n+1
< (n!)l/Z/ exp{—%t}t"/zdt = (n!)1/2(—2) r(g + 1>.
0 n

Hence,

Thus, by the Stirling formula we get the bound

= n c" 2n+4
(4.2) /0 fo drdn eXP{—;(ﬁ +t2)}E[Sn(gn(-, 11,0))Sn(gn (-, 12,0))] < .
By the fact that the moment

IE[Sn (gn('» 1, 0))Sn (gl’l('v n, 0))]

is nonnegative and nondecreasing in #; and 7, we have
o0 o0 n
/0 /0 dt dlzexp{—;(fl +t2)}E[Sn(gn(-,t1,0))Sn(gn(-,t2,0))]dl1 dn

2 [e.e] 0 n
= B[S, (euC.t. 0N [ [ dndnexp{ "0+ }ar a
t t
tz —2n 2
=3¢ E[Sn(gn(-,2,0))]".

Comparing this with (4.2), we get the bound
2_C) w2
(4.3) E[Sy(g.(,1,0))]" < T = 1,2,...

This leads to (4.1) and, therefore, to the £2-convergence of the Stratonovich expansion in
(2.10).

In view of (3.15), the bound (4.3) remains true for IE[S,Le(g,,(-,t,O))]2 for any € =
(€1,...,€,), thatis,

Ccr
E[Sn,e(gn('at70))]2 < n—$t2n+2, n—= 1,2,...

forany ¢ > 0. Let €3, ..., €, — 07 on the left-hand side. By (3.26), Lemma 3.9,

2 c
<2 om0
~ n!

@d [ ([ 605y =0Sii(emiCos ) ds )i 01y

foranyn=1,2,...,any ¢t > 0 and any ¢; > 0.
To show that {u(¢, x)} is a solution in the sense of Definition 2.1 and, therefore, to complete
the proof of part (i) of Theorem 1.1, we only need to show:

(1) For any ¢t > 0 and x € R4, the random field Vi) = fot Gi—s(x — y)u(s,y)ds is
Stratonovich integrable, or

tim [ ([ G =y nas)weray = [ ([ Gimste =y s )wi

e1—0t JRd

in £2(Q, F,P).
(2) Equation (2.1) is satisfied with ug(z, x) = 1.
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Because of (4.3) and (4.4), to show (1) and (2) one has only to show that for all fixed
n =1, fga(fo Gios(x — ¥)Spi—1(gn—1(. s, ) ds)We(y)dy converges to S,(gn(-,1,x)) in
£2(Q2, F,P). This is done in Lemma 3.9, equation (3.27).

To prove part (ii) of Theorem 1.1, all we need is to show that Dalang’s condition is neces-
sary for

E[S2(g2(, ¢, O))]2 <00

with any ¢ > 0. Indeed,
E[S(g2(-,1,0) ]

=y /deldxzdxsdm( I1 V(Xj—Xk)>gz(x1,xz,t,O)gz(xs,x4,t,0)
per, Y R Dell,

> /(Rd)4 dxydxydxzdxsy (x1 — x2)y (x3 — x4)g2(x1, x2, 1, 0)g2(x3, x4, 1, 0)

2
= (/ y(x2 —x1)g(x1,x2,¢,0) dX1dXZ)
(R9)2
and
/ y (k2 — xD)g(x1, x2, 1, 0) dxy o
(R9)?2
- dsldsz/ Y (2 — x)Gs1, x1)G (52 — 51, %2 — x1) dx1 doxa
[0,112 (R4)2

= ( G(sl,x)dx) (f y(x)G(s2 —sl,x)dx> dsids»
[0,/12 \/R4 R4

sin(l£](s2 — 1))
o sl[ [, = u(dé)] ds,

n(d§) tsl |:/0t_SI sin(|&s2) dsz] ds)

~Jre gl Jo

[, e

Clearly, the finiteness on the right-hand side leads to Dalang’s condition (1.6). [J

REMARK 4.1. By the moment bound (4.3) and by the expansion (2.10), we get the mo-
ment bound

(4.5) Eul(r, x) < e
Using the equality (3.12) instead of (3.14) and slightly modifying the estimation in this sec-
tion, one can extend (4.5) to the £,-bound

(4.6) E|u(t,x)|p§CeCP’2, p=12....

Notice that g‘%g <2 for 0 < o < 2 and that the equality holds if and only if o = 2. It shows
that without assuming homogeneity (1.8) one still can have some moment bound for the
solution that is weaker than what is offered in Theorem 1.2 (where a < 2).
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5. Proof of Theorem 1.2. From the expansion (2.10) and the stationarity of the
Stratonovich moment in x, a formal algebra leads to

00 p 00 p
Eul(t,x)=7 Y  E[[S;ec.0)=> > E[]S;(g.10),

n=001++lp=n j=1 n=01lj+-+lp,=2n j=I

where the second equality follows from the fact (2.20) that

P
ETT S (g,¢.1.0)=0
j=1

whenever /1 + --- + 1), is odd. Moreover, the expansion for Eu” (¢, x) appears as a positive
series. Consequently, Eu” (1, x) > 0.

Mathematically, under Dalang’s condition (1.6) the Stratonovich expansion (2.10) con-
verges in L7 (2, F, P) for any p > 0. Indeed, it is enough to exam this for all even numbers p.
This follows from the estimate

N+m p 14
El Y Si(en.1.0)] = > > E[]S;(enC.t0).
n=N+1 n2n>N+11+-+p=2n j=1

Therefore, the claimed £”-convergence relies on the fact
00 p
Z Z EHSIJ(glj(J,O))<OO,
n=010j++lp=2n j=I

which appears as a direct consequence of (5.1) and (5.3) below.
By (1.8) and (2.6), in addition, one can verify that

p 14
G Y, E[]S;(eCno)=:4" 3 EJ]S,(s,¢.1,0) Vi>0.
Lttlp=2n  j=1 htotp=2n  j=1
Therefore, foreach p=1,2, ...,
00 P
(5.2) EuP(t,x) =) t(““")”( > ETIsyec, 1,0)))
n=0 lL+-+Hp=2n j=1

whenever the series on the right-hand side converges.

PROOF OF THEOREM 1.2. First, we claim

P
Jlim % log(n!)3_“( Z E l_[ St (g1, ¢ 1, O)))

(53) 11+~~-+l,,=2n j=l

1 3—« 2M 1/2\ 4—«
-le(z) o (5)
2 4 —q
for each integer p > 1. In next subsections, we shall prove the upper bound part of this claim
in (5.15) and the lower bound part in (5.22).
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After we established (5.3), the proof of (1.9) is easy and can be seen through the following
computation: From (5.2) and then (5.3), it follows

lim ¢~ log B (7, x)
=00

: —4za O —a)n o
= Mim ¢ walogy 1 )( > EHSlj(glj("l’O))>

n=0 li+-+p=2n j=1

54 e ke PG R INE B e DML/ 4—ay n
=%t ng(nm—“((E) P (4—a) )
n=0
3—« 4_a<2,/\/ll/2)§_5
— p3—a s
2 4 —q

where the last step follows from the following elementary fact of the asymptotics of the
Mittag—Leffler function (Lemma A.3, [4]):

VW < LAY,
1 —1/y — Y
(5.5) Jim b 1ogn§) i yel’v, 98>0

with y =3 — o and with b = 14+~
The proof for the upper bound of (1.10) is given in (5.7) of Lemma 5.1; and the lower
bound is established in (5.27). [

5.1. Upper bounds of (5.3) and (1.10).
LEMMA 5.1.  Under the condition in Theorem 1.2, we have the following statements:
(1) Forany Ay,...,Ap>0and p=1,2,...

1 1 P
limsup — lo —/ dty -+ dt,expy — Ait;
pulog o, , p! jX::l ./J]

n—oo N n!

p
(5.6) X( > EHSzj(gz,-w,O)))

Li4Hp=2n  j=1

o d—ady ATllogri?
<log2M™2 + > Z _21 / —-
j=1 A Tt A

(2) Foranyt > 0,

o 3o aa (2MV2\ T
(5.7) limsupp_éfalogE|u(t,0)|p < at§1a< )3 :
P00 2 4—a

PROOF. The proof starts with the moment representation in Corollary 3.4. On the right-
hand side of (3.12), we perform the estimation by Fourier transform

p tj 17
Z/O fo y(Bj(s) — Bx(r))ds dr

jk=1

p tio.
:/ M(dé)‘zfjelgﬂf(”ds
R4 =170

2
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p . t 2
2 lj 1/1 i&-Bj(s)
= (t cee -t d _— ivd
(t1+-+1p) fRdu( 5)2._:t1+---+tptj e s
j=1
)4 1 rti . 2
S(tl+"'+tp)§ fj/ w(d€) _/ e Bi) gy
= R4 t;j Jo

= LB Bi(r)dsd
_(I1+"'+tﬁ)j25/o /0 v (Bj(s) — Bj(r))dsdr

d P 24 pl pl
:(l1+-'-+tp)j§tj2 ./0 /0 y(Bj(s) — Bj(r))dsdr.

The advantage of the above inequality is to replace the sum of dependent quantities by the
sum of independent ones, where the last step follows from scaling

tj tj 4—a 1 1 .
/0/0y(Bj(s)—Bj(r))dsdritj2/()/())/(Bj(s)—Bj(r))dsdr, j=1,...,p

and the independence of the Brownian motions.
Combining the above result with (3.12) gives

p p
/(R+)P dtl..-dtpexp{—ijtj} Z Enslj(glj('vtj70))
j=1

Li+-4lp=2n  j=1

" —, - .« e —_—— A e n
S(2> (J];[ 2>./(R+)P dt dtpexp{ 22)‘jt}}(tl+ +1p)

j=l1
n

P 20 pl pl
(5.8) x Eq thz /(; /0 y(Bj(s)—Bj(r))dsdr:|

j=1
= (ﬁ )”_f) <1>3n Z ! {ﬁEO[/lfly(B(s)—B(r))dsdr]lj}
i1 2/ \2 11+~~~+l,,:nll!"'ll’! j=1 0 Jo
n 1 2 52,
x/(w)p dry - dip(ty + -+ 1) eXp{—Ejgl)\.jtj}jl:[llj :

By [11], Theorem 1.1, we see
1 t pt 172
lim —logEOexp{</ / y(B(s) — B(r))ds a’r) }
t—o0 0 Jo

12 1
— sup {(f y(x — )82 (1)g2(y) dx dy) -5/ |Vg(x>|2dx}
geFq L \JRIxRI 2 Jrd
—27a M,
where the last equality follows from the one-to-one map F; —> F, defined as
_d_ 2
g() = 24701 g(247¢1 ())’ g (= Fd
By (1.8) and the Brownian scaling,

t t i 4% 1 1 B
fO/Oy(B(s)—B(r))dsdr—t /O/Oy(B(s) B(r))dsdr
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we can rewrite it as

1 —a 1 pl 1/2 .
(5.9) Jlim ;logEo exp{t44(/ / v(B(s) — B(r))ds dr) } =27 a M.

On the other hand, by Taylor’s expansion and the positivity of ¢ (-), we have

1 i, 1l n
(2n)!t Eo[/o /0 y(B(s)—B(r))dsdr]

< Eoexp{tw </01 /(;1 y(B(s) — B(r))ds dr>1/2}

=exp{(1 +o(1))27e M1} (1 — ).
For a fixed 6 > 0, taking t = 6n,

Eo[/l /1 y(B(s) — B(r))ds dr}n

< @m)1(On)~ T " exp{(1 + 0(1))277 M(9n))

= (1 +o(1))"(n)*/?4"9 tn exp{— n+(1+ 0(1))222aM9n}

as n — 0o, where the last step follows from Stirling’s formula. Thus,

1 1 pl n
im sup a2 _
lim sup — log(n!) EO[/O /0 y(B(s) — B(r))ds dr}

n—oo N

4 — « 4 —
S—Ta+log4+2m./\/19— alog@.

Picking the minimizer

yields

4—a
. 1 Cap2 1 pl n af M\ 7
lim sup — log(n!) Eo[/o /0 v (B(s) —B(r))dsdr] <log2 (4—a) :

n—oo N
Suggested by a referee, we provide the following instructive exposition on how we come
up with the idea t = On. Comparing the large deviations in (5.5) (with b = +*7* and y = ﬁ)
and in (5.9), by the Taylor’s expansion we believe the asymptotic pattern

n/2 n
—EO[/ / B(s)—B(r))dsdr] ~ ¢ —  (n— 00).

(nh) 5"

The rest is to find the dominant term(s) in the limit (from (5.5))
1 A (1" 4 4-q
tl_l)rrolo;logZC (n') =4_aC4 .

It is easy to see (by considering Poisson distribution, for example) that the domination occurs
4 4
at n &~ C#-«t, It therefore justifies the choice t = 0n with 6 = C~ 4«
Returning to our proof, we conclude that for any given 6 > O there is Cs > 0 such that

4—a

Eo[/(;] /01 v(B(s) — B(r))ds dr}l < C(;(l!)“/z((l + 5)2‘(%)7)1, I=1,2,...
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Substituting this bound into (5.8) gives

P P
f(Rﬂp dn.-dip exp{_ Z kjtj} Z E 1_[ S (glj(" 1j.0))
j=1

Li4-Alp=2n  j=1

(5.10) s(]ﬁ[%)(zam(%)%&)n > (f[a,-z)—z%“)

j=1 li+-+lp=n \j=1
2 | iy, 5%
2
X /(R+)p dty---dty(ty +- —I—tp) exp{——;)» tJ} U
For each (I1,...,1,), we can write the above multiple integral as
2— a
/ dry---dtp(ty+---+1p)" exp{——ZAzt]} Ht g
RT)P = =1
bl fi ol 45
- ¥ expl -3 Yo
Ktk pn kil--kp! J@rtyr i 2j=1
n! P < 2 )kj+%“lj+1 ( 2—«
2 J J
ky+-4kp=n kl!"'kl’!jzl A 2

In the sequel, we shall use the Stirling formula of the following form:
ne " <Tn+ 1) <ntel n=1,2,....
By using this type of Stirling’s formula and by routine simplification,

2—a

p i P 2a

li+-+lp=n \j=1 ]1
el P
) e
Jj=1 J

2

L kj + 25200\ 2 250,
) l—[ 2l 2

) ( ) ( ey ) ij o
7 L

ki+-- +/< =n j=1
ll+ +lp—n

4—a
5 n

§n!Cp<2

where C > 0 is a constant independent of n and p, and

1 1\ 11 .
Qj:<__|_..._|__> —, j=1,...,p.

2 2
AT Ap

It is straightforward to check that the Lagrange problem

p . .
maxiH(xJ—i_yJ) <xj+yj> Q;ﬁy’ X{ 4+ +xp,=n,
j=1 Xj Yj

2—«
2

andy1+...+yp= I’l,Xl,...,xP,yl,...,yp>O
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has the solution

x]' =9jn and yj =

Therefore, since 217:1 0; =1,

ﬁ(k +2°‘l) ( 2"‘1 )T/’Q;cﬁz%“lj
15"

2—
4 — yin P d—ay ., 4—aq\ 2" 2 7n P d—ag.,
—_ 2 I 2 Y
_( )(2 oe) Hef _( 2 ) (2—a) [Te;

uniformly over Iy, ..., 1, ki, ..., kp.
Summarizing our steps since (5.10) and noticing

=)

L+t p=n

we have the bound

p p
/(]R+)P dtl..-dtpexp{—ZAjtj} Z Enslj(glj("tj’o))

j=1 li+-+p=2n j=1
2/ P oy,
) (55 Gaea(:25) )
<cPm (™ 2(1 +8)( ——
(5.11) = ”( p—1 (,1;[1 2 S Py
4—a
P o1\ 2" P 4,
x<(4_a>zp [To.=""
j=1"%j j=1

This leads to (5.6) as § > 0 can be made arbitrarily small.

The bound (5.11) can also be used to the proof of (5.7). To see this, we can allow that
p tends to infinity only along integer points. This does not compromise the claim there by
the following interpolation argument: For any real and large p > 1, let (p/2) be the smallest
integer larger than or equal to p/2. Then, by Holder’s inequality we have

(Elut, 0)["}"/” < [Eu2P/? (1, 0)) 207

Thus, it suffices to show (5.7) along the positive integers p and with Eu? (¢, 0) instead of
Elu(t,0)|?.
By monotonicity of g, (-, #,0) in ¢,

p

li4tlp=2n  j=1

= Z EHSZ (gl (, mm tj,0>>

li+-+lp=2n j=1

:( 3 E]‘[Sl g,(,1,0))>(m_in tj)(4_“)",

lLi+-Hp=2n j=1 =J=p
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where the last step follows from (5.1). Thus,

p p
\/(‘R+)p dtl.“dtpexp{_ztj} Z ]El_[Slj(glj("atj’O))

j=1 Vlittip=20  j=1

d P 4—a)n
> > EJ]S;(e,¢.1.0) /(R+)p dty - di,exp —;rj (jmin ;)"

httlpy=2n  j=1 1<j<p

By the fact that given i.i.d. exponential times 7y, ..., T, of parameter 1, min;<;<, 7; is an
exponential time with parameter p,

p
(4—a) o
/ dt --- dt, exp{— th}( min t]> = p/ e~ Pl gy
(5.12) J®H? = ) isise 0
= p~ 4O D(1 4 (4 — a)n).

In summary, we have

p
Yoo B[] S;(e,¢.1,0)

Li4-Hp=2n j=1

P(4 a)n
< dty--- dt,
“TA+GE—am (R*)?
(5.13) ) )
Xexp{—zfj} > E[[S;(s,(1.0)
= L+-+p=2n j=I1
CCs\? (n+p— 1)2 nlpt—en i
<\ —= 20+ 65M2 )7,
_< 2 ) ( p—1 F(1+(4—oz)n)((+) )
where the second step follows directly from the bound (5.11) with A} =--- =X, = 1.

Using (5.1) and (5.2), we then have

CCs n+p— 1)2 nl(pt)@—n i,
P
Eu(t, 0)<( > ) ;)( b1 F(1+(4—oz)n)(2(1+8)M 2)

(20%(1 + HM'T)",

<<CC5 6 )2P°° nl(pt)-en
“\ 2 6-1 :OF(1+(4—a)n)

where 6 > 1 is arbitrary, and the second step follows from the estimate

) () )

By the Stirling formula, I'(1 + (4 — «)n) is replaceable by

(n!)4—0[ (4 _ O{)(4-—01)1’! .
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By the asymptotics of the Mittag—Leffler function (5.5) with y =3 —« and b = p*~*, and
being replaced by *7%(202(1 + 8)(%)4_“), we have
lim sup p_g%g log Eu? (2, 0)
p—>00

) 4a 00 (pt)(4—a)n 5 Ml/Z 4—a\ n
fpllggop 3—alogZW(29 (1+8)(4—0l) )

n=0
» M2\ 4y 75
=(3—a)t§—a<292(1+5)( ) )3 .
4—«a
Letting § — 0" and & — 17 on the right-hand side gives (5.7). O
We end this subsection by the following statement: First, taking Aj =--- =21, = 1in (5.6)
leads to

. 1 1 p 14
lim sup — log — dtl---dtpexp{—th}< Z EnSlj(glj(-,tj,O)))

! +
(5.14) "o o M JEREP =1V \y+d,=2n =1

§log2M4%a.

Second, applying (5.13) to the setting of fixed integer p > 1 yields the upper bound of
(5.3)

. 1 — L
lim sup - log(n!)? ( Z E H Si; (g,j G, 1, O)))
n—o0

(5.15) Li+tlp=2n  j=I

1\3—« IML/2\ 4~
<o) o (G)

4—«
5.2. Lower bound for (5.3). In this subsection, we start by the lower bound correspondent
to (5.14).
LEMMA 5.2.  Under the condition in Theorem 1.2, we have
1 1 14 14
lllnlgéf;bg_/@ﬂp dt1-~-dtpexp{—2tj} Z EHSlj(glj(-,tj,O))

|
(5.16) n =1 ) h+ea,=om =1

zlog2/\/l477a
forp=1,2,....

PROOF. Notice

p tj i Pt 2
. _ _ i&-Bj(s)
E /O /(; y(Bj(s) — Bk(r))dsdr _A;d M(dé)‘jil/o e ds

jk=1

_ » Ny -2
! o6 Bj(s)
> _/Rdu(dé)f(é)(;/o e ds)_

= é /R du(dé)f(é)( /O ’ eié~Bf<s>ds)
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for any nonnegative f (&) with

(5.17) L@ Puae =1,

Therefore, we have

EO[Z// (Bj(s) — Bk(r))dsdr]

Jj.k=1

2EO|:J2: /Rd M(dé)f(g)(/otj 6B ) ds>:|2n
Ity =2n I---1,! (Zn) ﬁ E [/Rd ,u(dg)f(é)(/(;tf AEBj©) ds)]lj

et X1

Lt tlp=2n j=1" B

j
a1 <ds>(1‘[ f@k))
k=1

Z& }

Taking A1 =--- =X, =1 in Corollary 3.4 and inserting the above computation into the
obtained expression yield

p p
/(R+)p dtl---dtpexp{—th} Z EnSlj(glj(-,tj,O))

j=1 Li++p=2n j=I1

1\?/ 1\ (2n)! 1 &
>(=) (= dt --- dt —= ) ¢
_(2> (2) n! /(RW’ : pexp{ 221

<Y Lo M‘X’lf(dé)(]_[ f@k))

li++Hp=2n j=1
(5.18) }

X / I ds 1_[ exp{ Sk 1
1\ P+3n 2n)!
> (5> LS| / o u®l’(dé)<]_[ f@k))

[0,¢;12
n!
lj+-+lp=2n j=1
2}

o —t)2 Sk — Sk—1
X./o dte /[O,z]li dsnexp{ —
1 p+3n mn)!
=(5) et s / . M®l’(d§)<]_[ f(sk))

k=1
n!
li+--+lp=2n j=1

xf i dsl_[exp{ sk :
[

Otj]< k=1

Zs,

lj
Zfi

i=k
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l:

1 p+3n 2m)! J
-(3) et Lo u®lf(ds>(1'[ f(&))]‘[

{1 )
: :
=20 j=1 - =12

1
|
i=k

:
\

1

1\ P+ (2n)! . (l" ) ’:
—(= w(dé§) f k) 1+
<2) Ny _ZnJI_II/R y ’El k];[‘
a2y -1
Y& }

i=k

pme(n+§) }
JA+ WA+ 15 +nP)

z'sl

By the computation in [7], (3.7)-(3.9),

lgln;ggfglogf ®”(dé)(]_[ f(&)) 1_[{1 +

k=1 k=1

(5.19) 2tog sup [ w@e)f@)| [ dn

lell2=1

A
=logp(f).
For a given § > 0, therefore, there is Cs > 0 such that

l l 1 2y —1
f(Rd)zﬂ(d@(l_I f@k)) 1_[{1 +2 & } > (1 =8p(N). I=12...
= k=1 =
Therefore,
14 1 -1
1_[/ dl M®l/(d§)<1_[f(§k)>1_[{l+ } chp((l—(S)p(f))Z”
j=l1 k=1 k=1

forany [y,...,l, >0 with [y +---+1, = 2n. In addition, by Stirling’s formula,

+n
T

Together with (5.18), one has

11 .
liminf—log—/ dtl---dtpexp{—th} Z EHSI-(gr("fj’O))
n—oo g n! J®+yr i P S J\SLj

> log2((1 - 8)p( /)%

Letting § — 0" and taking supremum over all nonnegative functions f satisfying (5.17) on
the right-hand side, we have

. ] 1 P P
I}lrgl(gf;loga/(wr)p dtl---dtpexp{—th} Z EnSlj(glj(-,tj,O))

=t =0 =1

2

> log2 sup u( 5)[/ dn pmen+§) ] .
lola=1 \/(1+|n|2)(1+|5+n|2)

Finally, the proof is completed by Theorem 1.5, [7] (with p =8 =2,0 =« and | - |~ being
replaced by y (-)) that states

pme(n+§)
J(l + 1)L+ [§ +nl?)

2 4—a
(5.20) | sup wu(d S)[ } =M.

pll=1/R4

This completes the proof (5.16). [
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Combining (5.14) with (5.16) yields

1 1 p p
lim —log—/ dtl---dtpexp{—th}( Z EnSl.(gl.(-,tj,O)))
(5.21) nmeen nt J@+r j=1 li4-A+ly=2n  j=1 Y
=log AMT
We are not able to establish the lower bound correspondent to (5.6) as A1, ..., A, are not
equal, nor is (5.6) with different Ay, ..., A, needed for the upper bound (5.15). The only
reason to keep possibly different Ay, ..., A, in (5.6) is for the installation of the following

lower bound that corresponds to the upper bound (5.15).

LEMMA 5.3.  Under the condition in Theorem 1.2, we have

.1 3 P
1},f2g%f;10g(”’) “( Z ]EHSlj(glj(-,l,O))>

(5.22) littHp=2n j=1
1 3—« 2M 1/2\ 4—«a
> log( = 4“"( ) .
st0g(3) r (G,
PROOF. We adopt some idea from the proof for the lower bound of Girtner-Ellis large

deviations (Theorem 2.3.6, page 44, [17]). The crucial observation made here is the concen-
tration behavior #1,...,1, &~ (4_7“)” (as n — 00) in a dynamics that creates (5.21). To show

it, we define the probability measures on (R1)? as follows:

Jadt - dipexp{—=(t1 -+ 1)} X oyt =00 BTG 81, (815G 1, 0))
Sy dtr---dtpexp{—(t1 + - +1p)} Zzl+...+z,,=2nEHf:1 Si;(g1;(-,1,0))
forn=1,2,.... Notice that for any 60y, ...,6, <1,

pn(A) =

[, X0 o+ Byt - )
B J@w+yp dti -+~ dtpexp{— Zle(l — O} 4ty =2n El_[le Si; (81,15, 0)))
f(R+)p dty - -- dt,exp{— 2_1;:1 tj}(le—i-u-—f—lp:Zn El_[_l,?zl Slj (glj (-, 1;,0)))

and the right-hand side blows up as long as 6; > 1 forany 1 < j < p.
By (5.6) and (5.21), we see

1
lim sup — log dty -~ dtpexp{01t) + - -+ Optp) pun(dty - - - dtp)
(5.23) n—oo N RH)P
<A@1....0)
for any (01, ...,0,) € R, where
d—a Ly (1—-6;)"2log(1 —0,)2
@y =0 TlosU=0) = ey g, <1,
AGr....0p):=1 2 ZA=0)7++1—0,)"
o0 otherwise.

By the upper bound of the Gértner—Ellis theorem (Theorem 2.3.6(a), page 44, [17]),

1
(5.24) limsup —log u,(nF) < — inf) FA*(tl, costp)

n—-oo N Iy tp)e
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for any close F C (R*)?, where

P
A*(l‘l,...,l‘p)z sup Zle‘j-A(@l,...,Qp) s l‘l,...,thO.

01,...6p<1 | ;2]

In fact, the statement of Theorem 2.3.6(a), page 44, [17] requires the equality in (5.23). How-
ever, a careful reading of its proof finds that (5.23) is sufficient for (5.24).

Finding the closed form of A*(¢y,...,6,) might not be easy. On the other hand, some
properties of A*(f, ..., 6),) as arate function exists even in the general context. For example,
A*(6y, ..., 0)) is nonnegative, lower semicontinuous and has compact level sets (goodness).
What is important to our purpose is that

4- 4-
(5.25) At ... 1p) >0 V(tl,...,tp);é( p“,..., p“).

Indeed, assume that A*(7q, ..., tp) = 0 for some (71, ..., t,). Then we have that

i9'l'<4_a2p: (1—6;,)"%log(l — ;)72
Pt S A U

for any 6y, ...,60, < 1. For fixed 1 < j < p, taking 6y = 0 for all kK # j, the above inequality
gives
4—a  (1-0)72

2 p—14+(1-6)2

(1-6)~?
p—14+0-0)2

0t; < log(1—60;)"2=(4—a) log(1—6;)""

for any 6; < 1. So, we have that

<@—a) a-0p= i1og(1—9,-)*1 as 0 >0
p—1+(1—-6,)726;
and
tj>(4—a) (=6) L og(1 =) as6; <0,
p—1+(1—-6,)726;
By the fact that

1
lim —log(1—6)"'=1
Jim 2 og( )

we have 1; = 4%“ (j=1,..., p). This shows the claim (5.25).
By (5.25), with the lower semicontinuity and goodness, we have

inf  A*(t,...,t 0
1n)¢G (f p) >

for any open neighborhood G of (4%“, s 4_7“). For any given small § > 0 taking
Gs— <4—a—6’ 4—a+5>1’
p p

and F' = G§ in (5.24) yields

. 1
limsup — log 1, (nG§) < 0.

n—oo N
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Consequently,

p p
[T B 303 (N5 SR § EXTRARTY
p ’ Jj=

p ll+~~-+lp=2n j=1

(5.26) » »
~ dtl---dtpexp{—th}< > IEHSlj(glj(-,tj,O))>
RT)P j=1 Lt-tl,=2n  j=I
as n — oo.
When (11, ...,1,) € (%n, %nﬂ?, it is easy to see that
. <4—o¢—|—8 <4—a+8 ; 1
; min 1y, =1,...,
I = p " 4—o—81<k<p ke J p

and by the scaling property (5.1) we have

p
Yo E[]S;(eC.t5,0)

li+-+p=2n  j=1

i 4—a+s
< > E[]Ssy (glj( ————— min g, 0))
=1

. — 0 1<k<
l+-+lp=2n 4—a—96 p

4 — o +8 )(4 an p
—— min ¢ Z ]EHSI.(gl.(-,l,O)).
(4 o — 6 1<k<p Li4-+l,=2n  j=1 Y

Therefore,
p p
/;n dmad - d-addyp div:-dip eXp[ Z } Z E H Sij (gn Gt 0))
p P j=1 h+-+Hp=2n j=1
4 o + 5 (d—ajn

p
5{ > ET]S;(e;¢.1.0)

Li4tlpy=2n  j=1 ] -

x/(R+)p dt1---dtpexp[ th
4 5 (4—a)n 1 (4—a)n
:{ 3 E]‘[S, (a1, . 10))}(%) <;> I(1+ (4 —an),

lLi+-+lp=2n j=1

(4 an
min IJ
1<j<p

where the last step follows from (5.12). Finally, (5.22) follows from the above inequality
together with (5.21), (5.26) and the Stirling formula. [J

5.3. Lower bounds for (1.10). In this subsection, we prove the lower bound part of (1.10):

—o 3 — O 4—« 2 M g%a
(5.27) liminf p~ & log E|u(z, 0)|” > t3vt< ' )
puinfpr e logBlu, OFF 2 == 33
It should be pointed out that the Gértner—Ellis type argument used for the proof of Lemma 5.3
is good only for fixed p. Different from the approaches used so far, the treatment below is
independent of the Stratonovich moment representation developed in Section 3.
Let H be the Hilbert space given as the closure of the space

(rimfom [ - fwsoddy <oof
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under the inner product

(f.8n= /ﬂ;ded y(x —y) f(x)g(y)dxdy.

The space H may contain generalized functions (distributions). For each integer n > 1, we
write H®" for the nth product with inner product

528 (foghuer= [

(]Rd )2n

dXdY(H y (X — yk))f(xl, cos Xn) (Vs oY)

k=1

LEMMA 5.4. Given any real number p > 1,

(5.29) Juct. 0], = exp| - IIfIIH} 17" g1, 0o
n=0

2(p

foranyt >0and f € Hwith f(-) > 0.

PROOF. Let g > 1 be the conjugate of p. By Holder’s inequality,
uz, x)||p > E[u(t,x)X]

for any random variable X with || X||, = 1. Take

= e [, reowian} ;lexp{/Rdfmwwx)}

—exp|~ 2171 fexo| [ | roowan .

Then for any f € H,
(5.30)

Jue. 01, = exp| 5111 | Bucr. 0exp] [ rowian)]
e -21113, é —E(/Rdf(x)vvwx))lsn (gni - z0>)}
el -1 i 2; 5( [, f(x)W(dx))lSZn (gon (- z0>)}
> expl 21713 é 2;1 (f df(X)W(dX)>152n—1(g2n—l(-,I,O))}
=exp{ 211 /1% é f( oy (/ f(x)W(dx))nHSn_z(gn_zo,t,0>)},

where the second equality follows from (2.20), and the second inequality follows from the
fact that all terms are nonnegative.
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Foreach 0 <[ <n, by (2.17) and (2.19),

E(/Rd f(x)W(dx))nHSn—l(gn—l(', 1,0))

2n
=]E gn—l(xl,---,xn—l»t,0)< 1_[ f(xk))W(dxl)W(dXZn)
®RD)? k=n—i+1
2n
= f ( y(x; —xk))gn_zm, e Xnto 1, 0)( I1 f(xk)).
pert, B (jkeD k=n—I+1

We now count how many pair partitions D € I, that make

(5.31)

2n
/dz dX( [1 V(xj—Xk))gn—l(M,---,xn—z,l,o)( [1 f(xk)>
(RE)=m (j,k)eD k=n—I+1

n—I[ n—I
=I£1% {/ 4y20-D XdY(l_[ ¥ (xk —yk)>gn—1(xl,---,Xn—l,t,0)<1_[ f(yk))}-

k=1 k=1

To produce such D, we first partition {n — [ + 1, ..., 2n} into two disjoint sets A; and A»
such that #(A1) =n — [ and #(A;) = 2[. The number of ways to carry out this step is

n+1
2l )
Then we use the elements in A; to make n — [ pairs with the numbers 1, ...,n — [, there are

(n — I)! ways to do this step. Finally, we pick a pair partition Dy on A, together with the

earlier n — [ pairs to form a pair partition D € I1,, —there are % ways to finish this step.

By the Fubini theorem, one can see that the pair partitions D produced in such way satisfy
(5.31). By multiplication principle, there are at least

n+1 / D! (m+D!
( 21 >(n_ TR

pair partitions that make equation (5.31) happen.
Write

n—l n—I
/ ) dXdY<H y (xk — yk))gn—l()m, e Xng, 1, 0)(1_[ f(yk))
®) P 1
= (f®(n_l), gn—l('a z, 0))7.[@(71—1) .

In summary,

E[(A&df(X)W(dx)>n+lSn—l(gn—l(‘sf,o)):| o ) WP g 1, 0)yysm -

Therefore,

i{ +l), 2( [, f(x)W(dx))"HSn_z(gn_z<-,t,0>)}

I\
M8
,—t— /-\
S

Zl,z, L1502, gt (o1, 0) )0 D}
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={§ Sl /13 Hi(f@gn(-,r,m)w]

n=0 n=0

_ exp{%||f||%}{2<f®", oo 1. Olrgon ]

n=0

In view of (5.30), we have completed the proof of the lemma. [
PROOF OF (5.27). Replacing f(x) by
—a+d) L
fr@) = ((p = D) D55 £ ((p = D) o)

in Lemma 5.4 we get

o0

1
Juc, 0], ZCXP{—mllfplli} D gn (ot 0)yyen

n=0
Set
L 4—a
ty=(p—)7ara
First, notice that

2 =202
I fpll3 = ((p = D)=l flI%
and by time change and homogeneity of y(-) and G (¢, x),

[e¢} o
Z( I?nygn('vtvo))’].[@m:Z(f@n’ g}’l('vtlho))’}.[@n'
n=0 n=0

Hence,

||M(t’0)||p Z exp{_%’“f“%-[} Z(f®n’ gl’l(’ tp7 O))H@n

> exp{__”f”’H}<f®n$gn( tp’ O)>H®"’ n :0, 1, 2, oo

Let a > 0 be fixed but arbitrary. Take supremum over || f||% = a. The action can be taken
alternatively as f is replaced by af and supremum is over || f ||y = 1:

||M(t O)” >exp{ 5 z}a Sup <f®n7gl’l('atp70)>7.[®n
Ifllx=1
5.32
( ) Ip 2| n 4%&” ®n
= exp _Ea a t[? Sup <f ) g}’l(’ 17 0)>H®Vla
Ifll=1

where the last step follows from the scaling property
4—a
(533)  sup (f®, 2. 1,0))pen=12" sup (f®", 8(-,1,0))pyen Vi>0.
If =1 =1

Here, we should mention that the supremum should be taken over the functions f with
|fllxg =1 and f > 0, where the constraint “f > 0” is inherited from Lemma 5.4. We re-
moved “f > 0” from the above discussion as g, (-, 1, 0) > 0 and, therefore,

sup (f", gn (o1, 0))pen = sup (&, gu(-,1,0))y0n.
IIfJﬂl{():l I fllx=1
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Let 0 < 6 < 1 be fixed but arbitrary. Multiplying (1 — 6)6" on the both sides of (5.32) and
summing up both sides overn =0, 1,2, ...,

(534)  Ju0), >(1—0)exp{ }Z(ea)” ”l sup (£, g 1, 0))yyon.

=1

On the other hand,

o0
f die™ sup (f®", gn(-,1,0))pen
I fll=1

o
Z Sup dte_t<f®n7 g}’l(7 t’ 0)>H®n

I fllag=170
n n 2y -1
= ®n (g )( F(f)( )) {1+ } ,
||fsip=1/<R">”M : kljl D& k1:[1 -

where
FO© = [ foodx

is the Fourier transform of f and the last step follows from a treatment similar to the one
conducted in (5.18). In view of the scaling identity (5.33), this inequality can be written as

sup <f®na gn(a 19 O))’H@n
2}—1

I fll=1
2}—1

o0 —1 n n
z(/o et Z"dt) sup M®n(d§)<k1:[l]'—(f)(§k)>n{l+

I fllg=17 ®RY) k=1

4—q \! .
=I(1 ®n(d F
(1+%5%) [ <s><k1:[1 (f)@k))

By (5.19), (5.20) and the Stirling formula,

n

D&

Jj=k

]i[{1+

k=1

1 B 2 M1/2\ 52
l£ngg%f—log(n!)47 sup (f®”,gn(,1,0)>7.l®n>10g< M ) "

n Ifll=1 -
Hence,
4—a
11m1nf—10g Z(Ga)"t 2" sup (f®",g,,(-,1,0))H®n
n=0 /=1
D TR < G e M2\ TFEN aey,
Zplimmglogrg(n!) ((ea)( a) ) t
baf, 2MIPNTNE
= 9 = 0 pr— /2’
Se(G=) ) et
u
where the second step follows from (5.5) with y = *5% and b =1," .

By (5.34), therefore,

.. 1 1 2 2 1/2
hpn_l)loréfglognu(t,O)”pz—Ea + (Ba)F=a M/,
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Letting 6 — 1~ yields

.1 L, 2 n
lllnlggfglogHM(t,O)sz—ia +aF=a M~
Taking the supremum over a > 0 on the right-hand side,

4—a

3 —a(le/z)sa

1
(5.35) l%rgicgfglogﬂu(t,o)\\pz s\,

By definition of ¢, this is (5.27). [

APPENDIX

A.1. Moment bounds for Brownian intersection local times. Let B(t), Bi(t), B2(t)
be independent d-dimensional Brownian motions.

LEMMA A.1. Assume Dalang’s condition (1.6). There is a constant C > 0, independent
of n and t, such that

t t n
(A.1) Eo[/o /0 y(B(s)—B(r))dsdr] <CmH*@ve)', n=1,2,...,
(A2) Eo[/t/ty(Bl(s)—Bz(r))dsdr]n <cm)2(tvid)', n=12,....
0 Jo - ' o

PROOF. Write

ropt 1/2
Z,= </ / y(B(s) — B(r))dsdr) , t>0.
0 Jo
To prove (A.1), all we need is the bound
(A.3) EoZ' <n!C*"(Vtvt)", n=1,2,....

First, Z; is nondecreasing, almost surely continuous with Zy = 0. From (A.9), [9] Z; is sub-

additive: For any t1,#, > 0, there is a random variable Z;, such that Z, £ Z;, and Z;, is
independent of {Z;; s < t;}. By (1.3.7), page 21, [8], therefore,

Po{Ziy = a + b} < Po{Z;, = a}Po{Z;, = b}

for any fg, a, b > 0. Thus, for any integer m > 1,

IEZ”—(IEZ)”]E( Zt )n
04, = (€Lo4y OeEoZ[

o0
= (eEOZt)”n] b Py(Z, > ebEoZ,} db
0
1 00
:(eEoZt)”{n/ b”’ldb+n/ Po{Z; zebEOZt}db}
0 1

o0
< (eIEOZ,)”{l + n/ b”_l(]P’o{Z, > e]EoZ,})b_1 db}.
1
The claimed bound (A.3) follows from the following estimation:

© b—1 a1 —b
/ b (Po{Z; > eEoZ)) dbge/ b"Le=b db = en!
1 0
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and the bound ((A.6), Appendix, [9])
EoZ; < (Boz2)'/? < (C(t v 1%))"/2.

We now prove (A.2). Let W(x) be a Gaussian noise independent of B, By, B, and having
covariance y (). Conditioning on the Brownian motions,

E[/OIW(Bl(s))ds][/otW(Bz(s))ds] :/Ot /Oty(Bl(s) — By(r))dsdr.

In addition, by the Cauchy—Schwarz inequality

EU; W(Bl(s))ds} [/Ot W(Bz(s))ds:|

< {E[foz W(Bl(s)) ds]z}l/z{E[/ot W(Bz(s))dsr}]/2

L 2( pt ot 12
{/O/O)/(Bl(s)—Bl(r))dsdr} {fofoy(gz(s)_gz(,))dsdr} .

Hence,
t pt t prt 1/2
[ [ o -senasar<| [ [ vEi6 - o) asar]

X ‘/(;t /0[ ¥ (Ba(s) — Ba(r))ds dr}l/z.

By the independence between B and Bj,

[ " tort n/212
Eo[fo /0 V(Bl(s)—Bz(r))dsdr] < Eo[/o /0 V(B(S)—B(l”))dsdri| }

< Eo[/ot /Ot Y (B(s) — B(r)) dsdr]”.

Therefore, (A.2) follows from (A.1). O

A.2. Hu-Meyer formula. Although Lemma 2.4 gives a way for us to show the existence
of a multiple Stratonovich integral, we also need to know what kind general conditions to
impose on f so that its multiple Stratonovich integral S, () exists, namely the approximation
in (2.14) has a limit in £3(2, F,P). If the multiple Stratonovich integral S, (f) exists in
L%(Q, F,P), then according to general Itd-Wiener’s chaos expansion theorem it admits a
chaos expansion and it is interesting to find this chaos expansion. For this, we shall establish
a Hu-Meyer formula along the line of [23, 24]. If f € H®" is a (generalized) symmetric
function of n-variables such that

2 —
g M= J £ 00 FO1 )

Xy =y y&n—yp)dxidyy--- dxpdy, < 00,

then its multiple [t6—Skorohod integral exists and is denoted by
W= [, T s)BW ) s W (),

where §W denotes the Ito—Skorohod stochastic integral. To precisely define H®", we can
complete the set of all symmetric smooth functions with compact supports under the Hilbert
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norm defined by (A.4). It is well known that the Hilbert space H®" contains generalized
functions (see, e.g., [28]).

Recall our definition (2.7) that W, (x) = [pa pe(x — y)W(dy) = I (pe(x — -)). From [21],
Corollary 5.1, equation (5.3.15), it follows that the chaos expansion of [];_; Ws (xx) is

1‘[Ws<xk>—Z > Hfzdm xi, = )y (5 — pexj, — D dydz

k<n/2i1<j1,...,ix<jk =1

n
X In—2k (Ail,jl,.“,ik,jk ® ps(xm - ))

m=1
A5
(A.5) L
=y > [ rveei, —x5)
k<n/2i1<ji,....ix<ji £=1
n
X In72k (Ail,jl,...,ik,jk ® pa(xm - ))7
m=1
where:
(i) The set of distinct elements i; < ji,...,ix < jr is a subset of {1,2,...,n} and the

summation »; _ ;. . - is over all such distinct pairs;
il e function A;, i, i, i _1 pe(x; — ) 1s defined as the symmetrization of the
The function A;, ji . ip.jx Qme1 P defined as the symmetrizat f th
function

1_[ Pe(Xm — Ym)
me[L,n\{i1,j1,-...ik. jk}
over the variables (y,,; m € [1,n]\ {i1, j1,..., ik, jk}), thatis,
1
11 Jloeeosiks jik ® Pe(Xm — Ym) = m Z l_[ Pe(Xm — yq(m)):

© 0 melln\{i1,j1, bk i)

where the summation is over all permutations o on [1, n] \ {i1, j1,--., ik, jk}- When k =0,
in particular, we follow the natural convention that

11 Jlseeriks Jk ® Pe(Xm — Ym) = Z 1_[ Pe(Xm — YU(m)),

'orean 1

where X, is the permutation group on {1, ..., n}.
(i) I,—ok(---) is the multiple Ito—Wiener (Ito—Skorohod) integral with the integration
variables {yn,; m € [1,n]\ {i1, j1, ..., ik, ji}}-

With the above chaos expansion (A.5), we see that the chaos expansion of the approximated
Stratonovich integral is

Sn,&‘(f) '/(]R" f(xlw--,xn)(kl:[lws(xk))dxl"'d)Cn

k
(A.6) = > > / f(xl,...,xn)<]_[ VZs(xig_xjg))
=1

k<n/2i1<ji,..ix<Jk

X In—Zk U1 J1seolks Jk ® pe(xm - dxl d
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By the symmetry of f on xp, ..., x, and with a combinatorial analysis as in [24], the above
equation can be written

n! k
Sne(f)= D F R — 20! I 2k</(Rd)2nf(xl,---,xn)HV28(XZZ—1—XZZ)

k<n/2 =1
(A7)

]_[ Pe(xj—))dxy--- dxn)-

j=2k+1

Since the approximated multiple integral can be decomposed to finite sum of multiple
[t6—Wiener integrals which are orthogonal, we see that the convergence in £2(Q, F,P) of
(2.14) is equivalent to that each of the multiple Ito—Wiener integrals in (A.7) converges in
L%(Q, F,P). Thus, we have the following theorem which is used to justify (2.19).

THEOREM A.2. Let f € H®" be deterministic and symmetric. If the trace

k
TS Gzt ocoym) = lim PG [T yae Graemy = xa0)
=1

(A.8)

x H pe(xj — yj))dxy -+ dxy
j=2k+1

exists in H®"20 for all k < n/2, then the Stratonovich integral S,(f) exists as an
L2(Q, F,P) limit of Sy (f) as € — 0 and we have the following Hu—Meyer formula:
n!

(A9) = 2 a0

k<n/2

Li—ok (TH* f).

Conversely, if S,.¢(f) is a Cauchy sequence in L>(Q, F,P), then the right-hand side of
(A.8) is a Cauchy sequence in H®" 2K for all k < n/2, whose limit is denoted by the
left-hand side of (A.8) and S, ¢(f) converges to S, (f) defined by (A.9) in LX(Q, F,P).
Moreover, if Sy (f) converges to S,(f) in L2(Q, F,P), then this convergence also takes
place in LP (2, F,P) for any p € [1, 00). This means that S, () is in L (2, F,P) for any
p €[1, 00).

REMARK A.3. It is obvious that if f is the symmetrization of f , then by the above
definition it is easy to verify that S, (f) = S, (f).

PROOF OF THE THEOREM. Denote
gl’l,k,é‘(ka-‘rlv cey )’n)

k n
FOrnx) [ vaeoet —x20) [ petxj—yj)dxi--- dx,

d\2n
(RE= =1 j=2k+1

Equation (A.8) means || gy ke — Trk fllyen-20 — 0 as e — 0. By the Itd isometry,

E|l-2k(gnk.e) — In-2t (T ))? = Bl Lok (gn k. — T £)[?

=n- 2k)!||gn,k,s ~ T f||7_[®(n72k) —0
by (A.8). Equation (A.7) tells that S, . (f) converges to S,(f) given by (A.9).

(A.10)
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Now we assume that S, .(f) is a Cauchy sequence in £2(Q. F.P). With our notation
8n.k.s» WE Can write

n!

mln—ﬂc(gn,k,e)-

Sne(f)= Y

k<n/2
Thus, by the orthogonality of multiple [t6—Wiener integrals,

n!

2
m) E[1-24(8n k) = In—2u(8nk.e)]”

E[Sn’g(f) - Sn,s’(f)]2 = Z <

k<n/2

n! 2
= ki;z(m) (n =2)!18n ke — &n ke ||f2;.[®(n—2k)-
<n

This can be used to prove the second part of the theorem easily.

Recall that if F = Z;’;O I,,(fn) is the chaos expansion of F', then the second quantization
operator (e.g., [21]) of a number o € [—1, 1] is defined as

T@F =) a"L(fn).

n=0
Now forany p > 2, leta = ‘/ﬁ and let
_ n—2k_ " . k
(A.11) Fine= k;n/zu/a) G =3 2 8nke) = Ik (T £)]

Then by the hypercontractivity inequality (e.g., [21], page 54, Theorem 3.20, we have

(B[S (f) — Su(£)|P)"/?
= (E|F(0‘)Ft,n,s|p)l/p = (E|Ft,n,s|2)l/2

20 1/2
_ (IE 3 (1/a) 2 )
(n!)Z 1/2

k<n/2
- 2
= <k§z/2(l/a)2 4k 22k (k)2 ((n — 2k)!)2E[In—2k(gn,k,s) — Lok (T )] ) ’

[Ln—2x(gn k) — In—2k (T f)]

2k (n — 2k)!

which converges to 0 by (A.10). This proves the theorem. [J
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