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Abstract This article establishes the precise asymptotics

Eu
m(t, x) (t → ∞ or m → ∞)

for the stochastic heat equation

∂u

∂t
(t, x) =

1

2
∆u(t, x) + u(t, x)

∂W

∂t
(t, x)

with the time-derivative Gaussian noise ∂W

∂t
(t, x) that is fractional in time and homogeneous

in space.
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1 Introduction

Moment asymptotics for solutions to stochastic partial differential equations are known as

the problem of intermittency that has been studied extensively in the past two decades [1, 8].

In this work, we investigate the asymptotics problem

Eum(t, x) (t→ ∞ or m→ ∞)

for the stochastic heat equation










∂u

∂t
(t, x) =

1

2
∆u(t, x) + u(t, x)

∂W

∂t
(t, x) (t, x) ∈ R

+ × R
d

u(0, x) = u0(x)

(1.1)
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with the Gaussian noise ∂
∂tW (t, x) that is formally given as the time derivative of the mean-zero

Gaussian field {W (t, x); (t, x) ∈ R
+ × R

d} with the covariance function

Cov
(

W (t, x),W (s, y)
)

=
1

2
(t2H0 + s2H0 − |t− s|2H0)Γ(x, y) (t, x), (s, y) ∈ R

+ × R
d,

where the time Hurst parameter H0 ∈ (0, 1) and we assume that the space covariance function

Γ(x, y) is locally bounded and has the homogeneity in the sense that






Γ(Cx,Cx) = |C|2HΓ(x, x)

Γ(x, x) + Γ(y, y) − 2Γ(x, y) = Γ(x− y, x− y)
(1.2)

for any x, y ∈ R
d and C ∈ R, where the constant H ∈ (0, 1). Assumption (1.2) can be restated

as






{

W (c0t, cx); (t, x) ∈ R
+ × R

d
} d

=
{

cH0
0 cHW (t, x); (t, x) ∈ R

+ × R
d
}

W (t, x) −W (s, y)
d
= W (t− s, x− y) (c0, c > 0, (t, x), (s, y) ∈ R

+ × R
d).

(1.3)

For simplicity, we assume that bounded initial condition is as follows:

0 < inf
x∈Rd

u0(x) ≤ sup
x∈Rd

u0(x) <∞. (1.4)

Mathematically, ∂
∂tW (t, x) is defined as a generalized centered Gaussian field with

Cov
( ∂

∂t
W (t, x),

∂

∂s
W (s, y)

)

= γ0(t− s)Γ(x, y) (t, x), (s, y) ∈ R
+ × R

d. (1.5)

Here, the time-covariance γ0(t− s) is morally considered as the derivative

∂2

∂t∂s

{1

2
(t2H0 + s2H0 − |t− s|2H0)

}

.

In particular,

γ0(t− s) =







H0(2H0 − 1)|t− s|−(2−2H0) H0 > 1/2

δ0(t− s) H0 = 1/2.
(1.6)

The function γ0(·) defined in (1.6) is qualified as covariance function as it is non-negative

definite. Indeed, it can be shown that

γ0(u) =
Γ(2H0 + 1) sin(πH0)

2π

∫

R

eiλu|λ|1−2H0dλ u ∈ R. (1.7)

When H0 < 1/2, the function | · |−(2−2H0) is no longer non-negative definite and is not

qualified for being a covariance function. As consequence, the covariance function γ0(·) can not

be legally defined by (1.6) when H0 < 1/2. As H0 < 1/2, the function γ0(·) is defined as a

generalized function given in (1.7). It should be emphasized that γ0(·) is not defined point-wise

when H0 < 1/2.

Under suitable conditions (such as the one assumed in our main theorem), the solution to

(1.1) yields the following Feynman-Kac formula:

u(t, x) = Ex

[

u0(Bt) exp

{
∫ t

0

W (ds,Bt−s)

}]

(t, x) ∈ R
+ × R

d, (1.8)

where {Bt; t ≥ 0} is a d-dimensional Brownian motion independent of {W (t, x); (t, x) ∈ R
+ ×

R
d} with B0 = x, and “Ex” stands for the Brownian expectation. We point to [5] and [6] for

existing literature.


