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Abstract

In this paper, the hyperbolic Anderson equation generated by a time-dependent
Gaussian noise is under investigation in two fronts: The solvability and large-t asymp-
totics. The investigation leads to a necessary and sufficient condition for existence and
a precise large-t limit form for the expectation of the solution. Three major develop-
ments are made for achieving these goals: A universal bound for Stratonovich moment
that guarantees the Stratonovich integrability and £2-convergence of the Stratonovich
chaos expansion under the best possible condition, a representation of the expected
Stratonovich moments in terms of a time-randomized Brownian intersection local time,
and a large deviation principle for the time-randomized Brownian intersection local
time.
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1 Introduction

The model studied in this paper is named after the physicist Philip Warren Anderson (|1])
who adds a multiplicative Gaussian noise to the heat equation in his investigation of magnetic
impurities embedded in metals. Due to its close links to other physical models such as KPZ
equation (|25]), especially in the wake of the breakthrough of [23|, the study of this equation
has been rapidly developed. Today, the equation is known as parabolic Anderson model in
literature. We refer the interested readers to to [20] and the references therein for general
information on this subject.

Due to lack of analytic tools such as Feynman-Kac formula, much less have been known on
hyperbolic models. Until very recent, it was widely believed that as Ou/dt being replaced by
0?u/0t?, the hyperbolic equation has a wilder behavior than its parabolic counterpart. The
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recent progress shows otherwise: The hyperbolic equations are solvable under the conditions
(3], [10]) generally weaker than those posted for the existence of parabolic systems in the
same regime.

It is also noticeable that most of the recent development cited above focus on the setting
of time-independent Gaussian noise. The reason behind is that the time-dependency of the
Gaussian field posts serious challenges and limitations to the currently available tools and
ideas in dealing with hyperbolic Anderson models.

In this paper we consider the hyperbolic Anderson equation

ﬁ;L@,a:) = Au(t,z) + W(t,z)ut,z), (t,z) € RT x R
ot (1.1)

w(0,2) =1 and %%(0,z) =0, =z€R

run by a mean zero and possibly generalized Gaussian noise W(t,x) with the covariance
function

Cov (W(s,x), Wit, y)) =|s—t|y(z —y), s,tcRy, x,ycR? (1.2)

where 0 < ap < 1. As a covariance function, the non-negative definiteness of ~(-) implies
that it admits a spectral measure u(d¢) on R? uniquely defined by the relation

2 (x) = / (), we R (1.3)

Throughout this work, we assume that v(-) > 0 and d = 1,2,3. The system is set up in
Stratonovich regime. Roughly speaking, it means that the equation (1.1) is the result of the
approximation by classical wave equations run by the smoothed Gaussian noise W675(t,$).
We shall provide the details of the construction of the solution in Section 2.

Our first concern is to find the best condition for the existence of solution. The conditions
for solvability are often formulated in term of the integrability of the spectral measure u(d§).
In a different set-up known as Skorohod regime, Chen, Deya, Song and Tindel ([11] posted
the optimal condition

3—ag

/Rd<1+1|5|2) () <o (1.4)

for the existence/uniqueness of the system (1.1).

In their follow-up paper [10] for Stratonovich regime, (1.1) is solved under an apparently less
optimal assumption in the dimensions d = 1, 2.

Theorem 1.1. Letd =1,2,3.

(1) Under the condition

2—ag

L (ﬁ) " de) < oo 15)

the equation (1.1) has a solution in the sense of Definition 2.1 given in Section 2.
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(2) If the equation (1.1) has a square integrable solution u(t, z) that admits the Stratonovich
expansion (see (2.13)) for some t > 0, then condition (1.5) must be satisfied.

For the purpose of comparison, we introduce the parabolic Anderson model

?(t, r) = Au(t,z) + W(t,z)u(t,z), (t,z) € Rt x R?
t (1.6)

uw(0,2) =1 x€R4

It is well known that the condition (see, e,g. Theorem 4.6, [30]) for (1.6) to be solvable (in
a sense same as Theorem 1.1) is

/Rd (%w)l_m)“(d@ < oo, (17)

In other words, the hyperbolic Anderson model is solvable under a condition genuinely weaker
than the one set for its parabolic counterpart when it comes to the Gaussian filed that is
fractional in time.

In next main theorem is about the increasing rate of Eu(t,z) as t — oo. To this end, we
assume the homogeneity for the covariance structure:

v(ex) = cy(z), z€R? ¢>0 (1.8)

for some a > 0. Taking f(\) = (1 + )\2)_2_% and v(d€) = p(d€) in [11, Lemma 3.10] yields

2—ag 2—ag

/Rd(%mz) " pde) = apfé € RY |§|<1}/ (1+p> 2 pil_f)a

as far as either side is finite. This shows that under the homogeneity (1.8) on the noise
covariance condition, the condition (1.6) becomes “ap + o < 2”. In addition (Remark 1.4,
[11]), the fact that (-) is non-negative and non-negative definite (for being qualified as co-
variance function) requires that o < d. Further, the only setting where “a = d” is allowed
under o < 2 is when o = d = 1, or when 7(-) is a constant multiple of Dirac function.

Theorem 1.2. Under the homogeneity condition (1.8) with

ap+a <2 (1.9)
with 0 <ag<land ) <a<dorwith)<ay<landa=d=1,
24 —a—2a0) T, M N\
tlgilot log]Eu(t r)=(3— a)( (1o —ag)io-m (4 — Q) ) (1.10)
where

1/2
= sup {(// / 2(3,:8)92(7“, y)d:vdydsdr) (1.11)
geAq R xR 3—7"%
—// |V$g(s,x)|2dxds}
0 Jrd



(which is finite under o < 2 by Lemma 5.2, [7]) and

Aqg = {g(s,x); g(s,-) € WH(R?Y) and / lg(s,z)[Pdz =1 for every 0 < s < 1} :
R4

To the author’s best knowledge, Theorem 1.2 appears to be the first time that a precise
long term asymptotics are obtained for the hyperbolic Anderson models with time-fractional
random noise. A result close to (1.11) found in literature is obtained by Balan and Conus
(Theorem 2.1, [2]) where the system (1.1) is set up in Skorohod regime and the bounds

hmsupt 10gE|u(t )P <Cp,<oo (p>2)

t—o00

liminf ¢~ 5a " ~ log Eu? (t,z) >0

t—o00

are obtained.

In the case of parabolic Anderson model (1.6), the moment asymptotics (Theorem 6.1, [12])
follow the pattern

lim ¢+ log]Eup(t x) p=12,--- (1.12)

t—00

under the scaling property (1.8)) with
2 + a < 2. (1.13)

Comparing (1.10) and (1.9) with (1.12) and (1.13), respectively, one can see the contribution
from the time component of the Gaussian field are different between hyperbolic and parabolic
settings. See Remark 6.2 below for an explanation from a new perspective.

In the recent work ([13]) on the hyperbolic Anderson model with time-independent noise
W (z), the solvability is established under the Dalang’s condition

| gt < (114)

a1+

and the long term moment asymptotics are established in the form of

lim ¢~ 5-a alogEuP(t,z) p=1,2,-- (1.15)

t—o00

under the condition o < 2.

On the side of idea development, the current work is partially motivated by [13| where the
Stratonovich moment is represented in terms of the intersection local times

/ / ))dsdr and / / B(r))dsdr



where B(t) abd B(t) are independent d-dimensional Brownian motions (see Corollary 3.3,
[13] for details). This connection is established on the simple fact ((3.6), [13]) that

/ T NGt )t = % / h exp{ - )\;t}p(t,x)dt (A > 0) (1.16)

where p(t, ) is the Brownian semi-group

2

plt, ) = (2mt) 42 exp{ - %} (t,z) € Ry x RY (1.17)
and where G(t, x) is the fundamental solution (see (2.2) below) of the wave equation. Indeed,
one of the crucial observations (Theorem 6.1) made in the current work is a link between

the Stratonovich moment and the time-randomized intersection local time

/ot/ot (Is = rl+i(8(s) = 807)) " (Bs) = B(r))dsdr

where ((t) is an 1-dimensional Brownian motion independent of B(t). Accordingly, a large
deviation principle (Theorem 7.1) for the time-randomized intersection local time is estab-
lished that requires some new ideas (see Remark 7.2 and the discussion at the beginning of
Section 7).

Another important task carried out in this paper is the legalization of Stratanovich expansion
(2.13) under the best condition (1.5). To this end, a universal bound (Theorem 3.1) is
established that is responsible for the Stratonovich integrability and £2-convergence of the
Stratonovich expansion. It should be pointed out that Stratonovich moment demands a level
of technology higher than its Skorohod counter part.

This paper also brings a different idea on the treatment of the time-covariance |- |~ (intro-
duced in (1.2)). There have been two ways in literature in handling | - [7*°. In the work [2]
and some of its follow-up papers, the Hardy-Littlewood—Sobolev inequality is used (Lemma
B.3, [2]) in the Skorohod regime to separate the time component. This strategy appears to
be powerful in the parabolic setting. In the hyperbolic setting, it does not function as good
as it for the parabolic equations, as it is less adoptive to the oscillation behavior of wave
operator. Another existing practice (e.g., [11]) is to perform the Fourier transform

4 d\
—ap C AU c R
[ul /Re N U

to | - |7®. The use of Fourier transformation has been popular and effective in parabolic
setting (and hyperbolic/Skorohod setting as well). For the hyperbolic equation in the
Stratonovich regime, it creates an annoying and un-controllable singularity. Instead, it is
proposed in this work to use the Laplace transform

—« — = —Au dA
|U,| 0= F(Oé()) 1/{; e Al |m u € R. (118)

It should be pointed out that the time-dependency in hyperbolic Anderson model is far from
fully understood. More specifically, a deeper connection between the Stratonovich expansion
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and the Brownian intersection local times is very likely. The progress should lead to a fully
understand of the intermittency of the system. Despite of its incompleteness, on the other
hand, Theorem 1.2 strongly indicates the most possible pattern of intermittency

d—a—2an d—a

“a-a w204 —a—2 ise\ 3a
lim ¢~ 5 log EuP(t,z) = (3 — a)pga( (= a=2a) > (4M ) ’ ) (1.19)

t—ro00 (4 -0 — (1/0)4_0‘_(10 —

for p=1,2,---. Here we post it as conjecture and leave it for future study.

Here is the organization of the paper. In next section (Section 2), we set a way to approximate
the possibly generalized Gaussian field W(t, x), introduce the multiple Stratonovich integral
and formally express the solution as Stratonovich expansion. In Section 3, we establish
a universal bound for the moments in the Stratonovich expansion. Using this bound we
install the Sratonovich integrability for the functions g,(-,¢,x) in Section 4 and establish
the convergence of the Stratonovich expansion (and therefore prove Theorem 1.1) in Section
5. In Section 6, we establish a link between ES5, (gzn(-,t,x)) and the n-th moment of a
time-randomized Brownian intersection local time under time exponentiation. In Section
7, we prove a large deviation principle for the time-randomized Brownian intersection local
time. Using the results from Section 6 and 7, we prove Theorem 1.2 in Section 8. In the
appendix, we conduct some elementary calculation for the bounds established in Section 3.

2 Stratonovich expansion and approximations

As usual by the Duhamel principle the mathematical definition of the hyperbolic Anderson
equation (1.1) will be the following mild form

u(t,z) =14+ /Rd/ot G(t — s,z —y)u(s,y)W(ds,dy), (2.1)
where

(i) G(t,x) is the fundamental solution defined by the deterministic wave equation

0*G
(2.2)
G(0,2) =0 and %(O,x) =0o(z), zeRe,

(ii) the stochastic integral on the right hand side of (2.1) is interpreted in the sense of
Stratonovich (see discussion below for details).

2.1 Green’s function

The fundamental solution G(t,z) associated with (2.2) plays a key role in determining the
behavior of the system (2.1). Let us recall some basic facts. Taking Fourier transform in
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(2.2) we get the expression for the fundamental solution

sin(|€]¢)

€ (t,6) € Ry xR (2.3)

F(G)€) = [ Glta)eeds -
Rd
in its Fourier transform form. In particular,
/ G(t,z)dz = F(G(t,-))(0) =t (2.4)
R4

In the dimensions d = 1,2, 3, the fundamental solution G (¢, x) itself can be expressed explic-
itly as

(1
Sy, d=1
2 {=|<t}
L Yy _
G(t,z) = %\/TW d=2 (2.5)
1
L 4—7_[_{;0't(dl’) d= 37

where o;(dz) is the surface measure on the sphere {x € R?; |z| = t}. We limit our attention
to d = 1,2,3 in this work because the treatment developed here requires G(t,z) > 0. A
scaling property we frequently use (especially in the proof of Theorem 1.2) is

G(t,z) =t"“4 VG, t7z), (t,z) e R x R%. (2.6)

2.2  Smoothed version of W(t,z)

Generally speaking, the smoothed version of the generalized Gaussian field W(t, x) can be
any family {W€75(t, z); €60 > 0} of mean-zero Gaussian fields on Ry x R?, living in the same
probability space (€2, A,P) as W (t,z) does, such that for each €, > 0, WE,(;(t,QZ) is defined
point-wise even with path-continuity (if needed), and of the form of covariance function

Cov (We,a(sa ), Wesl(t, y)) =73(s —te(z —y)  (s,2),(t,y) € Ry x R (2.7)

that satisfies

lim V(s = t)ve(z — y) f (s, 2)g(t, y)dsdtdzdy (2.8)
€,0—0t (R4 xRd)2

= [ ) e pdsdiddy g € SR x B
R+ xR

where S(R; x RY) is the Schwartz space of all functions on R, x R? that are infinitely
differentiable and rapidly decay to zero at infinity.
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A popular construction of WQ(; in literature is by convolution:
Wealto) = [ ml6t = upleso — )W (e y)dudy  (3) € R, xRS
Rd+1

where p(t, z) is the Brownian semi-group defined on R? that is given in (1.17) and po(¢, x) is
the Brownian semi-group on R.

To promote the use of the Laplace transform proposed in (1.18), we shall construct W, 5(¢, z)
in a slightly different way such that

Cov <We,5(s, z), Wes(t, y)> = (F(ao)l /061 e Ml )\fij\%)’he(% ) (2.9)

for (s, ), (t,y) € Ry x R where
7e(T) = /dp(e,x —y(y)dy =R
R

If exists (i.e., if they can live in the same probability space with W (t,x)), the family
{Wes(-,+); €,6 >0} meets all requirements as the smoothed version of W (-, -): First, by the
expression

51 51
- —Als— dA -1k IAR(5— dA
T(ap) 1/0 o ztlW =T(ao) " 'E /0 i ( t)m (2.10)

the function of s — t on the left is non-negative definite and therefore qualified to be used as
covariance function, where k is a standard 1-dimensional Cauchy random variable.

Second, (2.8) holds in light of (1.18).
Third, by the relation

B (Wos(s.2) ~ Wealt.0))
= 2F(a0)1{ (/061 %)%(0) - (/061 exlst%)%(x - y)}

< Ce,a{|5—ﬂ + |x—y|}

and therefore by normality

. . 2n 2n)! n
E<We,5(3ax) _We,(S(tay)> < (2n7’L)' 25{|S_t|+ |IL‘—y|}

for any integer n > 1. A standard use of Kolmogorov continuity theorem (Theorem D.7,
p.313, [4]), the Gaussian field W, 5(¢, z) has a continuous modification on R, x R<.

To have the family {Wﬁjg; €,0 > 0} live in the same probability space. We start with the
following simple observation: Given 0 < T}y < --- < T, < ---, let AW (t,z) (k =1,2,---) be
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independent mean-zero (possibly generalized) Gaussian fields on R, x R? with the covariance
functions

: : LN d\
Cov (AkW(s,x),AkW(t,y)> = (F(ao)_ / - S_tlﬁ)WW — )
Tk-1 A ’
for (s,x), (t,y) € Ry x R%, where we follow the convention Ty = 0. Set
Wr,(ta) => AW (tz) n=12--.
k=1
It is straightforward to see that

Cov (WT,L(S,:E), WTn(t,y)> — (F(ao)_l /0 " e—xs—ﬂ%)y(;p —y).

Without changing its distribution, one can re-define the Gaussian field W (¢, z) as
W(t,z) =Y AW(t )
k=1

for any monotonic sequence {7,,} satisfying T,, — oo (n — ).

By Kolmogorov consistence extension, we can extend (W, (-,); n=1,2,---} to the bigger
family {Wr(-,-); T > 0}. Then we adopt the new notation that replaces Ws-1(-,-) by
Ws(-,-). Finally we define

Woalt.a) = [ plecs =)Wt )dy
R

which satisfies (2.9). More generally

5—1As1
. . - e AX
Cov (WQ(;(S,ZL‘), Wg’g@,y)) = <F((1/0) 1/0 e Al tm) fye+€(qj — y) (211)

for any e, €, 5,0 > 0.

2.3 Stratonovich integral

Given a random field W(¢,z) ((t,z) € R, x R?) such that

/ (t, )W, s(t, z)dtde € L2 (Q, F,P) Ve >0,
R+><]Rd

where W, 5(t, z) is constructed in Section 2.2, define the Stratonovich integral of W(t, z) as

/ U(t,2)W(dt,dz) 2 lim U(t, 2)Wos(t, x)dtda (2.12)
R+XRd

€,6—0t Ry xRd
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whenever such limit exists in £2(£2, F,P). We can also use the convergence in probability in
above definition. But as in most works on SPDE, £2(2, F,P) norm is easier to deal with so
that we choose the £2(Q, F,P) convergence throughout this work. Notice that this definition
implicates that u(t,x) as a solution to (2.1) is in £L%(Q, F,P) for all (¢,z) € RT x R%. After
defining the Stratonovich integral, we can give the following definition about the solution.

Definition 2.1. A random field {u(t,x),t > 0,x € R} is called a mild solution to (1.1) if
for any (t,2)R, x R4, the random field

U(s,y) = Gt — s,z —y)u(s, y)lpy(s)
is Stratonovich integrable and if (2.1) is satisfied.

To prove Theorem 1.1, we shall use the Stratonovich expansion (see [18], [17] and references
therein for the multiple Stratonovich integrals). According to the algorithm in [15], formally
iterating (2.1) infinitely many times we have heuristically a solution candidate

u(t,x) = ZSn(gn(-,t,x)) (2.13)

n=0

with S (go(+,¢,2)) = 1. Here is how the notation S,(g,(-,¢,z)) is justified: The iteration
procedure creates the recurrent relation

t
Sn+1 (gn+1('7t7x)) = / / G(t_ S, _y)Sn(gn(asay))W(d‘S?dy) (214>

rRdJo

[terating this relation formally we have
Sn(gn(-,t,2)) (2.15)
= / / Gt — sp,x — 1) - G(sg — 81,29 — x1)W(dsy, dxy) - - - W(dsy, dz,,)
(R J[0,)2

— / gn(sly"' ySny L1yt axnvtax>W(dsladxl)"'W(dsnudxn) (Sa}’)7
(R4 xRd)"

where [0,¢]% = {(s1,---,s,) €[0,t]" satisfies 0<s3 <s93<---<s,<t}, and the con-
ventions x,+1; = = and s,; = t are adopted. Thus, the notation “S,, (gn(-, t, :17))” is reason-
ably introduced for an n-multiple Gaussian integral of the integrand

gn(sly"' ySny L1y "7 ,In,t,J]) (216>

= (G(t — Sp, ¥ — Tp) - G5 — 51,79 — I1)>1[0,t]g(517 v, 8n)
(n=1,2,---). In Section 4, the Stratonovich integrability of g,(-,¢, z) shall be rigorously
established in Theorem 4.1.

The above construction indicates that the existence of the system (2.1) can be implied by
the convergence of the random series defined by (2.13) in an appropriate form. This will be
justified rigorously in Section 5 as part of the proof of Theorem 1.1.
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Definition 2.2. Let f: (R, x RY)" — R be measurable such that for every e, > 0

/ f(st, e, 8p,xp - ,mn)(H ng(g(sk,mk)>dsl co-ds,dry -+ dx, € CQ(Q,]:, P).
(R4 xRd)n k=1

Then we define the n-multiple Stratonovich integral of f as

Sn(f) ::/ flst, e s,y x)W(dsy,dzy) - - - W(dsy, dx,) (2.17)
(R+XRd)"
= lim fls1, - Sp, w1+, Ty ( WQ Sk, T >d5~~~dsnd:c~-da:n
€6—0" J (R xRd)n ( 1 1 ) 1!_[1 6( k k) 1 1

whenever the limit exists L*(Q, F,P).

Remark 2.3. Along with the set-up of our model, the Stratonovich integrand f is given as
a generalized function in the dimension three (d = 3). Indeed ([29]), Definition 2.2 can be
extended to the setting of generalized functions f. A detail is provided near the end of this
section for the construction needed in d = 3.

The following lemma provides a convenient test of Stratonovich integrability that we shall
use in this work.

Lemma 2.4. The n-multiple Stratonovich integral S, (f) exists if and only if the limit

lim ]E{/ f(sla"' 787173717"'xn)(HWe,5(5k7xk))d81'"dsndxl"'dxn}
(R)n k=1

(¢,6)—0F
(e/,6") =0T
X { / f(s1,-- ydsp,p, - xn)<H WE/ﬁ/(Sk, xk)) dsy---dsp,dzy - - dasn}
(R4 xRd)n k=1
exists

Proof. The existence of the limit in (2.17) is another way to say that the family

Ze,d - / f(slv BRI TR R xn)(H W€,5(Sk7 CClc))dsl T dsndxl T dxn
(R4 xR4)" k=1

is a Cauchy sequence in £2(Q, F,P) as €, — 0T, which is equivalent to the lemma. [

Definition 2.2 can be extended to a random field f(sq, - ,Sp,®1,--+,x,) in an obvious
way. Most of the time in this paper, however, we deal with a deterministic integrand and
demand some effective ways to compute the expectation of multiple Stratonovich integral of
deterministic integrands.

Lemma 2.5. In the setting of deterministic integrand, the L*-convergence in Definition 2.2
can be replaced LP-convergence for any p > 2.
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Proof. This has been proved in the setting of time-independent noise (Theorem 6.2 and Re-
mark 6.3, [13]). In the context of the general integrand, one can identify f(s1,- -+, S,, T1, - Ty)
with f(xy,- -+, z,) and the time-dependent Guassian field Wit, x) with the time-independent
Caussian field W (x) by viewing the time variable as the extra dimension of the space vari-
ables. Then Theorem 6.2 and Remark 6.3, [13] applies to our setting. [J

This lemma brings some convenience in computation. An example of such is Fubini theorem:
Given the integers [;,--- ,l, > 1 and the [;-multiple time-space variate functions f; (1 <
j < m), the Stratonovich integrabilities of fi,--- . f,, implies the Stratonovich integrability
of i ® - ® f, and

Sttt (L@@ fn) = [ S50 (2.18)

Let us recall an identity [28, p.201, Lemma 5.2.6] known as Wick’s formula which states that

EHgk— > 11 Egoe

Delly (j,k)eD

(2.19)
2n—1
E H g =0,
\

where (g1, -+ , go,) i @ mean zero normal vector, and II,, is the set of all pair partitions of
{1,2,---,2n}. As a side remark, #(II,) = (22;;, Applying (2.19) to gr = W s(sk, 2;) in the

case of deterministic integrand f, and taking the (¢, d)-limit, we have
ES2,—1(f) =0 (2:20)

and

ES?n(f) = Z / ; f(sla"' yS2n, L1, 0 71'271) (221)
(R+><]R )Qn

Dell,

X ( H |s; — s “y(x; — xk)) dsy -+ dsopdry - - - dxoy,
(

j,k)eED

under the Stratonovich integrability. In particular, the expectation of a (2n)-multiple Stratonovich
integral is non-negative if the integrand is non-negative. Take f = go,(+,%,0) for example.
In the case of integrability

ESs, (92n( / / — Sop, —T2p) -+ G(S2 — 81,72 — 1’1))
[0 t]Q" (]Rd

Dell,

X ( H |55 — sp| " *y(x; — xk)) dsy -+ - dsopdry - - - dxoy,.
(5,k)eD
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With the substitutions sy — t — s9, 41 and zy — —Zo, py1. (K =1,2,---,2n) performed
on the right hand side,

ESQn(an Z /Ot /Rd (HG 81— S1-1, %1 — Ti— 1)) (2.22)

Dell, =1
X ( H |82n —j+1 — 52n7k+1|7a07(x2n7j+1 - x2nk+1)> dsy -+ -dsopdxy -+ - dxoy
(4,k)eD
2n
Z / / (HG(SZ — S1-1,T1 — 151—1))
DEH 0t2n Rd)Qn =1
X ( H |sj — s “y(x; — xk)) dsy - - dsgpdxy - - - dxay,
(4,k)€D

where we follow the convention on the right hand side that sy = 0 and z¢y = 0.

Since the condition (1.5) encompasses the cases where the covariance function 7(-) exists
only as a generalized function (e.g., ¥(-) = do(:) in d = 1), the meaning of the multiple
integrals on the right hand side of (2.21) needs to be clarified. Indeed, by (2.9) and (2.19)

2n
E/ f(sh'" ySon, L1y ° 7x2n)(HWe,5(Sk7xk))dsl"'dSQndxl"'den (2'23)
(R4 xRe)2n k=1

_Z/ f(sla"'782mx17"';x2n( H ’Ya —Sk”Yze( —l“k))
Dell,, ¥ R+xR4)?n (. k)ED
X dSl s dSQndl'l s deQn
where
0 -1 " —Aul dA
Vs (1) = T'(ap) e ey and 7e(z) = dv(y)pe(x —y)dy. (2.24)
0 R

Inspired by (2.17) and in light of (2.23), we therefore define

/ i f(sla"'782nyxla"'7$2n)<
(R+XR ) n

X dSl s dSQndZL'l s dl’gn

é lim f(sla crr 82, X1, 0 ’x2n)< H ’Yg(sj - Sk)’)/e(xj - xkz))
(

,0—01 d
‘ (R4 xRe)2n j,k)eD

H |sj — sp| "0y (:Uj—a:k)> (2.25)

(4,k)eD

X dSl s dSQndl'l ce dl’gn

whenever the limit exists.

To end this section we take the chance to address an inconvenient fact from (2.5) where
G(t,x) is defined as a measure rather than a function in 3-dimensional Euclidean space. In
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this case, the integrand g, (-, ¢, z) introduced in (2.16) exists only as a generalized function.
For any n > 0, set

Gyfta) = [ m(na = )Gt )y

where p3(t, x) is the Brownian semi-group on R3. Write

gn,n(sla oty Sp, X1, 7xn7t)x)

= <Gn(t — Spy T — L) - Gp(S2 — 51,3 — x1>)1[07t]<n(817 CeeSp).

The n-multiple Stratonovich integral is defined in the following two steps:

/ gn(S1,7 7+ Sy @1, 00, T, ) ( [T Wes(st, :ck)>d51 cerdspdy - - dy,
(R+XRd)n k=1

= lim G (81, Sy T, ,xmt,x)(HWe,a(sk,xk))dsl~~~dsndx1"-dxn
k=1

n—0+t (R4 xRd)n

for any €,6 > 0, and
S(gn('a t>$)) = / gn(sla Tty Spy L, 7xnat7$)W<d517 1‘1) e W<3na xn)
(R+XRd)n

= lim (81,0 3 Sn, X1, v+, T,y b, ) ( H WE’5(Sk, xk)> dsy---ds,dzxy---dz,
k=1

€,0—07F (Ry xRd)n

whenever both limits exist in £2(Q, A, P). It will be verified later that the limits do exist
under the assumption (1.5). Therefore, it can be treated together with dimensions d = 1, 2.

3 Stratonovich moment bound

Let the pair partition D € II,, be fixed. Let u;,(d§) ((j, k) € D) be the finite measures on
R? such that

Yik(z) = / et p(de) >0 € R (3.1)
Rd
Since (5, are finite, ;4 (z) are defined point-wise.

Let A;x C Ry ((j,k) € D) be measurable and define

) AN
vgk(u) = I'(aw) 1/ e ‘m u € R. (3.2)

Ajk

Clearly, 79, (-) is non-negative and non-negative definite (see the trick played in (2.10) for
the second claim).

14



For any non-negative function G(¢,z) on R, x R%, we introduce the notations

16|19 = / G(t,z)dtdr (It is (j, k)-index free!), (3.3)
R+XRd
1) — -1 —A\t+i&-x d\
1G] = I'(ao) e G(t, x)dtde| 3= pj0(dE), (3.4)
Aj7k><Rd R+XRd
1/2
912 = ([ A%~ sl - 0G0t )dsdadtdy ) . (35)
(R+XRd)2

The aim of this section is to provide a meaningful bound for the multiple integral

/ d81"'d52n/ dl’l“‘dl'gn
(R)™M x (Ry )22 (R)71 x (Re)™2

X(HHGZ(SZ_Sl—lawl_xl 1) H Vo e(si — su)vin(a; — o)

p=1lel, (4,k)eD

with the non-negative functions G;(t,z) (I = 1,2---,2n) such that ||G;||©, HGH%, HGH% <
00, where n; and ng are non-negative integers with 2n = ny + no, I1 = {1,--+ ,n1} and
I = {ny + 1,-,2n}, and where the following conventions are adopted: sy = 0, zo = 0, and
Sp, = 0, 2, = 0 in the expression G, +1(Sn;+1 — Snys Tng 1 — Ty )-

Theorem 3.1. There is a partition {Qo, Q1,Q2} of {1, ,2n}, possibly depending on ny,ny
and D, such that #(Q2) is even and #(Qo) = #(Q1) and that

/ d81 s dSQn/ dl‘l cee d.ﬁl]gn (36)
(R4 )2 x(Ry )22 (R4)™1 x (R4)"2
X (HHGZ(SZ—SZ—LZUz—l”l 1 ) H ’ij sk)Vik(T; — )
p=11€l, (j.k)ED
1 2
< (o) ( 216 (11 ||Gl||§.3))
1€Qo e 1€Q2

where the subscripts {(j,k) € D} are distributed between Q1-product and Qq-product in the
following way: Fach (j,k) in Q1 appears exact once (so the number of (j, k) in Q1-product
is equal to #(Q1), while each index (7, k) in Qa-product appears exactly twice (so the number

of (7,k) in Qs is equal to 27'#(Q3)).

Proof. We carry out argument by induction on n: When n = 1, there are three possible
forms for the left hand: "n; =ny = 1", "ny =2 and ny = 0" or "ny = 0 and ny = 2".

When n; = ny = 1, the left hand of (3.6) is

[ dsdsa [ dnayG(si,0)Galsayntalon — semale - o) < (Gl 1Ga
R2 (]R )2

15



where the inequality follows from Cauchy-Schwartz’s inequality. So the claim holds with

Qo= Q1 = ¢ and @y = {1,2}.

When ny = 2 and ny = 0, the left is

// dsldsg/ dxdyGy(s1,2)Ga(s2 — s1,y — z)yﬁk(sl — $9)12(T —y)
{s1<s2} (R)2

([ otsnasas)( [ Gatrantatomatia).

Notice

| Galtntarustyiray
Ry xRd

e dA
—ra [t [ el Jay
]R+ xRd A172 xRd

_ it A
re™ [ ([ Gty ) matde) < 1l
Ay o xR4 R4 xR4

In summary

[ s [ dwdyGilsna)Galse = s = s - sl (e -y
{s1<s2} (R9)2

1
< G2 1@GaI(.

Thus, the claim holds with Qo = {1}, @1 = {2} and Q5 = ¢.

Similarly, when n; = 0 and ny = 2, the claim holds with the bound ||G1||(1%2)||G2“(0) and
Qo = {2}, Q1 = {1} and Q> = ¢.

Assume the claim holds for n —1. We now verified it for n. Assume that j, and kq are paired
with 2n and nq, respectively, i.e. (jo,2n), (ko,n1) € D. The idea is to separate

0
GQn(SQn — Son—1,T2pn — 932n—1)7j0,2n(8j0 - SQn)%O,zn(ﬂfjo - jU2n)
or
0
Gm (Sm = Sni—1,Tny — mmfl)’yko,nl (sko - 8n1)7k07n1 (xko - xnl)’
whichever possible, from the multiple time-space integral.

We consider the following three possible cases: Case 1: jy € I or kg € I;. In other words, at
least one of n; and 2n has a domestic pair. In the remaining settings, both ny; and 2n have
inter-group pairs. We shall treat it in the following two different cases: Case 2: j, = n; and
ko = 2n, i.e., (n1,2n) € D; and Case 3: 1 < jo < ny < ko < 2n.
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Case 1: We actually claim a better bound

/ dSl cee dSQn/ dl'l cee dl’gn (37)
(R4 )2 x(R4)Z2 (R4)™1 x (R4)"2

2
x (HHGZ(SZ_Sl—laml_fEl 1 ) IT A9%(ss = si)vinla; — )

p=1 lel, ]k: €D
1 1 2

< 5( e ) ( I 21, ) ( T el )

leQo le@: le@2

in this case for the argument needed in Case 3.

Due to similarity, we only consider the case jo € I. For s;, < 59,1 < 59,

7?07271(32” - Sjo) < 7?07271(5271 - Sanl)-

Thus, the left hand side of (3.7) yields to the bound

/ dsy - -dSan_1 / dry - droy_1
(]R+) x(]RJr)”? ! (R)n1 x (R4)n2—1

2 [e.9]
X (HHGZ(Sz—SZ—hxl—xz 1 )( [T 0ilsi = sz l"k:))/ dsan
(j,k)eD’ S2n—1

p=11€el,

X / dIznGzn(Szn — Son—1,T2n — x2n71)7j00’2n<52n - S2n71)7j0,2n('r2n - «Tjo)
]Rd

where I{ = I and I}, = L\ {2n} = {ny + 1,--- ,2n — 1} and D' = D\ (jo,2n) € II,,_;.
Notice

o0
/ dSQn/ d$2nG2n(82n — Son—1,Lon — xQn—1)7?072n(52n - SQn—l)%‘o,Qn(ﬂhn - ﬁﬁjo)

San—1 R4

— /O ds /]Rd dxon,Gan(S, Top — xgn_l)%(.)ﬂn(s) /Rd e @m=io) o (dE)

d\ .
= F(ao)l/ = p(d€) exp {z’f (Top_1 — xjo)} / Gon(s, 2)e T dsdy
A] QnXRd R+XR‘1
- dA —As+i€-x
<o) [ SEantdd)| [ Galso)e Edsda] = |Gl
A]‘O,QnXRd R+XRd

In summary, the left hand of (3.7) yields to the bound

||G2n||]0 Qn/ dsy - dsa,— / dry - dxo,_1
Ry)2 x (R (R)n1 x (Rd)n2-1

< X

x(ﬁHGl(sl—sl1,xl—xll>(jgplfy]k s)%5.k (2 xk)>. (3.8)

p=11el]
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Denote I; = I, I, = I, \ {jo,2n}. When j, = 2n — 1, the right hand side is equal to

||G2n||jo 2n||G2n—1||(0)/ L dsl"'dSQn—Q/ da?l"'dx2n—2
(R4)Z x(Ry) 2 (RH)™M x (Re)"2—2

X ﬁHGl(sl—sl_l,xl—xll T 0k(si = siviwla; — ) ).
(4,k)eD’

p=1 lEI’/)

Applying the induction assumption, we yield the bound

||a2n||§$?2n||agn_1n<0>( 11 ||Gz||<°>) ( 11 2||Gl||éi?>) ( [T G )

ZEQO lEQl lEQ
1 1 2
=5 ( i) (21602 (T 1)
leQo leQ leQ2

where Qo, Q1, Q- form a partition of {1, -- ,2(n—1)} obeying the rule described by Theorem
3.1. Setting Qo = Qo U {2n — 1}, Q1 = Q1 U {2n} and Qs = )2 we have proved (3.7).

We now assume jy < 2n — 1. Set
ds = d81 cee de0_1d8j0+1 s dgn_l and dx = dl’l cee d$j0_1d$j0+1 tee d2n_1.

The bound in (3.8) can be written as

Gn(l) / dé/ dx< Gi(s;— si_1, 01—« )
|| 2 H]o72n (]R+)"2 5 (Rt x (Re)m2-2 HH l l -1, 41 l— 1)

p=liel,

(R)Z
Sjo+1
/ / JO(SJO Sjo—15Ljo — Tjo— 1)Gjo+1(8]0+1_8]07x]0+1 xml)da?mdsjo
Sjo—1
( I 2butes = sumale — )
(j,k)eD’

Notice

Sjo+1
/ / Jo SJO Sjo—15Ljo — Ljo— 1>G30+1<330+1 = Sjor Ljo+1 — x]o)dxjodsjo

SJO 1

= Gj07jo+1 (Sjo-i-l = Sjo—1y Ljo+1 — zjo—l)

where

t
Gjo,jo-O-l (tv I) = / 4 Gj0<57 y)Gjo-H(t — 5T = y)dyds'
0 JR
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Therefore, by (3.8)

/ dSl cee dSQn/ dl’l R dl’zn
(R)Z % (R4) 22 (R)™ x (R¥)"2

x(ﬁHGl(sl—sl_l,xl—xl 1) IT 0k(si = s)vim(zs — o)

p=1lel, (4,k)eD

< [|Ggnll V) n/ dé/ dX< Gi(s1 — si—1, 01 — @ 1))
O J @y J @iy a2 HH

r=lici,

~ 0
X Gojo+1(Sjo+1 = Sjo—15 Tjo+1 — %0—1)( LT 0ksi = s)vim(a; — %))-
(4,k)€D’

Applying the induction assumption with the functions (2(n — 1) of them)
Gl7 ) Gjofla éjo,j0+l7 Gj0+27 Tty Ganl

with D' = D\ {jo, 2n} and with 2(n — 1) = ny + (ng — 2), we have one of the three possible
bounds:

Hamnié?gnHéjo,joﬂng?.)( 11 HGIH@) ( 11 2|rGlH§.{?)) ( 11 HGZHE?B)) (3.9)

1eQ) 1e@ 1€Q2
1~ 7 1 2 .
= 3l1Gannt( TL1GI) (T 216a)(TTIee) =02
1eQO leQ1u{2n} 1€Q2

where Qo, Q1, Qs form a partition of {1,--- ,2n—1}\{jo, jo+1}. When i = 0, Héjo,joﬂ”g??) =
1Gososill@ is free of (j,k)-index. As i = 1,2, [|Gjojortl® = [Gjojoralls, for some
(j1,k1) € D' (recall that D’ is a pair partition on {1,---,2n} \ {Jjo, 2n}).

When i = 0, by induction assumption 14 #(Qo) = #(Q1), #(Q>) is even. Recall that all
(7, k) € D" have been assigned into Q1 and Q, according to the statement of Theorem 3.1. In
particular, the number of (,k) € D" in Q- product is #(Q;) and the number of (4, k) € D’
in Q- product is 27'#(Q5). Further

G odorillo = 1G5l NGjpsa ]|
The bound (3.7) has been verified with Qo = Qo N {jo, jo+ 1}, @1 = Q1 U{2n} and Q, = Q».

When i = 1, #(QO) =1+ #(Ql), #(Qg) is even. Recall that HG’JO Jo+1H(1) = HGJO Jo+1HJ1 k1
for some (ji,k1) € D' =D\ {jo,2n}. All (j,k) € D"\ {(j1, k1)} have been assigned into Q1
and @2 in a way that #(Q;) — 1 of them are in ;- product and remaining of them (the
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number is 27'#(Q5)) are in Qy-product (each of them appeasers twice).

g 1 - - i§-T
HGj07j0+1H§1?k1 = F(QO) 1/ / Gjo (t, .CE)G MFET It
A xR R4 xRd

J1,k1

X

p(d§)

Cirien A
/R+de G (t, 2)e M dtdy Y=

109"
A e

P(ag) ™ /
Ajl’kl

B /(JR Rey2 Vowa (8 + 050w = y)Gio (5, 2) G (8, w)dsdtdady
+ X

2) \2
< (IGal5)"
Same thing happens to G} 41-factor. Thus,

- ?d) 12
G, (t, x)e—)\t-i-zf.mdtdx N w(d€) }

2 1/2
d\
)}

R+ xRd

/ Gor1(t, 2)e M dtdy
R+ xRd

Notice )
d\

)\1—040

p(ds)

/ Gy (t, 2)e M dtdy
R+ xRd

xRd

1G o5 < IG5k IG5,
So (3.7) has been varified with Qo = Qo, @1 = Q1 U {2n} and Q5 = Q2 U {Jo, jo + 1}.

When i = 2, #(QO) = #(Qy), #(Qg) is odd. The the pairs (j, k) € D' are distributed in a
way that #(Ql) of them are in Q;-product and remaining of them are in Qq-product. All
(4, k) in Qo-product appears twice except (j1, k1) (which appears once). Consequently, the
number of (7,k) € D' in Q; is #(Q1) and the number of (j, k) € D’ in Q, is 271 (#(Qs) +1).
Further

~ 2
1G oo 1,

- N 1/2
= { /(R e ’Y?l,kl(s — 1)V ks (T = Y)Gg o1 (8, ) G o1 (T y)dsd:z:drdy}
+><

& e~ 2 1/2
= {/R(Hl /0 /Rd el)\t+z£.ijO,j0+1<t,f)dl‘dt /JI.(;I,ICI (d)‘),u],k:(dg)}

where ,t;?hkl(d)\) is the spectral measure of 79 , (-) (Recall that 77 , (-) is non-negative-
definite).

Notice

. €Mt+i£.zéj07jo+1 (t, l')dl'dt‘
R

0
— ‘ </ /d ei)\t+i£-ij0 (t,x)dazdt) (/ /d 6m+i£-ijO+1(t,x)dxdt)‘
o Jr o Ja

< 11G,u | © / / ewwamﬂ(t,x)dxdt‘.
0 R4
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Therefore,

~ 2
||Gj07j0+1 ||§1?k1

< |rGjo|r<0>{ /
Rd+1

2
— 1G5l ON G112,

The bound (3.7) has been varified with Qy = QoU{/jo}, Q1 = Q1U{2n} and Qy = Q.U{jo+1}.

| | 9 1/2
61At+z§-$Gj0+1 (t7 x)dl’dt ,u;‘)l,kl (d/\):ujhlﬂ (d§> }

Rd

Case 2. Write I; = {1,--- ,ny —1}, L ={n; +1,--- ,2n — 1} and

ds = dSl tee d5n1—1d3n1+1 tee dSQn_l and dx = dl’l cee dxn1—1dxn1+1 tee dl‘gn_l.

Since (n1,2n) € D in this case, the left hand side of (3.6) is equal to

/ 05 / i%
R x(Ry) 227! (RE)m1~1x (Rd)m2—1

2
X (HHGZ(SZ—SZ—17$1—IZ 1) H Viksi — sk)Vik(T; — k)

r=licj,

o0 o0
0
X / / / dSmngndxmdl‘gn’men(Sgn - Sn1>7n1,2n(x2n - ]Im)
Snq—1 Y S2n—1 Rd xR

X Gn1 (Snl — Sn1—1,Tny — xnlfl)GZn(52n — Son—1,T2n — Q:2n71)-

where D = D\ {ny,2n}. Notice

oo oo
0
/ / / dsnldS?ndxmdx2n7n1,2n<S2n - Sn1>7n172n(x2n - xm)
Snqy—1 Y S2n—1 Rd xR

X Gn1 Snl Snl 1, xnl xnl 1)G2n(32n Son—1,Lon — x2n71)

/ / / dsdrdadyy?. 51(5 — 1) msan( — 3)Gon (5, — 1) Gan(ryy — 2ans)
R4 x R4

2
<G 12 51 G215,

ni,2n

where last step follows from Cauchy-Schwartz inequality and then shift-invariance of the
space variables.

By the induction assumption, we have the bound

161Gl TT 160 ) (TT 2060 ) ( TLNG1E)
1€Qo €@ 1€Qo
where Qq, Q1, Q2 form a partition of {1,---,2n}\ {ny, 2n} with #(Qo) = #(Q1) and #(Q2)
being even. All (j,k) € D’ are distributed according to the statement of Theorem 3.1. In
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particular, the number of (j, k) in Q; is #(Ql) and number of of (j, k) in Q> is 2*1#((22).
The bound(3.6) has been varified with Qo = Qo, Q1 = Q1 and Q3 = Q2 U {ny,2n}.

Case 3. Recall that this is the case when (jo,2n), (ko,n1) € D with jo € I, k; € I and
Jo # n1, ko # 2n. The idea essentially comes from the treatment in Case 1. The extra
obstacle comes from the fact that there is no restrictive order between s;, and ss,, nor
between si, and s,,, as (jo,2n) and (kg,n1) are inter-group pairs. To fix it, we break the
left hand side of (3.6) into two parts by the indicators 1(s; <s,, 1} and lis; >s,, 1)

On {s2n-1 > sju }, Vo 2n(S2n — 5jo) < V9 2n(S2n — 52n-1). By a strategy same as the one used
for (3.9), the first part of the decomposition yields the bound in (3.7), i.e.,

s(TDen) (T 21e ) (e

leQo le@q l€Q2

On {say—1 < sj, }, on the other hand, s,,-1 > sj, > s2,-1 > Sg,. Therefore vgl’ko(snl — Sky) <
721’,@0 (Sn, — Sn,—1). Repeating the same procedure (with 2n being replaced by nq), the second
part of the decomposition has the bound (3.7), i.e.,

1 1 2
3( T ) ( T 210, ) ( T e )
1eQ; leQq le@s
for the partition @, @), @5 of {1,--- ,2n} that meets all requirement given in Theorem 3.1.
Therefore, the left hand side of (3.6) is less than or equal to

%{ ( 1 ||Gl||(°)) < 11 2||Gz||§i?)) ( 11 ||Gzl|§.23>>

1EQo le@q 1€Q2
1 2
+(TTien®) (2162 ) (T iene) }
leQq leQ) le@)

Between the partitions {Qo, @1, @2} and {Qj, @', @5}, choosing the one that produces the
larger product completes the induction. [

4 Stratonovich integrability of g,(-,t, x)

Let n > 1 be fixed and recall that g,(-,t,2) is defined in (2.16). Through this section, we
adopt the following notations:

62(617”' aen)a g:(€n+1,"' a€2n) and 6:(517 a(sn)a Sz(gn-i-l,“‘SZn)
€= (¢,€) = (€1, - ,€9,) and 5:(5,5):(51,--- ,02n)

for €1, ,€2,,01,++ , 09, > 0. The notation "¢ — 0" means ¢, -+ , €, — 0*. The notations
"€ —0t", "6 — 0", "d — 0", "e— 0" and "0 — 0" are used in obvious way.
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Set

Sn,s,é(gn('at7x)> = / gn(sh'” ySny L1, ,{En,t,l‘) (41)

(R+ XRd)n

X (H W%(;k(sk, xk)>d51 coodspdry - T,

k=1

The main goal of this section is

Theorem 4.1. Under the condition (1.5), the limit

lim Sneg(gn( t,z)) (4.2)

€,0—01

exists in L2(Q, A,P) for eachn > 1,t >0 and x € R Consequently, g,(-,t, ) is n-multiple
Stratonovich integrable. Further,

2
[0,6]2 x[0,8]% J (RF)™x (RE)™

Dell,
2
X <H H G(s; — si—1, 2 — a:l_l)) H |s; — sp| " y(x; — zy)
p=llel, (4,k)eD

where, Iy = {1,--- ,n}, Iy = {n+1,---2n}, where, to simplify the notation, we follow the
convention on the right hand side that so = 0, x9g = 0, s, = 0, x, = 0 in the expression
G(Snt1 = Sny, Tna1l — Tn)-

Notice that under the initial condition given in (1.1),

Sn,e,6 (gn(> t, x)) i Sn,eﬁ (gn<> t, O))

we may take x = 0 in the proof of Theorem 4.1. By Lemma 2.4, to establish (4.2), all we
need is to prove that the limit

lim ES, cs(gn(-t 0))Sn 5(gn(-,1,0)) (4.4)

€001

exists. By Wick’s formula (2.19) and the covariance identity (2.11)
Esn,e,é (gn(7 t, O)) Smgj (gn<> t, O))

= E / gn(sla"' ySny L1y 7xnat70)gn(5n+1a"' y S2ny Tn41, " " ° ax2n7t70)
Detl, Y R+xRY)

< TT Wvec(si = sk)Veyre, (7 — 1)

(j,k)eD

= Z / dsl~~~d32n/ dx1~--dx2n<G(t—sn,—xn)~~-G(52—sl,xg—xl))
[0,t]2 x[0,¢]% (RA)m x (Rd)™

Dell,

X (G(t — Sopy, —Ton) - - G(Spt2 — Spi1s Tnto — Tpia ) H 75 vak — 81k)Ve;+er (Tj — k)
(4,k)eD
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where 7§(-) and 7.(-) are defined in (2.24).

Under the substitution s; — ¢t — s,,_y41, & — —xp 31 (1 <1 < n) and s; — t — Sop_141,
T = —Top+1 (n+ 1 <1< 2n), the right hand side is equal to

2
Z / dsl---dsgn/ dxl---dxgn(HHG(sl —sll,xl—wll)>
[0,8]2 x[0,]% (R4)2n

Delly, < p=1llel,

X H ’750(]')V5a(k)<80(j) - Sﬂ(k))IVGU(j)—&-ea(k)(xU(j) - xU(’f))
(4,k)eD

where o is the permutation on {1,2,---,2n} such that o(l) = n—1+1 (I € I) and
o(l) =2n—1+4+1 (Il € I). Since o(l;) = I; and o(ly) = I, the equality continues to be
equal to

2
Z / dsl Ce d52n/ dajgn ( H H Sl — 811, — ZEl_l))
(0,2]2 x[0,t]2 (Rd)2n p=1

Dell, el,

x H 75]V5k Sk>76j+ek(xj —xk).
(j,k)eD

In summary,

ESH,G,(g(gn(-,t,O))S €g(gn( ,t,O)) (4.5)
— Z/ dSl---dSQn/ dxgn(HHGsl—sl 1, X — X 1))
Deti,, ¥ 0,412 x[0,]2 (Rd)2m p=1lel,
< T e, (55 = 36076y 1 (25 — ).
(5,k)eD

Let 6,,65 > 0 be fixed but arbitrary and set

§p($1,"'  Spy X1, T (He o(s1—s1—1) (Sl — S81—-1, ] —l‘l_l)) 1(R+)’<L(51,'-- ,Sn)

with p = 1,2 and the convention sy = 0 and zy = 0. Consider the function

F (t17 . tgn / / dSl, dSQn/ d[[‘l cee d.l’gn (46)
(R)2n

X 91(81, * 3y Sny, L1yt y & )g (Sn+17 82y Tty xQn Ve, +ek - )
J
(4,k)eD

Lemma 4.2. There is a constant C' independent of € such that
Fe(+00,--+ ,+00) < C < 0. (4.7)

Further, the distribution function (up to normalization) Fr weakly converges as € — 0.
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Proof. Let Ay,---, Ay, > 0 be fixed but arbitrary.

/R% exXp { Z /\ltl} dtl, . 5 dtgn)
i
2n
/(Rd ( H ’Yeﬁ—ek - )) /Rin exp{ — ; )\ltl}

(4,k)eD
X 91(7517 e 7tn7 XLy 7xn)§2(tn+1a e 7t2n7xn+17 T 7I2n)dt1 e dth

By our set-up

/ exp { - Z )\ltz}fh(th st @1, @) Ga (Bt e s tans T, s Ta)diy - iy,
RE" =1
2n 2
= / dt 1 e dth exp { - Z )\ltl} (H H eiep(tlitlfl)G@l — tlfl, T, — CC11)> .
(R4)Zx(R4)Z =1 p=11el,
Write
on 2 2
DIV 3 DIV 3 Syt
=1 p=1lel, p=1l€l,
where )
cl:Z)\k (1<1<n) and ¢ = Z A (n+1<1<2n).
k= k=n-+l

The right hand side is equal to

2
/ dty -+ - diap ( H H e~ @) Gty — )y 2y — 931—1))
R)Zx(R)Z

p=11cl,
—HH/ dte Gt ) — 21_1)
p=1lel,
HH/ dtexp ——(cl—l—Q) } (t, 2 —x1-1)
p=1llel,
1y 2n = 1
= <§> /(R . dty - - 'dtan HGXP{ - §(Cz +0,)(t — tl—l)}}p(tz — i1, % — T—1)
+)EXR4)Z

p=1lel,

where p(t, x) is the Brownian semi-group defined in (1.17) and the second step follows from
the identity (1.16).
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In summary

/R% exXp { Z )\ﬂfl} dtl, 5 dth)
i

2
1>2n/ 1
:<— d dtgnexp{—— Cl+(9 tl—tl 1)}
2/ Jeomxmon 2;;
X/ dX(HHptl—tz 1, L1 — - 1)( H %j+ek(37j—3?k))-
p=11lel, (j,k)eD

Notice that the function

2
(@, s xon) = H Hp(tl —t1, T — 1)

p=1lel,

is the density of the random vector (By(t1),- -, Bi(tn), Ba(tnt1), -+ , Ba(tan)), where By(t)
and Bs(t) are two independent d-dimensional Brownian motions. Let "E;" denote the ex-
pectation of the Brownian motions. We have

/ dx(HHptl—tz 1, T — T 1)( H Vej+er (T — ))

p=1llel, (4,k)eD
=Eo [ 7era(Bup(t)) = Buw (1))

(4,k)eD

where the map v: {1,---,2n} — {1,2} is given by v(I,) = {p} (p = 1,2). By Fourier
transform

IE'0 H IYeJ—i-ek t ) - B’U(k) (tk))
(4,k)eD
1
= expi — = (& + €er) €kl pEoexp &k - (tj) = Bugw (tr))
d 2
(R (j.k)ED (j-k)eD

x ] wdgr)

(j,k)eD
-/ exp{ =D DCES I PR ( > Gu (Buy(t) — B () )
(RA)n (j.k)eD (j,k)eD
X H w dg] k
(4,k)eD
The right hand side is monotonic in €, - - - , €9,. Using monotonic convergence we conclude
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that the limit
lim N exp{ Zml} (dtr, -, dtsn) (4.8)

1)271
- (— ]EO/ dt dtgnexp{—— (e + 0,)%(t — t1 1)}
2 (Ry )2 X (Ry)2 ZZ

p=11lel,
x T 7(Bui(;) = Bugey (1))

exists as a extended real number. Further,

2n
/2n eXp{ —~ Z/\ltl}Fg(dtl, oo dtay)
+ =
<<1>2HE/ dty - - dtyy { 1i2 +0,)2(t —t )}
A e 0 2 €XP Yy — 3 Cz z— -1
2 (Ry )2 x (Ry )2 2

p=1lel,

Taking )\1 == )\2n = O,

2
2n 1
< <—> IEo/ dty - - - dtay, exp{ -3 E E 0%(t; — tl—l)}
2 (R ) x (R4 )2 2 g

p=11€l,
< T v(Buiy(t)) = Bugy (1)

(j,k)eD

1y\2n 1
S <—> ]Eo/ dtl cee dtgn exp { — —(Q%tn + (9;752”)}
2 (Ry )™ x (Ry ) 2

x I 7(Buiy (&) = Bugry (1))

(4,k)eD

To complete the proof, therefore, all we need is

1
(R )2 x (ﬂw; 2
X H U(] Bv(k)(tk)) < 0.

(j,k)eD
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First notice that

1
/( » )dtl...dtznexp{—§(eftn+9§t2n)} I] 7(Buy(ti) = Buw(te))  (4.10)
Ri)%

R+)< (j,k)eD
00 L0 1
= 9192/ / dsldSQ exp { — —(9%51 + 9382)} / dtl cee dtgn
2 [0,51]" x[0,52]"
(4,k)eD

Indeed, by Fubini theorem, the right hand side is equal to

/(R dn dtgnexp{ (9215 +02t2n)} T +(Buo(t) — Buy (1))

(4,k)eD

X 9192/ dSl/ d82 eXp — —((92( tn> + 6%(52 — th)}

So the claim made in (4.10) follows from

) 00 1
0192/ dSl/ dSQ exp{ — 5(0%(51 - tn) + 6§<52 - t2n>} =1
tn ton

In addition,

[O,Sl]z X [0,82}

(4,k)eD

< / dty---dian ] 7(Bu(t;) = Bugey ()
[0,51]™ x[0,82]™

(4,k)eD

o) [Sulk)
= I] / / — By (ta))dtidty

(4,k)eD

where the last step follows from Fubini’s theorem. For the mutual intersection local times
on the right hand side (i.e., for the (j, k) € D but j and k coming from different groups) we
treat them by Fourier transform

/0/0 Y(Bi(tr) = Ba(tz))dtdts
- /Rdﬂ«(df) /081/082 exp {z’é‘ (Bi(t) — Bg(tg))}dtldtg

/R , (df){ / " e dt} { /0 N ei5'32(t)dt}
(Lo [ onal Y { | [}
:{/ / (Bi(t1) — Bi(t2) dtldtg} {/ / (Ba(t1) Bz(tg))dtldtg} 2.




We therefore have

[ @) - B,

(4,k)eD

< [/0 /0 v(Bi(t1) —Bl(tQ))dtldtQT[/052/0827(32(151) —Bg(tg))dtldtg]n.

Summarizing the steps since (4.10),

1
EO/ d dtgn exp{ — 5 tan + Qgtgn)} H ’V(Bv(j)<tj) — Bv(k) (tk))
R4)Ex(Ry)Z (j.k)eD

o] 2 s ps n
S 01&2{ / eXp — 9—18 E0|: ’Y(B(tl) — B(tg))dtldtg] dS}
0

x {/Oooexp{——s EO{// Bt ))dtldtQ}nds}

< 00
where the last step follows from (6.1), Lemma 6.1 in [13].00
Lemma 4.3. For any D € 11,,, t1,to > 0 and n > 0, the limit

lim dsy - dSQn/ dxy - - - dxoy,
e=0% J0,1]m x[0,t2]2 (Rd)n x (Rd)n

2
X (HHG(SZ—SZ—1,$1—$1 1) H %7 i~ Sk %]+ek( — )

p=1lel, (4,k)eD

exists and finite.

Proof. A consequence of Lemma 4.2 is that

lim O(ty, - ton) Fe(dty, - -+, dtay)

e—0+ 2
R+"

exists for any bounded, continuous and non-negative function ¢(t,--- ,ts,) on Ri”. On the
other hand, similar to (4.10),

/ 90<t1a 7t2n)F€(dt17"' 7dt2n>
RQn

= dsl---d32n/ ( plsi=s1- 1)G (81— S1-1, 1 — 2y 1))
\/(R+)7L X(]R+)" Rd)2n H H

p=1llel,
X (51,7, Som) H Ye;4e (T3 — T
(4,k)eD
== (9102) / dtldtg exp{—@ltl — 02t2} d81 s d52n/ dx
R% [0,¢1]7 X [0, 2] (R4)
2
X (HHG(Sl — Si-1, T — :Bm))go sty sm) | Yere (5 — zi).
p=1lel, (4,k)eD
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We reach the conclusion that the limit

lim dtldtg exp{—@ltl — 921:2} dSl cee dSQn / dx
(0,621 X[0,t2]" (Re)2n

m
€E— R?I—
2
X (HHG(Sl—Sl_l,xz—wz_l))so st ssam) ] ve e (g — )
p=11€I, (j,k)ED

exists for any 61,60, > 0. Set

g;—D(tl, t2) = / d81 s dSQn/ dx
[0,21]% x[0,t2] (R2)2n

2
X <HHG(81—81_1,$z—x1_1))s@ st o) ] Ve e — )

p=1lel, (4,k)eD

By continuity theorem of Laplace transform again, GP(t,t,) weakly converges: There is a
non-decreasing and right continuous function G(t1,t2) such that

lim GP(t1,t2) = GP(th, 1) (4.11)
é—0t
at every continuous point (t1,%s) of GP(-,-). (Actually, Theorem 5.22, [24] is stated for
probability measures on (RT)¢. The case of general measures on (R*)? can be derived as in

the proof of Theorem 2a, Section 1, Chapter 2, [22] Although this theorem only considers
measures on R its extension to R? is routine).

We now claim that GP(-,-) is continuous on R, x R,. Consequently, this is to say that (4.11)
holds on R; x R, and therefore Lemma 4.3 holds. To prove it, all we need is to show that

lim sup {Qgp(thb) —GP(ty —mi,ta — 772)} =0

n1,m2—0F

for every (t1,t2) € Ry x Ry, Or,

lim sup/ dsl---ds%/ dx
o =0% e J([0,6]7 % [0,42)7 )\ (0,61 —m ] X [0,t2 2] %) (R)2n

2
X <H H G(s1— s1-1, 71 — 5611))90(51, T Sa) H Vej e (Tj — 1) = 0.

p=1 lGIp (],k)GD

Indeed,

/ d81 cee dSQn/ dx
(0,612 X [0,£2]2)N([0,81 =1 ] Z X [0,62=m2] 2 ) (Rd)2n

x (ﬁ [IGGs = siv,a - xl—l))@(slv o) [ ey — o)

p=1Icl, (j.k)ED

S sup Sp(tla 7t2n)/ d51"'d82n/ dx
t1ystan ([0,£1]2 x[0,£2]2)\([0,t1 —m ]2 x [0,t2 —72] 2 ) (R)2n

X (ﬁ TG0 — sz, - 371—1)) I vevea — ).

p=1lel, (4,k)eD
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Thus, our claim follows from the fact (established in the proof of Lemma 3.6, [13]) that

lim sup/ dSl"‘dSQn/ dx
M= 0% J([0,61]7 x[0,62) )\ (0,61~ |7 X [0,t2—772]"%) (Rd)2n

x (f[ [1G6s —sim1,2 - a;,_l)) I ez —2r) =0

p=1I€l, (j.k)eD
Thus, (4.11) holds for every (t1,t2) € Ry x R,. Taking

P(tr, - tan) = H To(ts — tr)
(3,k)eD

in (4.11) completes the proof. [
Lemma 4.4. For any D € 11,,, t1,t5 > 0, the limit

hm dSl e dSQn/ df,El tee di[)gn
=07 J[0,a]2 x[0,ta] (R)" x (R

2
X (H H G(s; — s1-1, T — 211 ) H 75 vor (85 = Sk)Ves+e, (Tj — k)

p=11€l, (4,k)eD

exists and finite.

Remark 4.5. In view (4.5), Lemma 4.4 leads to the existence of the limit in (4.4), and
therefore (Lemma 2.4) to the existence of the L2-limit in (4.2). According to the definition
given in (2.25), Lemma 4.4 justifies the use of the notation

/ d81 cee dSQn/ de’l tee d(lfgn
[0,t1]% x[0,t2]% (Rd)7 x (Rd)™

X (ﬁ 166 —sima,2 - l’ll)) ( IT 15— sel7ov(ay — ).

p=11€l, j,k)eED

Therefore, taking limit in (4.5) leads to (4.3). That completes the proof of Theorem 4.1

Proof. Let

gE,S(tla t2> = / dSl s dS2n/ dxl “e e dxzn
[0,151]2><[0,t2}"<L (Rd)nX(Rd)n

2
X (H H G(s1— s1-1, 0 — T3 ) H 75 v (85 = Sk)Vejter (T — Ti).-

p=1lel, (4,k)eD

For each n > 0
Gen(ti,ta) = Ge5(t1,1t2)

01=+=02n,=1
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and

Geolt1,t2) = / dsy -+ -dsop / dxy - dxo,
[O,tﬂz X[O,tz]g (Rd)nX(Rd)n

2
X (H [1GG = s,z - x11)> IT 155 = 6770 4 (2 — a)-
(

p=11€l, j.k)eD
By the monotonicity of G, 5(t1,t2) in d;.- - - 02, and by (1.18),

Gen(ti,t2) < Ge5(t1,t2) < Geplts, ta)

whenever 9y, - -+ , 02, < 1. Therefore,
hm Gen(ti,t2) < hm mfg 5(t1, t2) < liminf G 5(t1,t5) < limsup Geo(ty,t2)
e—0 €0—0% e—0t

where the limit on the left end is guarantteed by Lemma 4.3. To complete the proof, all we
need is that

lim+ {ngo(tl, t2) — Gey(ta, tg)} = 0 uniformly over €. (4.12)

n—0

Indeed, (4.12) implies that for any n; > 0,
lim sup Qe 0(t1, tg) < m —+ hm Qe n(th tz)

e—0t
as 7 is sufficiently small. Since hrn Gen(ti,t2) < 0o according to Lemma 4.3, in particular,

lim sup Gz o(t1, t2) < co. On the other hand, by the fact that hm Ge(t1,t2) is non-increasing
e—0t

in 7, the limit
lim lim Ge,(t1,t2)

n—0t e=0+

exists and is finite (as it is bounded by limsup Gz o(t1,%2)). So we have
e—0t

lim lim Ge,(t1,t2) < liminf G 5(¢,t2) < liminf G 5(t1,t2) < m + lim hm Gen(t1,t2)

n—0t e—=0t+ €,0—0t €001 n—0t eé=0

Letting 17 — 07 leads to the proof of Lemma 4.4.

It remains to prove (4.12). For being consistent to the notation v9(-) for time-covariance, by
(1.18) we use J(-) instead of | - |_O‘0. Notice

IT WG —s0)— T 796s; — se)

(4,k)€D (4,k)€D
< 3 - —s) T WG — s
(J1,k1)€D (. k)ED\{(j1.k1)}

All we need is to show that for every (ji,k1) € D

/ d81"‘d52n/ (HHGSI—Sl 1, L] — Xj— 1))
[07t1]2><[07t2]7<1

p=11el,

(H OEER) (CEEHITETSIN | IEOEE)

]k ED (jvk)ED\{(lekl)}
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converges to 0 uniformly over €.

We are in the position of using Theorem 3.1. Set
1 [T e dX
i) = (8 =)0 = Tlao) ™ [ ey
n-1

and 77 () = 79 (u) for (4, k) # (k1,71). The above integral is written as

/ dsl--'ds%/ dX(HHGSz—Sz 1, T — T 1)>
[Oﬂtl]zx[ovtﬂz

p=11lel,

( IT 0k(si = sive+en (2 —Ik)>

(4,k)eD

< elitte / exp{—t, — t2} dsy--- dsgn/ dx
(B, )2 0.f1]<n x 0,721 (Rd)2n

2
X <HHG(81—81—1,$l—9€1 1 )( H %k Sk) Ve +er (T —x;g))
(4,k)€D

p=1lel,

= / dsy - - dSQn/ dx
Rp)Zx(R4)Z (Rd)2n

2
X <H 6_(Sl—sl—1)G(Sl — S1—-1, ] — -1 ) < H ’yjk — Sk 7€]+5k< - .Tk)) .

p=1lel, (4,k)eD

Applying Theorem 3.1 to G;(t,z) = e 'G(t,x) (1 <1 < 2n), the integral on the right hand
side yields the bound

(L) ( T 21602 ) ( T i)
leQo le@q leQ2
where Qg, Q1, Q2 form a partition of {1,--- ,2n} with #(Qo) = #(Q1) and #(Q>) is even.

What important to our course is that (ji,k;) either appears in @;-product once or in @y
twice. By (2.4)

|G| /‘/ G(t, z)dzdt = /tfwz1l:Lmu%
0

The rest of the argument is to check that ||Gl||gz,)€ (i = 1,2) are bounded uniformly over € for

(7, k) # (j1, k1) and HG;HJ1 g, — 07 (i = 1,2) uniformly over € as n — 0*.

For (j, k) # (j1, k1),

HG;H% =T ()™ /]RerRd /OOO/Rd e~ MLt g dadt )\fl_/\ao exp{ — (& + ek)\SIQ}u(df)
<t [ | [T e o) dadt| ()
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and

1/2
1G] = ( /(R » |5 — t] 7% o (& — y)e*G(s, x)e G, m)dsdwdtdy) (4.13)
+xRd)?

1/2
< (/ |s — |7 *y(z — y)e °G(s,z)e "G(¢, x)dsdxdtdy)
(R+ XRd)z
where the inequality follows from the procedure of Fourier transform

/(R iy |5 — t] 746, (T — y)e *G(s, 2)e” " G(t, x)dsdxdidy
+ X

n /Rd+1
S /
Rd+1

:/ |s — |7y (x — y)e *G(s, x)e "G(t, x)dsdzdtdy
(R4 xR%)2

p2(dN) exp{—(e; + €x)[§]* b (dg)

2

p0(dN) (de)

/ exp{ —t + i\t + i - 1} G (L, x)dtdx
R+ xRd

/ exp{ —t + i\t + i - 1} G(t, z)dtdx
R+><]Rd

where p°(d)) is the spectral measure of | - |~
By Lemma 9.1 (with # = 1), all above bounds are finite.
As for (]7 k) = (jlakl)>

[ 1 dA
G, < Ton)™ | ar | @) = 0 (1 0%,

1/2
IGuSD, = { [ (8= = hsae = g)e Gl a)e G, y)dsd:cdtdy}
(R4 xR¥)2

1/2
<{ [ asae (-0 [ a6 p6aGe i}
Ry xRy Rdx R4
where the inequality follows for the reason similar to the one for (4.13). By (9.2), Lemma

9.1 (with # = 1) and dominating control theorem, the right hand side converges as n — 07.
0

5 Proof of Theorem 1.1

For the part (1) of Theorem 1.1, we prove that the Stratonovich expansion (2.13) solves
(2.1). According to Definition 2.1, all we need is to show

(i) The random series in (2.13) converges in £2(2, A, P).

(ii) The random field ¥(s,y) = G(t — s, 2 —y)u(s,y)1lpy(s) is Stratonovich integrable and
satisfies (2.1).

34



Our way for (i) is to show

i{ ot x))]2}1/2<oo vt > 0. (5.1)

n=0

We start at (4.5). Taking
e= (€1, ,€,) = (€ny1, -+ €2,) =€ and 0 = (91, ,0n) = (Gps1, - O2n) =5
we have
oo poo n _ B B B
/ / dtldtQ eXp - _(tl + t2> }E [Sn,e,é (Qn(', tla 0)) Sn,e,§ (Qn(', t27 0))] (52)
Z / / dtldtg eXp — —<t1 —+ tg)} / dsl .. dsZn/ dl'l Ce den
Detl, [0,£1]7 % [0,F2]™ (Rd)n x (Rd)n

X (H H G(s; — 11,0 — x1—1 ) H % vék Sk)%frsk(xj — zy,)

p=11€l, (j,k)ED

For each D € I,

/ / dfldl?g exp { - E(t_l + 1?2)} / d81 s dSQn/ d[[‘l cee dCL’Qn
0 t [0,2]7 x[0,E2] (R)n x (R4)"

2
X (H [[GGi—si1,20—2a ) T 28 vs. (55 = s1)7ever (5 — )

p=1lel, (4,k)eD

2
) / dSl"'dSQTL/ dl’l d.TQn
R4)Zx(R4)Z (RE)™x (RE)™
% (H H efntfl(slfsl—l)G(sl — 81-1,%T] — L1 ) H ")/6 V5k Sk)'yﬁj+6k(l’j - 5[;]4;)

p=11€l, (j,k)ED

S|

Applying Theorem 3.1 to the right hand side we have the bound

(I HGzW“)) (TT2060,) (T

1€Qo le@q l€Q2

for G(t,z) = e ™ 1G(t,z) (I = ,2n). Further

—1F T t\2n
G| © —/ / TG x)dadt = / e M = (_)
n

where the first equality follows from (2.4). By (i), Lemma 9.1

> TN _ | dx
HGzHﬁ :/ / / e~ (MTHANHIETC(E ) dadt Y=
R, xRe | Jo JRe

—exp{—(e; + &) [ }u(df)
< > —(nt71+)\)t_+if-xG .E d dLT dA de) < C
< : (a)dadl| <2 () < O < oo.
Ry xRe | Jo JRrd
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By (ii), Lemma 9.1 with 6 = nt™!,

1/2
—« —nt—13 —nt— 1% I
||Gl||§-iz=( /( o lF T @ = w)e TG (s, x)e ™ tG(m)dsdasdtdy)
R+><R

1/2

< (/ s — t| " (z — y)e ™ FG(s,x)e ™ G(T, x)dsdxdtdy) < C’E
(R4 xR%)2 n

where the second step follows for the same reason as the one in (4.13). Therefore, the bound
can be rewritten as

<£>2(§)z#<czo>(20)#@l (£>#(Q2) . Cn(£>2<£>2(#(Qo)+2_1#(Q2))'

n n n n n

According to Theorem 3.1, #(Qo) + #(Q1) + #(Q2) = 2n and #(Qo) = #(Q1). Therefore,
#(Qo) + 27'4#(Q2) = n. In summary,

oo poo n _ B
/ / dt,dt, exp { ——(t1 + tg)} / dsy - 'dSQn/ dxy - - dzyy,
0o Jo t [0,52] x[0,72] (R4)7 x (RA)n

2
X (H [1GG =11, — 5611)) T 2vs(si = 507 vee (5 — )
(

p=11€el, j.k)eD
< Cn < t >2n+2

n

where the constant C' > 0 is independent of €, n, t and D. By (5.2), therefore,

/000 dfexp{ — %f}E[SMﬁ(Qn(.J” O))}Z < #(I1,)C" <%>2n+2 _on (2n)! <£)2n+2‘

2nn!l \n

On the other hand,
oo (o) _ _ n _ _ B B
/ / dtydity exp { - ?(h + t2>}E[Sn,e,§ (9n(+:71,0)) Sne5(9n (-, 12, 0))]
o Jo

> E[Spes(9a(- 0))]2/t /0 dF,dTodE, dE, exp{ _ %(ﬂ + 52)}

t\? _o,
= (5) B [Sualon(- £ 0)]
In summary, we have the bound
2n)! rt\2n t2n
E[Sncs(gn(-,1,0))]* < C (2:;)' (ﬁ> <O (5.3)

with the constant C' > 0 independent of € = (€1, ,€,), 0 = (01, ,0,), n and t. Letting
e,0 = 0%. By (4.2), therefore,

E[S, (gn(1,0))]* < C"—. (5.4)



In particular, we have (5.1).

To confirm (ii). Let €1,d; > 0. In view of (2.13), justified by (5.4)
¢
L [ G s = uls, )W (5. )dyds (5.5)
0 JRrd
o t .
=1+ Z/ Gt =5,y = 2)Su1(9n1(5,9)) Wer (5, y)dyds.
n=170 JR

justified by (5.4). By taking the limit properly in (5.3)
2 n

t
B [ [ G- sy o8 atsmWan | < S =
0 R4 .

In view of the definition in (2.12), by dominated convergence theorem, all we need is

lim /0 /Rd G(t -5y~ x)sn—l (gn—l('a S, y))We1,61(s7 y)dyds - Sn (9n<'> l {E)) (5'6)

61,514)0"'
in £%(Q, A,P) for each n > 1. Indeed, let € = (e, -+ ,€,) and &' = (J2,--- ,0,). By the
definition of g, (-,¢,x) given in (2.16),

¢
/ . Gt —s,y—2)Sn 1.5 (gn,l(-, S, y))Wehél(S? y)dyds
0 JR

= / gn<517 Ct ySny L1yttt Ty, t7 ,’L’) ( H Wek,(sk(sku xk))dsl e dsndxl e da;n
(R+XRd)n k=1
= n,e,é(gn('at>$))'
Therefore, by (4.2) in Theorem 4.1,

t
lim / /d G<t -5y _x)Sn—l(gn—l('7Say))WE1,51<say)dde
0 JR

61,51~>0+

t
- 617(1511210_‘_ e’,(gTO“' /0 /Rd G(t —S5Y— m)Sn—l (gn—l,s’,6’<'7 S, y))We1,61 (Sa y)dyds
= lim+ Sme,(;(gn(-,t,x)) = Sn(gn(-,t,x)) in £2(Q, A, P).

€,0—0

So we have proved (5.6), and therefore Part (1) of Theorem 1.1.

To prove Part (2) of Theorem 1.1, all we need is to show that the condition (1.5) is necessary
for

ESQ (gg(', t, 0)) < o0
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with any ¢ > 0. Indeed, by (2.22)
ES>(g2(-,,0))

— / dsldSQ/ (s9 — s1)" "y (x2 — x1)G(81,21)G(S2 — 81,22 — x1)dz1d2y
[0,1)2 (R4)2

<

— / dsidsy(sy — 31)_0‘0/ V(e — x1)G (51, 21)G(S2 — $1, %9 — x1)dx1dT
[0,¢]2

% (R4)2

_ /[0 ) (32—51)_0‘0( /R d G(sl,x)dx> ( /R ()Gl —sl,m)dw)dsldSQ

=51 gin 32]5\ (t=s1)¢] smsg
= ds ds s1d .
/Rd €] / . / 2 /Rua“o/ / ”

Notice that

/ 5 ey > 0 (5.7)
0 Sy’

for any 0 < a < 7. When a > 7,

a : i :
sin s sin so sin so
/ a dSQZ/ d82+/ dsy, =9 > 0.
0 [e70]
o S2 D) 7 55"

In particular, (5.7) holds for any a > 0. Therefore,
ES5(ga(-,t,0))

>/ p(d§) /t/z (/(t—51)|§| 81n52d )d
el S So S
flelz2nt-1y 1§77 Jo "\ Jo Sy° '

t/2 2
> 5/ u(Qd_S) / sids; — 6 u(Qd_f) _
(le2m-1y €272 Jo 8 Jyeam-1y [§[770

Clearly, the finiteness on the left hand side leads to the condition (1.5). O
Remark 5.1. From (2.13) and (4.4), we have the bound

Eu?(t, z) < et (5.8)

for large t.

6 A Stratonovich moment representation

Let 5(t) and B(t) be 1-dimensional and d-dimensional Brownian motions, respectively. In
the rest of the paper, we assume the independence among 5(t), B(t) and W (t,z) and use
the notations Ey and Py for the expectation and probability with respect to 5(t) and B(t)
when B(0) = 0 and 4(0) = 0 (which is the case for most of the time).
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Theorem 6.1. Under the assumption (1.5),

/OO efetESgn (ggn(', t, 0))dt (61)

2

_ Q<1)3"i/oo dtexp { - %t}
xEOU/ Ols —r| +i(B(s) — ()))aov(B(s)—B(r))dsdr}

for any 6 >0 and n > 1. In addition,

n

/Ot /0 (61s = vl +i(8(s) = 6())) 7 (B(s) — B(r))dsdr 62)

2
d\
+ X

)\17010
where k(t) is a standard Cauchy process independent of the Brownian motions.

/Ot exp {2’)\(9/4;(3) + B(s)) + i€ - B(S)}ds () > 0

Remark 6.2. The appearance of the Brownian motion B(t) is responsable for the difference
i local behaviors between hyperbolic and parabolic equations when it comes to the setting of
time-dependent Guassian field. By the well-known Feynman-Kac formula, ES,, (ggn(-,t,O))
in the parabolic case is given as a constant multiple of the form

Gaa] [ [1s=rim () - Be)asar|

where the time-singularity contributed by the Gaussian field is measured by |s — r|~* for
closed r and s. In the hyperbolic system, the time-singularity brought by the Gaussian field
15 measured by

—ag/
Is = rl 4+ (8(5) = BN = [(s = 4 Is =l ™ e fs — o0

for closed r and s. It explains, for example, how the gap between conditions (1.5) and (1.7)
of existence is created.

Proof. Since ~(-) may exist as generalized function, we may encounter some legality issue.
Thanks to Theorem 4.1, we are allowed to proceed with a point-wise defined ~(-), for other-
wise we use 7. (+) instead.

Recall (2.22) that

ESQn (ggn(', t, 0)) = Z / dSl cee d52n/ dl’l e dl‘gn (63)
(0,42 (Rd)2n

Dell,
2n

X (HG(SZ — 811, X — xl_l)) H |s;j — sp| " y(x; — x).
=1 (4,k)eD
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Let D € 11, be fixed. For any (j,k) € D, we introduce the rule that j < k. Consequently,
by (1.18)

[T 15— sl = (Clea) ™ [

R"

(JL ) oot = 3 wetoo)

(j,k)eD jk)eD Ik (j,k)eD
as (s1,-++, Sa,) € [0, 2. Write
2n 2n 2n 2n
)\kSk—S qis; = qi Sl—8l1 81—311
7, J
(j,k)eD =1 =1 i=l =1

where ¢ is equal to \;; or —\;; for some (j, k) € D. Since j < k,

2n
CZZZ%’: Z)\jﬁkZO 1 <1< 2n.
i=l

j<i<k
We have

2n
/[Ot]% dsy - -dsgn(HG(sl — 811, X — xll)) H |s; — s| "%
< (

=1 jk)eD

Y d)\ 2n
= (T'(a)) / H _J k / dsy - - - dsay, H e~ G5y — 811, 1 — T1_1).
Aj (0,2 =1

RY (kyeD 7k

Using the identity (Lemma 2.2.7, p.39, [4])

oo 2n 2n 00
9/ eet/ (H (s — 811)) dsy---dsa, = H/ eu(t)dt (6.4)
0 0,42 \ 75 =170

we have
0o 2n
/ dte‘”/ dsy - - dsa, ( [[GGs = sim - le)) [T lsj—sel™
0 [0,t]2 1—1 (j.k)ED

= (F(Oéo))_nel/

+ N(j,k)eD “ak

Noticing ¢; > 0, by (1.16)
/ e Ve Gt — ay_y)dt = / e_(0+cl)tG(t,xl —xy_q)dt
0 0
1 [ 1 )
= exp { ——(0+¢) t}p(t, x — x_q)dt
2 J, 2
1 o) 92 2
= 5/0 exp{ — Et} exp{ — Oyt — %t}p(t, x — x_1)dt
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where p(t, z) is the Brownian semi-group introduced in (1.17). Thus

0o 2n
/ dte‘et/ dsy - - - dsap ( [[GGs = sim - fcz_l)) IT 1si—sel™
0 [0,)2" =1 (j,k)eD

(j,k)eD Jk

X ﬁ/ooo exp{ — %Qt} exp{ — Ot — %t}p(t,wl —xy_q)dt
= (F(ao))n<%>2ng /000 dtexp{ - 62—215} /n ( H ;\?Vé;)
+

(j,k)eD “ ik

2n 2

C
X / , dsy---dsap HGXP{ - 901(81 - 81—1) - é(sl - Sl—l)}p(sl — S1-1,%; — 931—1)
[0,¢]2 =1

where the last step follows from (6.4).

H V(zj — k)

(4,k)eD
and integrating over (xi,--- ,3,) on the both sides,

00 2n
/ dte™" / dzy - - - dxgy, / dsy---dsay, ( H G(s1 — s1-1, 1 — 551—1))
0 (Rd)2n [07t}2<n

=1
< I 185 = sel v (z; — 2)
(

J.k)eD

a1\ 0 [ 52
= (F(ao)) (5) 5/0 dt exp{ — 5t} /[o,t]zn dsy - -dsap,
dhir\ (T &
X /]R" ( H Alao) (Hexp{ —Oci(s; — s1-1) — 5(51 — Sl—l)})

+ N(j,k)eD Tak =1
2n

X/d (Hp(sl—sl_l,xz—wz 1)( H V(xj — )d:vl---xz
(RE)2m N

By the fact that

Multiplying the factor

2n
[y, wen) = HP(Sl — 811, T — T1-1)
=1
is the joint density of the random vector (B(s1),- -+, B(s2,)),
2n
/ (Hp(sl—slhxz—xl 1)( H V(z —l"k)dl“r“l’zn
(R N7 (j.k)eD
= Eo H 7 B(s ))
(4,k)eD
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In summary,

00 2n
/ dte™" /(Rd)2 dxy--- den/[ 2 dsy -+ - dsg, ( H G(Sl — 81-1,%] — Il—l))
0 n O,t <’n

=1

< T s = sel™0v(z; — )

(4,k)eD

= Clo) " (5)" [ e { - ?t}
x Eq /[&tP" dSQn( I (B B(s )))

(4,k)eD

d\ & 1 2n
X/R ( H Aljao)exp{—egcl(sl—sl1)—52012(81—511)}_

Y N(G.kep ik

Notice that

2n 2n
1
exp{—@ch(sl—sl 1 —5201 — 851 }
=1 =1
2n 2n

_Eoexp{—QZCl St — Si-1) Z Bsi) — Blsi- 1))}

=1 =1

Recall that

)
3

Z 81—811 Z )\jk

=1 (j,k)ED

The same algebra leads to

Z Blsi) = > Nu(B B(s5))-

(4,k)eD

By Fubini’s theorem

A\ g 1 &
. H a0 exp —920131—311 —52 (s1— s1-1)

d\
)\17010

exp{ — OX(s, — s5) — i)\(ﬁ(sk) — ﬁ(sj))}

=T(00)'Bo [T (00— ) +i(5(s) — Bls))

(J,k)eD
where the last step follows from the identity (p. 183, [27])

dA

m (U,U)€R+XR

(u + iv)_ao _ F(Ozo)_l/ e—)\(u—i—iv)
0
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which appears to be a complex extension of (1.18).

Summarizing our steps,

e 2n

/ dteet/ dry - - dxzn/ dsy -+ - dsay, ( [[GGs = si - 9011))
0 (R)2n 042" =1

X H — S| y(x; — zy)

(4,k)eD

- (§>Qn§ [ e - 51)
x Ko 4)7t]2<nd31 e dSzn( H (9(5k —55) + Z(B(Sk) - 5(%))) ’Y(B(Sk) - B(5j>)>-

(4,k)eD
Summing up over D € II,,, by (6.3),

2

/Ooo e "ESa, (gan(-,1,0))dt = (2)2ng/0 dtexp{ — %t}
< 3 E / d( T (00 —s5)+i(B6s0) = B(s1))  2(Blsw) —B(sn))-

Dell, (4,k)eD

Write (s — s;) = |sp — s;| for allowing the following permutation invariance:

> 11 (9lso(k> = 8o()| +1(B(sory) — B (Som)))_aov(B (5o(k)) — B(5a(s)))

Delly, (j,k)eD

= 3 IT (s — sl +i(Bsw) = 5(s) ) 7 (Blsw) = Bsy)

Dell, (] k €D

for any permutation o on {1,---,2n}. Consequently,

Z/o

Vs T (Blsn = sl +9(BGs) = 552))) " 2(Blsw) — Blsy)

pert, ¥ 042 (jk)ED
= W Z /[ ] dsy - - - dsgy H (9|Sk — 5] —l—Z(ﬁ(Sk) - ﬁ(sj))>_a0'y(B(sk) — B(Sj))
' 0. (j.k)ED
in Z H // Ols —r| +i(B(s) — B(r ))>_a07(B(s) — B(r))dsdr

_#(Hn) [/0 /O O)s —r|+i(B(s) — ﬁ(r))>ﬂ°y(3(s) — B(r))dsdr] ’

Therefore, (6.1) follows from the fact that




Finally, by (6.5)
(815 —rl +i(8(s) - B0r7))
= F(ao)/R exp{ —OAs —r| — M(ﬁ(s) - 5(7“))})\?—)\@0
dA\

- F(aO)E”/R exp {i@)\(ﬂ(s) — k(r)) —ix(B(s) — B(T))}/\l_ao.

Therefore, (6.2) follows from a standard use of the Fourier transform (1.3) of y(-). O

Remark 6.3. The monotonic order s; < s9 < --- < 89, in the expression of ESs, (ggn(-, t, 0))
(i.e., (6.3)) is a key factor that the proof of (6.2) can get through. That is the major reason
why the current idea can not work for EuP(t,z) forp > 1.

7 The time-randomized intersection local time

We assume the assumption in Theorem 1.2, i.e, (1.8) with ap + a < 2 (along with other
conditions required for 7(-) to be non-negative definite). Motivated by Theorem 6.1 and by
the relation (take also (6.2) in account)

t ot —
Og// <9|S—T|+i(6(s)—ﬂ(r))) v(B(s) — B(r))dsdr (7.1)

0 Jo
t t
<11
0 Jo
t t
.
the maim goal in this section is to establish the precise large ¢ asymptotics for the Hamiltonian
on the right hand side. The fact that the two components (s — r) and §(s) — §(r) have
different scaling rates destroys the homogeneity of the Hamiltonian. It also suggests that the
contributions from (s —r) and 8(s) — f(r) are not equal. Very likely, one of them completely
dominates the game. The puzzle we face is to tell which one of s — r and f(s) — B(r) is
the major player. To put all possible cards on the table we start with some existing results

in literature. First (Theorem 1.1, [9]), under the Dalang’s condition (1.14) (or (1.8) with
a < 2),

—ap

O|s —r| —i—z’(ﬁ(s) —6(7’)) fy(B(s) —B(fr))dsdr

—aq

O(s—r)+ i(ﬂ(s) — 5(7")) 'y(B(s) - B(r))dsdr

t rt
lim %logEo exp {?/ / v(B(s) — B(r))dsdr} —b7 o b>0 (7.2)
0 Jo

t—o00

where

wesw{ [ - nf@ey - g [ Vo))

9EF4

and 7y = {g € WH(R: gl =1}
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Applying this result to the augmented Brownian motion B(t) = (5(t),B(t)) and to the

augmented space covariance J(u,z) = |u|~*y(z) (so (1.8) holds with & = oy + o < 2),

lim 1logEoeXp{ // 18(s) — B(r)[~0 (B(s)—B(’r’))dsdr}:bMQ%ﬁ (7.3)

for every b > 0. This outlines a possible scenario of "(3(s) — 3(r))-domination".

The scenario of "(s — r)-domination" follows from the pattern (Theorem 1.1, [12] or, (4.10),
[7]) that

1
lim —logEoexp{ // |s — |7~ (B(s) — B(r ))dsdr} —b75& b>0 (7.4)
t—oo t tl—ao

where

E = sup {// / g*(s,2)g*(r,y)dxdydsdr (7.5)
gEAG RdxRd |S - T|a0
1
— —/ |V.g(s, )| dxds}
2 0 R4

and Ay = {g(s,); g(s,-) € Fq foreach 0 <s <1}

The result (7.4) can not directly apply to our setting as it requires the more restrictive
assumption "2a9 + a < 2", for otherwise the left hand side of (7.4) blows up even before
the limit is taken. On the other hand, & < oo (Lemma 5.2, [7]) under o < 2 (and therefore
under ap + a < 2). Here we point out that the proof of (7.4) (|12], [7]) is based on the
relation

= aO//|s—r| oy (Bls) ~ B(r))dsdr = ;

and on an argument similar to the one used for (7.2). By a parallel ( and easier) modification
of this idea we have! that under o < 2,

S—T

(B(s) — B(r))dsdr

.1 b [P [ yys— 2
lim - log Egexp < - 75( >7(B(s) — B(r))dsdr p =b><& b>0 (7.6)
tro0 ¢ tJo Jo t

for every § > 0, where ~§(+) is introduced in (2.24) and

1 pr1
gazsup{ L[ st =t = 066,010 )dodydsar
geEA, 0J0 JRIxRd

—%/01 /Rd|Vg(x)|2dxds}.

Indeed, we refer an interested reader to the argument used Section 4.2, [7] or, to the proof of (6.16) in
[8] for the proof of the upper bound; and to Section 4 and 5 in [12] for the proof of lower and upper bounds,
respectively.
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Theorem 7.1. Under ag + a < 2,

1
lim — log Eq exp {
t—oo {

tl—ao
=T (7.7)
for every b,0,n > 0.

Remark 7.2. (1) Theorem 7.1 clearly highlights the pattern of (7.4) rather than (7.3). It
1s sharply contrary to the local behavior described in Remark 6.2.

(2) A challenge for the proof: Playing the game of (7.4) without the ticket “2cg + o < 27
for that game.

Proof of the lower bound. Given § > 0,

tiao 0(s —r) +in(B(s) — B(r)) ‘_040 _ 0:0 (s —r)+i0~ ;7(5(3) — B(r)) |0
o0 (s —r)+ind (B(s) — Br))\ _ 070 ,/ls —r| + 007 B(s) — B(r)]
> ——( - ) = == : )

Given a > 0, on {mgtx 18(s)] < a},

7g<|s ] +n91\5(8) - 5<r>\> _ Dlag)-! /Of“ xp { — A= +779‘1|ﬁ(8) - 5<r>|};z_x%

> exp{ - 29;177(1}11(0[())_1 /061 eXp{ - )\’S ; 7 }Ald_)\ao = exp{ - 29;17&}755)(8 ; r>'

So we have

IEoexp{t1 - (s —r) +in(B(s) — B(r ))‘_aofy(B(s drds}

29 1 a s—r
> E, exp{ ; eXP 77 / / 7 (B(s) d?“dS}l{maxsq 18(s)|<a}

b~ 2 —
:]Eoexp{ ; exp na //75 S T (B(s) — drds}PO{max]ﬁ ]<a}

where the last step follows from the independence between 5(-) and B(-).
From (7.6) (with b being replaced by bf~°)

.1 bg—o 207 1na LUt oys—r
hmmf;EoeXp{ " exp{— 5 }/0/075< ; >7(B(s)—B(r))d7’ds}

t—o00
> b2-a ‘19 ‘155
Recall a well-known fact (e.g., (1.3), [26]) that

7T2

1
1 o
Jim o8 Po{ maye|3(s)| < 0 =~
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In summary

hmmf—logEo exp{t1 — (s —r) +ie(B(s) — B(r)) _%7(3(5) B(r))deS}
> prag g, — 8”-

Letting 6 — 07 and a — oo on the right hand side leads to the desired lower bound

O(s—r)+ ie(ﬁ(s) — B(r))

> b2« ‘19 0‘80 (78)

v(B(s) — B(r))drds

tl—ozo

1
lim inf — log E exp {

O]
To prove the upper bound of (7.7), it requires several steps. First, we prove

Lemma 7.3. Let Bi(t) and Bs(t) be two independent d-dimensional Brownian motions.
Under o < 2, there is a constant C > 0 such that

t—00

lim sup — logEoexp{bt 2 // s+ 1)"*y(Bi(s) 4 Ba(s ))dsdr} < Cbr= (7.9)
for any b > 0.

Proof. Perform the decomposition

t pt ct pct
// (S + r)—ao,y(Bl(S) + BQ(S))deT = / / + //
0Jo 0 Jo [0,¢]2\[0,ct]?

where the constant 0 < ¢ < 1 will be specified later. By Cauchy-Schwartz inequality,
b t t
Eq exp {tlao / / (s47)"%y(Bi(s) + Bg(r))drds}
0 Jo

< (EO exp {tf_io /0 ! /O " (s 4 )20y (Bus) + Bg(r))drds}> "
« (Eoexp{tl . //o,: ST B+ B ))drds}>1/2.

Notice that

/Od /Od(s +1) 7%y (By(s) + Bo(r))drds £ ¢

Choose ¢ such that

d—a—2ag

/Ot /0t<3 +7) 7% (Bi(s) + Ba(r))drds.

4—a—2aq
2c 2 =1
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So we have

Eq exp {tlf’ao /0 t /0 (54 7)oy (Ba(s) + Bg(r))drds}
< <E0 exp {tlf’ao /0 t /0 (54 1) (Bu(s) + Bg(r))drds}>1/2
x (Egexp{tl — //o,: o (54 )"y (By(s) + Ba(r ))drds})l/Q.

which leads to

Ey exp {

P /Ot/ot(s +1)7%y(Ba(s) + BQ(T))drds} (7.10)

2b
< Egexp // (s +7)"(Bi(s) + Ba(r))drds ¢.
t1=e0 J Jio2\o,ct2

By the fact that s +r > ¢t on [0,¢]*\ [0, ct]?,

IEOeXp // <S+T) @0 (Bl( )+BQ( ))drds
tl 0 J J0,02\[0,ct]2

<Eoexp{ (ct) ‘10// (Bi(s) + Ba(r ))drds}
:Eoexp{%ctao /O /0 v(Bl(s)—i-Bg(r))drds}.

By (7.2), therefore,

lim sup — IOg Eo exp (5 + )20y (Bi(s) + Ba(r))drds b < (20)7=H.
t t=e0 ) S\ (o2

t—o0

In view of (7.10),

hmsup—logIEOexp{t1 -~ // s+ 1) (Bi(s) + Ba(r ))drds}g FabraH,

t—o00

Finally, the proof follows from the identity in law:

/Ot/ot(s + 1) 70 (By(s) + Bo(r))drds < t

d—a—aq

/01/01(3 +1) 7% (Bi(s) + Ba(r))drds.

Next, we establish a weaker version of the upper bound

Lemma 7.4. Under ag + a < 2, there is a constant C' > 0 such that

0(s —r)+in(B(s) — B(r))| ~(B(s) — B(r))drds}

< Cb=ah s (7.11)
for anyb> 0,6 >0 andn > 0.

—ag

1
lim sup —log Eq exp {

t—o00 tliao
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Proof. By the relation

—ag

0(s —r) +in(B(s) — B(r))

0 JO
=2/
[0,¢]2

(7.11) is equivalent to

1 b
lim sup i log Eq exp {tl—ao // v(B(s) — B(r))drds}
t—o0 [0,t]2<

< CbTag T, (7.12)

v(B(s) — B(r))drds

0(s —r) +1in(B(s) — B(r))

—ag

0(s —r) +in(B(s) — B(r))

Define the random measures Q(-), @1(+) and Q2(-) on (R;)?% as follows

_ / / 05 =) + in(8(s) = B(r))

// 5(:) (M| "y(B(s) — B(r))dsdr A C (Ry)%;

—ag

I'(B(s) — B(r))dsdr A cC (Ry)%;

//|s—r| “0y(B(s) - Br))dsdr A C (Ry)2.

By the facts that

‘9(8 —r)+i(B(s) - 5(@)‘ "< g0l — p| 00
and that

—ag

’9(8—T>+i(6(3>—6(r)) Sﬁfao\ﬁ(s)—ﬁ(r)“ao

we have

Q(A) < 7 0Q1(A) and Q(A) < 4-Qu(A).

Consider the triangular decomposition: For a integral N > 1,

oN+1_q I 141 N—-12F—1
2 _ k
[07t]<_( U [2N+1t72N+1] ) (U UA)

1=0 k=0 1=0

where
20 21+1 20+1 20+ 2
k __ _ k . _
Al_[ﬁ,w} [Qm S t} [=0,1,---,2% 1. k=0,1,---,N —1.

See the diagram Figure 1 for the case N = 2. In our proof, N increases along with ¢ in a
way that will be specified later. We have
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Figure 1: triangular approximation
o2N+1_1 12k-1
[ 1+172
2y _ k
Q. =e( U [QMWL) (U U A)
1=0 k=0 1=0
2N+l 1 12k—1
—« [ l+ 172 « k
<7 OC21( [W“Wi) + 0~ OQ2<U UA>
1=0 k=0 1=0

oN+1_1 2k_1

—r Y @ [grtgent] )+ %z@xw

By Cauchy-Schwartz inequality

Eqexp {tlim Q([O, t]2<) }

oN+1_1

1/2
o b I 1+172
§<EOGXP{2” e Ql([Wt’WtD})

=0

b N— 2k 1 1/2
(Eo exp {29 a0 PR Q2< U Af) }) :
1=0

k=0

Notice that the random variables

[+1 N4l
Q1<[2N+1 ’2N+1t} ) [=0,1,---,277 —1
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form an i.i.d. sequence. Therefore,

]EfOeXp{277 -0 Z Ql([#t7 lz;_—_it]2<>}
gN+1
:@m%ﬂﬁﬂ%ﬁw)

([ 2N+1 /2N+1 /2N+1 B(r)|=*~(B(s) — B(r))dsdr
- %(gz\fﬂ o // 8(s) — B(r)|~*°y(B(s) — B(r))dsdr.

In summary,

and

aN+1_1

—on b [, 1+172
Eo exp {277 Otl—ao Ql([QN—i—lt’ 2N+1t} <)}

=0

= (Eoexp {naob<2]\fﬂ)2 aag 27]5:; // 18(s) )|~ (B(s) —B('r’))dsdr}>

Given € > 0, we now post our constraint

2N+l

oo

o
U on S €

for which we let

N [log 6‘1(77‘115)“0]_
log 2
So we have

b I 1+172
mmwm%2@®wWﬂﬂ
=

(Eoexp{eb Ly / / 18(s) — B <B<s>—B<r>)dsdr}>

In view of (7.2) and of the relation
// 15(s) )| (B(s) — B(r))dsdr
4= // 18(s) — B(r)|~*~(B(s) — B(r))dsdr,

on the other hand, we have

1 2 ~
lim 1oy exp {05 [ / () = B0) (B(5) ~ BO)dsdr | =

2N+1
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Replacing b by €b and ¢ by 2-(NV+1¢

N+1_ 1
b ° [+1
_ Qo
hl;ri)il(_)lp logEUexp{277 P lz: Q1<[2N+1 ’2N+1t] )} (7.14)
N by I .
< lim © log Eg exp {eb<2N+1> /0 /0 B(s) — B(r)| aov(B(s)—B(r))dsdr}

= (eb)To w0 H

where we used the fact that 2¥+1¢~1 — 0 (as t — 00) in the last equality.

Let .
ar =[] (1 - 2_(1—0«))]) k=23 N and Co=]] <1 _ 2_<1_ao>g>
Jj=2 iy

Since Coay > 1,

b N—-1 2k 1 b N—-1 2k 1
Eq exp {26“10 PR Q2< U A;“)} < Eg exp {29_‘“0 e Coan Z Q2< U Af) }

k=0 =0

By Holder’s inequality

2k—1

b N-1
Eq exp {20—040 T Coan kz:; Qg( g) Af) }
b N—-2 2k 1 1-2- (=N
< <E0 exp {29‘“0 T 0~ Coan_1 g Q2< U Af) })
- oN_q 9—(1—ag)N
X (EO eXp{Q(l a0 N29 aoCoCLN Q2( U AN 1)}) .

To continue, we remove the power "1 — 2-0=20)N" from the first factor. Since ay < 1, we
remove ay from the second factor. So we have

2k 1

N—-1
Eo exp {geaotf% Coan Y QQ( U Af) } (7.15)

k=0 =0

S Eoexp {29 0 b B OCOCLN 1 ZQQ( U Ak>}
9N _q 9—(1—ag)N
X (Eo exp{Z(l_a‘))N%’_aOCotl p” Qz( U AlN_l)}> )

=0

Write

2N _1

(U 4= % e

=0
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and notice that the right hand side is a sum of i.i.d. Thus,

2N _1

tlfao QQ( U Ai“)}

— (EO exp{2(1—a0)N2000_a0t1 . Q2< )})

EO exp {2(1a0)N2009a0

21\1

Further,

Qu(AN ) = /N dr /N ds|s — r[~*0y(B(s) - B(r)

(5+) M%/dr/dsrs 1 (BGs) — B)
(22 e // s+ 1)y (By(s) + Ba(r)) dsdr

where Bj(-) and Bs(+) are two independent d-dimensional Brownian motions, and where the
last identity in law follows from the variable substitution r — 1 —r and s +— 1 4 s so

/01 " /12 dsls = r~*9(B(s) = B(r))
— /01 dr /01 ds|(14+s)—(1— r)|_0‘07(B(1 +s)—B(1- r))
- /01/01(5 + r)_aW((B(l +s)— B(1)) + (B(1) — B(1 — T)))dsdr

and By(s) = B(1+s)—B(1) (0<s<1)and By(r)=B(1)—B(l—7) (0 <r <1) are two
independent d-dimensional Brownian motions. Thus,

—a —a b -
Eo exXp {2(1 U)NQC()Q 0 tlfao QQ(A(])V 1)}

— Egexp {2060“"0 (%) = /01/01(8 + )70 (By(s) + Bg(?"))dsdr}.

Therefore,

2N 1

o (U 4]

= (Eoexp{QCo bo~ 0‘0 // s+ 1) (Bi(s) + Ba(r ))dsdr})

Eq exp {2(1 @0)N9p= O‘OCO
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Bringing it back to (7.15),

2k 1

N-1
Eo exp {29_‘)‘0 tlbao C()aN Z QQ( U A?) }

k=0 =0

2k_1

S Eoexp{QH *0__— b aOCOCLN 1 ZQQ( U Ak)}

x (Eoexp{QC’gb@ ao // s+ 1) (By(s) + By(r ))dsdr})

Repeating the same game

b 2F—1 b N-1 2k_1
Eoexp{tl - g~ ZQ2< U Ak>} < Eoexp{ 0’aot1 -~ C’OaNZQ2< U Af)}

k=0 =0

< ﬂ (Eoexp{zoobe ao / / (s +7)7%y(By(s) + Ba(r ))dsdr}>2kao.

k=1

2No¢0

By Lemma 7.3 with b being replaced by 2C;b0~ and t being replaced by 27%t,

2k_1 0o
hmsup—logEO exp{ ZQ2( U Ak>} < C(204b) Z (1-ao)k

t—o0

Together with (7.12) and (7.13),

([o,t]@}

1 5= 1 G —(1—«
EC(Eb) o -+ 20(20{) Z 0)

k=1

1 b
lim sup n log £y exp { e

t—o00

Letting € — 0" on the right hand side finally completes the proof of (7.12). O

Proof of the upper bound. To tighten (7.11) into the demanded upper bound, we first write
it as

—ag

110(s — 1) +in(B(s) — B(r))
t

t—o00

v(B(s) — B(r))drds}

< Obrap (7.16)

lim sup — log Eqexp { "

and prove

=0t 100

lim limsup = logEoeXp{ // (s Hn(ﬁ() Alr ))) (7.17)

x v(B(s) — B(r ))drds} =0
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where

) . o dA
M) =Tao) ™ [ e
5—1

Indeed, given € > 0, break [0,¢]? into two parts: On the first part

‘9(8 — 1) +in(B(s) — B(r)
t

)’26

where

On the second part

where

~0<9(s —r)+in(B(s) — 5(7“))>

Vs P

0(s — 1) +in(B(s) — B(r))
t
and where oy < @ < 1 satisfies &g + a < 2. Thus,

/t/t O(s—r) +277 6(7’))>7<B(8)_B(r))d7“d8

< (e // ))drds
aaaaa /t/t 5 — 7“+m —B(r)) |-

By Cauchy-Schwartz’s inequality

Eoexp{ /t/t (s=1) “" 6(T>))7(B(s)—B(r))drds}
< (mvew (200 [ [ 10 drds})l”
ol

By (7.2) and (7.16) (with o being replaced by ay),

lim sup = log]EOeXp{ /t/t (s—r H" B<T))>7(B(s)—B(r))drds}

t—o0

< S{o@)=e (53(0) 7 + o) M}

S €d0 —Q0

5 — 7“—1—277 ())

1/2
’y(B(s) - B(r))drds}) :
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The claim (7.17) follows from that 7§(¢) — 0 (6 — 07) for any € > 0.
We finally come to the proof for the upper bound of (7.7). By the relation ||~ = 42(-)+732(")
and by Holder’s inequality

10(s —r) +in(B(s) — B(r))
t

—ag

v(B(s) — B(r))drds}

§<Eoe"p{ [ (= (T’))v<B<s>B<r>>drds}>l/p
X<E06Xp{ //g S_Tﬂnt(ﬂ(s) B(T)))V(B(s)B(r))drds})l/q.

Using the bound

b
Eqexp {E

O(é’(s —7) 4+ in(B(s) — 6(7“))) < 73)<(9(3t— r)) _ 9_@0%715<s ; 7’)

Vs ¢
and (7.6) (with b being replaced by bpf=>° and § by 67'4),

hmsupllogIEoeXp{ // Os =) +in(Bs) - mr)))fy(B(s)—B(r))drds}

t—o00 t

(pb)2 “9 2 agg 15 < (pb 2 "‘9 "5()
Thus,

—ap

0(s —r) +in(B(s) — B(r))
t

lim sup ~ log Eq exp { v(B(s) — B(r))drds}

t—o00

< E(pbwe—meo

lhmsuptlogEoexp{ // (s—r +“7t(5( 5) /B<T))>7(B(s)—B(r))drds}.

qd t—oo

Letting § — 0T on the right hand side, by (7.17) (with b being replaced by ¢b),
(s—r +“7(ﬁ( ) — B(r))

—ag

lim sup ~ log Eq exp { v(B(s) — B(r))drds}

t—00

1 2 2
S};(Pb)Q’“ =y

Letting p — 17 on the right hand side leads to the demanded upper bound:

—ap

O(s—r)+ in(ﬂ(s) — 5(7”)) ’y(B(s) — B(r))drds}

<prafEag,, (7.18)

1 b
lim sup 7 log Eq exp { f—a

t—o00

O

We end this section with the following lemma.
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Lemma 7.5. For any d > 0

lim — log (n!) Q/QEO[// Y9(s —r)v(B(s) — B(r))dsdr] = log <2 56@) . (7.19)

n—oo 1

For any 6 >0 and n > 0,

lim —log (n!) —o/2[, [

n—oo N

:log( 260 ) 7 g logh. (7.20)

2 —«

Proof. First notice

/Ot/ot %?(S ; 7’)7(3(3) — B(r))dsdr £ 5 /1/01 39(s — r)y(B(s) — B(r))dsdr.

0

Therefore, (7.6) can be written as

hm logEoexp{bt2 //75 s —r)y(B(s) — B(r))dsdr}:bﬂ&; b> 0.

By Gértner-Ellis theorem on Rt (Theorem 1.2.4, p. 11, [4]), the process

t_o‘/Q/O /0 v9(s = r)y(B(s) — B(r))dsdr t>0

obeys the large deviation on R, with deviation scale ¢ and the rate function

10) = sup {)\b _bTs agé} (22_560‘> A A0,

By Varadhan’s integral lemma (Theorem 4.3, p.137, [16])

1 1 pl
tlim n log Eq exp {tlog (t_o‘/Q / / (s —r)y(B(s) — B(r))dsdr> }

o

2—« 2% 2 (0% 255 %Ta
— 1 )\__< ) Ao » = —— +1 ( ) .
S;i%’{og 285 } ; Teela T,

Take t = n:
lim —10 n~ 2R // s —1)y(B(s) — B(r))dsdr "__g+10 < 28s >22‘1
n—oo N, g 0 ,)/a - 2 g 2_@ :

Applying Stirling formula to the above gives (7.19).

Notice that

0(s —r) +1in(B(s) — B(r))

4—a—2aq
2

1 7
O(s —r)+ @%(6(8) —B(r))




Therefore, (7.7) can be written as

lim 11og Eq exp {bt22a 0(s — 1) +i—(B(s) — B(r))

20

= b2« a9_780

The remaining of the proof for (7.20) follows a completely parallel argument. [

8 Proof of Theorem 1.2

The central piece of the proof is to establish

d—a—2qg d—a

lim = log(n!)*"ESon (gon(-1,0)) =1og(2(4‘0“2‘“0) (M )) 8.1)

n—oo N (4 - — a0)4—a—ao -

Indeed, by (2.20) ESs,—1(g2n—1(-,t,0)) = 0. From (2.22), (1.8) and (2.6) one can derive that
ES2n(gon(-,t,0)) = t4=07"ES,  (go,(+,1,0)) ¢ > 0. (8.2)

By the Stratonovich expansion (2.13), therefore,

Fu(t, ) = Eu(t,0) ZES% Gon(+£,0)) =D t4TESy, (g2n(+,1,0))
n=0

n=0

where the first equality comes from the stationarity in z. By (8.1), therefore, Theorem 1.2
follows from the following computation:

tlggo t~ 5 logEu(t,z) = Jim #7= logzot (Uamang S, (g2n(+, 1,0))
. —a—ag tld—a=eon /9(4 — o — 2040)4701272&0 Mo\
:tli)l'{.]c_)t T 3—a logz ( (4_a_a0>4_a_ao (4_@) )

a—2aqn

=(3—a)(2(4_o‘—2040)j - (4/\/1 >‘*;°‘>3—1a

(4—0(—050)40‘0‘0 —

where the last step follows from the elementary identity on asymptotics of Mittag-Leffler
function (Lemma A.3, [3]):

b—o0

>
lim b~ log § e A0V 0.y >0
mn.:
n=0

with b = ¢4 ~ =3 — o and

4—a—2qg 4—o
g — 24 —a —2ag)” = <M>2 .
(4—a—aqp)t2 \4—q
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Recall that the variation & is defined in (7.5) and define

9 A R x S ‘OLO

1
- —/ IV.g(s,z)| dxds}.
2 0 Rd

By rescaling, M = 27°s M. By Lemma A-4, 6],
2 —« a<4M>2a 2—0[222(1(4./\/1)3:2

& = 93°
0 2 4—a 2 4—a

(8.3)

Therefore, (8.1) can be rewritten as?

4—a—2

lim = log(n!)*~"ESon (gon(-1,0)) = 1og<(4‘“ ~200) F (2 )) (8.4)

n—o00 1, 23<4 - — (1/0)4—01—0[0 2—«

In the following subsections, we shall establish the upper and lower bounds, separately, for
(8.4).

8.1 Upper bound for (8.4)

In view of (6.1) and (7.1),
/ ¢ E Sy (gon (-1, 0))dt (8.5)
0

90" [ w5

E[ 6(s ) +i(8(s) — B(r))

—ag

v(B(s) — B(r))dsdr} "'
Let 6 > 0 be fixed but arbitrary (for a while). Given 1 > 0, write
/ dtexp{ - %t}Eo [/ / ‘9 s—r)+i(B(s)— B(r))| v(B(s) - B(r))dsdr]

{/ / }dtexp —02—275} (8.6)

« E [ 9(3 — ) +i(B(s) — BE))| v (B(s) - B(r))dsdr} y

—ag

2For comparison to Theorem 1.2, [13] in the setting of time-independent Gaussian field, we formulate
Theorem 1.2 in terms of M instead of &
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For the first term on the right hand side, we use the scaling identity

(s—r)+i(B ) ( — B(r))dsdr
1

4oc2a0

0(s — 1) 7( (s) = B(r))

So we have

/0n2 dtexp ——t EO[//‘Hs—T +i(B(s) = B(r))
:/O dtexp{—%t}twn
]E[// (s =) +i2(5(5) = B0)
<Eo[// 05 =) i (8(5) = ()
x/ exp{—?t}tM dt
_E{// s_rﬂi(/a()—ﬁm)

4 a— 2&0
4—0&—20[0
R O )
(@) R

4—a—2aq

= (14 0(1))" ()04 — & — 20y) =T ng-mameon (Y E (o)

where the last step follows from (7.20) and Stirling formula.

—aq

v(B(s) — B(r))dsdr]

—ag

v(B(s) — B(r))dsdr]

—aq

v(B(s) — B(r))dsdr]

—ap

V(B(s) — B(r)) dsdr} '

As for the second term, we use the bound of Taylor expansion

t
0

< n!t(l_C“O)"Eo exp {

—ap

0(s —r) +i(B(s) = B(r))

v(B(s) — B(T))dsdr] '

—ag

0(s —r) +i(B(s) — B(r))

2

<(1+ 0(1))nn!t(1_a°)n exp {07%5@} (n — o0)

tl—oco

v(B(s) — B(r)) dsdr}

for large t, where the last step follows from Theorem 7.1 with b = n = 1. Take 6§ > 0
sufficiently large so that
(92
0(9) = 5 — Q_W&) > 0.

We have

/nozn dt exp { — %Qt}EO [

< (1+o(1))"n!/ {100 e p Ec(O)hdt (n — o0).
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We now claim that

1 [e.e]
lim lim sup — log(n!)~t—20) / e expl —c()t}dt = —oo0. (8.7)
n
1

=0T pnooco —2p

Indeed, consider an i.i.d. sequence Xi,---, X, with common distribution F(l — Qp, c(9)>,

i.e., they have the common density
flz)=T(1- ao)_lc(ﬁ)(l_o‘(’)x_ao exp{ - C(Q)x} x>0
and X ~ exp(c(f)) independent of {X7,---, X, }. We have that
Xo+ X+ X, ~ r(1 + (1 — ag), c(9)>.

Therefore -

I'(1+n(l- ao))_lc(e)”(l%)”/ t=a0m exp{—c(6)t }dt
n

,Qn

:P{XO+X1++Xn 27772}'
n
Therefore, (8.7) follows form Cramér large deviation (Theorem 2.2.3, p.27, [16]|) which par-

ticularly leads to

1 Xo+Xi+--+ X,
lim limsup — logIP’{ ot At > 77—2} = —00.
=0T poco N n

In summary,

/noon dteXp{ B %Qt} /Ot/ot (s —r)+i(B(s) — B(r)) _aov(B(s) — B(r))dsdr '

-2
< (1+40(1))"(n!)> * exp{—L,n}
where L, > 0 can be sufficiently large if 7 is sufficiently small.

So we reach the point that in the decomposition (8.6), the bound of the first term dominates
the bound of the second term as 1 > 0 is small. Consequently, by (8.5) we have

/ G_GtESQTL (ggn(',t, 0))dt
0

4—a—2aq

n 1\ 3n
< (L o(0)" () ()10 — @ — 200) =T ng- e
On the other hand, by (8.2)
/ 6etESZn(g2n<'7tao))dt:ESQn(QQH(‘,l,O))/ e Otpldma—aon gy
0 0

= 9’(”(4’“’0‘0)"1“(1 +(d—-—a-— ao)n)ESzn (ggn(~, 1, 0))
= (1 + 0(1))”0_(4_a_a0)”(4 —a— ao)(4_a_"‘°)"(n!)4_a_a°ESgn (ggn(~, 1, 0))
So we have the upper bound of (8.4):

2&) >22an

2 —«

4—a—2aq 2«

limsupllog(n!)g’“ESzn(gzn(-, 1,0)) < log <(4 —a—Za) ( 2, )) (8.8)

nooo 1 23(4 —a— qp)te 0 \2 — «

O
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8.2 Lower bound for (8.4)

Take § = 1. By (6.1) and (6.2)
> 1/1\3n 1 [ t
—t . — -n_[(_Z J— JR—
/0 e "ESa, (g2n (-, 1,0))dt = T'(x) 5 <2> oy /0 dtexp{ 2}

<[ | Cexp {iA(5(s) + B(s)) + i - Bs) s zAfl_AaOuuo]n
> 005 (5) o e { - 5}

<[ e exp {iA(r(s) + B(s)) + i - Bs) s
=075 (5) e {5}

2
X EO |:EH/
Ry xRd

2 d\
)\17040

uta)|

2 A\
Al—ao

u(dﬁ)]n

/Ot exp {i/\li(s) - %s + i€ - B(s)}ds

where the inequality follows from Jensen’s inequality. Further,
2

E* /RMRd /teXp {z'm( ) — %s—i—ig B(s )}ds 2 dh

)\l—oco
/R+)\1 Olo//exp A\s—r\——s#—r} ))dsdr
22
2t

4 gt / - // exp{ — s —r| - (s+7’)} (B(s) — B(r))dsdr

> 1 o { - (%) /0 & a// exp{ — Ms —rl}1(B(s) — B(r)dsdr
:F(@O)t%exp{—((pt)’l /0/0 v3(s = r)y(B(s) — B(r))dsdr.

Here we recall (2.24) for the definition of 7(-).

p(ds)

Therefore,

/ooo ¢ ESa, (gzn(-, ,0))dt
Z 2 {// 75(s — )y (B(s) — B(T))dsdr]n
X /OOO exp { 2}ex]@ { —n(6%t)” }t“’a;?aondt

_5 3nn' 0{// 75 (s — 1)y (B(s) — B(r))dsdr}n
XeXp{ 5 }/ exp{—%}t4a22a0 dt
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where 0 < 1 < 1. By constructing relevant independent Gamma-distributed random vari-
ables (as we did in the proof of (8.7)) and by the law of large numbers, one can show that

0 t —a—2a —a—2a 4— _2
/ e><p{—§}t4 22Ondt:(1—|—0(1))21+4 220"F<1+%n> (n — 00).

By (7.19) and Stirling formula, therefore,

3n

255 )QEQ"

()20 (4 — a — 2040)74’“5“0”(
2—«

/0OO €_t]E52n(92n(-,t, O))dt > (1 + 0(1))n(%>

as n — o0.

On the other hand, by (8.2)

/ e "ESan (g2n(-,1,0))dt = ESa, (g20(-,1,0)) / e—tpld—a—ao)n gy
0 0

=T (14 (4~ a — a)n)ESa(gan (- 1,0))
= (1+0(1))" ()27 (4 — & — ap) " *I"E Sy, (g24(, 1, 0)).

Combining them together, we have

4—a—2aq 27—«

lim inf ! log(n!)* *ESan (g2n(+, 1,0)) > log ( (4—a—2a) > ( 285 )2) (8.9)

n—oo M 23<4 — o — 060)4_0‘_‘10 2 —«

Letting 6 — 0 on the righ hand side gives the expected lower bound. [J

9 Appendix

Let 6 > 0. Corresponding to the norms || - ||§1,3 and || - ||§2,2 introduced in (3.4) and (3.5),
the following lemma is concerned with the bound given in Theorem 3.1 with Gy(t,z) =
e G (t, z).

Lemma 9.1. Assume (1.5).

(i) For any 6 >0,

= - i§-x dA
/0 /R G 1) | o ) (9.1)

/R+ x R4
1 dA

- /Rde (6 4+ A)? + [¢]2 Atmeo

p(d§) < oo.

63



(i1) For any 6 > 0,

/ / dsdte= (%) / |s —t| 7%y (z — y)G(t,2)G(s,y)dzdy (9.2)
o Jo R x R4

B / D 1 1
T2 o Moo NS G TR 02 1 g2

. i/ d\ (dg) 6+ X\ 1
20 Jsma N0 SO N2 (€207 + [€]2
< Q.

Further, there is a constant C' > 0 such that

/ / dsdte_e(tJ“S)/ s — t|*y(z — 3)G(t, 2)G (s, y)dxdy < CH™2 (9.3)
o Jo Ré xR

for large 6.

Proof. The identity in (9.1) follows from

- 3 s in(¢[€]) 1
(0+N)t+ig Tt Vdrdt — / 0+t Slﬂ( dt —
e ,x)dx e
/0 /Rd () 0 €] (6 +A)% + [€]?

where the first equality follows from (2.3) and the second from integration by parts. To show
the finiteness,

| i\ 1 dx
d¢) < d
/R+Xw G e o) = /R+XRd N e e )

and by variable substitution

2—ag

/ 1 N 1 2 / 1 d)
rr A2+ (024 [E2) Mmoo\ 62 + [¢]2 R, 14+ A2 Al-e0’

By (1.5), therefore,

1 dM\ 1 2
/ (FS T (W) ulde) < oo

We now prove (9.2). By (1.5),

/ / dsdte™0t+s) /R d Rd| —t|7(z — y)G(t, 2)G(s, y)dzdy
X
d\ —0(s+t) ,~ At —5) i€ (z—y)
— Y= T H dsdte G(tx)G(s,y)dxdy
R+ xR {s<t} R xRE
2 / Z / [t s
R+ xRd )\ aol! [(s<t} €]

dA ,U/ 20s > —(04+N)(t—s) .2
:2/]1{+de =TT / dse™*"* sin(s |§])/S e~ OFNE=S) gin(¢|€|)dt
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By the relation

sin(t[¢]) = sin((¢ — s)[€]) cos(s[€]) + cos((t — s)¢]) sin(s[¢])

and by integration by parts

/ =0 in(11¢ ]Vt

= cos(s¢|) /000 e 0+ sin(t|€|)dt + sin(s|¢|) /000 e 0+ cos(t||)dt

€] . 0+ X\
(0 + N2+ [€)? + sin(s¢]) (0 + N2+ [€]?

= cos(s[¢])

Thus,

// dsdtee(t“)/ |s — t| "y (z — y)G(t, 2)G(s,y)dxdy
o Jo RdxRd

_ d\  p(dg) €] PV
_2/R+de Al-co |£]2 (9+>\)2+|§’2/0 € sin(s[¢]) cos(s(€])ds

A\ u(d€) O+ A 0
+2/R+><Rd A—ao [€]2 (92+)\)2+|§|2/0 2% sin’(s[¢|)ds

Using integration by parts again

26 1 I

—920s - _ - —20s _: — _
/0 e~ “* sin(s|¢]) cos(s|€])ds = 5 /0 e” " sin(2s(¢])ds 2407 + €2 402+ |2

A similar treatment also leads to

IS
T 4062 + €2

& _920s d _ ‘€| —295 25
| s tsicas = sin(2sJe])ds

Bringing them together leads to the identity leads to the identity in (9.2).

Establishing the finiteness in (9.2) is an easy job and can be seen from the following estimate
for (9.3). To show (9.3), all we need is to bound the two terms on the right hand side of
(9.2) separately. We first work on the second term.

By variable substitution

/°° d\ 04\ _/°° d A
o AT (O +N2HER Sy (A=) A+ [

! /00 dA A
e g (A= fE]T0) 0 A2 4 1

Consider the decomposition

/°° d\ A { /25“9 o0 d\ A
< + / } |
-1 (A — [§]710) 1m0 A2 + 1 l|-16 ag-10 ) (A —[€]710)1 70 A2 +1
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For the first term

/25“9 dA A <|§|> /25'_19 dA
g-te A= [E710)m0N+ 1 7 N0 Jigog (A= [€]710) 0
~ (&) / 0 dx L (lelyes
0 0 AM—a0 a5\ 0 ’
As for the second term

/OO d\ A < /oo d\ A < C(E) 1—ag
2/¢|-16 ()\ — |§‘710)1ia0 A2 +1 2/¢|-16 ()\/2)170{0 A2 +1 0 ’

In summary, we have the bound (the constant C' can be different from place to place in our

argument) . b
< Ccp~1m),
/O A\l—ao (9 + )\)2 + |5|2 -

By Fubini’s theorem, therefore,

dA 0+ A 1 1
—_— < —(1—ap)
/RWW Ao ) G N epe s jep = /Rd 7T |§‘2u(d€)
1
B =1 ooy P P

By Minkowski inequality with p = 2/ag and ¢ = 2(2 — ap) 7,

0+ 1€ = ClgmjgP .

So we have

1
oo [t < 0ot [ et uag),
fleiz1y 0% + 1€ (lel>1)

The integral on the right hand side is finite under (1.5). Therefore, we have established the
expected bound

1 d\ 0+ A\ 1
= d < CH2.
2 | NEAGS) C

(6 + A2+ €202 + €7 —

Notice that
1 1 0+ X\ 1

1
(0+ N2+ [EPO2+IEP ~ 60+ N2 +[¢2 02 +[¢
The first term in (9.2) yields the same bound. [J
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