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1. Introduction. Let {X () : t > 0} be a symmetric stable process of index « € (0, 2]
with stationary independent increments. Furthermore, assume the process is taken to have
sample paths in D[0, c0), and X (0) = 0 with probability one. For ¢ > 0, n > 1, define

M(t) = sup |X(s)],
0<s<t

and

Ma(t) = M(nt)/(can/LLn)"/®,

where the constant 0 < ¢, < 00 is given by

(1.1) ca =— lim e*log P( sup |X(s)| <e)
e—0*+ 0<s<1

and LLn = max(1,log(logn)). The existence of the limit defining ¢, in (1.1) can be
found in Mogul’skii (1974). The earlier paper Taylor (1967) obtained strictly positive,
finite bounds for the liminf and limsup of the right hand side of (1.1), and there is also
a variational representation of ¢, to be found in Donsker and Varadhan (1977). When
a = 2 the process is Brownian motion, and it is well known that co = 7%/8 provided
{X(t) : t > 0} is normalized to have E(X?2(1)) = 1. If a € (0,2), the constant c, is also
clearly X-dependent, but due to the scaling property of { X (¢) : ¢ > 0} it only affects ¢, in
multiplicative fashion.

If @ = 2, then it was shown by Chung (1948) that
(1.2) limn,(1)=1 as.,
and for general a € (0, 2], Taylor (1967) showed that
(1.3) lim M(n)/(n/LIn)Y® =B, as.

where 0 < (B, < oo. Of course, once one knows (1.1) holds with ¢, € (0,00) then
Ba = c&/®. This follows from (1.6) below. The equality in (1.3) is also derived in Donsker

and Varadhan (1977) as an application of their functional law, and 3, is defined in terms
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of the rate function for large deviations of the Markov process { X (¢) : t > 0}. Of course, if
a = 2, and in the definition of n,, (¢), M(-) is replaced by X (-), then the rates of convergence
in the functional LIL of Strassen initiated by Csaki (1980) and de Acosta (1983) generalize
(1.2) considerably, and involve the entire function 7,(t), 0 < t < 1 (see Kuelbs, Li and
Talagrand (1994) for further details and references). Another possibly extension of (1.2),
or (1.3), is to examine the functional cluster set C({n,(-)}) in a weak topology. This was
done when o = 2 by Wichura (1973) in an unpublished paper. The proof in Wichura
(1973) obtains a related cluster set for the first passage time process via properties of
Bessel diffusions. Then the cluster set for the maximal process {M(t) : t > 0} is obtained
from the fact that the first passage time process is the inverse of {M (t) : t > 0} and various
continuity considerations.

Our main result studies the cluster set C'({n,}) for all & € (0,2], and recovers the
related fact in Wichura (1973) when o = 2. Our proof is quite different, and we study
the maximal process {M(t) : t > 0} directly. Of course, our results then apply to the first
passage time process by reversing the steps in Wichura (1973). See the remark following
(1.6).

To describe these results, denote by M the space of functions f : [0, 00) — [0, 0o] such
that f(0) = 0, f is right continuous on (0, c0), non-decreasing, and lim;_, . f(t) = oo.

Let
Ka={feMm: [ rewas<,
0

and endow M with the topology of weak convergence, i.e. pointwise convergence at all
continuity points of the limit function.

The topology of weak convergence on M is metrizable and separable. This can be seen
as follows. Let N denote the functions g : (—oo,00) — [0, 1] with g(¢) = 0 for ¢ < 0, right
continuous on (0, 00), non-decreasing, and such that lim; ,, g(¢) = 1. Let A(s) = s/(1+s)

for s € [0, 00], with oo/oco understood to be one, and for f € M define

. 0 fort <0
() =rf (t):{,\(f(t)) for t > 0.
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Then the map ¥ : f — f* is one-to-one from M onto N, and we define a metric d on M

by setting
d(f,g9) = L(f*,9%),

where L is Levy’s metric on N, i.e.
L(f*g")=inf{e >0: f*(t—e)—e<g*"(t) < f*(t+e)+e for —oo<t< oo}
Now lim,, d(f,, f) = 0 for f,, f € M iff lim,, L(f%, f*) = 0, and this holds iff

(1.4) lim £ (¢) = /* (1

for all ¢ in the continuity set of f*. Taking the usual topology on [0, co], and the definition
of the map ¥ : f — f* we see that (1.4) holds for all t € C(f*), the continuity set of f*, if
and only if lim,, f,,(¢) = f(¢) for all t € C(f), the continuity set of f. Since Levy’s metric
makes N a complete separable metric space, we have (M, d) a complete separable metric
space, with d-convergence equivalent to weak convergence on M.

If {fn} is a sequence of points in M, then C({f,}) denotes the cluster set of {f,},
i.e. all possible subsequential limits of {f,} in the weak topology. If A C M, we write
{fn} = A if {fn} is conditionally compact and C({f,}) = A in the weak topology. Then
the following hold.

Theorem 1.1. Let {X(t) : t > 0} be a stationary independent increment symmetric stable
process of index o € (0, 2] with sample paths in D[0,c0) and such that X (0) = 0. Then

(1.5) P({nn} = Ko) = 1.

Corollary 1.1. Let {n,} be as in (1.5). Then

(1.6) P(limn,(1) =1) = 1.
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Remark. Let DJ[0,00) denote the non-decreasing functions which vanish at zero, are
right continuous on (0, 00), and have left limits on (0, 00). If f € Dg[0,00), we define
0 ify=20
Fily) = {inf{t:f(t) Sy} ify>0
where inf ¢ = oo. Then F maps D{[0,00) into Dg[0,00) and Ff is a right continuous
inverse of f in the sense that F(Ff) = f. Furthermore, looking at the Levy metric,
and considering compact subintervals of [0,00), we see {f,} converging weakly to f in
M implies {Ff,} converges weakly to Ff in D [0,00). Of course, the weak topology
on Dj[0,00) can be described as for M with A expanded to include functions g with

limy_y00 g(t) < 1. We also have

F(Ko)={Ff:fe Ky} ={g9€ DJ[0,00): /Ooo u”%dg(u) < 1},

where dg(u) denotes integration with respect to the measure on [0,00) given by the non-

decreasing function g. Hence (1.5) implies

P{F(m)} —» F(Ka)) = 1.

Now
(Frm)(s) = inf{t : 1 (t) > s}
= inf{t : M(nt) > s(cqn/LLn)Y}
1
= E]—"M(s(can/LLn)l/")
Letting m = my, = (can/LLn)"* we get n ~ c;'m*LLm, and hence as n — oo,

Fnn() ~ FM(m(-))/(c;'m*LLm). Since FM is increasing with the values of {m,, :
n > 1} within distance one of any large integer, we may replace m = m,, by the great-
est integer less than or equal to m, when we investigate the asymptotic behavior of
{FM(m(-))/(cg*m*LLm)}. Thus the following corollary holds.

Corollary 1.2. Let N(0) = 0 and N(s) = inf{t : M(t) > s} for s > 0 denote the first
passage time process for {X(t) : t > 0}. Then {N(s) : s > 0} = {FM(s) : s > 0}, and
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with probability one
(N(m())/ (3" m* LLm)) 5y = g € DF0,00): [ u™dg(u) < 1)
0
in the weak topology.

There are various applications of the functional LIL given in Theorem 1.1, very much
in the same spirit as for Strassen’s LIL. For example, we know from Corollary 1.1 that with
probability one lim7,, (1) = 1, but how fast does 7,,(-) get away from the zero function, say
over the interval TEO, 1], or how many samples 7, (1), n < t fall in the interval [0,¢], ¢ > 17

One measure of these quantities is the weighted occupation measure

(1.7) Welt) =t [ Toan(08(s/0)ds.

where ¢ > 1, 6(-) maps (0,1] into (0, 00) with (1) = 1, ,(u) = M(su)/(cqs/LLs)Y* for
s> 0,u >0, and no(u) = 0 for all u > 0. As the continuous parameter s converges to
infinity, the family of functions {n,(-)} satisfies (3.1), (3.2), and (3.3). The analogue of
(3.3) follows immediately from the case n — oo through the integers, as there can only
be more cluster points when s converges to infinity continuously. Furthermore, both (3.1)
and (3.2) follow in the continuous parameter case from the proofs in Propositions 3.2 and
3.1, respectively.

Beyond the properties already mentioned for 6, we will also assume 6 satisfies:

(1.8) s+ sY/%/0(s) is increasing on (0,1],

(1.9) /o 0%(s)/s ds = oo,

and the function

(1.10) h(s) = 6%(s) +/ 0%(u)/u du

maps (0,1] onto [1,00) in continuous and one-to-one fashion. For example, suppose (1.8)

and (1.9) hold, and 6 is continuous and decreasing on (0,1] with (1) = 1. Then h(s)
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is strictly decreasing and continuous on (0, 1] with range [1,00). The functions (s) = 1
and 6(s) = (log(e/s))*/* are such examples, but 0(s) = 1/(log(e/s))*/* also satisfies the
conditions formulated in (1.8), (1.9), and (1.10). With this notation we now can state the

following proposition. Its proof is in Section 4.

Theorem 1.2. Let 6 : (0,1] — (0,00) satisfy 0(1) = 1, (1.8), (1.9), and that h(s) as
defined in (1.10) is continuous and one-to-one on (0,1] into [1,00). Let {X(t) :> 0}
be a symmetric stable process with homogeneous independent increments, sample paths in

D[0,00), X(0) =0 w.p. 1, and parameter o € (0,2]. Then, with probability one,

(1.11) lim U (t) =1 — s,

t— oo
where s = s, is the (unique) solution to h(s) = c*, ¢ > 1.

Examples. If 6(s) = 1 on [0,1], then h(s) = 1 — logs and h(s) = ¢* has solution
se = e~ (¢“=1 for ¢ > 1. Thus (1.11) implies that with probability one

t—o0

t
i ¢ [ o ()ds =1- ¢
0

for each ¢ > 1.
If 9(s) = (log(e/s))*/* on (0,1], then for 0 < s < 1, h(s) = 1 — 2log s + (log 5)?/2.
Solving h(s) = ¢*, 0 < s < 1 and ¢ > 1, we get s, = exp(2 — 24/1 + (c® —1)/2)), and

hence with probability one

t—o0

lim t—l/o It q(ns(1) (log(et/s))/*)ds = 1 — exp(2 — 2¢/1 + (c* — 1)/2)

for ¢ > 1.

If (s) = (log(e/s))~* on (0,1], then for 0 < s < 1, h(s) = (1 — logs)~! + log(1 —
log s), and h(s) is continuous and strictly decreasing on (0, 1] with A(1) = 1. Thus h(s) has
a unique continuous solution s. and Theorem 1.2 applies. However, an explicit formula for
the value of s, is not immediate in this case. ,

Another gauge of the rate of escape is the quantity ¢+ / Ito,11(n¢(s/t))ds, which is
similar to W.(t) (as t — 00), provided 0(s) = s*/*. With thig choice of 6, (1.8) applies,
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but (1.9) fails and h(s) =1 for all s € (0,1]. Thus Theorem 1.2 is not applicable, but the

techniques for its proof imply

. .
. ] ife>1
(1.12) lim ¢ /O Ijo,e)(ne(s/t))ds = {Ca if0<c<l.

t—o0

The rate of escape with respect to the LP norms is given by the following theorem,

whose proof is in Section 4.

Theorem 1.3. Let {X(t) : t > 0} be as above and suppose 0 < p < oco. Then, with

probability one

1 1
1.13 li Pdu = inf Pdu = 1.
(113) tw [ mpdu= o [P

t—oo JO

Remark. Since 7;(-) is increasing, the analogue of (1.13) for the sup-norm on [0, 1] follows

immediately from (1.6).

2. Probability Estimates. The proof of Theorem 1.1 depends on the probability esti-
mates obtained in this section. The first result is an Anderson type inequality for symmetric

a-stable measures. It is a known fact, but we give a proof for completeness.

Lemma 2.1. Let {X(¢) : t € T} be a symmetric stable process of index o € (0, 2] such
that T is a countable set and P(sup,cr | X (¢)| < 00) = 1. Then for all A > 0, and all real
numbers x,

(2.1) P(sup X (1) + 2] < 2) < P(sup|X (1) < A)

Proof. The proof of (2.1) follows from Anderson’s inequality if « = 2. If « € (0,2), then
by Lemma 1.6 of Marcus and Pisier (1984), we can find probability spaces (2, F, P) and
(Q, F, P) and a real-valued stochastic process {Y(t) : t € T} on (Q x Q,F x F, P x P)
such that the processes {Y (t) : t € T} and {X(¢) : t € T} have the same distribution and
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for each fixed w € €, the stochastic process {Y (t,w,-) : t € T} is a symmetric Gaussian

process. Hence for A > 0 and all = real, the o = 2 case implies
(2.2) ]g(sup Y (t,w, )+ x| <A) < ﬁ(sup Y (t,w,-)| <A).
teT
Since (2.2) holds for all w € €2, Fubini’s theorem and (2.2) combine to give (2.1).

Proposition 2.2. Let {X(t) : t > 0} be a symmetric stable process with homogeneous
independent increments, sample paths in D[0,00), and parameter a € (0,2]. Fiz sequences
{ti} o, {ai}™y, and {b;}7%, such that 0 =to < t1 < --- <ty and a1 < by < ay < by <

- < @y < byy. Then

m

m e*log P(ae < M(t;) < big,1 <i<m) < —cq Y (i — ti—1) /b3

—0t
€ i=1

Proof. Let A; = {supti_lssdi | X (s)| < bie} for i =1,...,m. Then it is easy to see

(2.3) P(aje < M(t;) <be, 1<i<m) < P([)4).
=1

Furthermore, we have

P(OAZ-)

:/RP( ﬂ A, sup  |X(8) = X(tm-1) + 2| < bpe | X (bm—1) = 2)dPx(t,, ()

i=1 tm—1<8<tm

:/RP( sup | X(8) = X(tm=1) + 2| < bye) P( ﬁ Ai | X (tm-1) = z)dPx,, ,)(@),

tm,1SS<tm

since sup; _, <s<t,, |X(8) = X(tm—1) + | is independent of X (tm,—1) and ﬂ:’:ll A; by the
independent increments property of X ().

Now Lemma 2.1, and that the sample paths are in D|0, 00), together imply

P( sup [X(5) = X(tm—1) + 2| < bpe)

tm,1SS<tm

<P( sup [X(s) = X(tm-1)| < bme)
tm—1<s<tm

= P( sup | X (8)| < bme/(tm — tm_l)l/a),
0<s<1
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where the equality follows from the scaling property of { X (¢) : ¢ > 0} and the homogeneity

of the increments. Thus

P([4:) < P( ﬁ Ai) - P( sup [X(3)| < bme/(tm = tm-1)"/"),

and iterating the above estimate, along with (2.3), implies

lim e*log P(a;e < M(t;) < bie, 1 < i< m)

e—0t
L b;e
< lim e“log P( sup |X(s)| < ——
B i:zﬁ_"” s (ossls)l‘ ()l < (ti—ti—l)l/a)
= —ca 3 (ti — ti_1) /b2,
i=1

where the equality follows from (1.1).
Thus Proposition 2.2 is proven. To obtain a reverse estimate, we need the following

lemma.

Lemma 2.3. Given § > 0,

(2.4) lim e*log P(M(1) <e, | X(1)| <&d) = —cq.

e—0t

Remark. From (2.4) one can see that for given positive numbers a < b and § > 0,

lim e*log P(ae < M(1) < be, | X(1)| < &d) = —cq /.

e—0t

Proof of lemma 2.3. If § > 1, then (2.4) follows immediately from (1.1). Hence assume
d € (0,1), and suppose T' = {t;} is a countable dense subset of (0,1). Let {Y(t) : t € T'}
be a sochastic process on (£ X Q, F x .%, P x ﬁ) as in the proof of Lemma, 2.1. Then

P(M(1) <&, [X(1)] < €6)

=1limP( sup |X(t;)| <& |X(1)] < ed)
" 1<j<n

=1limE, (P, ( sup |[Y(tj,w,w')] <e, [Y(1,w,w')] <&6))
n 1<j5<n

> lim E,, (P ( sup |Y(tj,w,w)| <e, [Y(1,w,w') + 0] < b))
n 1<j<n
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for all 8 € R, where the inequality is due to Anderson’s inequality applied conditionally
to the Gaussian probability in R**!, i.e. we are translating only the (n + 1)%* coordinate.

Continuing with (2.11) we have for # € R that

PM(1) < &,|X(1)] < &)
> (P x P’)(sgﬂp Y (t,w,w')| <e, [Y(1,w,w') + 0| < £0)
= P(sup | X(0)] < &, [X(1)+0] < eb)

=P(M(1) <e, |X(1)+ 06| <e&d).

Thus

[1/4]
P(M(1)<e)< > PM(®1)<e, |X(1)+ jed| < &)
j=—1[1/6]

< (2 [1/5] + 1)P(M(1) <e, |X(1)] < ed).
Hence the above estimate implies (2.4).

Proposition 2.4. Let {X(t) : t > 0} be a symmetric stable process with homogeneous
independent increments, sample paths in D[0,00), and parameter o € (0,2]. Fiz sequences
{ti} o, {ai}o, {bi}g such that 0 =t) <t1 <--- <tm and a; < by <ag < by <---<
G < by. Then, for every v > 0,

m

(2.5) lime®log P(ae < M(t;) < bie,1 <i <m, | X (tm)| < bpye) > —cCa Z

e—0 i—1

ti —ti—1
by

Proof. Take a small § > 0 such that 6 < v and a;(1+ ) < b;(1 —9) for all 1 < i < m.
Define

B; = {ais < sup | X(s)] < big, | X ()] < bi5€}
ti—1<s<t;

for2=1,...,m. Then



On the other hand, if for i =1,...,m.

A; = {ai(l +8)e< sup  |X(s)— X(tii1)| < b;(1— ),
ti—1<s<t;

X (k) = X (ti1)| < (b — bi1)0e }
then

(ti —tia)¥e

and

(2.6) PU%&)zﬂﬁf&mmazp(ﬁuw.m%ﬂzﬁfmﬂ

By the remark after Lemma 2.3, (2.5) follows from (2.6), and the proposition is proven.
As a direct consequence of our Proposition 2.2 and Proposition 2.4, we have the

following small ball estimates for X (¢) under weighted norms. The case o = 2 was given

in Mogul’skii (1982) and its connection with Gaussian Markov processes was studied in Li

(1998).

Proposition 2.5. Let {X(t) : t > 0} be a symmetric stable process with homogeneous
independent increments, sample paths in D[0,00), and parameter o € (0,2]. Let p :

[0,1] — [0,00) be a bounded function such that p(t)* is Riemann integrable on [0,1]. Then

1
lime?log P( sup |p(t)X(t)| <¢) = —ca/ p(t)“dt.
e—0 Ostsl 0

3. Proof of Theorem 1.1 and Corollary 1.1.

The proof of Theorem 1.1 follows immediately from the following three facts.

(3.1) P(C({m}) C Ka) =1,

(3.2) P({n,} is conditionally compact in M) =1,
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and
(3.3) P(K, C C({m.})) = 1.

Of course, the topology on M is that of weak convergence, which is separable and metric.

In order to prove (3.2) we first observe that a subset F' of M is conditionally compact
if for every I' > 0 there exists to = to(I') such that ¢ > ¢, implies infzep f(¢t) > I'. This
characterization of conditional compactness in M is immediate from the homeomorphism

of N/ and M.

Proposition 3.1. P({n,} is conditionally compact in M) = 1.

Proof. Let ng = 2%, and observe that for ny_; < n < ng, and all k sufficiently large,
(3.4) 1 (1) = 1y (/1) (nie LI/ (nLLng)) ' = 1, (8/2).
Hence for I > 0, (3.4) implies
(3.5) P(n,(t) > T eventually in n) > P(n,, (t/2) > T eventually in n).
Rescaling, and applying (1.1), we have for all k sufficiently large that

P(nn, (t/2) <T) = P(M(1) < T'(2ca/(tLLng))"*) < exp{—(tLLny)/(41%)}.

Hence if ¢ > 8I'*, we have

Zp(nnk(t/2) <T) < oo,

k>1
and the Borel-Cantelli lemma implies P(n,,(t/2) < I' io0.) = 0. Thus (3.5) implies
P(n,(t) > ' eventually in n) = 1 for ¢ > 8I'*. Letting I' /* oo through a countable

set implies (3.2), and the proposition is proven.

Proposition 3.2 P(C({n.}) C K,) = 1.
Proof. Fix f € M N K¢, and hence

(3.6) /O T ) -dt > 1.
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Let t3 =sup{t : f(¢) < co}. Then t} = 0 negates (3.6), so t3 = o0 or 0 < ¢} < oc.
Suppose (3.6) holds. Since f(t) = oo for t =t} we have

(3.7) / "(F))dt = / T (@) > 1.

Furthermore, since f is increasing and non-negative, the integrals in (3.7) exist as improper
Riemann integrals. Hence there exist points 0 =ty < t; < --- < t,. < t;‘c and 6 > 0 such
that 0 < f(t1) < --- < f(tr) and

r

(3.8) D (f(t5) +6) 7t — tj—1) > L.

j=1
Furthermore, we may assume the ¢;’s are continuity points of f. That is, if ¢; is not a
continuity point, then we choose a point ¢7 such that ¢; <7, ¢} is a continuity point of f,

and for ¢7 sufficiently close to t; we have

(3:9)  (f(&) + ) *(t] —tj—1) + (f(tjw1) + ) (i1 — t])

> (f(t5) +0)"(t; — tj—1) + (f (t541) + 0)" " (L1 — ) — B/(2r),

where, by (3.8),
B=—1+> (f(t;) +6)"*(t; — tj_1) > O.
j=1

The inequality in (3.9) holds since f is right continuous on (0, c0) and continuous every-
where except possibly a countable set. Modifying each t; in this way (starting with ¢y,
then t5, etc. whenever necessary), we see the ¢;’s can be taken to be continuity points of
f and (3.8) holds.

With § > 0 as in (3.8) we define

Ny={geM: f(t;) —d<g(t;) < f(t;) +6,1<j<r}.

Then for g € Ny,

n

(3.10) D (gt) ™ty — tj—1) > Z(f(tj) +6)7*(t —tj-1) > 1,

=1
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and since [;°(f(t))”“dt exists as an improper Riemann integral, with refinements of a
partition leading to a increase of the partial sums in (3.10) (they are lower sums), we have
Ny N K, = ¢. Rescaling, applying Proposition 2.2, and taking v > 0 such that

T

Ca Z(f(tj) +0)7 %t —tj—1) —v > (1 +v)ca,

we have for n sufficiently large that

P(11, € Ng) = P(Mjy {M(nt;)/n"/* € (ca/LLn)"*(f(t;) — 6, f(t;) + 6)})

(3.11) < exp{— (LLn/ca) (ca » ( —— )}

= (f(t) +9)
< exp{—(1+)LLn}.

ti—tj 1

Thus if ng, = exp{k/Lk}, (3.11) and the Borel-Cantelli Lemma implies
(3.12) P(nn, € Ny i.0.) =0.

The above argument shows K¢ is open, and since M is separable there are {f;} dense

in K¢ such that K¢, C (J;2, Ny,. Hence

{C{na ) NKG # 6} < (J{C{na 1) N Ny, # ¢},

=1

and (3.12) implies
(3.13) P(C({in,) € Ka) = 1.

Now 1, (t) = nn, (nt/ng) (nkLLn/(nLLnk))l/a and f € C({n,}) implies f € C({nn,})
since limng/ng—1 = 1 and ng_1 < n < ng. Thus (3.13) implies (3.1) and the proposition
is proven.

Proposition 3.3. P(K, C C({n.})) = 1.

Proof. Let A(f) = [, (f(t))~*dt. Suppose A(f) < 1 and N is an arbitrary weak

neighborhood of f. Since M is metrizable in the weak topology, there is a countable
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neighborhood base at each point of M, and hence f € C({n,}) with probability one
provided

(3.14) P(n, € Ny i.0.) = 1.

Since K, has a countable dense set, we then have every point of K, in C({n,}) with
probability one provided (3.14) holds for f € K,.

To establish (3.14) for each f € K, our first step is to show we may actually assume
A(f) is strictly less than one. To do this we define ¢} = sup{t : f(¢) < oo} as before, and
consider the two possibilities t% = oo and 0 < 13 < o0.

If t’; = 00, then a typical neighborhood of f is of the form N = ﬂ;zl I'; where
0<t; <+ <ty

(3.15) L ={g: f(t;) —v<g(t;) < f(t;) +},

and v > 0. Hence if we define

. 0 t=0
f(t):{f(t)+7/4 0<t< oo,

then f > f, f € N, and A(f) < 1. Defining N; = Ni=1 T;, where

T ={g: f(t;) —v/2 < g(t;) < f(t;) +v/2}

we see N C Ny, and (3.14) will hold provided P(n, € N i.0.) = 1.
The other case is 0 < ¢} < co. Then a typical neighborhood of f is of the form

Ny = (VT3 N () Bt

k=1
where 0 =t < #1 < -+ < tp <t} <tpy1 < -0 < dpys, I'j is defined as in (3.15) and
Rk ={9:g(trsr) > mi}. Now we can define

0 t=20
Ft) = f@)+~/4 0<t<(t,+13})/2
T ) L+1)/2 (tr +13)/2 <t <trps+1
00 t>trps+ 1,
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and set

where . . ~
T ={g: ft;) —v/2 <g(t;) < f(t;) +~/2},

Reyk ={g9:£<g(trsr) <L+1}
and £ > f((t, +t})/2) + /4 is sufficiently large so that

~ (trtt})/2
A(f) < /0 (f(t) +7/4) %At + (trys + 1 — (8 +17)/2) /L% < 1.

Then f € N C Ny, A(f) < 1. Hence in both cases it suffices to verify (3.14) with f € Ny
and A(f) < 1.

Assuming A(f) < 1, we consider only the case tf = oo (the other case is much
the same). Then Ny = N’_,T';, where T'; is given in (3.15). To verify (3.14) we take
ny = exp{k'T°} with § > 0 to be specified later as a function of 3 =1 — A(f) > 0. Now

we observe
(3.16) P, € Ny i.0.) > P(Ar N By 1.0.),

where

A = {f(t5) =7/2 <, (85) < F(t5) +7/2, 1 < j<r}

B ={ sup | X (ngs)| < (v/4)(cari/LLng) "},
0<s<np_1t./ny

and

Ty, (8) = sup | X (ngs) — X (ng_1t,) |/(cank/LLnk)1/a.
ng_1te/np<s<t

Levy’s inequality and rescaling implies

P(B) < 2P(|X (nj-1t,)| > (v/4)(cans/LLng)Y®)
< 2B(|X (ng—1t:)|*"0) (4/7)*~° (LLny/ (cani))—*/®

= 2(4/7)" P B(X (1)) (-1 L/ (cane) =",
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provided 0 < 6 < a. Since ny = exp{k'T’}, we see > k>1 P(Bf§) < oo, and hence
P(Bf i.0.) = 0. Thus P(By eventually) = 1 and (3.14) will follow from (3.16) provided
P(Ag io.) =1
The time homogeneous, independent increments of {X(¢) : t > 0} imply the Ay’s are
independent provided ng_1t./ng < ty,i.e. for all k sufficiently large, and, furthermore,
that
P(Ag) = P(NG_1{M (n(t; — ni—1tr/nk))/ (canr/LLng)"/* € T;}).

From Proposition 2.4, and rescaling, we thus have for all p > 0 that for k sufficiently large

P(Ak,) = P(h M(tj — nk_ltT/nk) S (ca/LLnk)l/aFj)

i=1

t1 — ng_1t,/n - tji —tj—1
> exp{—(LLny)(1+ p)( (f(tl)k_|_ ry/é): * Z (f((tj) + 7/2))04)}

7j=2
> k=140 (1+p)*(1-B)

where 8 =1 — A(f) > 0. In particular, taking p = § and (1+6)3 < (1 — 8)~! we have

> k>1 P(Ag) = co. Independence and the Borel Cantelli lemma now imply P(Ay i.0.) = 1.

Thus (3.16) implies (3.14). Hence we have shown (3.1)-(3.3), and Theorem 1.1 follows

immediately.

Proof of Corollary 1.1. Applying the zero-one law we may assume with probability one
that lim, n,(1) = d. If d < 1, then for every f € K, with ¢ = 1 a continuity point of f,

there is a subsequence (random) such that
limn,, (1)=f(1)=d<1 a.s.
ng

Thus [,° f~*(t)dt > fol d=“dt > 1, which contradicts f € K,. Hence d > 1.
If d > 1 we define
0 t=20
fo(t)z{d 0<t<l+4+9
400 t>1+406.
Then fo € M and for § > 0 sufficiently small fy € K. Furthermore, since 1 is a continuity

point of fo,
P(lima(1) < fo(1) = d) = 1.

n
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Since d > 1 is arbitrary, this proves Corollary 1.1, and (1.3) holds with 8, = c}l/ <.

4. Proof of Theorems 1.2 and 1.3. We first establish several lemmas which allow us

to identify the left-hand terms in (1.11), (1.12), and (1.13).

Lemma 4.1. Let F.(f) = [ Ijp o (f (w)r(w))du, and

Gult) = [ 1o (et ()" ),

where r : (0,1] — [0,00) is measurable. Then for each ¢ > 0, with probability one
(4.1) lim G.(t) < sup F.(f).
t—oo fEK,

Furthermore, we have equality in (4.1) whenever sup sc g, Fe(f) is left continuous at c.

Proof. First we prove tm G.(t) < sup F.(f). Suppose the contrary, so there is a set
—00 f Ka

E C Q (our probability space for {X (¢) : ¢ > 0}) with P(E) > 0, and for w € E
lim G.(t) > sup F.(f).
t—o0 feK,

Let Qg C Q with P(p) =1 and for w € Qg

(i) C({m},t — o0) C Ka,
(4.2) (ii) {m:} is conditionally compact in M as t — oo, and
(i) Ko CC{ne},t — 00).
Then for w € ENQy, there exists a possibly random subsequence {¢;(w)} = {¢;} such that
t; — oo, lim Gc(t;) > sup Fc(f), and n;(-) Wﬁyfo € K. Hence lim 7 (u) = fo(u)
J—00 J—00

FEK,
except possibly for countably many values of u, and therefore

lim Jjo ¢ (e, (w)r(w) (LLLLtZ;L) Ua) < Jo,e1(fo(u)r(u))

for almost all u € [0,1] (Lebesgue measure), since the characteristic function of a closed

set is upper semi-continuous. Thus the reverse Fatou lemma implies

- 1 LLtjuy/e
- ) < 1 , J
thGc(ty) _/O thI[o,c] (ntJ (u)r(U)( LLtj> ) Y

< / Lo oy fo () () s
= F.(fo) < fseu}? F.(f),
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which contradicts that E exists with P(E) > 0. Thus @Gc(t) < sup F(f).
FEKaq
To prove the reverse inequality take fo € K,. Then for all w € €y there exists a

possibly random subsequence {t;(w)} = {t;}, such that

kl
m, ( )wea y fo

Then for § > 0,c— 6§ > 0,

Jim G(t) > lim Fe(n) > tjh—I)%o Fe(ne,) > lim F,(ny;).

tj—o0

Hence by Fatou’s lemma,

lim Fu(n,) > / lim To,eg (e, ()7 (1)) s

tj—o0 t;—00

> /1 T o) Jan m, (u )r(u) ) du
= /01[076— (6/2))(fo(w)r(u))du,

where the last inequality holds because [0,¢ — (6/2)) is open in [0,00] and therefore
Itp,c—(5/2)) is lower semi-continuous here. Thus tm G.(t) > F._5(fo), and since fy € K,

is arbitrary we have tm G.(t) > sup F,_s(f). The left-continuity of sup Fg(f) at c
= fEK, feK,
thus implies equality in (4.1), and the lemma is proven.

Lemma 4.2. I[f0<a <2 and0< p < oo, then

inf =1
Aot Nl =1,

1/p
where || f|lp = (fo |f(u |pdu) ,0<p<oo, and ||flleo is the essential supremum of f
on [0, 1] with respect to Lebesgue measure.

Proof. If p = oo, then f 7 implies

inf [[f|lec < ;int fy <1

fEK,
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On the other hand, if || f||o < 1, then/ fe@)dt > 1and f ¢ K,. Thus 1nf I flleo = 1.

If 0 < p < oo take r € (1,00) such that a/(r — 1) = p. Then / |f (u)[Pdu < oo
and f € K, imply both f and f~! are finite and non-negative a.s. on [0,1]. Hence with
Lebesgue measure one

1= ) f ),

-1 1

and therefore by Holder’s inequality with r > 1, ¢ ' =1—-r"t=(r—1)/r,

1= / ()™ (£ (w) /" du

< ([ e re=a) ([ gyea)”
< ([ stpran)”

since f € K,. Thus flirI? Ifll, > 1, and it’s trivially less than or equal to one by the
€EKq

p = OO Case.

Proof of (1.13). Fix 0 < o < 2 and 0 < p < co. Then Lemma 4.2 implies that
1

firg / |f(u)|Pdu = 1, so it remains to verify the first equality. Hence assume
€Ky 0

lim It (u)|Pdu < 1 on aset E C Q with P(E) > 0 and assume 2y C €2 is as in Lemma

t—o0 JO

4.1. In particular, w € Qg implies (4.2) holds, and for w € E N Qy, there exists a possibly
1

fo, for
some fo € Ko. Then lim; ne, (u) = fo(u) except for possibly countably many u and hence

random sequence {t;(w)} = {¢;} such that lim / s, (u)[Pdu < 1 and 7, weakly
j— Jo

Fatou’s lemma implies

1 1 1
tim [y 0P > [ fo(lPdu> nt [ 7)Pdu =1,
i Jo 0 feKa Jo

1
This contradicts P(E) > 0, so we have with probability one that lim |ne(u)|Pdu > 1.

t—o0 J O
1

On the other hand, lim e (u)|Pdu < lim |n;(1)|P =1 by Corollary 1.1 and that n;(-)
t—o0 JO t—o0

is increasing on [0, 1]. Hence (1.13) holds and Theorem 1.3 is proven.
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Proof of (1.12). Fix 0 < a < 2 and set uw = s/t in (1.12). Then

1

t
(4.3) Tim 41 / To.g(m(s/t))ds = T [ I (me(w)du
0 o0

t—00 0

with probability one. Let 7(u) = 1 and define F,.(f) as in Lemma 4.1. Then, for 0 < ¢ < oo,

consider

1
sup Fo(f) = sup [ Toq(f(w)du

feKq fEKa
If ¢ > 1, then setting
0 ifu=20
fc(u)z{c ifo<u<1
400 ifu>1,
1
we see/ Iy (fe(u))du = 1 and since ¢ > 1 we also have f. € K,
0
we have
sup F.(f)=1
FEK,
forc>1. If 0 < ¢ < 1, define
0 ifu=0
fc(u):{c ifo<u<c®
400 if u > c®.

. Since sup
FEK,

1
/0 Tro.o(f (u))du < 1,

Then f. € K4, and since f € K, is increasing with f(0) = 0, it is easy to see that

fEKq

sup /O T, (f () = /0 T (o)) du = .

Thus sup F.(f) is continuous for 0 < ¢ < oo and hence the method of proof of Lemma

FEKa
4.1 implies with probability one
1 .
S 1 ife>1
(1.4) I [ oatma= s g ={L o2l

Combining (4.3) and (4.4) yields (1.12).

1/
Proof of (1.11). Since 75(1) = m(s/t)(tLLs) for s,t > 0, letting u = s/t implies

sLLt

U.(t) as given in (1.7) satisfies

T (t) = /01 T ey (me (w6 () ( LLi
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Now Lemma 4.1 with 7(u) = «~/*0(u) implies

with probability one, provided sup F.(f) is sufficiently continuous at c.

feK,
When ¢ > 1

1
(4.5) sup F.(f) = sup/ I[O,C](f(u)u_l/O‘G(u))du
feKq fEKL JO

is taken on by the function f.(u) where

0 ifu=0,
folu) = cu(l,/a/ﬁ(uo) if 0 < u < uyp,
¢ cut/® /6(u) ifupg <u<l,
400 ifu>1.

That is, if f(u) > cu'/*/0(u) for u € E C [0,1], then since both cu'/®/0(u) and f(u) are
increasing on [0, 1] with (1.9) holding, we minimize the quantity / 1 f~%(u)du by having
the set E be an interval starting at zero. Thus the choice of f. i(; optimal provided we
choose ug such that h(ug) = c¢® where hA(-) is as in (1.10). Then ug = s, f. € K, and for
allc>1

1
(4.6) sup / I[O,C](f(u)u_l/C“H(u))du =1-s..
fEKL JO

Now h(-) one-to-one and continuous from [0, 1] onto [1,00) with A(1) = 1 implies s,
is continuous for all ¢ > 1 and s; = 1. Thus Lemma 4.1, (4.5), and (4.6) imply (1.11) for
c¢> 1. If c=1, then s; = 1 and the upper bound in (4.1) imply with probability one that

lim ¥.(t) < 0.

t—o00

However, lim;_,, ¥.(t) > 0 is trivial, so (1.11) holds even when ¢ = 1. Hence Theorem

1.2 is proven.

23



REFERENCES

de Acosta, A. (1983). Small deviations in the functional central limit theorem with
applications to functional laws of the iterated logarithm. Ann. Probab. 11 78-101.

Chung, K.L. (1948). On the maximum partial sums of sequences of independent
random variables. Amer. Math. Soc. 64, 205-233.

Cséki, E. (1980). A relation between Chung’s and Strassen’s law of the iterated
logarithm, Z. Wahrsch. verw. Gebiete 54, 287-301.

Donsker, M.D. and Varadhan, S.R.S. (1977). On laws of the iterated logarithm for
local times. Comm. Pure. Appl. Math. 30, 707-753.

Kuelbs, J., Li, W.V. and Talagrand, M. (1994). Lim inf results for Gaussian samples
and Chung’s functional LIL, Ann. Probab, 22, 1879-1903.

Li, W.V. (1998). Small deviations for Gaussian Markov processes under the sup—norm,
to appear on J. Theoret. Probab.

Marcus, M.B. and Pisier, G. (1984). Characterizations of almost surely continuous p-
stable random Fourier series and strongly stationary processes. Acta Math. 152, 245-301.

Mogul’skii, A.A. (1974). Small deviations in a space of trajectories. Theor. Probab.
Appl. 19 726-736.

Mogul’skii, A.A. (1982). The Fourier method for finding the asymptotic behavior of
small deviations of a Wiener process. Sibirsk. Mat. Zh. 23, 161-174.

Taylor, S.J. (1967). Sample path properties of a transient stable process. J. Math.
Mech. 16, 1229-1246.

Wichura, M. (1973). A functional form of Chung’s Law of the iterated logarithm for

maximun absolute partial sums, unpublished.

Department of Mathematics Mathematics Department
Northwestern University University of Wisconsin
Evanston, IL 60208 Madison, WI 53706

Email: xchen@math.nwu.edu Email: kuelbs@math.wisc.edu

Department of Mathematical Sciences
University of Delaware

Newark, DE 19711

Email: wli@math.udel.edu

24



