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Abstract

We study the object formally defined as

γ
(
[0, t]2

)
=

∫∫
[0,t]2
|Xs − Xr |

−σ dr ds − E
∫∫
[0,t]2
|Xs − Xr |

−σ dr ds, (0.1)

where X t denotes the symmetric stable processes of index 0 < β ≤ 2 in Rd . When β ≤ σ < min
{

3
2β, d

}
,

this has to be defined as a limit, in the spirit of renormalized self-intersection local time. We obtain results
about the large deviations and laws of the iterated logarithm for γ . This is applied to obtain results about
stable processes in random potentials.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Let X t be a d-dimensional symmetric stable process of index 0 < β ≤ 2. Thus we assume
that there is a continuous function ψ(λ) on Rd which is strictly positive for |λ| 6= 0, with

ψ(rλ) = rβψ(λ) and ψ(−λ) = ψ(λ), r > 0, λ ∈ Rd
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such that

Eeiλ·X t = e−tψ(λ), t ≥ 0, λ ∈ Rd . (1.1)

It follows that there is a constant C > 0 such that

C−1
|λ|β ≤ ψ(λ) ≤ C |λ|β , λ ∈ Rd .

In this paper we study

η(A) =
∫ ∫

A
|Xs − Xr |

−σ dr ds, A ⊂ R2
+ (1.2)

and, more generally,

ηz(A) =
∫ ∫

A
|Xs − Xr − z|−σ dr ds (1.3)

for z ∈ Rd . We are particularly interested in the case A = [0, t]2 or [0, t]2<, where for any t > 0,

[0, t]2< =
{
(r, s) ∈ [0, t]2; r < s

}
.

Thus we will study

ηz([0, t]2<) =
∫ ∫
[0,t]2<

|Xs − Xr − z|−σ dr ds. (1.4)

We can write

ηz([0, t]2<) =
∫
Rd

1
|x − z|σ

µ[0,t]2<
(dx), (1.5)

where µA for A ⊆ R2
+ is the measure on Rd defined by

µA(B) =
∫ ∫

A
1{Xs−Xr∈B} dr ds. (1.6)

We refer to µA as the intersection measure for the stable process X t , since whenever µ[0,t]2< has
a density αt (x) which is continuous at x , αt (x) is the intersection local time for X t . In particular,
if αt (x) is continuous at x = 0, αt (0) is a ‘measure’ of the set {(r, s) ∈ [0, t]2< | Xs = Xr }.

(1.5) shows that ηz([0, t]2<) is the Riesz potential of the intersection measure µ[0,t]2< . (In the

terminology of [12], ηz([0, t]2<) is the Riesz–Frostman potential of the intersection measure.)
Notice that η([0, t]2) = 2η([0, t]2<).
When 0 < σ < min{β, d},

E
∫ ∫
[0,t]2<

|Xs − Xr |
−σ dr ds = E(|X1|

−σ )

∫ t

0

∫ s

0

1
(s − r)σ/β

dr ds (1.7)

is finite for all t ≥ 0, so that η
(
[0, t]2<

)
<∞, a.s.

We are interested in Riesz potentials of intersection measures for two reasons. First, our
investigation is motivated by applications to polymer models. Mathematically, a random polymer
is modeled as a random path ω whose probability measure is given in terms of the Gibbs measure

Pt (ω) =
1
Z t

e±Ht (ω) dω. (1.8)
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Here Ht (ω) ≥ 0 is a suitable Hamiltonian which describes the interaction between the monomers
along the path ω = {Xs; 0 ≤ s ≤ t}, dω represents the underlying measure on path space, and
Z t = E

(
e±Ht (ω)

)
is the normalization. In most models, the role of Ht is to reward or penalize

attraction between monomers. The first case, with +Ht , describes a “self-attracting” polymer,
while the second case, with −Ht , describes a “self-repelling” polymer. We refer to the recent
book by den Hollander, [18], for a systematic overview of polymer models.

In the existing literature, Ht is often taken to be the self-intersection local time, formally
defined as

Ht =

∫ t

0

∫ t

0
δ0(Xr − Xs)drds. (1.9)

In this model, the monomers along the path interact only when they intersect.
If one believes that all monomers along the path interact, but the strength of the interaction

decreases with distance, then the choice of

Ht =

∫ t

0

∫ t

0
|Xr − Xs |

−σdrds (1.10)

would be a more realistic model.
The second reason for our interest in Riesz potentials of intersection measures arises from the

“polaron problem”, which originated in electrostatics. See [17,26] for general information. The
integral in (1.10) is associated with the asymptotics of the mean-field, or long range interaction,
polaron, while the integral∫ t

0

∫ t

0

e−|r−s|

|Xr − Xs |
σ

drds

is associated with a polaron with interactions which are exponentially damped in time. Donsker
and Varadhan [14] solved a long standing problem in physics by showing that, for Brownian
motion Wt in R3,

D(θ) ≡ lim
t→∞

1
t

log E exp
{
θ

∫ t

0

∫ t

0

e−|r−s|

|Wr −Ws |
drds

}
(1.11)

exists and

lim
θ→∞

D(θ)
θ2 = sup

g∈F2

{∫ ∫
R3×R3

g2(x)g2(y)

|x − y|
dxdy −

1
2

∫
Rd
|∇g(x)|2dx

}
where (with d = 3 in Donsker and Varadhan’s setting)

F2 =

{
g ∈ L2(Rd); ‖g‖2 = 1 and ‖∇g‖2 <∞

}
.

Mansmann [25] showed that for Brownian motion Wt in Rd , d ≥ 3,

lim
t→∞

1
t

log E exp
{

1
t

∫ t

0

∫ t

0

1
|Ws −Wr |

dr ds

}
= sup

g∈F2

{∫
Rd

∫
Rd

g2(x)g2(y)

|x − y|
dx dy −

1
2
‖∇ f ‖22

}
. (1.12)
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The results mentioned above are linked conceptually to the well known work of Donsker and
Varadhan on large deviation for general Markov processes. To illustrate, we take (1.12) as an
example. Viewing the empirical measure Lt (·)

Lt (A) =
1
t

∫ t

0
1{Ws∈A}ds A ∈ B(Rd)

as a stochastic process taking values in P(Rd), the space of the probability measures on Rd

equipped with the topology of weak convergence, Donsker and Varadhan [13] established a weak
form of the large deviations for Lt (·) with the rate function I (µ), where

I (µ) =
1
8

∫
Rd

|∇ f (x)|2

f (x)
dx

if µ is a probability measure with density f for which the right-hand side makes sense; and
I (µ) = ∞ otherwise.

Define the function Ψ on (a subset of) P(Rd) as

Ψ(µ) =
∫
Rd

∫
Rd

1
|x − y|

µ(dx)µ(dy).

By Varadhan’s integral lemma (Theorem 4.3.1 in [11]), we therefore expect that

lim
t→∞

1
t

log E exp
{

1
t

∫ t

0

∫ t

0

1
|Ws −Wr |

dr ds

}
= lim

t→∞

1
t

log E exp {tΨ (Lt )} = sup
µ∈P(Rd )

{Ψ(µ)− I (µ)}

= sup
f

{∫
Rd

∫
Rd

f (x) f (y)

|x − y|
dxdy −

1
8

∫
Rd

|∇ f (x)|2

f (x)
dx

}
, (1.13)

where the supremum on the right-hand side is taking for the probability density functions f on
Rd . This becomes (1.12) under the substitution f (x) = g2(x).

Turning this into a rigorous proof is highly non-trivial. The main reason is that, in Mansmann’s
setting, the state space Rd is not compact and the functional Ψ(·) is not continuous. Because of
these difficulties, Mansmann [25] admits that his approach cannot be extended to dimensions
d = 1, 2.

Our first main theorem is the large deviation principle for η
(
[0, t]2<

)
. For 0 < σ < d let

ϕd−σ (λ) =
Cd,σ

|λ|d−σ
(1.14)

where Cd,σ = π
−d/22−σΓ ( d−σ

2 )/Γ (σ2 ). Write

ρ = sup
|| f ||2=1

∫
Rd

[∫
Rd

f (λ+ γ ) f (γ )
√

1+ ψ(λ+ γ )
√

1+ ψ(γ )
dγ
]2

ϕd−σ (λ)dλ. (1.15)

Clearly, ρ > 0. According to Lemma 1.6 in [2], 0 < ρ <∞ when 0 < σ < min{2β, d}.
By the scaling property

η
(
[0, t]2<

)
d
= t2−β−1ση

(
[0, 1]2<

)
, t ≥ 0, (1.16)
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we need only consider η
(
[0, 1]2<

)
in the following theorem.

Theorem 1.1. When 0 < σ < min{β, d},

lim
a→∞

a−β/σ log P
{
η
(
[0, 1]2<

)
≥ a

}
= −(2ρ)−β/σ

σ

β

(
2β − σ
β

) 2β−σ
σ

. (1.17)

Using variation relations established in [2], Theorem 1.1 can be shown to agree with the
heuristic formula (1.13), suitably modified for stable processes.

Using scaling, (1.16), the relation η ([0, 1]) = 2η
(
[0, 1]2<

)
and Varadhan’s integral lemma,

[11, Section 4.3], we obtain the asymptotics

lim
t→∞

t−
2β−σ
β−σ log E exp

{∫ t

0

∫ t

0
|Xr − Xs |

−σdrds

}

= 2
2β
β−σ

β − σ

β

(
β

2β − σ

) 2β−σ
β−σ

ρ
β

β−σ (1.18)

for the partition function in the self-attracting polymer model with Hamiltonian defined in (1.10).
Note that when d = 3, β = 2 and σ = 1 this becomes

lim
t→∞

t−3 log E exp
{∫ t

0

∫ t

0

1
|Wr −Ws |

dr ds

}
=

26

33 ρ
2. (1.19)

Comparison with (1.11) shows a striking difference between the asymptotics of polarons with
long range interactions and those with exponentially damped interactions.

Theorem 1.1 implies the following laws of the iterated logarithm for η
(
[0, t]2<

)
.

Theorem 1.2. When 0 < σ < min{β, d},

lim sup
t→∞

t−
2β−σ
β (log log t)−σ/βη

(
[0, t]2<

)
= 2ρ

(
β

σ

)σ/β (
β

2β − σ

) 2β−σ
β

, (1.20)

almost surely.

We are also interested in the situation where β ≤ σ < min
{

3
2β, d

}
. In this case Eη

(
[0, t]2<

)
= ∞ by (1.7). We intend to show how to make sense of the object formally given by∫ ∫

{0≤r<s≤t}
|Xs − Xr |

−σdrds − E
∫ ∫
{0≤r<s≤t}

|Xs − Xr |
−σdrds. (1.21)

This is reminiscent of the situation for Brownian intersection local time in R2. In that case
the measure µ[0,t]2< defined in (1.6) has a density αt (x) which is continuous for all x 6= 0, but
not for x = 0. To make sense of αt (0) we must ‘renormalize’. This was first done by Varadhan
[32], and has been the subject of a large literature, see [15,23,3,28]. The resulting renormalized
intersection local time turns out to be the right tool for the solution of certain “classical” problems
such as the asymptotic expansion of the area of the Wiener and stable sausage in the plane and
fluctuations of the range of stable random walks. (See [22,21,24,27].)

There are now several ways to ‘renormalize’ the Brownian intersection local time αt (0). We
briefly recall one such method, since we will use a similar method to renormalize η

(
[0, t]2<

)
. Let
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us write α(x, A) for the density of the measure µA. Thus, αt (x) = α(x, [0, t]2<). It can be shown
that for any a < b ≤ c < d , µ[a,b]×[c,d] has a continuous density α(x, [a, b] × [c, d]). We then
note that [0, t]2< has a decomposition as

[0, t]2< =
∞⋃

k=0

2k
−1⋃

l=0

Ak
l (1.22)

where

Ak
l =

[
2l

2k+1 t,
2l + 1

2k+1 t

)
×

[
2l + 1

2k+1 t,
2l + 2

2k+1 t

)
. (1.23)

It can then be shown that

∞∑
k=0

2k
−1∑

l=0

(
α(0, Ak

l )− E(α(0, Ak
l ))
)

(1.24)

converges, and the limit is called renormalized intersection local time.
In the following section we shall carry out a similar program to renormalize η

(
[0, t]2<

)
, which

will give meaning to the formal expression in (1.21). The resulting object will be denoted by
γ
(
[0, t]2<

)
. This will make perfectly good sense in the context of (1.8), which will now be

“renormalized” to

Pt (ω) =
1

Z̃ t
e±γ ([0,t]

2) dω. (1.25)

The second main result of this paper is to show that γ
(
[0, t]2<

)
has large deviation properties

and laws of the iterated logarithm similar to those established above for η
(
[0, t]2<

)
when

0 < σ < min{β, d}.

Theorem 1.3. When β ≤ σ < min
{

3
2β, d

}
,

lim
a→∞

a−β/σ log P
{
γ
(
[0, 1]2<

)
≥ a

}
= −2−β/σ

σ

β

(
2β − σ
β

) 2β−σ
σ

ρ−β/σ . (1.26)

Consider the special case β = σ < d . Combined with the scaling property given in (2.9)
below, Theorem 1.3 shows that the self-attracting polymer measure (1.25) ‘collapses’ in finite
time, by which we mean that

E exp
{
γ
(
[0, t]2

)}{
<∞ t < ρ−1

=∞ t > ρ−1.
(1.27)

Theorem 1.3 also indicates that the self-attracting polymer with Ht = γ ([0, t]2<) is not well
defined when σ > β. But it is not hard to show that

E exp
{
−γ ([0, t]2<)

}
<∞
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for every t > 0 if β ≤ σ < min
{

3
2β, d

}
. A problem relevant to the self-repelling polymer is to

investigate the asymptotics of

E exp
{
−η

(
[0, t]2<

)}
or E exp

{
−γ

(
[0, t]2<

)}
as t →∞. We leave this to future study.

Theorem 1.3 implies the following laws of the iterated logarithm for γ
(
[0, t]2<

)
.

Theorem 1.4. When β ≤ σ < min
{

3
2β, d

}
,

lim sup
t→∞

t−
2β−σ
β (log log t)−σ/βγ

(
[0, t]2<

)
= 2ρ

(
β

σ

)σ/β (
β

2β − σ

) 2β−σ
β

, (1.28)

almost surely.

We next describe an application to the study of stable processes in a Brownian potential. Let
W denote white noise on L2(Rd , dx). That is, for every f ∈ L2(Rd , dx), W ( f ) is the mean
zero Gaussian process with covariance

E(W ( f )W (g)) =
∫

Rd
f (x)g(x) dx, (1.29)

which we take to be independent of our stable process X t . W ( f ) can be considered as a stochastic
integral

W ( f ) =
∫

Rd
f (x)W (dx) (1.30)

with respect to the Brownian sheet, [33].
Recall the identity∫

Rd
|x − z|−

σ+d
2 |y − z|−

σ+d
2 dz = C

1
|x − y|σ

, x, y ∈ Rd (1.31)

where

C = πd/2 Γ 2
( d−σ

4

)
Γ
(
σ
2

)
Γ 2
( d+σ

4

)
Γ
( d−σ

2

) , (1.32)

see [12, p. 118, 158] or [30, p. 118. (8)]. Then, if we set

ξ(t, x) =
∫ t

0
|Xs − x |−

σ+d
2 ds, (1.33)

we see by Fubini’s theorem that

η
(
[0, t]2

)
= C−1

∫
Rd
ξ(t, x)2dx <∞, a.s. (1.34)

Hence, almost surely with respect to X ,

F(t) ≡ W (ξ(t, ·)) =
∫
Rd
ξ(t, x)W (dx) (1.35)



1844 X. Chen, J. Rosen / Stochastic Processes and their Applications 120 (2010) 1837–1878

is a mean zero normal random variable with

E
(

F2(t)
)
= (2C)η

(
[0, t]2<

)
. (1.36)

By a stable process in a Brownian potential we mean the process described by the measure

Qt =
1
Nt

e−
∫ t

0 V (Xs )ds Pt , (1.37)

where Pt is the probability for the stable process {Xs; 0 ≤ s ≤ t}, Z t is the normalization and
the potential function V (x) is of the form

V (x) =
∫
Rd

K (y − x)W (dy), (1.38)

where K (x) is a function on Rd known as the shape function. Roughly speaking, (1.38)
represents the interaction with a field generated by a cloud of electrons W (dy) with random
signed charges and locations in Rd . We refer [6,31] for more information.

When K (x) = δ0(x), the action
∫ t

0 V (Xs)ds corresponds to a stable process in Brownian
scenery [19,20,7,4,9]. When K (x) is bounded and locally supported, the long term behavior of∫ t

0 V (Xs)ds is similar to that of the stable process in Brownian scenery.

Let d
2 < p < min

{
d, d+β

2

}
. The random potential function

Vp(x) ≡
∫
Rd

1
|y − x |p

W (dy), x ∈ Rd (1.39)

has a very intuitive physical meaning. When d = 3 and p = 1, it represents the electrostatic
potential energy generated by a cloud of electrons W (dy). Unfortunately, the random potential
function (1.39) is not well defined, since EV 2

p (x) = ∞ for every x ∈ Rd . However, as we have
seen,

F(t) ≡
∫
Rd

[∫ t

0

ds

|y − Xs |
p

]
W (dy) (1.40)

is well defined. Here we have taken σ = 2p−d . Because of (1.37), we refer to F(t) as the action
for a stable process in a Brownian potential.

It is easy to see that for each t > 0,

F(t)
d
= t

2β−2p+d
2β F(1). (1.41)

The following corollaries about large deviations and laws of the iterated logarithm for F(t) will
follow from Theorem 1.1.

Corollary 1.5. If d
2 < p < min

{
d, d+β

2

}
, then

lim
a→∞

a−
2β

2p−d+β log P {±F(1) ≥ a}

= −
β + 2p − d

β
(8C pρp)

−
β

β+2p−d

(
2β − 2p + d

β

) 2β−2p−d
β+2p−d

(1.42)
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where the constants

C p = π
d/2

Γ 2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ 2
( p

2

)
Γ (d − p)

,

and

ρp = sup
|| f ||2=1

∫
Rd

[∫
Rd

f (λ+ γ ) f (γ )
√

1+ ψ(λ+ γ )
√

1+ ψ(γ )
dγ
]2

ϕ2(d−p)(λ) dλ

come from C and ρ defined in (1.32) and (1.15) , respectively, with σ = 2p − d.

Corollary 1.6.

lim sup
t→∞

t−
2β−2p+d

2β (log log t)−
2p−d+β

2β {±F(t)}

=
√

8C pρp

(
β

2p − d + β

) 2p−d+β
2β

(
β

2β − 2p + d

) 2β−2p+d
2β

, a.s. (1.43)

We have also obtained a variational expression for ρ. Let

Eβ( f, f ) =: (2π)−d
∫
Rd
|λ|β | f̂ (λ)|2 dλ, (1.44)

and

Fβ = { f ∈ L2(Rd) | ‖ f ‖2 = 1, Eβ( f, f ) <∞}. (1.45)

We show in [2] that

Λσ =: sup
g∈Fβ

{(∫
(Rd )2

g2(x)g2(y)

|x − y|σ
dxdy

)1/2

− Eβ(g, g)

}
<∞ (1.46)

when 0 < σ < min{2β, d} and we derive a relation, [2, (1.20)], between ρ and Λσ .
We now outline the rest of the paper and explain some of the ideas we use. In Section 2

we show how to renormalize η([0, t]2<) when β ≤ σ < min(3β/2, d), and establish some
exponential estimates for η([0, t]2<) and γ ([0, t]2<). The treatment adopted here is the triangular
approximation developed by Varadhan [32]. In Section 3 we establish high moment asymptotics
for a smoothed version of η([0, t]2<), instead of using Donsker and Varadhan’s large deviation
approach. Here, the Fourier transform turns out to be an effective tool. Our main theorems on
large deviations, Theorems 1.1 and 1.3, are proved in Section 4. Our approach is to approximate
η([0, t]2<) and γ ([0, t]2<) by their smoothed versions. The corresponding laws of the iterated
logarithm are established in Section 5 (for η([0, t]2<) and γ ([0, t]2<)) and in Section 6 (for F(t)).
Even with the LDP given in Corollary 1.5 (a short proof of which is also given in Section 6),
the proof of Corollary 1.6 appears to be highly non-trivial due to the long memory possessed
by the system. Our treatment involves a tail comparison and the notion of quasi-associated
sequences of random variables, coming from the work of Khoshnevisan and Lewis [20]. Finally,
in a short Appendix, we give details on approximation of ρ which is used in Section 3.

Conventions: We define

f̂ (λ) =
∫
Rd

eix ·λ f (x) dx . (1.47)



1846 X. Chen, J. Rosen / Stochastic Processes and their Applications 120 (2010) 1837–1878

With this notation

f (x) = (2π)−d
∫
Rd

e−ix ·λ f̂ (λ) dx, (1.48)

f̂ ∗ g(λ) = f̂ (λ)ĝ(λ), f̂ g(λ) = (2π)−d f̂ (λ) ∗ ĝ(λ), (1.49)

and Parseval’s identity is

〈 f, g〉 = (2π)−d
〈 f̂ , ĝ〉. (1.50)

It follows from [12, p. 156] that in our notation, for any 0 < σ < d and any f ∈ S(Rd)∫
Rd
ϕd−σ (λ) f̂ (λ) dλ =

∫
Rd

1
|x |σ

f (x) dx . (1.51)

2. Renormalization

We begin by proving an exponential integrability result for η
(
[0, 1]2<

)
.

Theorem 2.1. If 0 < σ < min{β, d}, there is a c > 0 such that

E exp
{

cη
(
[0, 1]2<

)β/σ}
<∞. (2.1)

Proof. Recall that by (1.34), for each t > 0, ξ(t, x) ∈ L2(Rd , dx) almost surely. By the triangle
inequality, for any s, t > 0,{∫

Rd
ξ(s + t, x)2dx

}1/2

≤

{∫
Rd
ξ(s, x)2dx

}1/2

+

{∫
Rd

[ξ(s + t, x)− ξ(s, x)]2 dx

}1/2

.

Notice that the integral∫
Rd

[ξ(s + t, x)− ξ(s, x)]2 dx = C
∫ ∫
[s,s+t]2

|Xu − Xv|
−σ du dv

= C
∫ ∫
[0,t]2
|Xs+u − Xs+v|

−σ du dv (2.2)

is independent of {Xu; 0 ≤ u ≤ s} and has the same distribution as∫
Rd
ξ(t, x)2dx .

The process{∫
Rd
ξ(t, x)2dx

}1/2

, t ≥ 0, (2.3)

is therefore sub-additive. By Theorem 1.3.5 in [8],

E exp

{
θ

{∫
Rd
ξ(t, x)2dx

}1/2
}
<∞, ∀θ, t > 0,
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and for any θ > 0, the limit

L(θ) ≡ lim
t→∞

1
t

log E exp

{
θ

{∫
Rd
ξ(t, x)2dx

}1/2
}

exists with 0 ≤ L(θ) < ∞. Taking θ = 1, r > L(1) and using Chebyshev’s inequality we find
that

lim sup
t→∞

1
t

log P
{∫
Rd
ξ(t, x)2dx ≥ r2t2

}
≤ −l

for some l > 0. By the scaling property given in (1.16),

lim sup
t→∞

1
t

log P
{∫
Rd
ξ(1, x)2dx ≥ r2tσ/β

}
≤ −l,

which leads to (2.1). �

We now show how to renormalize η
(
[0, t]2<

)
when β ≤ σ < min

{
3
2β, d

}
. Recall that in this

case Eη
(
[0, t]2<

)
= ∞. We will show how to make sense of the object formally given by (1.21).

To proceed further, let X̃ t be an independent copy of X t and define the random measure

ζ(A) =
∫ ∫

A
|Xs − X̃ t |

−σdsdt A ⊂ (R+)2. (2.4)

By [2, Theorem 1.1], ζ(A) <∞ a.s. for every bounded A and

ζ
(
[0, t]2

)
d
= t2−σ/βζ

(
[0, 1]2

)
, t ≥ 0. (2.5)

Further, by [2, Theorem 1.2] there is a θ > 0 such that

E exp
{
θζ
(
[0, 1]2

)β/σ}
<∞. (2.6)

Note that for any 0 ≤ a < b < c <∞,

η ([a, b] × [b, c])
d
= ζ ([0, b − a] × [0, c − b]) . (2.7)

To make sense of (1.21) we shall use Varadhan’s triangular approximation (see,
e.g., Proposition 6, p.194, [23]). Let t > 0 be fixed. Recall the subsets Ak

l defined in (1.23).
By (2.5) and (2.7) we have

η(Ak
l )

d
= ζ

([
0,

t

2k+1

]2
)

d
= 2−(k+1)(2−σ/β)ζ([0, t]2). (2.8)

In addition, for each k ≥ 0, the finite sequence

η(Ak
l ), l = 0, 1, . . . , 2k

− 1

is independent. Consequently,

Var

2k
−1∑

l=0

η(Ak
l )

 = C2−(3−2σ/β)k .
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Under 0 < σ < min{3β/2, d}, therefore,E

 ∞∑
k=0

∣∣∣∣∣∣
2k
−1∑

l=0

(
η(Ak

l )− Eη(Ak
l )
)∣∣∣∣∣∣
2


1/2

≤

∞∑
k=0

Var

2k
−1∑

l=0

η(Ak
l )


1/2

<∞.

Consequently, the random series

∞∑
k=0

2k
−1∑

l=0

(
η(Ak

l )− Eη(Ak
l )
)

convergences in L2(Ω ,A,P). We may therefore define

γ
(
[0, t]2<

)
=

∞∑
k=0

2k
−1∑

l=0

(
η(Ak

l )− Eη(Ak
l )
) .

This will be our definition of the object formally given in (1.21). As in (1.16),

γ
(
[0, t]2<

)
d
= t2−σ/βγ

(
[0, 1]2<

)
, t ≥ 0. (2.9)

As in Theorem 2.1, we have the following exponential integrability.

Theorem 2.2. If 0 < σ < min
{

3
2β, d

}
, there is a c > 0 such that

E exp
{

c
∣∣∣γ ([0, 1]2<

)∣∣∣β/σ} <∞. (2.10)

Proof. When σ < β this follows trivially from Theorem 2.1. We can therefore assume that
p = β/σ ≤ 1. Again, we use the triangular approximation based on the partition (1.23) with
t = 1.

In view of (2.6) and (2.8), applying Lemma 1, [1] to the family of the i.i.d. sequences{
2(k+1)(2−σ/β)

[
η(Ak

l )− Eη(Ak
l )
]
; l = 0, 1, . . . , 2k

− 1
}
, k = 0, 1, . . .

gives that for some θ > 0

sup
k≥0

E exp

θ
∣∣∣∣∣∣2−k/2

2k
−1∑

l=0

2k(2−σ/β)
[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ
 <∞,

or

eC
≡ sup

k≥0
E exp

2akθ

∣∣∣∣∣∣
2k
−1∑

l=0

[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ
 <∞ (2.11)

where

a =
3β
2σ
− 1 > 0.
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For each N ≥ 1 set

b1 = θ, bN = θ

N∏
j=2

(
1− 2−a( j−1)

)
, N = 2, 3, . . . .

By Hölder’s inequality and the triangular inequality

E exp

bN

∣∣∣∣∣∣
N∑

k=0

2k
−1∑

l=0

[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ


≤

E exp

bN−1

∣∣∣∣∣∣
N−1∑
k=0

2k
−1∑

l=0

[
η(Ak

l )− Eβ(Ak
l )
]∣∣∣∣∣∣
η/σ



1−2−a(N−1)

×

E exp

2a(N−1)bN

∣∣∣∣∣∣
2N
−1∑

l=0

[
η(AN

l )− Eη(AN
l )
]∣∣∣∣∣∣
β/σ



2−a(N−1)

.

Notice that bN ≤ θ . By (2.11) we have

E exp

bN

∣∣∣∣∣∣
N∑

k=0

2k
−1∑

l=0

[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ


≤ exp
{

C2−a(N−1)
}

E exp

bN−1

∣∣∣∣∣∣
N−1∑
k=0

2k
−1∑

l=0

[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ
 .

Repeating the above procedure gives

E exp

bN

∣∣∣∣∣∣
N∑

k=0

2k
−1∑

l=0

[
η(Ak

l )− Eη(Ak
l )
]∣∣∣∣∣∣
β/σ


≤ exp

{
C

N∑
k=0

2−a(k−1)

}
≤ exp

{
C
(
1− 2−a)−1

}
<∞.

Observe that

b∞ = θ
∞∏
j=2

(
1− 2−a( j−1)

)
> 0.

By Fatou’s lemma, letting N →∞ we have

E exp
{

b∞
∣∣∣γ ([0, 1]2<

)∣∣∣β/σ} ≤ exp
{

C ′
(
1− 2−a)−1

}
<∞. �

Among other things, we now show that the family{
γ
(
[0, t]2<

)
t ≥ 0

}
has a continuous version.
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Lemma 2.3. Assume 0 < σ < min
{

3
2β, d

}
. For any T > 0 there is a c = c(T ) > 0 such that

sup
s,t∈[0,T ]

s 6=t

E exp

{
c

∣∣γ ([0, t]2<
)
− γ

(
[0, s]2<

)∣∣β/σ
|t − s|(2β−σ)/(2σ)

}
<∞.

Proof. For 0 ≤ s < t ≤ T ,

γ
(
[0, t]2<

)
− γ

(
[0, s]2<

)
= γ

(
[s, t]2<

)
+ γ ([0, s] × [s, t]) .

Notice that

γ
(
[s, t]2<

)
d
= (t − s)2−σ/βγ ([0, 1]2<).

By Theorem 2.2, there is a c1 > 0 such that

sup
s,t∈[0,T ]

s<t

E exp

{
c1

∣∣γ ([s, t]2<
)∣∣β/σ

|t − s|(2β−σ)/σ

}
<∞.

In addition, by (2.7)

γ ([0, s] × [s, t])
d
= ζ ([0, s] × [0, t − s])− Eζ ([0, s] × [0, t − s]) .

In view of (1.31),

ζ ([0, s] × [0, t − s]) = C−1
∫
Rd
ξ(s, x)ξ̃ (t − s, x)dx,

where

ξ(t, x) =
∫ t

0
|Xu − x |−

σ+d
2 du and ξ̃ (t, x) =

∫ t

0
|X̃u − x |−

σ+d
2 du.

By independence, for any integer m ≥ 1,

E
[
ζ ([0, s] × [0, t − s])m

]
= C−m

∫
(Rd )m

dx1 · · · dxm

[
E

m∏
k=1

ξ(s, xk)

][
E

m∏
k=1

ξ(t − s, xk)

]

≤ C−m


∫
(Rd )m

dx1 · · · dxm

[
E

m∏
k=1

ξ(s, xk)

]2


1/2

×


∫
(Rd )m

dx1 · · · dxm

[
E

m∏
k=1

ξ(t − s, xk)

]2


1/2

=

{
E
[
ζ
(
[0, s]2

)m]}1/2 {
E
[
ζ
(
[0, t − s]2

)m]}1/2

= s
2β−σ

2β m
(t − s)

2β−σ
2β m

(
E
[
ζ
{
[0, 1]2

)m]}
.
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Checking (2.6), there is c2 > 0 such that

sup
s,t∈[0,T ]

s<t

E exp

{
c2
|γ ([0, s] × [s, t])|β/σ

|t − s|
2β−σ

2σ

}
<∞.

The proof is now complete. �

Recall that a function Ψ : R+ −→ R+ is a Young function if it is convex, increasing and
satisfies Ψ(0) = 0, limx→∞Ψ(x) = ∞. The Orlicz space LΨ (Ω ,A,P) is defined as the linear
space of all random variables X on the probability space (Ω ,A,P) such that

‖X‖Ψ = inf{c > 0;EΨ(c−1
|X |) ≤ 1} <∞.

It is known that ‖ · ‖Ψ defines a norm (called Orlicz norm) under which LΨ (Ω ,A,P) becomes
a Banach space.

We now choose the Young function Ψ(·) such that Ψ(x) ∼ exp{xβ/σ } as x → ∞. By
Lemma 2.3, for any T > 0 there is c = c(d, β, σ, T ) > 0 such that∥∥∥γ ([0, t]2<

)
− γ

(
[0, s]2<

)∥∥∥
Ψ
≤ c|t − s|(2β−σ)/(2β), s, t ∈ [0, T ]. (2.12)

By Lemma 9 in [10], the family
{
γ
(
[0, t]2<

)
t ≥ 0

}
has a continuous version and in the future

we will always use this version. Furthermore, for any 0 < b < 2β−σ
2β ,∥∥∥∥∥ sup

0≤s<t≤1

γ
(
[0, t]2<

)
− γ

(
[0, s]2<

)
|t − s|b

∥∥∥∥∥
Ψ

<∞.

Equivalently, there is c > 0 such that

E exp

{
c sup

0≤s<t≤1

∣∣γ ([0, t]2<
)
− γ

(
[0, s]2<

)∣∣β/σ
|t − s|bβ/σ

}
<∞. (2.13)

A natural question is: what happens if 3β/2 ≤ σ < d? Recall [2] that given an independent
copy X̃ t of X t , the integral∫ t

0

∫ t

0

drds

|Xr − X̃s |
σ

is finite if and only if σ < min{2β, d}. By (2.7), γ ([a, b] × [b, c]) = ∞ for any 0 ≤ a < b <
c <∞ if σ ≥ 2β. So the question to ask is: what happens when 3β/2 ≤ σ < min{2β, d}. In light
of the existing results, [34,5], for self-intersection local times, we believe that γ ([0, t]2<) is not
definable when 3β/2 ≤ σ < min{2β, d}, in the sense that for any reasonably good probability
density h(x) on Rd ,

lim
ε→0+

{∫
Rd×Rd

L(t, x, ε)L(t, y, ε)

|x − y|σ
dxdy − E

∫
Rd×Rd

L(t, x, ε)L(t, y, ε)

|x − y|σ
dxdy

}
= ∞

where

L(t, x, ε) = ε−d
∫ t

0
h
(
ε−1(Xs − x)

)
ds x ∈ Rd t ≥ 0.
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We also believe that in this case there is a deterministic function ϕ(ε) depending on (d, β, σ ),
with ϕ(ε)→ 0+ as ε → 0+, such that

ϕ(ε)

{∫
Rd×Rd

L(t, x, ε)L(t, y, ε)

|x − y|σ
dxdy − E

∫
Rd×Rd

L(t, x, ε)L(t, y, ε)

|x − y|σ
dxdy

}
converges in law to a normal distribution. We leave this problem for future study.

3. High moment asymptotics for the smoothed version

Under 0 < σ < min{β, d}, by Fourier inversion and (1.51)

η
(
[0, t]2

)
=

∫
Rd
ϕd−σ (λ)

∣∣∣∣∫ t

0
eiλ·Xs ds

∣∣∣∣2 dλ. (3.1)

It would be possible to obtain a lower bound for η
(
[0, t]2

)
similar to (3.14) below, by slightly

modifying our argument. There are several reasons that we deal with the smoothed version
ηα,ε

(
[0, t]2

)
(defined in (3.8) below), rather than with η

(
[0, t]2

)
. First, η

(
[0, t]2

)
is not

defined for β ≤ σ < min{3β/2, d}, while ηα,ε
(
[0, t]2

)
is. The high moment asymptotics for

ηα,ε
(
[0, t]2

)
will be used for approximating γ ([0, t]2) in the proof of Theorem 1.3. Secondly,

even when 0 < σ < min{β, d}, our approach does not allow us to deal directly with the λ-integral
on the right-hand side of (3.1) in establishing the upper bound. A discretization procedure is
needed, replacing the λ-integral by a sum over lattice points. Since ϕd−σ (0) = ∞, we need to
replace ϕd−σ (λ) by Cd,σ (α + |λ|

2)−(d−σ)/2 with α > 0 being small. For localizing ϕd−σ , we
introduce the probability density function

h(x) = C−1
0

d∏
j=1

(
2 sin x j

x j

)2

, x = (x1, . . . , xd) ∈ Rd (3.2)

where C0 > 0 is the normalizing constant:

C0 =

∫
Rd

d∏
j=1

(
2 sin xk

xk

)2

dx1 · · · dxd .

Clearly, h is symmetric. One can verify that its Fourier transform ĥ is

ĥ(λ) =
∫
Rd

h(x)eiλ·x dx = C−1
0 (2π)d

(
1[−1,1]d ∗ 1[−1,1]d

)
(λ).

In particular, ĥ is non-negative, continuous and most importantly, ĥ has the compact support in
the set [−2, 2]d . As characteristic function,

ĥ(λ) ≤ ĥ(0) = 1. (3.3)

Our final replacement of ϕd−σ (λ) in this section is

℘α,ε(λ) =
Cd,σ ĥ 2(ελ)

(α + |λ|2)(d−σ)/2
. (3.4)

Note that by (3.3)

℘α,ε(λ) ≤ ℘0,ε(λ) ≤ ϕd−σ (λ) (3.5)



X. Chen, J. Rosen / Stochastic Processes and their Applications 120 (2010) 1837–1878 1853

with α, ε > 0, and that the localizer ĥ(ελ) is the Fourier transform (or characteristic function) of
the probability density function

hε(x) = ε
−d h(ε−1x), x ∈ Rd (3.6)

which has a high concentration near 0 for small ε > 0.
Set

θα,ε(x) =
∫
Rd

eix ·λ℘α,ε(λ) dλ. (3.7)

Our attention in this section is mainly on the smoothed random measure

ηα,ε(A) =
∫ ∫

A
θα,ε(Xs1 − Xs2) ds1 ds2 A ⊂ R2

+. (3.8)

Throughout this section we assume that

0 < σ < min{2β, d}. (3.9)

Let τ be an independent mean-1 exponential,

ηα,ε

(
[0, τ ]2

)
=

∫ τ

0

∫ τ

0

∫
Rd

ei(Xs1−Xs2 )·λ℘α,ε(λ) dλ ds1 ds2

=

∫
Rd
℘α,ε(λ)

∣∣∣∣∫ τ

0
eiλ·Xs ds

∣∣∣∣2 dλ. (3.10)

Let f (λ) be a continuous and strictly positive function on Rd such that

f (−λ) = f (λ) and
∫
Rd

f 2(λ)℘α,ε(λ)dλ = 1.

By the Cauchy–Schwartz inequality

ηα,ε

(
[0, τ ]2

)1/2
≥

∣∣∣∣∫
Rd
℘α,ε(λ) f (λ)

[∫ τ

0
eiλ·Xs ds

]
dλ

∣∣∣∣ .
Hence,

E
[
ηα,ε

(
[0, τ ]2

)n/2
]

≥

∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk) f (λk)

)
E
∫
[0,τ ]n

ds1 · · · dsn exp

{
i

n∑
k=1

λk · Xsk

}
.

Let Σn be the permutation group on the set {1, . . . , n} and adopt the notation

[0, t]n< =
{
(s1, . . . , sn) ∈ [0, t]n; s1 < · · · < sn

}
.

We have

E
∫
[0,τ ]n

ds1 · · · dsn exp

{
i

n∑
k=1

λk · Xsk

}

=

∫
∞

0
dte−t

∫
[0,t]n

ds1 · · · dsnE exp

{
i

n∑
k=1

λk · Xsk

}
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=

∑
σ∈Σn

∫
∞

0
dte−t

∫
[0,t]n<

ds1 · · · dsnE exp

{
i

n∑
k=1

λσ(k) · Xsk

}
.

Write

n∑
k=1

λσ(k) · Xsk =

n∑
k=1

(
n∑

j=k

λσ( j)

) (
Xsk − Xsk−1

)
.

By independence,

E exp

{
i

n∑
k=1

λσ(k) · Xsk

}
= exp

{
−

n∑
k=1

(sk − sk−1)ψ

(
n∑

j=k

λσ( j)

)}
.

Therefore,

E
∫
[0,τ ]n

ds1 · · · dsn exp

{
i

n∑
k=1

λk · Xsk

}
=

∑
σ∈Σn

n∏
k=1

Q

(
n∑

j=k

λσ( j)

)

where Q(λ) = (1+ ψ(λ))−1.
Hence,

E
[
ηα,ε

(
[0, τ ]2

)n/2
]

≥

∑
σ∈Σn

∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk) f (λk)

)
n∏

k=1

Q

(
n∑

j=k

λσ( j)

)

= n!
∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk) f (λk)

)
n∏

k=1

Q

(
n∑

j=k

λ j

)
. (3.11)

By a change of variables∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk) f (λk)

)
n∏

k=1

Q

(
n∑

j=k

λ j

)

=

∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk − λk−1) f (λk − λk−1)Q(λk)

)
,

where we follow the convention λ0 = 0.
Applying an argument based on the spectral representation of self-adjoint operators in L2 (see

(3.7)–(3.10) in [2]) to the right-hand side,

lim inf
n→∞

1
n

log
1
n!

∫
Rn

dλ1 · · · dλn

(
n∏

k=1

℘α,ε(λk − λk−1) f (λk − λk−1)Q(λk)

)

≥ log sup
‖g‖2=1

∫
Rd
℘α,ε(λ) f (λ)

[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]
dλ. (3.12)
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Write

ρα,ε = sup
||g||2=1

∫
Rd
℘α,ε(λ)

[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]2

dλ. (3.13)

Taking the supremum over f on the right-hand side of (3.12) leads to the conclusion that

lim inf
n→∞

1
n

log
1
n!

E
[
ηα,ε

(
[0, τ ]2

)n/2
]
≥

1
2

log ρα,ε . � (3.14)

We note for future reference that

lim
α,ε→0

ρα,ε = ρ. (3.15)

To see this, we first write

0 ≤ ρ − ρα,ε ≤ sup
||g||2=1

∫
Rd

(
1−

ĥ 2(ελ)|λ|d−σ

(α + |λ|2)(d−σ)/2

)
ϕd−σ (λ)

×

[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]2

dλ. (3.16)

For M > 0, let

B(α, ε,M) = sup
M−1≤|λ|≤M

∣∣∣∣∣1− ĥ 2(ελ)|λ|d−σ

(α + |λ|2)(d−σ)/2

∣∣∣∣∣ . (3.17)

Then ∣∣∣∣∣1− ĥ 2(ελ)|λ|d−σ

(α + |λ|2)(d−σ)/2

∣∣∣∣∣ϕd−σ (λ)

≤ B(α, ε,M)ϕd−σ (λ)+ M−δ(ϕd−σ−δ(λ)+ ϕd−σ+δ(λ)). (3.18)

Using this and (3.16), it follows from [2, Lemma 1.6] that for δ > 0 sufficiently small

0 ≤ ρ − ρα,ε ≤ C B(α, ε,M)+ C M−δ. (3.19)

Note that by (3.3) we have limα,ε→0 B(α, ε,M) = 0 for any M > 0. The limit (3.15) then
follows by first taking α, ε → 0 and then M →∞.

Note also for future reference that for any c > 0 and t > 0,

ηα,ε

(
[0, ct]2<

)
=

∫ ct

0

∫ s2

0

∫
Rd

ei(Xs1−Xs2 )·λ
Cd,σ ĥ 2(ελ)

(α + |λ|2)(d−σ)/2
dλ ds1 ds2

= c2
∫ t

0

∫ s2

0

∫
Rd

ei(Xcs1−Xcs2 )·λ
Cd,σ ĥ 2(ελ)

(α + |λ|2)(d−σ)/2
dλ ds1 ds2

d
= c2

∫ t

0

∫ s2

0

∫
Rd

ei(Xs1−Xs2 )·c
1/βλ Cd,σ ĥ 2(ελ)

(α + |λ|2)(d−σ)/2
dλ ds1 ds2

= c2−d/β
∫ t

0

∫ s2

0

∫
Rd

ei(Xs1−Xs2 )·λ
Cd,σ ĥ 2(ελ/c1/β)

(α + |λ/c1/β |2)(d−σ)/2
dλ ds1 ds2
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= c2−σ/β
∫ t

0

∫ s2

0

∫
Rd

ei(Xs1−Xs2 )·λ
Cd,σ ĥ 2(ελ/c1/β)

(αc2/β + |λ|2)(d−σ)/2
dλ ds1 ds2

= c2−σ/βηαc2/β , εc−1/β

(
[0, t]2<

)
. (3.20)

Lemma 3.1.

lim sup
n→∞

1
n

log
1
n!

E
[
ηα,ε

(
[0, τ ]2

)n/2
]
≤

1
2

log ρα,ε . (3.21)

Proof. Let

θ̄α,ε(x) =
∫
Rd

eix ·λ Cd,σ ĥ(ελ)

(α + |λ|2)(d−σ)/2
dλ, (3.22)

and

ψ x
α,ε (A) =

∫ ∫
A
θ̄α,ε(Xs1 − Xs2 − x) ds1 ds2. (3.23)

Then

ψ x
α,ε

(
[0, τ ]2

)
=

∫ τ

0

∫ τ

0

∫
Rd

ei(Xs1−Xs2−x)·λ Cd,σ ĥ(ελ)

(α + |λ|2)(d−σ)/2
dλ ds1 ds2

=

∫
Rd

e−ix ·λ Cd,σ ĥ(ελ)

(α + |λ|2)(d−σ)/2

∣∣∣∣∫ τ

0
eiλ·Xs ds

∣∣∣∣2 dλ, (3.24)

so that

ηα,ε

(
[0, τ ]2

)
=

∫
hε(x)ψ

x
α,ε

(
[0, τ ]2

)
dx . (3.25)

Let M > 0 be a large but fixed number. Define the random measure ψ̃ x
α,ε(·) as

ψ̃ x
α,ε(A) =

∑
y∈Zd

ψ yM+x
α,ε (A)

and write

h̃ε(x) =
∑
y∈Zd

hε(yM + x).

Then

ηα,ε([0, τ ]2) =
∑
y∈Zd

∫
[0,M]2

hε(yM + x)ψ yM+x
α,ε

(
[0, τ ]2

)
≤

∫
[0,M]d

h̃ε(z)ψ̃
z
α,ε([0, τ ]

2)dz.

Here we used the fact that θ̄α,ε(x), being the convolution of the positive function hε and a Bessel
kernel, is itself positive, and hence so is ψ x

α,ε

(
[0, τ ]2

)
. Recall, [12, p. 294] or [30, p. 131, (v)]

that ∫
Rd ei x ·λ

(1+ |λ|2)(d−σ)/2
dλ =

∫
∞

0 e−|x |
2/4t e−t t−1−σ/2 dt

πd/2Γ (d − σ)
.



X. Chen, J. Rosen / Stochastic Processes and their Applications 120 (2010) 1837–1878 1857

In addition, by Parseval’s identity,∫
[0,M]d

h̃ε(z)ψ̃
z
α,ε([0, τ ]

2)dz = M−d
∑
y∈Zd

(∫
[0,M]d

h̃ε(x) exp
{
−i

2π
M
(y · x)

}
dx

)

×

(∫
[0,M]d

ψ̃ x
α,ε([0, τ ]

2) exp
{

i
2π
M
(y · x)

}
dx

)
.

By the periodicity of h̃ε ,∫
[0,M]d

h̃ε(x) exp
{
−i

2π
M
(y · x)

}
dx

=

∑
z∈Zd

∫
[0,M]d

hε(zM + x) exp
{
−i

2π
M
(y · x)

}
dx

=

∑
z∈Zd

∫
[0,M]d

hε(zM + x) exp
{
−i

2π
M
(y · (zM + x))

}
dx

=

∫
Rd

hε(x) exp
{
−i

2π
M
(y · x)

}
dx = ĥ

(
2πε
M

y

)
.

Similarly,∫
[0,M]d

ψ̃ x
α,ε([0, τ ]

2) exp
{

i
2π
M
(y · x)

}
dx

=

∫
Rd
ψ x
α,ε([0, τ ]

2) exp
{
−i

2π
M
(y · x)

}
dx

= (2π)d
Cd,σ ĥ

(
2πε
M y

)
(α + | 2πM y|2)(d−σ)/2

∣∣∣∣∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣2 ,
where the last step follows by (3.24).

Summarizing the computation,

ηα,ε([0, τ ]2) ≤
(

2π
M

)d ∑
y∈Zd

℘α,ε

(
2π
M

y

) ∣∣∣∣∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣2

=

(
2π
M

)d ∑
y∈E

℘α,ε

(
2π
M

y

) ∣∣∣∣∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣2 , (3.26)

where

E = Zd
∩

[
−

M

πε
,

M

πε

]
,

and the last step follows from the fact that ĥ(λ) is supported on [−2, 2]d .
Write

πα,ε,M (y) = ℘α,ε

(
2π
M

y

)
.
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Let H be the finite dimensional U -space of the complex-valued functions g(y) on E with

‖g‖ =

{∑
y∈E

|g(y)|2πα,ε,M (y)

}1/2

.

Let the subset U ⊂ H be defined by the property

g(y) = g(−y) y ∈ E .

Let δ > 0 be a small but fixed number. There are f1, . . . , fl ∈ U with norm 1 such that

‖g‖ ≤ (1+ δ) max
1≤ j≤l

|〈 f j , g〉| g ∈ U .

In particular,{∑
y∈E

πα,ε,M (y)

∣∣∣∣∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣2
}1/2

≤ (1+ δ) max
1≤ j≤l

∣∣∣∣∣∑
y∈E

πα,ε,M (y) f j (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣
= (1+ δ) max

1≤ j≤l

∣∣∣∣∣∣
∑
y∈Zd

πα,ε,M (y) f j (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣∣ .
By (3.26),

E
[
ηα,ε

(
[0, τ ]2

)n/2
]

≤ (1+ δ)n
(

2π
M

)nd/2 l∑
j=1

E

∣∣∣∣∣∣
∑
y∈Zd

πα,ε,M (y) f j (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣∣
n

. (3.27)

We now intend to establish

lim sup
n→∞

1
n

log
1
n!

E

∣∣∣∣∣∣
∑
y∈Zd

πα,ε,M (y) f j (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣∣
n

≤
1
2

log ρα,ε,M (3.28)

for each j = 1, . . . , l, where

ρα,ε,M = sup
|g|2=1

∑
x∈Zd

℘α,ε

(
2π
M

x

)

×

∑
y∈Zd

√
Q

(
2π
M
(x + y)

)√
Q

(
2π
M

y

)
g(x + y)g(y)

2

, (3.29)
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where the supremum is over all functions g(x) on Zd satisfying

|g|2 ≡

∑
y∈Zd

g2(y)


1/2

= 1.

Write f = f j . Using estimates of the form

E|X |2m+1
≤

{
E|X |2m

}1/2 {
E|X |2(m+1)

}1/2
,

we need only consider the case n = 2m. That is, we need only to show that

lim sup
m→∞

1
2m

log
1

(2m)!
E

∣∣∣∣∣∣
∑
y∈Zd

πα,ε,M (y) f j (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣∣
2m

≤
1
2

log ρα,ε,M (3.30)

where the last line follows from the fact that the f j are supported on E .
Indeed,

E

∣∣∣∣∣∣
∑
y∈Zd

πα,ε,M (x) f (y)
∫ τ

0
exp

{
i
2π
M
(y · Xs)

}
ds

∣∣∣∣∣∣
2m

=

∑
y1,...,y2m∈Zd

(
m∏

k=1

πα,ε,M (yk)πα,ε,M (ym+k) f (yk) f (ym+k)

)

×E
∫
[0,τ ]2m

ds1 · · · ds2m exp

{
i
2π
M

m∑
k=1

[
(yk · Xsk )− (ym+k · Xsm+k )

]}

=

∑
y1,...,y2m∈Zd

(
2m∏

k=1

πα,ε,M (yk) f (yk)

)

×E
∫
[0,τ ]2m

ds1 · · · ds2m exp

{
i
2π
M

2m∑
k=1

(yk · Xsk )

}
.

Similar to the computation for (3.12), (with n = 2m), the right-hand side is equal to

(2m)!
∑

y1,...,y2m∈Zd

(
2m∏

k=1

πα,ε,M (yk − yk−1) f (yk − yk−1)Q(yk)

)
.

Observe that the same argument of spectral representation used in the proof of (3.12) gives

lim
m→∞

1
2m

log
∑

y1,...,y2m∈Zd

(
2m∏

k=1

πα,ε,M (yk − yk−1) f (yk − yk−1)Q(yk)

)
= log ρα,ε,M ( f )
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where

ρα,ε,M ( f ) ≡ sup
|g|2=1

∑
x,y∈Zd

πα,ε,M (x − y) f (x − y)

√
Q

(
2π
M

x

)√
Q

(
2π
M

y

)
g(x)g(y)

= sup
|g|2=1

∑
x∈Zd

πα,ε,M (x) f (x)

∑
y∈Zd

√
Q

(
2π
M
(x + y)

)√
Q

(
2π
M

y

)
g(x + y)g(y)

 .
Hence, (3.30) follows from the fact that ρα,ε,M ( f ) ≤

√
ρα,ε,M , (Cauchy–Schwartz).

By (3.27) and (3.28),

lim sup
n→∞

1
n

log
1
n!

E
[
ηα,ε

(
[0, τ ]2

)n/2
]
≤

1
2

log

{(
2π
M

)d

ρα,ε,M

}
.

We show in Theorem 7.1 below that

lim sup
M→∞

(
2π
M

)d

ρα,ε,M ≤ ρα,ε .

This will then show that

lim sup
n→∞

1
n

log
1
n!

E
[
ηα,ε

(
[0, τ ]2

)n/2
]
≤

1
2

log ρα,ε . �

Combining (3.14) and Lemma 3.1, we have shown that

lim
n→∞

1
n

log
1
n!

E
[
ηα,ε

(
[0, τ ]2

)n/2
]
=

1
2

log ρα,ε . (3.31)

By Taylor’s expansion,

E exp
[
θ
(
ηα,ε

(
[0, τ ]2

))1/2
]{
<∞ for θ < ρ−1/2

α,ε

=∞ for θ > ρ−1/2
α,ε .

(3.32)

In addition, replacing τ by t in (3.10),

ηα,ε

(
[0, t]2

)
=

∫
Rd
℘α,ε(λ)

∣∣∣∣∫ t

0
eiλ·Xu du

∣∣∣∣2 dλ.

By the triangle inequality one has that for any s, t > 0{∫
Rd
℘α,ε(λ)

∣∣∣∣∫ s+t

0
eiλ·Xu du

∣∣∣∣2 dλ

}1/2

≤

{∫
Rd
℘α,ε(λ)

∣∣∣∣∫ s

0
eiλ·Xu du

∣∣∣∣2 dλ

}1/2

+

{∫
Rd
℘α,ε(λ)

∣∣∣∣∫ s+t

s
eiλ·Xu du

∣∣∣∣2 dλ

}1/2

.

Notice that the random quantity∫
Rd
℘α,ε(λ)

∣∣∣∣∫ s+t

s
eiλ·Xu du

∣∣∣∣2 dλ =
∫
Rd
℘α,ε(λ)

∣∣∣∣∫ t

0
eiλ·(Xs+u−Xs )du

∣∣∣∣2 dλ
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is independent of ηα,ε
(
[0, s]2

)
and has the same distribution as ηα,ε

(
[0, t]2

)
. Consequently, for

any θ > 0,

log E exp
{
θ
(
ηα,ε

(
[0, s + t]2

))1/2
}

≤ log E exp
{
θ
(
ηα,ε

(
[0, s]2

))1/2
}
+ log E exp

{
θ
(
ηα,ε

(
[0, t]2

))1/2
}
.

Thus, the limit

L(θ) := lim
t→∞

1
t

log E exp
{
θ
(
ηα,ε

(
[0, t]2

))1/2
}

(3.33)

exists as extended real number. In view of the relation

E exp
{
θ
(
ηα,ε

(
[0, τ ]2

))1/2
}
=

∫
∞

0
dte−tE exp

{
θ
(
ηα,ε

(
[0, t]2

))1/2
}
,

and by (3.32) and the relation ηα,ε
(
[0, t]2

)
= 2ηα,ε

(
[0, t]2<

)
,

lim
t→∞

1
t

log E exp
{
θ
(
ηα,ε

(
[0, t]2<

))1/2
}
≤1 for θ <

√
2
ρα,ε

≥1 for θ >

√
2
ρα,ε

.

(3.34)

Let (X̃ t , τ̃ ) be an independent copy of (X t , τ ) and recall that the random measure ζ(·) is
defined in (2.4). The integral

ζα,ε(A) =
∫ ∫

A
θα,ε(Xs − X̃ t ) ds dt (3.35)

was introduced in [2] to approximate the random measure

ζ(A) =
∫ ∫

A

dsdt

|Xs − X̃ t |
σ

A ⊂ (R+)2

which is well defined whenever 0 < σ < min{2β, d}.
As in the proof of [2, Lemma 5.1], (with p = 2),

lim
α,ε→0+

lim sup
n→∞

1
n

log
1

(n!)2
E
[
ζ ([0, τ ] × [0, τ̃ ])− ζα,ε ([0, τ ] × [0, τ̃ ])

]n
= −∞.

This leads, by an similar argument, to the fact that for any θ > 0

lim
α,ε→0+

lim sup
t→∞

1
t

log E exp
{
θ

∣∣∣ζ ([0, t]2
)
− ζα,ε

(
[0, t]2

)∣∣∣1/2} = 0. (3.36)

4. Large deviations

In spite of their similarity, the large deviations in (1.17) and (1.26) require different strategies.
When 0 < σ < min{β, d}, both parts, off and near the time diagonal, make contribution to the
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large deviation given in (1.17). When β ≤ σ < min
{

3
2β, d

}
, on the other hand, renormalization

makes the off-diagonal part the only source that contributes to the large deviation given in (1.26).
Accordingly, different proofs are given for the two cases.

4.1. Proof of Theorem 1.1, 0 < σ < min{β, d}

Recall (1.31)–(1.34). Since

ηz
(
[0, t]2

)
= C−1

∫
Rd
ξ(t, x)ξ(t, x + z)dx, (4.1)

and translation is continuous in L2(Rd), we see that ηz
(
[0, t]2

)
is continuous in z, almost surely.

Hence if f (x) ∈ S(Rd) with
∫

f (x) dx = 1, and defining fδ as in (3.6) we have

lim
δ→0

∫ (∫ ∫
[0,t]2
|Xs − Xr − x |−σ drds

)
fδ(x) dx = η

(
[0, t]2

)
. (4.2)

But ∫ (∫ ∫
[0,t]2
|Xs − Xr − x |−σ drds

)
fδ(x) dx

=

∫ ∫
[0,t]2

(∫
|Xs − Xr − x |−σ fδ(x) dx

)
drds

=

∫
|x |−σ Fδ(x) dx, (4.3)

where

Fδ(x) =
∫ ∫
[0,t]2

fδ(x + Xs − Xr ) drds (4.4)

is in S(Rd) with

F̂δ(λ) =
∫ ∫
[0,t]2

ei(Xs−Xr )·λ f̂ (δ λ) drds = f̂ (δ λ)

∣∣∣∣∫ t

0
eiλ·Xs ds

∣∣∣∣2 . (4.5)

Hence using (1.51)∫
|x |−σ Fδ(x) dx =

∫
Rd
ϕd−σ (λ) f̂ (δ λ)

∣∣∣∣∫ t

0
eiλ·Xs ds

∣∣∣∣2 dλ. (4.6)

This shows that

η
(
[0, t]2

)
=

∫
Rd
ϕd−σ (λ)

∣∣∣∣∫ t

0
eiλ·Xs ds

∣∣∣∣2 dλ. (4.7)

Hence using (3.10)

η
(
[0, t]2

)
− ηα,ε

(
[0, t]2

)
=

∫
Rd

[
ϕd−σ (λ)− ℘α,ε(λ)

] ∣∣∣∣∫ t

0
eiλ·Xs ds

∣∣∣∣2 dλ.

Note that η
(
[0, t]2

)
− ηα,ε

(
[0, t]2

)
≥ 0 by (3.5).
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As in the proof of (2.3),
(
η
(
[0, t]2

)
− ηα,ε

(
[0, t]2

))1/2
is sub-additive. Hence, for any θ > 0

lim
t→∞

1
t

log E exp
{
θ
(
η
(
[0, t]2

)
− ηα,ε

(
[0, t]2

))1/2
}

= inf
T>0

1
T

log E exp

θ
(∫
Rd

[
ϕd−σ (λ)− ℘α,ε(λ)

] ∣∣∣∣∫ T

0
eiλ·Xs ds

∣∣∣∣2 dλ

)1/2


≤ log E exp

θ
∫
Rd

[
ϕd−σ (λ)− ℘α,ε(λ)

] ∣∣∣∣∣
∫ 1

0
eiλ·Xs ds

∣∣∣∣∣
2

dλ

1/2
 .

Applying the dominated convergence theorem (based on Theorem 2.1) to the right-hand side
leads to

lim
α,ε→0+

lim
t→∞

1
t

log E exp
{
θ
(
η
(
[0, t]2

)
− ηα,ε

(
[0, t]2

))1/2
}
= 0 (4.8)

for each θ > 0.

Using (3.34) and (3.15) we obtain that

lim sup
t→∞

1
t

log E exp
{
θ1

∣∣∣η ([0, t]2<
)∣∣∣1/2} ≤ 1, θ1 <

√
2
ρ
,

lim inf
t→∞

1
t

log E exp
{
θ2

∣∣∣η ([0, t]2<
)∣∣∣1/2} ≥ 1, θ2 >

√
2
ρ
.

For any θ > 0, using the substitutions

t = aβ/σ
(
θ

θ1

) 2
2−σ/β

and t = aβ/σ
(
θ

θ2

) 2
2−σ/β

together with the scaling (1.16) we obtain

lim sup
a→∞

a−β/σ log E exp
{
θaβ/σ−1/2

∣∣∣η ([0, 1]2<
)∣∣∣1/2} ≤ ( θ

θ1

) 2
2−σ/β

,

lim inf
a→∞

a−β/σ log E exp
{
θaβ/σ−1/2

∣∣∣η ([0, 1]2<
)∣∣∣1/2} ≥ ( θ

θ2

) 2
2−σ/β

.

Letting θ1, θ2 →
√

2/ρ gives

lim
a→∞

a−β/σ log E exp
{
θaβ/σ−1/2

(
η
(
[0, 1]2<

))1/2
}
= θ

2
2−σ/β (ρ/2)

1
2−σ/β . (4.9)

Therefore, the large deviation given in (1.17) follows from the Gärtner–Ellis theorem (Theorem
2.3.6, [11]). �
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4.2. Proof of Theorem 1.3, β ≤ σ < min{ 32β, d}

Notice that for a > 0,

P
{∣∣∣γ ([0, 1]2<

)∣∣∣ ≥ a
}
= P

{
γ
(
[0, 1]2<

)
≥ a

}
+ P

{
−γ

(
[0, 1]2<

)
≥ a

}
. (4.10)

We claim that

lim
a→∞

a−β/σ log P
{
−γ

(
[0, 1]2<

)
≥ a

}
= −∞. (4.11)

Let m ≥ 1 be a fixed but arbitrary integer and write

Dm =

m−1⋃
k=1

[
k − 1

m
,

k

m

]
×

[
k

m
, 1
]
.

We note that

γ
(
[0, 1]2<

)
= η(Dm)− Eη(Dm)+

m∑
k=1

γ

([
k − 1

m
,

k

m

]2

<

)

≥ −Eη(Dm)+

m∑
k=1

γ

([
k − 1

m
,

k

m

]2

<

)
d
= −Eη(Dm)+ m−(2−σ/β)

m∑
k=1

γ
(
[k − 1, k]2<

)
.

By (2.7) we see that Eη(Dm) <∞ for m fixed. Thus,

lim sup
a→∞

a−β/σ log P
{
−γ

(
[0, 1]2<

)
≥ a

}
≤ lim sup

a→∞
a−β/σ log P

{
−

m∑
k=1

γ
(
[k − 1, k]2<

)
≥ m2−σ/βa

}
.

Let c > 0 satisfy (2.10). By Chebyshev’s inequality,

P

{
−

m∑
k=1

γ
(
[k − 1, k]2<

)
≥ 0m2−σ/βa

}

≤ P


(

m∑
k=1

∣∣∣γ ([k − 1, k]2<
)∣∣∣)β/σ ≥ m2β/σ−1aβ/σ


≤ exp

{
−cm2β/σ−1aβ/σ

}E exp

c

(
m∑

k=1

∣∣∣γ ([k − 1, k]2<
)∣∣∣)β/σ




≤ exp
{
−cm2β/σ−1aβ/σ

}(
E exp

{
c
∣∣∣γ ([0, 1]2<

)∣∣∣β/σ})m

.

For the last inequality we used β/σ < 1 and the fact that the γ
(
[k − 1, k]2<

)
are i.i.d. Therefore,

lim sup
a→∞

a−β/σ log P
{
−γ

(
[0, 1]2<

)
≥ a

}
≤ −cm2β/σ−1.
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Letting m →∞ gives (4.11).
By (4.10), therefore, it remains to show that

lim
a→∞

a−β/σ log P
{∣∣∣γ ([0, 1]2<

)∣∣∣ ≥ a
}
= −2−β/σ

σ

β

(
2β − σ
β

) 2β−σ
σ

ρ−β/σ . (4.12)

To this end, we need the following lemma.

Lemma 4.1. There is a C > 0 independent of ε and an α > 0 such that for any θ > 0

lim sup
t→∞

1
t

log E exp
{
θ

∣∣∣γ ([0, t]2<
)∣∣∣1/2} ≤ Cθ

2
2−σ/β (4.13)

lim sup
t→∞

1
t

log E exp
{
θηα,ε

(
[0, t]2<

)1/2
}
≤ Cθ

2
2−σ/β . (4.14)

Proof. Note that since β/σ > 2/3, if V ≥ M2tσ/β then

M−2(β/σ−1/2)V β/σ
= M−2(β/σ−1/2)V β/σ−1/2V 1/2

≥ t1−σ/2βV 1/2. (4.15)

Hence for any M > 0,

E exp
{∣∣∣γ ([0, t]2<

)∣∣∣1/2} ≤ eMt
+ E

(
exp

{∣∣∣γ ([0, t]2<
)∣∣∣1/2} ; ∣∣∣γ ([0, t]2<

)∣∣∣ ≥ M2t2
)

= eMt
+ E

(
exp

{
t1−σ/2β

∣∣∣γ ([0, 1]2<
)∣∣∣1/2} ; ∣∣∣γ ([0, 1]2<

)∣∣∣ ≥ M2tσ/β
)

≤ eMt
+ E exp

{
M−2(β/σ−1/2)

∣∣∣γ ([0, 1]2<
)∣∣∣β/σ} .

By Theorem 2.2, the above estimate shows that

C ≡ lim sup
t→∞

1
t

log E exp
{∣∣∣γ ([0, t]2<

)∣∣∣1/2} <∞.
Replacing t by θ

2
2−σ/β t yields (4.13).

Observe that for any ε > 0, ρα,ε ≤ ρ. Hence by (3.34)

lim
t→∞

1
t

log E exp
{
λ
(
ηα,ε

(
[0, t]2<

))1/2
}
≤ 1 (4.16)

for any λ <
√

2
ρ

.

On the other hand, by (3.20), for any c > 0 and t > 0,

ηα,ε

(
[0, ct]2<

)
d
= c2−σ/βηαc(d−σ)/β , εc−1/β

(
[0, t]2<

)
. (4.17)

Taking

c =

(
θ

λ

) 2
2−σ/β
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and replacing t by ct , α by αc−(d−σ)/β and ε by c1/βε in (4.16),

lim
t→∞

1
t

log E exp
{
θ
(
ηα,ε

(
[0, t]2<

))1/2
}
≤

(
θ

λ

) 2
2−σ/β

.

Letting λ→
√

2
ρ

leads to

lim
t→∞

1
t

log E exp
{
θ
(
ηα,ε

(
[0, t]2<

))1/2
}
≤ θ

2
2−σ/β (ρ/2)

1
2−σ/β . �

We now show for any θ > 0,

lim
α,ε→0+

lim sup
t→∞

1
t

log E exp
{
θ

∣∣∣γ ([0, t]2<
)
− ηα,ε

(
[0, t]2<

)∣∣∣1/2} = 0. (4.18)

Indeed, let the integer N ≥ 1 be large but fixed and let the sets

Ak
l ; l = 0, 1, . . . , 2k

− 1, k = 0, 1, . . . , N

be defined as in (1.23). Consider the decomposition

γ
(
[0, t]2<

)
− ηα,ε

(
[0, t]2<

)
=

2N+1∑
l=1

{
γ − ηα,ε

}([ l − 1

2N+1 t,
l

2N+1 t

]2

<

)
+

N∑
k=0

2k
−1∑

l=1

{
γ − ηα,ε

}
(Ak

l ). (4.19)

Notice that for each l = 0, 1, . . . , 2k
−1 and k = 0, 1, . . . , N , and using (2.5) and an argument

similar to (3.20){
γ − ηα,ε

}
(Ak

l )
d
= 2−(k+1)(2−σ/β)

{
ζ
(
[0, t]2

)
− Eζ

(
[0, t]2

)
− ζᾱ,ε̄

(
[0, t]2

)}
,

where ᾱ = α2−(k+1)(d−σ)/β , ε̄ = ε2(k+1)/β . Also by (2.5)

Eζ
(
[0, t]2

)
= O

(
t2−σ/β

)
.

By (3.36), using Hölder’s inequality and the fact that N is fixed, we have that

lim
α,ε→0+

lim sup
t→∞

1
t

log E exp

θ
∣∣∣∣∣∣

N∑
k=0

2k
−1∑

l=1

{
γ − ηα,ε

}
(Ak

l )

∣∣∣∣∣∣
1/2
 = 0. (4.20)

Note that

γ

([
l − 1

2N+1 t,
l

2N+1 t

]2

<

)
d
= γ

([
0,

t

2N+1

]2

<

)
.

Replacing t by 2−(N+1)t in (4.13) and (4.14) we have

lim sup
t→∞

1
t

log E exp

θ
∣∣∣∣∣γ
([

l − 1

2N+1 t,
l

2N+1 t

]2

<

)∣∣∣∣∣
1/2
 ≤ Cθ

2β
2β−σ

2N+1 ,
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lim sup
t→∞

1
t

log E exp

θ
∣∣∣∣∣ηα,ε

([
l − 1

2N+1 t,
l

2N+1 t

]2

<

)∣∣∣∣∣
1/2
 ≤ Cθ

2β
2β−σ

2N+1 ,

for l = 1, . . . , 2N+1.
By the fact that 2β

2β−σ ≥ 2, and by Part (b), Theorem 1.2.2 in [8],

lim sup
t→∞

1
t

log E exp

θ
2N+1∑

l=1

∣∣∣∣∣γ
([

l − 1

2N+1 t,
l

2N+1 t

]2

<

)∣∣∣∣∣
1/2

 ≤ Cθ
2β

2β−σ

2N+1 ,

lim sup
t→∞

1
t

log E exp

θ
2N+1∑

l=1

∣∣∣∣∣ηα,ε
([

l − 1

2N+1 t,
l

2N+1 t

]2

<

)∣∣∣∣∣
1/2

 ≤ Cθ
2β

2β−σ

2N+1 .

Combining this with (4.19) and (4.20) leads to (4.18).
Using (3.34) and (4.18), we find as in the proof of (4.9) that for any θ > 0

lim
a→∞

a−β/σ log E exp
{
θaβ/σ−1/2

∣∣∣γ ([0, 1]2<
)∣∣∣1/2} = θ 2

2−σ/β (ρ/2)
1

2−σ/β .

Then the large deviation given in (4.12) follows from the Gärtner–Ellis theorem (Theorem
2.3.6, [11]). �

5. Laws of the iterated logarithm

Proof of Theorem 1.2. Using the scaling property (1.16), our large deviation result (1.17) can
be re-written as

lim
t→∞

(log log t)−1 log P
{
η
(
[0, t]2<

)
≥ λt2−σ/β(log log t)

σ
β

}
= −2−β/σ

σ

β

(
2β − σ
β

) 2β−σ
σ

ρ−β/σλβ/σ , λ > 0. (5.1)

Fix θ > 1 and let tn = θn (n = 1, 2, . . .). Let the fixed numbers λ1, λ2 > 0 satisfy

λ1 > 2ρ
(
β

σ

)σ/β (
β

2β − σ

) 2β−σ
β

> λ2.

By (5.1),∑
n

P
{
η
(
[0, tn]

2
<

)
≥ λ1t2−σ/β

n (log log tn)
σ
β

}
<∞.

Using the Borel–Cantelli lemma,

lim sup
n→∞

t−(2−σ/β)n (log log tn)
−σ/βη

(
[0, tn]

2
<

)
≤ λ1, a.s.

Using the monotonicity of η
(
[0, t]2<

)
we see that for any tn ≤ t ≤ tn+1,

t−(2−σ/β)(log log t)−σ/βη
(
[0, t]2<

)
≤

t2−σ/β
n+1 (log log tn+1)

σ/β

t2−σ/β
n (log log tn)σ/β

t−(2−σ/β)n+1 (log log tn+1)
−σ/βη

(
[0, tn+1]

2
<

)
.
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Consequently,

lim sup
t→∞

t−(2−σ/β)(log log t)−σ/βη
(
[0, t]2<

)
≤ θ

2β−σ
β λ1, a.s.

Since θ can be arbitrarily close to 1 and λ1 can be arbitrarily close to

2ρ
(
β

σ

)σ/β (
β

2β − σ

) 2β−σ
β

,

we have proved the upper bound for (1.20).
On the other hand, notice that the sequence

η
(
[tn, tn+1]

2
<

)
, n = 1, 2, . . .

is independent and for each n,

η
(
[tn, tn+1]

2
<

)
d
= η

(
[0, tn+1 − tn]

2
<

)
.

By (5.1), one can make θ sufficiently large so∑
n

P
{
η
(
[tn, tn+1]

2
<

)
≥ λ2t2−σ/β

n+1 (log log tn+1)
σ/β
}
= ∞.

By the Borel–Cantelli lemma,

lim sup
n→∞

t−(2−σ/β)n+1 (log log tn+1)
−σ/βη

(
[tn, tn+1]

2
<

)
≥ λ2, a.s.

Using the monotonicity of η
(
[0, t]2<

)
, this leads to

lim sup
t→∞

t−(2−σ/β)(log log t)−σ/βη
(
[0, t]2<

)
≥ λ2, a.s.

Letting

λ2 → 2ρ
(
β

σ

)σ/β (
β

2β − σ

) 2β−σ
β

yields the lower bound for (1.20).

Poof of Theorem 1.4. We now turn to the proof of (1.28). With λ1, λ2 > 0 as above and using
(1.26), we also have

lim sup
n→∞

t−(2−σ/β)n (log log tn)
−σ/βγ

(
[0, tn]

2
<

)
≤ λ1, a.s. (5.2)

for any θ > 1; and

lim sup
n→∞

t−(2−σ/β)n+1 (log log tn+1)
−σ/βγ

(
[tn, tn+1]

2
<

)
≥ λ2, a.s. (5.3)

for sufficiently large θ .
However, we cannot continue as above due to the fact that γ

(
[0, t]2<

)
is not monotone in t .

Instead, we first observe that for any ε > 0

P

{
sup

tn≤t≤tn+1

∣∣∣γ ([0, t]2<
)
− γ

(
[0, tn]

2
<

)∣∣∣ ≥ εt2−σ/β
n (log log tn)

σ/β

}
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= P

{
sup

θ−1≤t≤1

∣∣∣γ ([0, t]2<
)
− γ

(
[0, θ−1

]
2
<

)∣∣∣ ≥ εθ− 2β−σ
β (log log tn)

σ/β

}
.

By Chebyshev’s inequality and (2.13),

∑
n

P

{
sup

θ−1≤t≤1

∣∣∣γ ([0, t]2<
)
− γ

(
[0, θ−1

]
2
<

)∣∣∣ ≥ εθ− 2β−σ
β (log log tn)

σ/β

}
<∞

when θ is sufficiently close to 1. Consequently,

lim sup
n→∞

t−(2−σ/β)n (log log tn)
−σ/β sup

tn≤t≤tn+1

∣∣∣γ ([0, t]2<
)
− γ

(
[0, tn]

2
<

)∣∣∣ ≤ ε, a.s. (5.4)

Combining this with (5.2) leads to the upper bound for (2.10).
For the lower bound, observe that

γ
(
[0, tn+1]

2
<

)
= γ

(
[tn, tn+1]

2
<

)
+ γ

(
[0, tn]

2
<

)
+ γ ([0, tn] × [tn, tn+1])

≥ γ
(
[tn, tn+1]

2
<

)
+ γ

(
[0, tn]

2
<

)
− Eγ ([0, tn] × [tn, tn+1]) .

Given ε > 0, an argument similar to the one used for (5.4) shows that

lim sup
n→∞

t−(2−σ/β)n+1 (log log tn+1)
−σ/β

∣∣∣γ ([0, tn]
2
<

)∣∣∣ ≤ ε, a.s. (5.5)

for θ sufficiently large.
In addition

Eγ ([0, tn] × [tn, tn+1]) = Eζ ([0, tn] × [0, tn+1 − tn]) = O
(

t2−σ/β
n+1

)
.

Combining this with (5.3) and (5.5) yields

lim sup
n→∞

t−(2−σ/β)n+1 (log log tn+1)
−σ/βγ

(
[0, tn+1]

2
<

)
≥ λ2 − ε, a.s.

Consequently,

lim sup
t→∞

t−(2−σ/β)(log log t)−σ/βγ
(
[0, t]2<

)
≥ λ2 − ε, a.s.

This leads to the lower bound for (1.28). �

6. The stable process in a Brownian potential

Throughout this section, we take σ = 2p − d .

Proof of Corollary 1.5. From (1.36), we have that

F(1)
d
= U

√
(2C)η

(
[0, 1]2<

)
where U is a standard normal random variable independent of X t . The remainder of the proof
for (1.42) follows from (1.17) and a standard computation. �
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Proof of Corollary 1.6. Since {−F(t); t ≥ 0}
d
= {F(t); t ≥ 0}, we need only show that

lim sup
t→∞

t−
2β−σ

2β (log log t)−
σ+β
2β F(t) =

√
8Cρ

(
β

σ + β

) σ+β
2β
(

β

2β − σ

) 2β−σ
2β

, a.s. (6.1)

Using the scaling property (1.41), our large deviation result (1.42) can be re-written as

lim
t→∞

(log log t)−1 log P
{

F(t) ≥ λt
2β−σ

2β (log log t)
σ+β
2β

}

= −
β + σ

β
(8Cρ)−

β
β+σ

(
2β − σ
β

) 2β−σ
β+σ

λ
2β
σ+β , λ > 0. (6.2)

Fix θ > 1 and let tn = θn (n = 1, 2, . . .). Let the fixed numbers λ1, λ2 > 0 satisfy

λ1 >
√

8Cρ

(
β

σ + β

) σ+β
2β
(

β

2β − σ

) 2β−σ
2β

> λ2.

By (6.2),∑
n

P
{

F(tn) ≥ λ1t
2β−σ

2β
n (log log tn)

σ+β
2β

}
<∞ (6.3)

for any θ > 1 and∑
n

P
{

F(tn) ≥ λ2t
2β−σ

2β
n (log log tn)

σ+β
2β

}
= ∞ (6.4)

for θ > 1 sufficiently large.
Conditioning on the stable process {X t }, F(t) is a centered Gaussian process with variance∫

Rd
ξ(t, x)2dx .

For s < t , the variance of F(t)− F(s) is∫
Rd

[ξ(t, x)− ξ(s, x)]2 dx .

The relation∫
Rd

[ξ(t, x)− ξ(s, x)]2 dx ≤
∫
Rd
ξ(t, x)2dx −

∫
Rd
ξ(s, x)2dx

shows that, conditionally on the stable process {X t }, F(t) is a P-sub-additive Gaussian
process [20]. By Proposition 2.2, [20],

P

{
sup

0≤s≤t
F(s) ≥ a

}
≤ 2P {F(t) ≥ a} , a, t > 0.

Using (6.3) and the Borel–Cantelli lemma we see that

lim sup
n→∞

t
−(

2β−σ
2β )

n (log log tn)
−σ+β

2β sup
t≤tn

F(t) ≤ λ1, a.s. (6.5)

which leads to the desired upper bound in (6.1).
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It remains to establish the lower bound.
We will say that a countable set of random variables Y1, Y2, . . . is associated if for any n and

any coordinate-wise non-decreasing measurable functions f, g : Rn
7→ R we have

Cov ( f (Y1, . . . , Yn), g(Y1, . . . , Yn)) ≥ 0, (6.6)

and that the sequence (now the order counts) of random variables Y1, Y2, . . . is quasi-associated
if for any i < n and any coordinate-wise non-decreasing measurable functions f : Ri

7→ R, g :
Rn−i

7→ R we have

Cov ( f (Y1, . . . , Yi ), g(Yi+1, . . . , Yn)) ≥ 0. (6.7)

Let Yx , x ∈ Zd be i.i.d. standard normals. By [16, Theorem 2.1] the set Yx , x ∈ Zd is
associated. Let h(x, y) be a non-negative function on Zd

× Zd such that

h̃(x .x ′) =:
∑
y∈Zd

h(x, y)h(x ′, y) <∞, (6.8)

and set Vx =
∑

y∈Zd h(x, y)Yy . The collection Vx , x ∈ Zd is Gaussian process with covariance

E(Vx Vx ′) = f (x, x ′). (6.9)

For each m < ∞, let Vm,x =
∑

y∈Zd , |y|≤m h(x, y)Yy . Since Vm,x is a non-decreasing function
of the Yy, |y| ≤ m, it follows from [16, (P4)] that the set Vm,x , x ∈ Zd is associated, and since
by [16, (P5)] association is preserved under limits, we also have that Vx , x ∈ Zd is associated.

Let now S = {S0, S1, . . .} be a random walk in Zd . Set gh(m) =
∑m

i=0 VSi and gh(k, l) =
gh(k)− gh(l). It follows from the proof of [20, Proposition 3.1] that for any n and 0 ≤ s < t ≤
u < v,

gh([ns], [nt]) and gh([nu], [nv]) are quasi-associated. (6.10)

Using the stability of quasi-association under weak limits, we now show that (6.10) implies
the following Lemma.

Lemma 6.1. For any 0 ≤ s < t ≤ u < v, the pair

F(t)− F(s), F(v)− F(u) (6.11)

is quasi-associated.

Proof of Lemma 6.1. Note that we can write gh(m) =
∑

y∈Zd
∑m

i=0 h(Si , y)Yy . Let

fε(x) =
e−ε|x |

|x |
σ+d

2 + ε
. (6.12)

fε(x) is a positive, continuous integrable function of x , monotone decreasing in |x |. We now
define

hε,n,m(x, y) =
1

n md/2 fε
( x

n1/β −
y

m

)
. (6.13)

It is clear that hε,n,m(x, y) satisfies (6.8). For notational convenience we set

gε,n,m(r) = ghε,n,m (r). (6.14)
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We take our random walk S to be in the normal domain of attraction of X . We now show that

lim
n→∞

(
gε,n,m([ns], [nt]), gε,n,m([nu], [nv])

) w
=
(
Gε,m(s, t), Gε,m(u, v)

)
, (6.15)

where

Gε,m(s, t) =
1

md/2

∑
y∈Zd

(∫ t

s
fε(Xr − y/m) dr

)
Yy . (6.16)

To see this we first note that

E
(
exp

{
i(agε,n,m([ns], [nt])+ b gε,n,m([nu], [nv]))

})
= E(e−Hε,n,m (a,b,s,t,u,v)/2), (6.17)

where

Hε,n,m(a, b, s, t, u, v) = a2
[nt]∑

i, j=[ns]+1

h̃ε,m

(
Si

n1/β ,
S j

n1/β

)
1

n2

+ 2ab
[nt]∑

i=[ns]+1

[nv]∑
j=[nu]+1

h̃ε,m

(
Si

n1/β ,
S j

n1/β

)
1

n2

+ b2
[nv]∑

i, j=[nu]+1

h̃ε,m

(
Si

n1/β ,
S j

n1/β

)
1

n2 (6.18)

and

h̃ε,m(x, x ′) =
1

md

∑
y∈Zd

fε
(

x −
y

m

)
fε
(

x ′ −
y

m

)
. (6.19)

Similarly

E
(
exp

{
i(aGε,m(s, t)+ b Gε,m(u, v))

})
= E(e−H ′ε,m (a,b,s,t,u,v)/2), (6.20)

where

H ′ε,m(a, b, s, t, u, v) = a2
∫
[s,t]2

h̃ε,m(Xr , Xr ′) dr dr ′

+ 2ab
∫
[s,t]×[u,v]

h̃ε,m(Xr , Xr ′) dr dr ′ + b2
∫
[u,v]2

h̃ε,m(Xr , Xr ′) dr dr ′. (6.21)

Thus to prove (6.15) it suffices to show that

lim
n→∞

Hε,n,m(a, b, s, t, u, v)
w
= H ′ε,m(a, b, s, t, u, v), (6.22)

and, since h̃ε,m(x, x ′) is continuous, this follows directly from Skorohod’s theorem, [29].
We next show that

lim
m→∞

(
Gε,m(s, t), Gε,m(u, v)

) w
= (Gε(s, t), Gε(u, v)) , (6.23)

where, using the notation of (1.30),

Gε(s, t) =
∫

Rd

(∫ t

s
fε(Xr − x) dr

)
W (dx). (6.24)
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But clearly

E (exp {(iaGε(s, t)+ b Gε(u, v))}) = E
(

e−H ′ε(a,b,s,t,u,v)/2
)
, (6.25)

where

H ′ε(a, b, s, t, u, v) = a2
∫
[s,t]2

h̃ε(Xr , Xr ′) dr dr ′

+ 2ab
∫
[s,t]×[u,v]

h̃ε(Xr , Xr ′) dr dr ′ + b2
∫
[u,v]2

h̃ε(Xr , Xr ′) dr dr ′ (6.26)

and now

h̃ε(x, x ′) =
∫

y∈Rd
fε(x − y) fε(x

′
− y)dy. (6.27)

Thus to obtain (6.23) it clearly suffices to show that

lim
m→∞

H ′ε,m(a, b, s, t, u, v)
L2
= H ′ε(a, b, s, t, u, v). (6.28)

To see this we note first that

sup
m,x,x ′

h̃ε,m(x, x ′) ≤ sup
m,x

1
md

∑
y∈Zd

e−ε|x−y/m|

ε2

≤ sup
m,|x |≤1

1
md

∑
y∈Zd

e−ε|x−y|/m

ε2

≤ sup
m

1
md

∑
y∈Zd

e−ε|y|/m

ε2 ≤ Cε, (6.29)

and therefore (6.28) follows easily from the dominated convergence theorem.
Finally, to prove our Lemma it now suffices to show that

lim
m→∞

(Gε(s, t), Gε(u, v))
w
= (F(t)− F(s), F(v)− F(u)). (6.30)

As before, it suffices to show that

lim
ε→0

H ′ε(a, b, s, t, u, v)
L2
= H ′(a, b, s, t, u, v), (6.31)

where

H ′(a, b, s, t, u, v) = a2
∫
[s,t]2

h̃(Xr , Xr ′) dr dr ′

+ 2ab
∫
[s,t]×[u,v]

h̃(Xr , Xr ′) dr dr ′ + b2
∫
[u,v]2

h̃(Xr , Xr ′) dr dr ′ (6.32)

and

h̃(x, x ′) =
∫
Rd
|x − y|−

σ+d
2 |x ′ − y|−

σ+d
2 dy = c

1
|x − x ′|σ

. (6.33)
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Since h̃ε(x, x ′) increases to h̃(x, x ′) as ε → 0, (6.31) follows easily from Theorem 2.1 and the
dominated convergence theorem. �

To complete the proof of the lower bound, we recall from (1.33) and (1.31) that

E((F(t)− F(s))(F(v)− F(u))) = cE
∫ t

s

∫ v

u
|Xa − Xb|

−σ da db

= cE(|X1|
−σ )

∫ t

s

∫ v

u

1
(a − b)σ/β

da db. (6.34)

It then follows as in the proof of [20, Theorem 5.2] that for any 0 < λ < 1, if 0 ≤ s ≤ λt < t ≤
u ≤ λv < v, then

Cov
(

F(t)− F(s)

(t − s)1−σ/2β
,

F(v)− F(u)

(v − u)1−σ/2β

)
≤ cλ

(
t

v

)σ/2β
. (6.35)

The lower bound for our LIL then follows as in the proof of [20, Theorem 1.1]. �
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Appendix. The limit as M → ∞

Theorem 7.1. Let ρα,ε be defined in (3.13) and ρα,ε,M be defined in (3.29). We have

lim sup
M→∞

M

2π

−d

ρα,ε,M ≤ ρα,ε . (7.1)

Proof. For any x = (x1, . . . , xd) ∈ Rd , we write [x] = ([x1], . . . , [xd ]) for the lattice part
of x (We also use the notation [· · ·] for parentheses without causing any confusion.) For any
f ∈ L2(Zd) with ‖ f ‖2 = 1,

∑
|x |≤(2π)−1 Ma

℘α,ε

(
2π
M

x

)∑
y∈Zd

√
Q

(
2π
M
(x + y)

)√
Q

(
2π
M

y

)
f (x + y) f (y)

2

=

∫
{|λ|≤(2π)−1 Ma}

℘α,ε

(
2π
M
[λ]

)

×

[∫
Rd

√
Q

(
2π
M
([λ] + [γ ])

)√
Q

(
2π
M
[γ ]

)
f ([λ] + [γ ]) f ([γ ])dγ

]2

dλ

=

(
M

2π

)d ∫
{|λ|≤a}

℘α,ε

(
2π
M

[
M

2π
λ

])
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×

[(
M

2π

)d ∫
Rd

√
QM

(
γ +

2π
M

[
M

2π
λ

])√
QM (γ )

× f

([
M

2π
λ

]
+

[
M

2π
γ

])
f

([
M

2π
γ

])
dγ
]2

dλ, (7.2)

where

QM (λ) = Q

(
2π
M

[
M

2π
λ

])
, λ ∈ Rd . (7.3)

Write

g0(λ) =

(
M

2π

)d/2

f

([
M

2π
λ

])
, λ ∈ Rd . (7.4)

We have∫
Rd

g2
0(λ)dλ =

(
M

2π

)d ∫
Rd

f 2
([

M

2π
λ

])
dλ =

∫
Rd

f 2([λ])dλ =
∑
x∈Zd

f 2(x) = 1. (7.5)

We can also see that under this correspondence,(
M

2π

)d/2

f

([
M

2π
λ

]
+

[
M

2π
γ

])
= g0

(
γ +

2π
M

[
M

2π
λ

])
, λ, γ ∈ Rd . (7.6)

Therefore, we need only to show that for any fixed a > 0

lim sup
M→∞

sup
||g||2=1

∫
{|λ|≤a}

℘α,ε

(
2π
M

[
M

2π
λ

])

×

[∫
Rd

√
QM

(
γ +

2π
M

[
M

2π
λ

])√
QM (γ )g

(
γ +

2π
M

[
M

2π
λ

])
g(γ )dγ

]2

dλ

≤ sup
||g||2=1

∫
{|λ|≤a}

ĥ(ελ)ϕd−σ (λ)

[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]2

dλ. (7.7)

To this end, note that by the inverse Fourier transformation the function

UM (λ) =

∫
Rd

√
QM (γ + λ)

√
QM (γ )g(γ + λ)g(γ )dγ (7.8)

is the Fourier transform of the function

VM (x) =
1

(2π)d

∫
Rd

UM (λ)e−iλ·x dλ

=
1

(2π)d

∫
Rd

e−iλ·x dλ
∫
Rd

√
QM (γ + λ)

√
QM (γ )g(γ + λ)g(γ )dγ

=
1

(2π)d

∫ ∫
Rd×Rd

e−i(λ−γ )·x
√

QM (λ)g(λ)
√

QM (γ )g(γ )dλdγ

=
1

(2π)d

∣∣∣∣∫
Rd

eix ·γ
√

QM (γ )g(γ )dγ

∣∣∣∣2 . (7.9)



1876 X. Chen, J. Rosen / Stochastic Processes and their Applications 120 (2010) 1837–1878

Therefore

∫
Rd

√
QM

(
γ +

2π
M

[
M

2π
λ

])√
QM (γ )g

(
γ +

2π
M

[
M

2π
λ

])
g(γ )dγ

= UM

(
2π
M

[
M

2π
λ

])
=

1
(2π)d

∫
Rd

exp
{

ix ·
2π
M

[
M

2π
λ

]} ∣∣∣∣∫
Rd

eix ·γ
√

QM (γ )g(γ )dγ

∣∣∣∣2 dx

≤
1

(2π)d

∫
Rd

∣∣∣∣1− exp
{

ix ·
(
λ−

2π
M

[
M

2π
λ

])}∣∣∣∣ ∣∣∣∣∫
Rd

eix ·γ
√

QM (γ )g(γ )dγ

∣∣∣∣2 dx

+
1

(2π)d

∫
Rd

eix ·λ
∣∣∣∣∫
Rd

eix ·γ
√

QM (γ )g(γ )dγ

∣∣∣∣2 dx . (7.10)

By Parseval’s identity and by the fact QM ≤ 1,

1
(2π)d

∫
Rd

∣∣∣∣∫
Rd

eix ·γ
√

QM (γ )g(γ )dλ

∣∣∣∣2 dx

=

∫
Rd

QM (γ )g
2(γ )dγ ≤

∫
Rd

g2(γ )dγ = 1. (7.11)

Hence, the first term on the right-hand side of (7.10) tends to 0 uniformly over λ ∈ Rd and over
all g ∈ L2(Rd) with ||g||2 = 1 as M →∞. The second term on the right-hand side of (7.10) is
equal to∫

Rd
eix ·λVM (x)dx = UM (λ) =

∫
Rd

√
QM (λ+ γ )

√
QM (γ )g(λ+ γ )g(γ )dγ. (7.12)

Consequently, we will have (7.7) if we can prove

lim sup
M→∞

sup
||g||2=1

∫
{|λ|≤a}

℘α,ε

(
2π
M

[
M

2π
λ

])

×

[∫
Rd

√
QM (λ+ γ )

√
QM (γ )g(λ+ γ )g(γ )dγ

]2

dλ

≤ sup
||g||2=1

∫
{|λ|≤a}

℘α,ε(λ)

[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]2

dλ. (7.13)

By uniform continuity of the function Q we have that QM (·)→ Q(·) uniformly on Rd . Thus,
given ε > 0 we have

sup
λ,γ∈Rd

∣∣∣√QM (λ+ γ )
√

QM (γ )−
√

Q(λ+ γ )
√

Q(γ )
∣∣∣ < ε (7.14)
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for sufficiently large M . Therefore,{∫
{|λ|≤a}

dλ
[∫
Rd

√
QM (λ+ γ )

√
QM (γ )g(λ+ γ )g(γ )dγ

]2
}1/2

≤ ε

{∫
{|λ|≤a}

dλ
[∫
Rd

g(λ+ γ )g(γ )dγ
]2
}1/2

+

{∫
{|λ|≤a}

dλ
[∫
Rd

√
Q(λ+ γ )

√
Q(γ )g(λ+ γ )g(γ )dγ

]2
}1/2

. (7.15)

Also, since ‖g‖2 = 1,∫
{|λ|≤a}

dλ
[∫
Rd

g(λ+ γ )g(γ )dγ
]2

≤ Cdad , (7.16)

where Cd is the volume of a d-dimensional unit ball. (7.13) then follows using the uniform
continuity of ℘α,ε(λ). �
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