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1. Introduction.

Let {S(n)},>0 be an integer valued random walk. That is,
S(0)=0 and S(n)=X1)+---+X(n) n=12--
where {X; X(k); k> 1} is an i.i.d. integer valued sequence. Throughout we assume that
EX =0 and ¢*=EX? < cc. (1.1)
We also assume that the smallest group that supports {S(n)},>0 is Z.

For any A C RT, we set
S(A) ={S(k); keA}.

Let {S1(n)}n>0,- -+, {Sp(n)}n>0 be independent copies of {S(n)},,>0. In this paper we study
the random sequences

#{50,n]} and #{S51[0,n]N---NSp[0,n]} n=1,2---.

This work appears as a part of recent effort made by the author and his coauthors ([1]-[3], [5]-[9])
in the study of exponential asymptotics arising from sample path intersections.

To simplify our notation we allow p = 1, in which case the range intersection S1[0,n]N---N
Sp[0,n] is identified with the range S[0,n].

Throughout, {b,} is a positive sequence satisfying
b, — oo and b, =o(n) (n — o0). (1.2)

Theorem 1. For any A > 0 and integer p > 1,

1 2
lim b—logP{#{Sl[O,n] N---n8,0,n]} > A\/nbn} - —%. (1.3)
Taking p = 1 in Theorem 1 we have
.1 A2
nh—>H;o ElogP{#{S[O,n]} > )\\/nbn} =53 (1.4)

We point out the classic fact that the random walk S(n) satisfies the same moderate deviation
under stronger moment condition. A striking fact about Theorem 1 is that the moderate deviation
holds for the range and the intersection of the ranges under no moment assumption rather than
(L.1).

Theorem 2. For any A > 0,
2 2

1
Jim 5~ log]P’{#{S[O,n]} < )\\/g} - —7;;2 . (1.5)

The small deviation of this type does not hold for intersection of the ranges. Indeed, the

recent paper by Kleke and Morters (2004) on the lower tail of the intersections of the Brownian
paths suggests that the probability

]P’{#{Sl[o,n] NN S,M0,n)} < A\/:}

does not have exponential decay as p > 1.

| s

S

Theorem 1 and Theorem 2 apply, respectively, to the limsup and the liminf laws of the
iterated logarithm given in the following theorem.
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Theorem 3. For any integer p > 1,

. 1 2
hq?ljo%p W#{Sl [0,n) N+~ NSp[0,n]} = 50 a.s. (1.6)

log 1
hfl)i@gf” %#{S[O,n]} = %O‘ a.s. (1.7)

The study shows that the asymptotic behaviors of the range and of the intersection of

In the case p =1,

the ranges have strong dimension dependence. It was proved in Dvoretzky and Erdés (1951)
that the range #{S [0, n]} of a d-dimension centered, square integrable lattice-valued random walk
{S(n)}n>0 satisfies the strong law of large numbers as d > 2, contrary to what is given in Theorem
3. The central limit theorem shows that #{S [O,n]} - E#{S [O,n]} is asymptotically normal as
d > 3 (Jain and Pruitt (1971, 1974)), and is attracted by the renormalized self-intersection local
time of a planar Brownian motion as d = 2 (Le Gall (1986a)). See Le Gall and Rosen (1991) for
a central limit theorem when the random walk is in the domain of attraction of a stable law. The
LIL for #{5[0,n]} — E#{5[0,n]} can be found in Jain and Pruitt (1972) and Hamana (1998) as
d > 4; and in Bass and Kumagai (2002) as d = 2, 3.

As for the intersection of the independent ranges, it is well known (Dvoretzky and Erdos
(1951), (1954)) that p independent paths of the centered and squared integrable Z%-valued random
walks {S1(n)}n>0, -, {Sp(n)}n>0 intersect infinitely often if and only if p(d — 2) < d. Under this
condition, the laws of weak convergence were established in Le Gall (1986a, 1986b). The moderate
deviations for #{Sl [0,n]N---N Sp[O,n]}, or the related laws of the iterated logarithm, can be
found in Marcus and Rosen (1997) for d = 4 and p = 2; in Rosen (1997) for d = p = 3; and in the
author’s recent paper (Chen (2004)) for d = 2 and p > 2 and for d = 3 and p = 2.

The case d = 1 is radically different from the multi-dimensional case where the range and
the intersection of the independent ranges have different orders of upper tail asymptotics. While
the asymptotic behaviors of the range are closely related to that of the intersection local time as
d > 2, the 1-dimensional case is largely determined by the relation

S[0,n] C [Og}clgnS(k), Jnax S(k)] (1.8)
where, as a convention in this paper, the right hand side represents a interval containing only
integers. Indeed, the equality holds in the case of the simple random walks. In the general case, it is
known (Le Gall (1986a)) that the possible “holes” within the interval on the right hand side of (1.8)
are insignificant in the sense of weak convergence. The case of the moderate deviations appears to

be more delicate. Indeed, the moderate deviation for the connected range Jnax S(k)— Og}gig S (k)

can fail without assuming an extra moment condition as strong as exponential integrability. This
fact suggests that in general, the range is not exponentially close to the connected range.

2. Upper bound in Theorem 1.



In this section we prove that

1 A2
lim sup o logP{#{Sl[O,n] N---NS,0,n]} > )\\/nbn} < —%. (2.1)
By Chebyshev inequality, we only need to show that
. 1 by, 0262
llisolip b log E exp {0\ / Z#{Sl [0,7])N---N Sp[O,n]}} < TR (2.2)
To this end we first prove
Lemma 2.1. For any 6 > 0,
supE exp {i#{S[O n]}} < 00. (2.3)
n Vn ’

Proof. Recall ((4.8), Chen (2004)) that for any a,b > 0,
P{#{S10,n]} = a+ b} <P{#{s[0,n]} > a}P{#{S[0,n]} = 0}.
We therefore have that for any C' > 0 and the integer m > 1,
P{#{S[O,n]} > om\/ﬁ} < (P{#{S[O,n]} > Cﬂ})m.
By the fact that E#{5[0,n]} = O(y/n) one can take C' > 0 large enough so that
S%p]P’{#{S[O,n]} > C\/ﬁ} <e 2,

Therefore, (2.3) holds for § = C~1. We now show that it holds for all § > 0. Indeed, take § > 0 such
that § < (C#)~2 and write k,, = [0n]. The desired conclusion follows from the following estimate:

E exp {%#{S[O,n]}} < <E exp {%#HS[O,I%]}})[61]Jrl

< (E exp { 3%#{5[0, m}}) o

We first establish (2.2) in the case p = 1. Let ¢ > 0 be arbitrary but fixed and write
t, = [tn/b,] and ~,, = [n/t,]. Notice that

Yn+1

#{S[0,n]} < > #{S[(i — Vtn, it}

i=1



and that the sequence
#{S[(i — 1)tn,z’tn]} i=1, 41

is an i.i.d. So for any 6 > 0,

E exp {9\/%#{5[0,71]}} < (IE exp {9\/%#{5[0’%]}})%“.

According to Theorem 4.1 in Le Gall (1986a),

\/%#{S[O,tn]} <, ax/%( max W(s) — min W(s)) (2.4)

0<s<1 0<s<1

as n — 00, where W (s) is an one dimensional Brownian motion. By Lemma 2.1 and the dominated
convergence theorem,

E exp {9\/%#{5[0,%]}} — E exp {JG\/Z( max W(s) — min W(s))} (n — o0).

0<s<1 0<s<1
Hence,
. 1 [ bn,
lim sup o logE exp {0 —#{S[O,n]}}
n—1m> n n (2.5)
< 7 log E exp {09\/5(01%13%(1 W(s) — Join W(s)) }
Let

1
H = {x € Cy[0,1]; x(s) is absolutely continuous on [0, 1] and / 12(s)|%ds < oo}.
0

By the large deviation principle for Brownian motions (Theorem 5.2.3 in Dembo and Zeitouni
(1998)),

tli}l&%ng exp {a@x/i( max W(s) — min W(s))}

0<s<1 0<s<1
LA (2.6)
_ _ . _ - . 2
—jgg {JQ(OIgL%(l:E(S) 01;1;21:17(5)) 2/0 |Z(s)] ds}.

Applying the mean value theorem and Cauchy’s inequality gives

max z(s) — min a(s) < (/01 ]a'c(s)]st)l/z.

0<s<1 0<s<1

Therefore, the right hand side of (2.6) is bounded by

1 1
sup {06?)\ — —)\2} = —o26%
A>0 2 2

Letting ¢t — oo in (2.5) we have

n—oo n

lirnsupbilogE exp {9\/%#{5[0,71]}} < 30292. (2.7)
5)



We now prove (2.2) in the case p > 1. By the fact

#{S1[0,n] N--- N S,[0,n]} = ZHl{xESOn}<Z Zl{mesw}— Z#{S [0,n]}

el j=1 mEZ
and by independence,

E exp {9\/%#{51[0,71] AN, 0.m}} < <E exp{%@#{S[O,n]}})p.

By (2.7) (with 6 being replaced by 6p~1!) we have (2.2).
3. Lower bound in Theorem 1.

In this section we prove that

2
linmio%f bi log]P’{#{Sl[O,n] N---NSy0,n]} > )\\/nbn} > —%. (3.1)

Let M > 0 be a deterministic number and write
S(0)=0 and S(n)=XW)lgxa)<my + -+ X0)lxmy<muy n=12---.
We may define the independent copies {X1(k)}r>1,---, {Xp(k)}i>1 of {X(k)}r>1 and let
Si(n)=X;(1)+---+X;(n) n=12--
Sj(0) =0 and S;(n) = X;(Dlyx,@<my + -+ X0 x,mp<ary - n=1,2,--
foreach j=1,---,p
Lemma 3.1. For anyt >0 andn > 1,
P{#{S1[0,n]N---NSp[0,n]} >t}
> (1+P{x] > M}>_anP’{#{§1[0,n] NN 8,00,n]} > t}.
Proof. Write [1,n] = {1,---n}. For any A C [1,n], let {k1,---,k,_ |4} = [I,n] \ A and for any
1 <5 < p, write
SH0) =0 and S}(i) = X;(k1) + - Xj(k;)) i=1,---,n—|A
where |A| = #(A). We have
P{#{gl[o,n] N---N Sp[O,n]} > t}

= Z P{IX (1) > M, [ Xp ()] > M V(- 1) € An X X Ay;
Al,---,APC[l,’rL]

| Xi(ma)| < M, -, | Xp(mp)| < M Y(my,---,myp) € ([Ln] \ A1) x --- x ([1,n] \ Ay);
#{S{0,n — A1 N NS (0,0 — [Ay]]} >t}
Z P{X1(l)] > M, | Xp(lp)| > M V(I -+, 1p) € Ay X -0 X Ap;
Al,---7ApC[17’I”L]
#{S{1[0,n — |4 NN S0, — |A,]]} >t}
- Y (rxI>m
Al,---,APC[l,’rL]

< (1+P{x| > M})np]P’{#{Sl [0,2] N+ N1.8,[0,n]} > ).

IN
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By the assumption (1.1), we can find a positive deterministic sequence {a,,} such that

n n n
ay — 0, E]P’{\X]>am/a}—>0, VBT ymmry — 0 (3.2)

as n — oo. In the rest of this section, we take M = M,, = o,V nb, ! and let the random walks
S(k); S1(k), -+, Sp(k) be defined as before. By Lemma 3.1 and (3.2),

v

P{#{Sl[O,n]ﬂ---ﬂSp[O }
2{1—{—0(%)}_ {#{510n N18,00,n]} = AV/nbs }.

To prove (3.1), therefore, we need only to establish that

liminfbilog]P’{#{S‘l[Ojn] N--NS,0,n]} > A /nbn} > _]29_)‘2

Write t,, = [n/by,] and ~,, = [n/t,]. By the fact that ~,t, < n, it suffices to show

lim inf b log]P’{#{Sl tp] M- tn]} > )\\/ﬁ} _p_ (3.3)

n—00 20

Notice that

[ max min Sj(k), min max S;(k )] \ (51[0,’yntn] ﬁ---ﬂS’p[O,'yntn])

1<j<p0<k:<'yntn ’ 1<5<p 0<k<vntn
U (luap,, S o, S0)\500)
Consequently,

( min  max Sj(k) — max min _j(k)) — #{51[0, v tn]) N+ N Sp[0, Yt }

1<j<p 0<k<yntn 1<j<p 0<k<ynty

Z({ max Si(k)— min S;(k)} — #{S;[0,vtnl}).

= 0<k<yntn 0<k<ynty
Hence, ) B
P{#{Sl sy Yntn H p[oafyntn]} > Ay nbn}
. g G -1_/
—i—p]P){{ 0<I]gl<a$t S(k) - 0<l£r%1$ntn S(k)} - #{S[Oa"yntn]} >p € nbn}

Z]P’{ min  max Sj(k) — max min Sj(k)Z(/\—FG)\/@}.

1<5<p 0<k<rntn ° 1<j<p 0<k<7ntn

By the fact that

min max Sj(k) — max min Sj(k) > min max S;(k) > min S;(vnt,)
1<j<p 0<k<vntn 1<j<p 0<k<yntn 1<j<p 0<k<yntn 1<j<p



we have

P{#{Sl[oa'Yntn” A---n Sp[()’%ltn]} > )‘M}
+pP{{ max S(k)— min S(k)} —#{S[0,7uta]} = p " ev/nby}

0<k<vyntn 0<k<yntn
_ p
> (]P’{S(fyntn) > (A4 e)\/nbn}> )

Hence,

max { lim inf bi log]P’{#{S'l[O,'yntn] N---N S’p[O,fyntn]} > )\\/nbn},

lirnsupbilogIP{{ max S(k)— min  S(k)} — #{5[0,7ntn]} zp_le\/@}} (3.4)

n—o00 n 0<k<vntn 0<k<vnin
1 _
> plim inf o log P{S(vntn) > (A + 6)\/nbn}.

n—oo n

Notice that for any real number 6,

[b, - -
E exp {9 ;(S(’Yntn) - ES(antn))}
b Tt
- <E exp {9\/ ;(Xl{\X|§Mn} ~EX1{xj<m,}) })

= {14— s—naQH+o<b—n) }”Y“t“ (n — 00)

n n

where the last step follows from (3.2) and Taylor’s expansion. Therefore,

lim L log E exp {9\/ %(g(fyntn) — Eg(fyntn))} = 30292.

n—o0 bn

By Gértner-Ellis theorem (Theorem 2.3.6 in Dembo and Zeitouni (1998)),

lim bi log]P’{S’(fyntn) —ES(yntn) > )\\/nbn}
" ) (3.5)

B I 500 A
——SL@lp{x\G—EJ 0 }__ﬁ (A>0).

On the other hand, from (3.2) we have
|E S (yntn)| :n\EX1{|X|S% Tb,;l}‘
= n|EX1{‘X|>O¢nW}| S n]E ‘Xll{‘X|>a7l\/H} = O(\/ nbn) (n — OO)

Hence, (3.5) remains true as S(y,t,) — E S(ynt,) is replaced by S(y,t,). In particular,

lim bilogp{g(%tn) > (A + e)\/@} __ O+ (3.6)

n—oo Oy, 20’2

8



In view of (3.4) and (3.6), we will have (3.3) if

lim sup b—logIP{{ max S(k)— min  S(k)} — #{S[0,ymtn]} > e\/@} =—-00 (3.7)

n—oo n O<k<7ntn OSkS’Yntn

holds for any € > 0.

Indeed,
[Oglgélf?ntn S(k)v OSIana’iitn S(k‘)] \S[O"yntn]
[b7] ) )
- H <[(z 1)$l<k<wn S(k), (i— l)gﬂz?iQ,yn (k)] \ S[(i = L)vm, Z’Yn])-
Consequently,
oz, 50 = uin, S} —#{50,mtal}

= Z ( (i— 1)t"<k<zt" 5(k) = (i—l)g}ignkgitn §(k)} B #{5[@ = Dtw, Zt"”)

Tn

= Z & (say).
i=1

Notice that &;,---&,, areii.d. non-negative random variables. For any 6 > 0,

Eexp \/7{ 0<1131<a7}itn _0<1?E$ntn g(k)}_#{g[o’fynt"]}}
< (mew oy (L, 509 - i, S0 - 050, )}

By the fact that

(3.8)

#{S[0, t,]} < max S(k)— min S(k),

0<k<tn 0<k<tn

by the invariant principle

g (max S() - min S()) — E (max W(s) - min W(s))  (n—o0)

n 0<k<t, 0<k<t, 0<s<1 0<s<1

and by (4.g) in Le Gall (1986a) which leads to
[ b :
;E#{S[O, tn)} — E< max W(s) — min W(s)) (n — 00),

0<s<1 0<s<1

we must have

P ({ max S() -~ min S(R)} - #{s00. 1)}) 0.

n \ ' 0<k<t, 0<k<tn,



Notice that for any € > 0,

P{{OggnS(k)—0$%7lS )} — #{5[0, t,] }>e,/bn}
n
SP{{Ogg§n5(k)—ogg S(k)} — #{S0, tu] }>e,/b—}+b P{IX] > an,/ n}
In view of (3.2) we obtain

\/7 ({03}% S(k) — min S(k)} —#{S. tn]}) 0. (3.9)

By the facts that |X| < C'\/n/b, and that \/b,/nS(t,) is stochastically bounded, we have
(Theorem 2.5, de Acosta (1980)) that

| 3

S

bn -
Sl;pE exp {9 " olhax |S(k:)|} < 00

for all # > 0. This, combined with (3.9), the fact that

0<{ max S(k)— min S(k)} —#{S[0, t,]}

0<k<tyn 0<k<ty

<{ max S(k)— min S(k)} <2 max |S(k)|

0<k<tyn 0<k<ty 0<k<tyn

and the dominated convergence theorem, implies that

Eexp{ \/7<{0g11€a<>§ S(k:)—0<mkl<nt S(k)} — #{5]0, tn]})}—>1 (n — 00).

By (3.8), therefore,

nan;O —n logE exp \/ {0<Ilgl<a%tn S(k) — Ogl?%i'?ntn S(k)} — #{5[07%%]}} =0

for every 6 > 0.

Finally, (3.7) follows from a standard application of Chebyshev’s inequality.
4. Proof of Theorem 2.
By the fact that

#{S[0,n]} < r<nax S(k) — min S(k) <2 max |S(k)|

<n 0<k<n 0<k<n

P{#{S[O,n]} < A\/g} > p{ max [S(k)] < A\/bf}

10

we have



According to Theorem 4.5 in de Acosta (1983),

1 A /n o2
im i - < —,/— 3 > — .
lim inf 7= logp{ o3, 1SR < 5y n} Z "o

... 1 n o?n?
llnnilgfalogﬁ’{#{S[O,n]} <A /E} > — v (4.1)

On the other hand, let ¢ > 0 be arbitrary but fixed and write t,, = [tn/b,] and v, = [n/t,].

We have
P{#{500,n]} < A\/g} < P{#{S[0.7ntal} < A\/g}
< lP’{  max #{S[(i — Vtn,itn]} < )‘\/g}

From (2.4) we have

{{si0.tl) <2} — B g W00 - i, W) <

We thus have

Il
N
s
—
Jk
—~
nn
=)
~
3.
—
IN
>
=73
——
N————

e

Consequently,

lim sup bilogIP{#{S[O,n]} < )\\/g} < %logIP{ max W(s) — min W(s) < i} (4.2)

n—oo Un 0<s<1 0<s<1 \/E

The exact distribution of the Brownian range was first found in Feller (1951), which gives

that
A 8a2t w202
— mi < L =" — )
]P{ olgf%(lw(s) 0<s<1 Wis) < \/f} 22 eXp{ 2)\2 t} (t = o)

Letting ¢ — oo on the right hand side of (4.2) gives

2 2
lim sup bi log]P’{#{S[O,n]} < )\’/bﬁ} < —7;)\02 . (4.3)

n—oo n

Finally, Theorem 2 follows from (4.1) and (4.3).
5. Proof of Theorem 3.

Let 6 > 1 be fixed and write ny = [0*] (k = 1,2,---). Taking b, = loglogn in Theorem 2
gives that

ZP{#{S[O,nk]} <A L} < o0
k

log log n,
for any A < mo/+/2. By Borel-Cantelli lemma,

log1
lim inf w#{S[O,nk]}z%a a.s.

ng

\)

11



For any np <n < ngqq,

\/7 B8 4 5f0,m)} > \/@#{sm,nk]} > (14 0(1))01/2, | OB g0,y ).
n Nk+1 %

So we have
log logn

lim inf
n—oo n

timinf /258" 4 (5[0, ]} > Tor as (5.1)

Similarly, by Theorem 1 and Borel-Cantelli lemma we can prove that

#{S[0,n]} > 071/2%0 a.s.

Letting # — 17 gives that

lim sup

1
n—oo Vnloglogn

On the other hand, write m, = k¥ (k = 1,2,---). By Theorem 2 we have that for any

A>7o/V2
M1
%:P{#{S[mkamk-&-l]} < A\/ﬁ}
B B _ Mk )
D N e

Notice that {#{S [mg, mk+1]}}k is an independent sequence. By Borel-Cantelli lemma,

L loglog my41 T
1 fo/—————#15 < — .5.
i m F— #{ [mk,mk—i-l]} > \/70 a.s

Consider the inequality,

#{51[0,n]N---NS,H[0,n]} < \/ga a.s. (5.2)

[\)

#{5[0,mpq1]} < #{SImi, mps1]} + #{S[0,my]}.
Vmz log = _ Ml k
Ttk 08 08 Mk 0( log logmk+1> (k= o0)
lim sup 4/ 10gbgﬁqéyé{b’[(),mk]} =0 a.s.
k—oo Mmg41
liminf”%#{é'[o,mkﬂ]} < o as
k—oo M1

12

Since

by (5.2) we have

Hence,

N



Consequently,

.. loglogn
lim inf S[0,n]} < — a.s. 5.3
mint (/2 0]} < T 53

Hence, (1.7) follows from (5.1) and (5. )
We now come to the proof of the lower bound of (1.6). That is, we prove

lim sup

1 2

As p = 1, the proof of Theorem can be carried out in a way similar to the one for (5.3). The
case p > 1 is more delicate for lack of subadditivity.

For given T = (z1,---,2p) € (Z)?, we introduce the notation P* for the probability induced
by the random walks Sq(n),- -, Sp(n) in the case when Sy (n),- -, S,(n) start at x4, - - -, ,, respec-
tively. The notation E* denote the expectation correspondent to P*. To be consistent with the
notation we used before, we have P(O9) =P and E 00 — | . Write

lall = max oy = (@0 2,) € (R)

By the argument used in the proof of (5.6), Chen (2004), we will have (5.4) if

o1 . . pN?

liminf — log inf P¥S#451[0,n]N---NS,[0,n]} > A/nb, p > —=—. 5.5

"= b gl < /n o w{sion [0l } 20 )
for any A > 0.

Take t,, = [n/b,] and T, = inf{n > 0; S(n) = z}. Then for any = € ZP with ||Z|| < \/n/bn,

Pf{#{sl[o,n] N---N8,[0,n]} > A\/@}
:]P’{#{ (p] (2 + S500.n]) } >A\/W}

tn p
> Z ]P’{Tm1 =k, -, Ty, = ky; #{ m xj + Sjlk;,n] )} > )\\/nbn}
ki, kp=0 j=1
tn 14
S (HP{T,% - /cj})IP’{#{Sl[O,n — kNN S0m — k) > )\\/nbn}
ki, kp=0 j=1

> (mlgi\r}fq;/_an{Tx < tn})p]P’{#{Sl[O,n —tp] NN Sp[0,m — tn]} > )\\/@}

By Lemma 5.1 given below, there is a constant § > 0 such that

inf P* S100,n] N---NS,[0,n]} > A/nby,
EIEN {#{ 0,2] N+ N1.8,[0,n]} > \/_}

> 5P{#{51[0,n —tp) NN S[0,n — 1]} > A\/@}

for all n > 1. Hence, (5.5) follows from Theorem 1 with n being replaced by n —¢,,.
We end this section with the following lemma.
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Lemma 5.1. For any x € Z, write
T, =inf{n > 0; S(n)==x}.

Then
liminf inf P{T,<n}>0 (5.6)
n—oo [z]<Cy/
for any C' > 0 and
lim liminf inf P{7, <n}=1. (5.7)

e—0T n—00 |z|<ey/n

Proof. Recall that the random walk {S(n)} is said to be aperiodic if the greatest common factor
of the set
{n >1; P{S(n) =0} > o}

is 1. We first prove Lemma 5.1 under the assumption of aperiodicity.

By Markov property,
k k
P{S(k) =a} =Y P{T, = j, S(k) =x} =Y P{T, = j}P{S(k - j) = 0}.
j=0 j=0
Summing up on the both sides,

n n k
S OP{S(k) =a} =Y > P{T, = j}P{S(k — j) = 0}

k=0 ;=0
=Y P{Ty =j} ) P{S(k—j) =0} <P{T, <n}) P{S(k)=0}.
=0 k=j k=0

By the Remark in p. 661 of Le Gall and Rosen (1991) the aperiodicity of the random walk implies

2

216112}‘\/5]}”{8(71) =z} — ﬁexp{ — 2::7}‘ — 0 (n— ).

which gives (5.6) and (5.7).

We now prove (5.6) and (5.7) without assuming aperiodicity. Let 0 < n < 1 be fixed and let
{65 }n>1 be ii.d. Bernoulli random variables with the common law:

P{5, =0} =1—P{§ =1} = 1.

We assume independence between {S(n)} and {4, }.

Define the renewal sequence {74 }r>0 by

7o =0 and 7441 = inf{n > 7; I, = 1}.
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Then {7}, — 7,,—1}x>1 is an i.i.d. sequence with common distribution

]P’{Tl:n}:(l—n)nnfl n=12---.

Consider the random walk S(n) = S(7,,). By the fact that

oo

P{S(r) =0} =(1—1 Z “IP{S(k) = 0} > 0,

{S(n)} is aperiodic. Applying what we have proved to {S(n)},

where

liminf inf P{T, <n}>0 and lim liminf inf P{T, <n}=1 (5.8)

n—oo \x|§C\/ﬁ e—0t n—oo \x|<e\/_

=inf{n >0; S(m,) ==z}

Notice that

TTIETx x € 7.

Take 0 < 0 < 1 such that §(1 — )~ < 1. Then for any z € Z,

P{T, > n} <P{r; >n} < P{iré%x 7 > n} + P{T, > 6n}.
x <én

By the classic law of large numbers, the first term on the right tends to zero as n — oo. Therefore,

(5.6) and (5.7) follows from (5.8) with n being replaced by [fn]. O
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