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Abstract
We construct a K -rough path [along the terminology of Deya (Probab Theory Relat
Fields 166:1–65, 2016)] above either a space-time or a spatial fractional Brownian
motion, in any space dimension d. This allows us to provide an interpretation and a
unique solution for the corresponding parabolic Anderson model, understood in the
renormalized sense. We also consider the case of a spatial fractional noise.
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1 Introduction

Themain objective of the analysis in this paper is to provide awellposedness statement
for the following parabolic Anderson model:

{
∂t ut (x) = 1

2�ut (x) + ut (x) Ẇt (x), t ∈ R+, x ∈ R
d ,

u0 = �
(1.1)

in situations where Ẇ corresponds to a space-time fractional noise of low regularity.
Formally, the covariance function of such a noise Ẇ can be written as

E
[
Ẇt (x) Ẇs(y)

] = γ0(t − s) γ (x − y), (1.2)

with γ0 and γ the distributions, given in Fourier modes by

γ0(t) = cH0

∫
R

eıλt |λ|1−2H0dλ and γ (x) = cH

∫
Rd

eıξ ·x
d∏
j=1

|ξ j |1−2Hj dξ,

(1.3)

whereH denotes the vector (H1, . . . , Hd) andwhere cH0 , cH are the positive constants
explicitly given by

cH0 =
(∫

R

dξ
|eıξ − 1|2
|ξ |2Hi+1

)−1/2

, cH =
( d∏

i=1

∫
R

dξ
|eıξ − 1|2
|ξ |2Hi+1

)−1/2

. (1.4)

At this point, it should already be noted that a Skorohod interpretation and treatment
of the model in the rough environment (1.2) has recently been carried out by one of
the authors in [1], using a delicate analysis of intersection local times. We have then
extended these considerations in [2], and therein provided sharp moment estimates on
the Skorohod solution.

In contrast with the latter investigations, we here would like to study equation (1.1)
along a Stratonovich (or pathwise) interpretation. The basic idea behind this approach
can be roughly expressed in terms of approximation procedures. Namely, we first
introduce a sequence {Ẇ n; n ≥ 1} of smooth approximations of Ẇ , which can for
instance be given by a mollyfing procedure

Ẇ n := ∂t∂x1 . . . ∂xd W
n, where Wn := ρn ∗ W and ρn(s, x) := 2n(d+2)ρ(22ns, 2nx), (1.5)

for some mollifier ρ : Rd+1 → R+ satisfying standard regularity assumptions. Then
consider the sequence {un; n ≥ 1} of classical solutions associated with Ẇ n , that is
un is the solution of

∂t u
n
t (x) = 1

2
�unt (x) + unt (x) Ẇ

n
t (x), t ∈ R+, x ∈ R

d ,
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understood in the classical Lebesgue sense. From here, we would like to define the
Stratonovich solution of (1.1) as the limit of un as n → ∞. The whole question behind
this definition is of course to determine under which conditions such a convergence
can indeed be guaranteed.

As long as Ẇ is not too irregular, this pathwise-type strategy can be successfully
implemented through the so-called Young framework (see e.g. [7, Section 5]). If
one then wants to extend the above considerations to more irregular noises, some
sophisticated procedures based on higher-order expansions and renormalization tricks
must be involved. The so-called theory of regularity structures, introduced by Hairer
in [5], provides us with both a convenient setting and powerful tools to address this
extension issue. In the sequel, we will thus rely on Hairer’s ideas to properly formulate
and analyze the questions raised by equation (1.1) in a rough environment.

This approach was already used in a similar fractional setting by one of the authors
(see [3,4]), so as to handle the one-dimensional non-linear heat model

∂t ut (x) = 1

2
�ut (x) + σ(x, ut (x)) Ẇt (x), t ∈ [0, T ], x ∈ R, (1.6)

where σ : R×R → R is a smooth bounded function with compact support in its first
variable, and T is a small enough time. The latter assumptions clearly do not cover the
model under consideration [i.e., Eq. (1.1)], and accordingly further work is required
here.

An important novelty to tackle in this situation is the “non-compactness” of the
perturbation term u Ẇ , as opposed to σ(., u) Ẇ in (1.6) or to the torus framework
that prevails in [5]. A natural idea to cope with this additional difficulty consists in
the involvement of weighted topologies in the analysis. In the Young setting, such
a weighted treatment of the model can be found in [7, Section 5]. The basis of the
corresponding analysis for the rough situation have been laid by Hairer and Labbé in
[6], with stochastic applications focusing on the white noise situation.

Through the subsequent investigations, we propose to extend the application of the
formalism of [6] to the fractional situation, and thus provide a Stratonovich counterpart
of the considerations of [1] regarding the Skorohod setting. In turn, the constructions
below will be used as the starting point of the comparison procedure performed in [2,
Section 4], and ultimately leading to new moment estimates for the solution of (1.1).

Let us now specify the range of Hurst indexes H0, H1, . . . , Hd , i.e. (morally) the
range of regularities for Ẇ , covered by the analysis in this paper. We recall first that
the above-mentioned Young treatment of the model can be considered as long as
2H0 + H1 + · · · + Hd > d + 1 (see [7, Section 5] or [3, Section 5]). We here intend
to focus on the next stage of the regularity-structure approach to the problem, which
precisely corresponds to the condition

d + 2

3
< 2H0 + H ≤ d + 1, where H :=

d∑
i=1

Hi . (1.7)
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The reason behind the restriction 2H0 + H > d + 2
3 will become clear through the

developments of Sects. 2 and 3 (see also Remark 3.6 about possible extensions of the
covering). Moreover, as we will observe it in the sequel, a drastic change of regime
is to occur during the transition from the Young case to the “rough” case (1.7), with
the involvement of a central second-order process above the fractional noise, the so-
called K -Lévy area (see Definition 2.7). To some extent, and as suggested by our
terminology, this change-of-regime phenomenon can be compared with the insight
offered by the rough paths theory for the standard fractional differential equation

dYt = σ(Yt )dWt , (1.8)

whereW is a (standard) fractional Brownianmotion ofHurst index H ∈ (0, 1). Indeed,
it is a well-known fact that, when studying (1.8), the transition from the Young case
H > 1

2 to the (first) rough case 1
3 < H ≤ 1

2 also involves the consideration of an
additional (and crucial) Lévy-area term.

Note that in order to avoid a long presentation of the numerous objects at the core of
the original theory of regularity structures (model spaces, structure groups, regularity
structures,…), wewill rely in the sequel on themore direct K -rough paths terminology
introduced in [3].

The rest of the paper is organized as follows. In Sect. 2, we introduce the framework
of the analysis, and then rephrase the general well-posedness criterion of [6] using the
K -rough paths terminology (Theorem 2.11). Our main result, namely the existence
of such a K -rough path above the fractional noise, is presented in Sect. 3, first in
the space-time-noise situation (Sect. 3.1), then in the spatial-noise case (Sect. 3.2).
These statements will lead us to the desired Stratonovich solution of equation (1.1)
(Definitions 3.4 and 3.11). The details of the construction of the fractional K -rough
path in the space-time situation, resp. the spatial situation, will be provided in Sect. 4,
resp. Sect. 5. Finally, the “Appendix” section contains the proofs of twouseful technical
results.

2 Framework of the analysis

2.1 General notation

For the sake of clarity, let us start by specifying a few pieces of notation that will be
used throughout the study.

First, note that two different kinds of Fourier transforms on Rd+1 will be involved
in the sequel. Namely for a function f (t, x) on R

d+1, the Fourier transform on the
full space-time domain R

d+1 is defined with the normalization

F f (η, ξ) =
∫
Rd+1

e−ı (tη+ξ ·x) f (t, x)dtdx, (2.1)
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The analysis will also rely, at some point, on the spatial Fourier transform Fs given
by

Fs f (t, ξ) =
∫
Rd

e−ı ξ ·x f (t, x)dx . (2.2)

Regarding the stochastic setting, we denote by (�,F ,P) the probability space
related to W , with E for the related expected value. The heat kernel on Rd is denoted
by pt (x), and recall that

pt (x) = 1

(2π t)d/2 exp

(
−|x |2

2t

)
. (2.3)

Also notice that the inner product of a, b ∈ R
d is written as a ·b throughout the paper.

As mentioned in the introduction, we writeH for the vector of space Hurst param-
eters (H1, . . . , Hd), and denote the sum of these parameters as

H =
d∑
j=1

Hj . (2.4)

Following the convention in [5], the below considerations on the theory of regu-
larity structures will occasionally appeal to the parabolic distance, defined for all
(s, x), (t, y) ∈ R

d+1 as

ds((s, x), (t, y)) = ‖(t, y) − (s, x)‖s := max
(√|t − s|, |y1 − x1|, . . . , |yd − xd |

)
.

(2.5)

Finally, we write a � b to indicate that there exists an irrelevant constant c such that
a ≤ cb.

2.2 Weighted Besov topologies and K-rough paths

Our purpose in this section is to give an as-compact-as-possible presentation of the
regularity structures framework. As we mentioned above, the formalism is presented
here in its weighted version (following [6]). Of course, we will only focus on its
application to the dynamics under consideration, that is to the model

{
∂t u = 1

2�u + u χ, t ∈ [0, T ], x ∈ R
d ,

u0(x) = ψ(x),
(2.6)

with χ a distribution of order α < 0 to be specified (at this point, the equation is only
formal anyway). This customization of the theory will lead us to the introduction of a
fundamental object at the core of the machinery: the K -rough path (see Definition 2.7
below).
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The weights considered in the sequel have to satisfy a growth assumption which is
summarized in the following definition.

Definition 2.1 A function w : Rd → [1,∞) is a weight on R
d if for every M > 0,

there exist c1,M , c2,M > 0 such that for every x, y ∈ R
d with |x − y| ≤ M , one has

c1,M ≤ w(x)

w(y)
≤ c2,M .

Given a weight w ∈ R
d , we will henceforth denote by L∞

w (Rd+1) the space of func-
tions defined by

L∞
w (Rd+1) =

{
f : Rd+1 → R; for all T > 0, sup

(s,x)∈[−T ,T ]×Rd

| fs(x)|
w(x)

< ∞
}
.

(2.7)

We also write C0w(Rd+1) for the set of continuous functions in L∞
w (Rd+1).

Let us now turn to the definition of the (weighted)Besov-type spaces of distributions
involved in Hairer’s theory. Consider first the case of a positive order λ ∈ (0, 1):

Definition 2.2 Let w be a weight on R
d . For every λ ∈ (0, 1), we will say that a

function θ : Rd+1 → R belongs to Cλ
w(Rd+1) if for every T > 0,

‖θ‖λ;T ,w := sup
(s,x)∈[−T ,T ]×Rd

|θ(s, x)|
w(x)

+ sup
((s,x),(t,y))∈DT ,2

|θ(s, x) − θ(t, y)|
w(y)‖(s, x) − (t, y)‖λ

s

< ∞,

where we recall that the distance ‖ · ‖s is defined in (2.5) and where the domain DT ,2
is defined by

DT ,2

:=
{
((s, x), (t, y)) ∈ R

d+1 × R
d+1; s, t ∈ [−T , T ], (s, x) 	= (t, y) and ‖(s, x) − (t, y)‖s ≤ 2

}
.

(2.8)

In order to define spaces of negative orders, we first need to recall the following
notation for a scaling operator. Namely for all δ > 0, (s, x), (t, y) ∈ R

d+1 and
ψ : Rd+1 → R, denote

(Sδ
s,xψ)(t, y) := δ−(d+2)ϕ

(
δ−2(t − s), δ−1(y − x)

)
. (2.9)

Also, for every � ≥ 0, we will need to consider a specific set of compactly supported
functions:

B�
s = {ψ ∈ C�(Rd+1); Supp(ψ) ⊂ Bs(0, 1) and ‖ψ‖C� ≤ 1}, (2.10)

where C�(Rd+1) refers to the space of �-times differentiable functions on R
d+1,

‖ψ‖C� := sup
{‖∂xi1 . . . ∂xik

ψ‖∞, 0 ≤ k ≤ �, i1, . . . , ik ∈ {1, . . . , d + 1}},
123
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and Bs(0, 1) stands for the unit ball in R
d+1 associated with the parabolic distance

(2.5). Finally, we denote byC�∞(Rd+1) the space of �-times differentiable functions (on
R
d+1) with bounded derivatives, and defineD′

�(R
d+1) as the dual space of C�∞(Rd+1).

With those additional notions in hand, we now give the definition of distributions with
negative Hölder type continuity which is used in the sequel.

Definition 2.3 Let w be a weight on R
d as given in Definition 2.1. For every α < 0,

we will say that a distribution χ ∈ D′(Rd+1) belongs to Cα
w(Rd+1) if it belongs to

D′
2(d+1)(R

d+1) and if for every T > 0,

‖χ‖α;T ,w := sup
(s,x)∈[−T ,T ]×Rd

sup
ϕ∈B2(d+1)

s

sup
δ∈(0,1]

|〈χ,Sδ
s,xϕ〉|

δαw(x)
< ∞. (2.11)

Remark 2.4 As can be seen from (2.11) we are considering topologies that are “local-
ized” in time, and global, but “weighted”, in space. Besides, note that the choice of the
regularity 2(d +1) in the condition χ ∈ D′

2(d+1) is somewhat arbitrary. In fact, for the

deterministic part of the analysis, we could replace this condition with χ ∈ D′
r (R

d+1)

for any finite r ≥ 1, as explained in [5]. The 2(d+1)-regularity will only prove useful
in the stochastic constructions of Sect. 4 (see for instance Lemma 4.3).

The following topological spaces, which somehow correspond to “lifted versions”
of Cα

w(Rd+1), will later accommodate the central K -rough paths:

Definition 2.5 Let w be a weight on R
d . For every α < 0, we say that a map ζ :

R
d+1 → D′(Rd+1) belongs to CCCα

w(Rd+1) if for every (s, x) ∈ R
d+1, ζs,x belongs to

D′
2(d+1)(R

d+1) and if, for every T > 0,

‖ζ‖α;T ,w := sup
(s,x)∈[−T ,T ]×Rd

sup
ϕ∈B2(d+1)

s

sup
δ∈(0,1]

|〈ζs,x ,Sδ
s,xϕ〉|

δαw(x)
< ∞,

where the sets Bl
s are given by (2.10).

We still need one last technical ingredient in the procedure: the definition of a
localized heat kernel, which essentially transcribes the singular behavior of the (global)
heat kernel around (0, 0).

Definition 2.6 We call a localized heat kernel any function K : R
d+1\{0} → R

satisfying the following conditions:

(i) It holds that ps(x) = K (s, x)+ R(s, x), for some “remainder” R ∈ C∞(Rd+1),
where we recall that the heat kernel p is defined by (2.3).

(ii) K (s, x) = 0 as soon as s ≤ 0.

123
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(iii) There exists a smooth function K0 : Rd+1 → R with support in [−1, 1]d+1

such that for every non-zero (s, x) ∈ R
d+1, one has

K (s, x) =
∑
�≥0

2−2�(S2−�

0,0 K0)(s, x) and R(s, x) =
∑
�<0

2−2�(S2−�

0,0 K0)(s, x).

(2.12)

We are finally in a position to introduce the key object of the machinery, namely a
distribution in the second chaos of the noise χ which plays the role of the Lévy area
in our context.

Definition 2.7 Let w be a weight on Rd (see Definition 2.1), let K be a localized heat
kernel (see Definition 2.6) and consider α < 0. Also, fix χ ∈ Cα

w(Rd+1). We call
an (α, K )-Lévy area above χ (for the weight w) any map A : Rd+1 → D′(Rd+1)

satisfying the two following conditions.
(i) K -Chen relation For all (s, x), (t, y) ∈ R

d+1,

As,x − At,y = [(K ∗ χ)(t, y) − (K ∗ χ)(s, x)] · χ ,

where the notation ∗ refers to the space–time convolution.
(ii) Besov regularityA belongs to CCC2α+2

w (Rd+1), where the space CCC2α+2
w is introduced

in Definition 2.5.
We call (α, K )-rough path above χ (for the weight w) any pair χχχ = (χ,χ2) where
χ ∈ Cα

w(Rd+1) and χ2 is an (α, K )-Lévy area above χ (for the weight w). We denote
by EK

α;w the set of such (α, K )-rough paths (for the weight w). If χχχ = (χ,χ2), ζζζ =
(ζ, ζ 2) ∈ EK

α;w, we set

‖χχχ,ζζζ‖α;T ,w := ‖χ − ζ‖α;T ,w + ‖χ2 − ζ 2‖2α+2;T ,w.

A global distance on EK
α;w is then given by

dα;w(χχχ,ζζζ ) =
∑
k≥1

2−k ‖χχχ,ζζζ‖α;k,w
1 + ‖χχχ,ζζζ‖α;k,w

. (2.13)

By mimicking the arguments of the proof of [3, Proposition 3.1], we immediately
deduce the following completeness property:

Lemma 2.8 For every weightw onRd , every localized heat kernel K and every α < 0,
(EK

α;w, dα;w) is a complete metric space.

Let us complete Definition 2.7 with two fundamental remarks, that often turn out
to be essential in the application of the theory.

Remark 2.9 Recall that the space L∞
w (Rd+1) is defined by (2.7). In the “regular”

situation where χ ∈ L∞
w (Rd+1), there exists a straightforward canonical K -Lévy

123
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area above χ (for the weight w2) given by the formula

χ2
s,x (t, y) := [(K ∗ χ)(t, y) − (K ∗ χ)(s, x)] · χ(t, y) , (2.14)

where we recall that ∗ refers to space-time convolution in this setting. The resulting
canonical K -rough path will be our standard reference in approximation (or conti-
nuity) results. The situation can here be compared with Lyons’ rough paths theory,
where (classical) rough paths are often obtained as the limit of the canonical rough
path given by the set of iterated integrals.

Remark 2.10 Starting from a K -Lévy area χ2, any constant c gives rise to another
K -Lévy area by setting χ̂2

s,x (t, y) := χ2
s,x (t, y) − c, which paves the way toward

renormalization tricks. In the sequel, we will use the notation

Renorm((χ,χ2), c) := (χ,χ2 − c) (2.15)

for such elementary renormalization.

2.3 A general solutionmap

With the above setting and notation in hand, the following “black box” statement about
equation (2.6) can now be derived from a slight adaptation of the considerations and
results of [6]:

Theorem 2.11 (Solution map) Fix an arbitrary time horizon T > 0 and a parameter
α ∈ (− 4

3 ,−1). Then there exist a localized heat kernel K , two weights w1, w2 on Rd

(that depend on T ), and a “solution” map

� = �K ,T
α,w1,w2

: EK
α;w1

× L∞(Rd) −→ L∞([0, T ]; L∞
w2

(Rd)), (2.16)

where EK
α;w1

is introduced in Definition 2.7 and L∞
w is given by (2.7). The map � is

such that the following properties are satisfied:
(i) WeightsOne hasw1(x) = (1+|x |)κ1 andw2(x) = eκ2(1+|x |), for some κ1, κ2 > 0.
(ii) Consistency Assume χ ∈ L∞

w
1/2
1

(Rd+1) and χχχ ∈ EK
α;w1

is the canonical K -rough

path above χ with Lévy-area term defined along (2.14). Then for any ψ ∈ L∞(Rd)

one has �(χχχ,ψ) = u, where u is the classical solution on [0, T ] of equation (2.6).
(iii) Renormalization As in item (ii), consider χ ∈ L∞

w
1/2
1

(Rd+1) and its canon-

ical K -rough path χχχ . For an initial condition ψ ∈ L∞(Rd) and c ∈ R, set
û = �(Renorm(χχχ, c), ψ), where Renorm(χχχ, c) is defined by (2.15). Then û is the
classical solution on [0, T ] of the equation

{
∂t û = 1

2�û + û χ − c û, t ∈ [0, T ], x ∈ R
d ,

u0(x) = ψ(x).

123
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(iv) Continuity Let (χχχ,ψ) ∈ EK
α,w1

× L∞(Rd) and let (χχχn, ψn) ∈ EK
α;w1

× L∞(Rd)

be a sequence such that

dα,w1(χχχ
n,χχχ) → 0 and ‖ψn − ψ‖L∞(R) → 0,

where dα,w1 is the distance introduced in (2.13). Then �(χχχn, ψn) converges to
�(χχχ,ψ) in the space L∞([0, T ]; L∞

w2
(Rd)).

Remark 2.12 We are aware that the corresponding results in [6] are actually expressed
in terms of (weighted)models and structure group, following the general terminology
of [5]. However, the transition from our (lighter) notion of an (α, K )-rough path to
a regularity structure (that is, a model together with a structure group) is a matter
of elementary considerations, as detailed in [3, Proposition 2.5]. The only technical
point requiring some attention is the control of K ∗ χ , as an element of Cα+2

w1
(Rd+1),

in terms of χ ∈ Cα
w1

(Rd+1), for α ∈ (− 4
3 ,−1). In fact, following the lines of the

proof of [3, Lemma 2.2], one can easily check that for every weight w on R
d , every

α ∈ (−2,−1), every χ ∈ Cα
w(Rd+1) and every time T > 0, one has

‖K ∗ χ‖α+2;T ,w � ‖χ‖α;T ,w, (2.17)

which precisely corresponds to the control we need in order to justify this transition.

3 Main results

We now go back to the stochastic setting and to the consideration of a fractional noise
χ := Ẇ in equation (2.6). In other words, we go back here to the analysis of (1.1).
With the result of Theorem 2.11 in mind, the strategy toward the desired Stratonovich
solution is clear: we need to construct a K -rough path above Ẇ in the almost sure
sense, preferably as the limit of some (renormalized) canonical K -rough path (for the
continuity property (iv) in Theorem 2.11 to hold).

First, we will proceed to the detailed presentation of our existence result in the
situation where Ẇ is the space-time fractional noise defined by (1.2) [for (H0,H)

satisfying (1.7)]. Then we will review the main steps of the construction in the (easier)
situation where Ẇ is only a spatial fractional noise.

3.1 Application to a space-time fractional noise

Let Ẇ be the noise defined by (1.2), for some Hurst index H0 ∈ (0, 1) in time and
H = (H1, . . . , Hd) ∈ (0, 1)d in space. Let us recall that Ẇ can also be seen as the
derivative of a space-time fractional Brownian motionW , that is Ẇ = ∂t∂x1 . . . ∂xdW .
As a consequence, one can easily define a smooth approximation Ẇ n of Ẇ by using
a standard mollifying procedure.

123
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To be more specific, we define the approximated noise Ẇ n by Ẇ 0 := 0 and for
n ≥ 1,

Ẇ n := ∂t∂x1 . . . ∂xdW
n, where Wn := ρn ∗ W and ρn(s, x) := 2n(d+2)ρ(22ns, 2nx),

(3.1)

for some mollifier ρ : Rd+1 → R+ satisfying the following (natural) assumptions:

Assumption (ρ) We consider a smooth, even, and L1(Rd+1) function ρ : Rd+1 →
R+. In addition we suppose that ρ satisfies

(i)
∫
Rd+1 ρ(s, x) dsdx = 1.

(ii) The Fourier transform Fρ is Lipschitz.
(iii) For every (τ0, τ1, . . . , τd) ∈ [0, 1]d+1, the following upper bound holds true for

every (λ, ξ) ∈ R
d+1,

|Fρ(λ, ξ)| ≤ cτ |λ|−τ0

d∏
i=1

|ξi |−τi . (3.2)

Remark 3.1 Assumption (ρ) is trivially satisfied by any smooth, even and compactly-
supported function ρ : R

d+1 → R+ such that
∫
Rd+1 ρ(s, x) dsdx = 1. These

conditions also cover the mollifying function considered in [7, Section 3.2] or in
[8, Section 5], that is ρ(s, x) := ϕ(s)p1(x), where ϕ := 1[0,1] and p1 refers to
the Gaussian density (2.3) at time 1. Last but not least, Assumption (ρ) is satis-
fied by the mollifier considered in the Skorohod analysis of [2, Section 3], that is
ρ(s, x) := p1(s)p1(x). The latter choice will become our standard reference in the
subsequent Definition 3.4.

Once endowed with the approximation Ẇ n , let us consider the canonical K -rough
pathWWWn := (Ẇ n,W2,n), defined along Remark 2.9. Namely we set

W2,n
s,x (t, y) := In

s,x (t, y) · Ẇ n(t, y), (3.3)

where

In
s,x (t, y) := (K ∗ Ẇ n)(t, y) − (K ∗ Ẇ n)(s, x). (3.4)

With this setting in hand, our main statement will consist in a convergence property
for the (suitably renormalized) sequence WWWn := (Ẇ n,W2,n). The statement will
appeal, among other things, to the following technical result (the proof of which is
postponed to Sect. 1).

Lemma 3.2 Let ρ be a mollifier satisfying Assumption (ρ), and let H0 ∈ (0, 1),H =
(H1, . . . , Hd) ∈ (0, 1)d be such that

2H0 + H ≤ d + 1, (3.5)
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where the notation H has been introduced in (2.4). Recall that the heat kernel p is
defined by (2.3). Let us set from now on

NH0,H(λ, ξ) := 1

|λ|2H0−1

d∏
i=1

1

|ξi |2Hi−1 , (3.6)

namely c0cH NH0,H is the Fourier transform of the measure γ0⊗γ introduced in (1.3).
Then, for every fixed c > 0, the integral

∫
|λ|+|ξ |2≥c

|Fρ(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ (3.7)

is finite, and when 2H0 + H < d + 1, it even holds that

Jρ,H0,H :=
∫
Rd+1

|Fρ(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ < ∞. (3.8)

For simplicity, let us set from now on cH0,H := cH0cH, where cH0 , cH are the
constants defined in (1.4). We are now ready to state the result about the existence of
a K -rough path above our noise.

Theorem 3.3 Let ρ be a mollifier satisfying Assumption (ρ). Consider Hurst param-
eters H0 ∈ (0, 1) and H = (H1, . . . , Hd) ∈ (0, 1)d . We strengthen condition (3.5) in
the following way:

d + 1

2
< 2H0 + H ≤ d + 1, (3.9)

where we recall that H is given by (2.4). In this setting, fix α ∈ R such that

α < −(d + 2) + 2H0 + H . (3.10)

For n ≥ 1, define Ẇ n as in (3.1) and set

ŴWW
n := Renorm(WWWn, c

(n)
ρ,H0,H

), (3.11)

with

c
(n)
ρ,H0,H

:=

⎧⎪⎪⎨
⎪⎪⎩
c2H0,H

22n(d+1−(2H0+H))Jρ,H0,H if 2H0 + H < d + 1

c2H0,H
∫
|λ|+|ξ |2≥2−2n |Fρ(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ if 2H0 + H = d + 1

(3.12)

where the operator Renorm is introduced in (2.15) and the quantityJρ,H0,H is defined
in (3.8).
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Then for any weight w(x) := (1+|x |)κ with κ > 0 and for the distance dα,w given
by (2.13), there exists an (α, K )-rough path ŴWW such that almost surely

lim
n→∞ dα,w(ŴWW

n
, ŴWW ) = 0. (3.13)

For the sake of clarity, we have postponed the (long technical) proof of Theorem 3.3
to Sect. 4.

Now, by combining the deterministic result of Theorem 2.11 with the stochastic
construction of Theorem 3.3, we derive the desired Stratonovich interpretation of
Eq.(1.1):

Definition 3.4 Let ρ be the weight given by ρ(s, x) := p1(s)p1(x) as considered in
Remark 3.1. Let (H0,H) ∈ (0, 1)d+1 be a vector of Hurst parameters such that

d + 2

3
< 2H0 + H ≤ d + 1. (3.14)

Besides, fix α ∈ R such that

−4

3
< α < −(d + 2) + 2H0 + H ,

as well as an arbitrary time horizon T > 0 and an initial condition ψ ∈ L∞(Rd).
Then, using the notations of Theorems 2.11 and 3.3, we call u := �K ,T

α,w1,w2
(ŴWW , ψ) the

renormalized Stratonovich solution of Eq. (1.1), with initial conditionψ . In particular,
u is the (almost sure) limit, in L∞([0, T ] ×R

d), of the sequence (un)n≥1 of classical
solutions of the equation

{
∂t un = 1

2�un + un Ẇ n − c
(n)
ρ,H0,H

un, t ∈ [0, T ], x ∈ R
d ,

un0(x) = ψ(x).
(3.15)

Let us complete the above Definition 3.4 with three comments.

Remark 3.5 Observe that the assumptions on H0,H in (3.14) are more restrictive than
those in Theorem 3.3. This stronger restriction actually stems from Theorem 2.11,
which requires α to be strictly larger than − 4

3 .

Remark 3.6 As the reader might expect it, the extension of the result of Theorem 2.11
to any α > − 3

2 (and not only α > − 4
3 ) is in fact possible, at the price of an additional

“third-order” elements (on top of χ and χ2) in the definition of a K -rough path (see
[4, Definition 2.7] for details when d = 1). Therefore, applying this extension to
our stochastic model would require us to construct additional “third-order” processes
above the fractional noise. This strategy has been implemented in [4] for d = 1, and
when working with the “compact-in-space” topologies derived from the analysis of
(1.6). We firmly believe that the constructions of [4] could be extended to the current
setting, that is to any dimension d ≥ 1 and to the whole space R

d , at the price of
highly sophisticated computations.
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Remark 3.7 We have here chosen to study the renormalization procedure using the
framework of regularity structures, which in particular allows us to directly apply the
strategy at the level of the solution u of (1.1), and also to rely on previous general
existence results (e.g. Theorem 2.11). Another possibility to visualize the need for
renormalization in this setting is to consider the Cole-Hopf-type transformation v :=
ue−Y , where Y stands for the solution of the linear problem

{
∂t Y = 1

2�Y + Ẇ , t ∈ R+, x ∈ R
d ,

Y0 = 0.

At a formal level, one can check that if u is solution to (1.1), then v becomes solution
to the problem

{
∂tv = 1

2�v + ∇v · ∇Y + 1
2v |∇Y |2, t ∈ R+, x ∈ R

d ,

v0 = �.
(3.16)

Now remember that in the situation covered by Definition 3.4, Ẇ is assumed to be of
regularity α ∈ (− 4

3 ,−1). As a consequence, one gets (formally) that Y ∈ Cα+2,∇Y ∈
Cα+1, |∇Y |2 ∈ C2(α+1), and, through a quick analysis of (3.16), we can then expect v
to be a function in C2α+4 (with 2α+4 > 1), which paves theway toward awell-defined
fixed-point argument for the equation.

The whole problem of this analysis naturally lies in the definition of the product
|∇Y |2 for ∇Y ∈ Cα+1 (due to α + 1 < 0). In fact, such a definition can only be
achieved by means of a renormalization trick, and the task is thus essentially the same
as the one we will implement for the second-order process W2,n [defined by (3.3)].

Let us finally conclude the section with the exhibition of an asymptotic equivalence
for the constant c(n)

ρ,H0,H
in (3.11), in the limit case 2H0 + H = d + 1 (the proof of

this statement can be found in Sect. 2).

Proposition 3.8 In the setting of Theorem 3.3, assume that 2H0 + H = d + 1. Then,
as n tends to infinity, it holds that

c
(n)
ρ,H0,H

= n · CH0,H + O(1), (3.17)

for some constant CH0,H independent of ρ.

Thus,when compared to the behavior of c(n)
ρ,H0,H

as 2H0+H < d+1 [see (3.12)], the
expansion (3.17) clearly emphasizes the specificity of the border case 2H0+H = d+1
in the analysis of the problem.

3.2 Application to a spatial fractional noise

We now would like to specialize the previous results to a spatial fractional noise. In
other words, we consider here {WH(x), x ∈ R

d} a spatial fractional Brownian motion
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of Hurst index H ∈ (0, 1)d and set

Ẇ := ∂x1 . . . ∂xdW
H. (3.18)

In many situations, it is known that, at least at a formal level, the transition from a
space-time fractional noise to a spatial fractional noise essentially reduces to “taking
H0 = 1”. Our aim in the sequel to fully justify this phenomenon in the situation we are
interested in, that is the study of equation (1.1). To this end, we propose to review the
successive steps of the analysis provided in Sect. 3.1 and examine the corresponding
results in the spatial situation.

Thus, as a first step, we introduce a smooth approximation Ẇ n of Ẇ obtained
through a general mollifying procedure. That is, we define the approximated noise
Ẇ n by Ẇ 0 := 0 and for n ≥ 1,

Ẇ n(s, x) = Ẇ n(x) := (
∂x1 . . . ∂xdW

n)(x), Wn := ρn ∗ WH, ρn(x) := 2dnρ(2nx),
(3.19)

for some mollifier ρ : Rd → R+ satisfying the following assumptions (remember
that the notation Fs refers to the spatial Fourier transform, along (2.2)):

Assumption (ρ) We consider a smooth, even, and L1(Rd) function ρ : Rd → R+. In
addition we suppose that ρ satisfies

(i)
∫
Rd ρ(x) dx = 1.

(ii) The Fourier transform Fsρ is Lipschitz.
(iii) For every (τ1, . . . , τd) ∈ [0, 1]d , the following upper bound holds true for every

ξ ∈ R
d ,

|Fsρ(ξ)| ≤ cτ

d∏
i=1

|ξi |−τi . (3.20)

The canonical K -rough path (WWWn)n≥1 := (Ẇ n,W2,n)n≥1 above Ẇ n can here be
written as

W2,n
s,x (t, y) = W2,n

x (y) := In
x (y) · Ẇ n(y), (3.21)

where

In
x (y) := (K̃ ∗ Ẇ n)(y) − (K̃ ∗ Ẇ n)(x), (3.22)

with

K̃ (x) :=
∫ ∞

0
ds K (s, x). (3.23)

It is worth noting that, owing to the very definition of K (see Definition 2.6), the latter
integral is indeed finite (for every fixed x ∈ R

d ), and also that K̃ ∈ L1(Rd).
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The spatial counterpart of the preliminary Lemma 3.2 now reads as follows (the
proof of this property can be shown with similar estimates to the ones in Sect. 1).

Lemma 3.9 Let ρ : Rd → R be a mollifier satisfying Assumption (ρ), and let H =
(H1, . . . , Hd) ∈ (0, 1)d be such that

H < d − 1, (3.24)

where the notation H has been introduced in (2.4). Let us set from now on

NH(ξ) :=
d∏

i=1

1

|ξi |2Hi−1 , (3.25)

namely cH NH is the Fourier transform of the measure γH introduced in (1.3). Besides,
recall that the heat kernel p is defined by (2.3). Then the following integral is finite:

Jρ,H :=
∫
Rd

|Fsρ(ξ)|2NH(ξ)

(∫ ∞

0
ds Fs ps(ξ)

)
dξ. (3.26)

We are now in a position to present the (expected) counterpart of Theorem 3.3 for
the spatial situation.

Theorem 3.10 Let ρ : R
d → R be a mollifier satisfying Assumption (ρ), and fix

d ≥ 2. Let H = (H1, . . . , Hd) ∈ (0, 1)d be a vector of Hurst parameters such that

d − 3

2
< H ≤ d − 1, (3.27)

where we recall that H is given by (2.4). In this setting, fix α < H − d.
For n ≥ 1, define Ẇ n as in (3.1) and set ŴWW

n := Renorm(WWWn, c
(n)
ρ,H), with

c
(n)
ρ,H :=

⎧⎪⎪⎨
⎪⎪⎩
22n(d−H−1)c2HJρ,H if H < d − 1

c2H
∫
|ξ |≥2−n |Fsρ(ξ)|2NH(ξ)

(∫∞
0 ds Fs ps(ξ)

)
dξ if H = d − 1

(3.28)

where the constant cH is defined in (1.4) and the quantity Jρ,H in (3.26).
Then for any weight w(x) := (1+|x |)κ with κ > 0 and for the distance dα,w given

by (2.13), there exists an (α, K )-rough path ŴWW such that almost surely

lim
n→∞ dα,w(ŴWW

n
, ŴWW ) = 0. (3.29)

Proof See Sect. 5 for a survey of the adaptations to be made with respect to the
arguments used in the proof of Theorem 3.3. ��
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By injecting the K -rough path constructed in Theorem 3.10 into the general well-
posedness statement of Theorem 2.11, we immediately derive the following spatial
equivalent of Definition 3.4.

Definition 3.11 Let ρ be the weight given by ρ(x) := p1(x). Let H ∈ (0, 1)d be a
vector of Hurst parameters such that

d − 4

3
< H ≤ d − 1. (3.30)

Besides, fix α < 0 such that − 4
3 < α < H − d, as well as an arbitrary time horizon

T > 0 and an initial condition ψ ∈ L∞(Rd). Then, using the notations of Theorem
2.11 and Theorem 3.10, we call u := �K ,T

α,w1,w2
(ŴWW , ψ) the renormalized Stratonovich

solution of equation (1.1), with initial condition ψ . In particular, u is the (almost
sure) limit, in L∞([0, T ] ×R

d), of the sequence (un)n≥1 of classical solutions of the
equation

{
∂t un = 1

2�un + un Ẇ n − c
(n)
ρ,H un, t ∈ [0, T ], x ∈ R

d ,

un0(x) = ψ(x).
(3.31)

In a similar way to Proposition 3.8 (and using similar proof arguments), we can
finally show that the constant c(n)

ρ,H in (3.28) adopts a specific behaviour when H =
d − 1.

Proposition 3.12 In the setting of Theorem 3.10, assume that H = d − 1. Then, as n
tends to infinity, it holds that

c
(n)
ρ,H = n · CH + O(1), (3.32)

for some constant CH independent of ρ and K .

Remark 3.13 Observe that the assumptions in Theorem 3.10 (or Definition 3.11) and
in Proposition 3.12 cover the case where d = 2 and H1 = H2 = 1

2 . In other words,
these results encompass the situation where Ẇ is a spatial white noise on R2.

4 Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3, that is to the construction of
the (α, K )-rough path ŴWW at the basis of the Stratonovich interpretation of the model
(along Definition 3.4).

Therefore, from now on and for the rest of the section, we fix a mollifier ρ, some
Hurst indexes H0,H, and a parameter α such that the assumptions in Theorem 3.3
are all met.
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We recall that the convenient notationNH0,H has been introduced in (3.6), and that
we have set cH0,H := cH0cH, where cH0 and cH are defined by (1.4). For further ref-
erence, let us label the following covariance formulas, which immediately generalize
(1.3) in the regularized setting.

Lemma 4.1 Let Ẇ n be the smoothed noise defined by (3.1) and recall that the kernel
K is defined by (2.12). For every fixed n ≥ 1, the families {Ẇ n(t, y); (t, y) ∈ R

d+1}
and {K ∗ Ẇ n(t, y); (t, y) ∈ R

d+1} are centered Gaussian processes with respective
covariance functions given by the formulas

E
[
Ẇ n(t, y)Ẇ n(t̃, ỹ)

] = c2H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ ·(y−ỹ)),

(4.1)

and

E
[
(K ∗ Ẇ n)(t, y)(K ∗ Ẇ n)(t̃, ỹ)

]
= c2H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2|FK (λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ ·(y−ỹ)). (4.2)

Just as in [3, Corollary 3.5], the proof of Theorem 3.3 essentially relies on suitable
moments estimates (see Proposition 4.4 and Proposition 4.8 below). The transition
from these estimates to the desired convergence property will then go through the fol-
lowing multiparametric and distributional version of the Garsia–Rodemich–Rumsey
Lemma. Observe that this kind of property is one of the key technical ingredients in
the theory of regularity structures.

Lemma 4.2 (Multiparametric G-R-R lemma) Fix a regularity parameter β sitting in
(−(d+1), 0), as well as a weightw onRd . Then there exists a finite set� of functions
in C2(d+1)(Rd+1)with support inBs(0, 1) such that the following property holds true:
assume that ζ : Rd+1 → D′

2(d+1)(R
d+1) is a map with increments of the form

ζs,x − ζt,y =
r∑

i=1

[θ i (s, x) − θ i (t, y)] · ζ
�,i
t,y ,

for some θ i ∈ Cμ
w(Rd+1) with μ ∈ [0,min(1,−β)), and some distributions ζ �,i ∈

CCCβ
w(Rd+1), where we recall that the spaces Cβ

w are introduced in Definition 2.3. Then
for every T > 0, one has

‖ζ‖β+μ;T ,w2

� sup
ψ∈�

sup
n≥0

sup
(s,x)∈�n

s∩([−(T+2),T+2]×Rd )

2n(β+μ)
|〈ζs,x , ψn

s,x 〉|
w(x)2

+
∑

i=1,...,r

‖θ i‖μ;T+2,w‖ζ �,i‖β;T+2,w , (4.3)
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where the discrete set �n
s is defined by �n

s := {(2−2nk0, 2−n

k1, . . . , 2−nkd); k0, k1, . . . , kd ∈ Z}, and where norms for θ i and ζ �,i are respectively
given in Definitions 2.2 and 2.5. For the sake of clarity, we have also used the standard
notation ψn

s,x := S2−n

s,x ψ in the right-hand side of (4.3).

Proof It is a mere “weighted” adaptation of the arguments of the proof of [3, Lemma
3.2] (which was itself an adaptation of the arguments in [5, Section 3]). For the sake
of conciseness, we leave the details behind this slight adaptation as an exercise to the
reader. ��

As a last preliminary step, we also label the following elementary property for
further use:

Lemma 4.3 Recall that the sets Bl
s are given by (2.10). Let ψ be a generic element of

B2(d+1)
s and for all H0 ∈ (0, 1),H ∈ (0, 1)d , consider the functionNH0,H introduced

in (3.6). Then it holds that

∫
Rd+1

dλdξ NH0,H(λ, ξ)
∣∣Fψ(λ, ξ)

∣∣ < ∞. (4.4)

In the above lemma, note that our choice of ψ ∈ B2(d+1)
s guarantees strong inte-

grability properties for Fψ , which are the keys to show that the integral in (4.4) is
indeed finite.

4.1 Moment estimate for the first component

In this section wewill bound the covariance of Ẇ n considered as an element of a space
of the form Cα , where α satisfies (3.10).

Proposition 4.4 For all � ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s and (s, x) ∈ R

d+1, it holds
that

E
[|〈Ẇ n − Ẇm, ψ�

s,x 〉|2
]

� 22�(d+2−(2H0+H)+ε)2−mε, (4.5)

where the proportional constant in � does not depend on n,m, �, s, x and where we
recall that we have set ψ�

s,x := S2−�

s,x ψ .

Proof We have by definition

E
[〈Ẇ n, ψ�

s,x 〉2
] =

∫
Rd+1×Rd+1

dtdydt̃d ỹ ψ�
s,x (t, y)ψ

�
s,x (t̃, ỹ)E

[
Ẇ n(t, y)Ẇ n(t̃, ỹ)

]
.

Therefore using the covariance formula (4.1) together with the definition (2.1) of
Fourier transform, we get
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E
[〈Ẇ n, ψ�

s,x 〉2
] = c2H0,H

∫
Rd+1×Rd+1

dtdydt̃d ỹ ψ�
s,x (t, y)ψ

�
s,x (t̃, ỹ)

×
∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ ·(y−ỹ))

= c2H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2∣∣Fψ�
s,x (λ, ξ)

∣∣2NH0,H(λ, ξ).

(4.6)

We now recall that ρn is a rescaled version of the mollifier given by (3.1), and we have
also set ψn

s,x = S2−n

s,x ψ in the right-hand side of (4.3). Hence we obtain

E
[〈Ẇ n, ψ�

s,x 〉2
]

= c2H0,H

∫
Rd+1

dλdξ |Fρ(2−2nλ, 2−nξ)|2∣∣Fψ(2−2�λ, 2−�ξ)
∣∣2NH0,H(λ, ξ). (4.7)

We now perform the elementary change of variables λ := 2−2�λ and ξ := 2−�ξ ,
which yields

E
[〈Ẇ n, ψ�

s,x 〉2
]

= c2H0,H2
2�(d+2−(2H0+H))

∫
Rd+1

dλdξ |Fρ(2−2(n−�)λ, 2−(n−�)ξ)|2∣∣Fψ(λ, ξ)
∣∣2NH0,H(λ, ξ).

(4.8)

Thanks to (3.2), applied with τ0 = · · · = τd = 0, the Fourier transform of ρ is
uniformly bounded. Hence we end up with

E
[〈Ẇ n, ψ�

s,x 〉2
]

� 22�(d+2−(2H0+H))

∫
Rd+1

dλdξ
∣∣Fψ(λ, ξ)

∣∣2NH0,H(λ, ξ). (4.9)

According to Lemma 4.3 the latter integral is finite, which gives our claim (4.5) for
m = 0. The general case m ≥ 0 can then be derived along similar estimates, invoking
the fact that Fρ is a Lipschitz function [see Assumption (ρ)]. ��

4.2 Moment estimate for the second component

Let us start with two useful estimates on the Fourier transforms of the (fixed) compo-
nents (K , R) in the decomposition of the heat kernel [see relation (2.11)].

Lemma 4.5 Let K be the localized heat kernel of Definition 2.6. For all fixed
a0, a1, . . . , ad ∈ [0, 1] such that

∑d
i=0 ai < 1, one has, for every (λ, ξ) ∈ R

d+1,

|FK (λ, ξ)| � |λ|−a0
d∏

i=1

|ξi |−2ai .
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Proof Using the expansion of K in (2.12) and recalling the definition (2.9) of Sδ
s,x ,

we can first write

FK (λ, ξ) =
∑
�≥0

2−2�FK0(2
−2�λ, 2−�ξ). (4.10)

Then, since K0 is a smooth compactly-supported function, one has |FK0(λ, ξ)| �
|λ|−τ0 and |FK0(λ, ξ)| � |ξi |−τi for all τ0, τ1, . . . , τd ≥ 0 and (λ, ξ) ∈ R

d+1.
Plugging this information into (4.10), and using the fact that

∑d
i=0 ai < 1, we get

∣∣FK (λ, ξ)
∣∣ ≤

∑
�≥0

2−2�
∣∣FK0(2

−2�λ, 2−�ξ)
∣∣a0 . . .

∣∣FK0(2
−2�λ, 2−�ξ)

∣∣ad

� |λ|−a0
d∏

i=1

|ξi |−2ai
∑
�≥0

2−2�(1−(a0+a1+···+ad )) � |λ|−a0
d∏

i=1

|ξi |−2ai ,

which finishes our proof. ��
We now turn to a bound concerning the function R involved in the decomposition

(2.12).

Lemma 4.6 Let R be the remainder term associated with the localized heat kernel K
(along Definition 2.6). Then, for all fixed a0, a1, . . . , ad ≥ 0 such that

∑d
i=0 ai > 1,

one has, for every (λ, ξ) ∈ R
d+1,

|FR(λ, ξ)| � |λ|−a0
d∏

i=1

|ξi |−2ai . (4.11)

As a consequence, if H0 ∈ (0, 1),H = (H1, . . . , Hd) ∈ (0, 1)d are such that 2H0 +
H < d + 1, the following relation holds true for the functionNH0,H defined by (3.6):

∫
Rd+1

dλdξ NH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣ < ∞. (4.12)

Proof Using the expansion of R in (2.12) and relation (2.9) for Sδ
s,x , we can first write

FR(λ, ξ) =
∑
�>0

22�FK0(2
2�λ, 2�ξ).

Then, similarly to what we did in the proof of Lemma 4.5, we invoke the bound
|FK0(λ, ξ)| � |λ|−τ0 and |FK0(λ, ξ)| � |ξi |−τi for all τ0, τ1, . . . , τd ≥ 0 and
(λ, ξ) ∈ R

d+1. We deduce that for any a0, . . . , ad ≥ 0 such that
∑d

i=0 ai > 1 we
have

∣∣FR(λ, ξ)
∣∣ ≤

∑
�>0

22�
∣∣FK0(2

2�λ, 2�ξ)
∣∣1/(d+1)

. . .
∣∣FK0(2

2�λ, 2�ξ)
∣∣1/(d+1)
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� |λ|−a0
d∏

i=1

|ξi |−2ai
∑
�>0

22�(1−(a0+a1+···+ad )) � |λ|−a0
d∏

i=1

|ξi |−2ai .

This proves the assertion (4.11).
We now turn to a bound on the integral introduced in (4.12). To this aim, we split

the integral according to the region Ds defined below by (6.3) and we recall that
R = p − K , which yields

∫
Rd+1

dλdξ NH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣ �
[ ∫

Ds

dλdξ NH0,H(λ, ξ)
∣∣F p(λ, ξ)

∣∣
+
∫
Ds

dλdξ NH0,H(λ, ξ)
∣∣FK (λ, ξ)

∣∣] +
∫
Rd+1\Ds

dλdξ NH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣
. (4.13)

Next, taking into account expression (6.1) for the Fourier transform of p, the integral

∫
Ds

dλdξ NH0,H(λ, ξ)|F p(λ, ξ)|

in (4.13) is (essentially) the same as in the right-hand side of (3.8). We have already
shown that this integral is finite in the proof of Lemma 3.2 [see (6.8) and (6.9)]. In
addition, one can bound |FK (λ, ξ)| by a constant thanks to Lemma 4.5, in order to
get

∫
Ds

NH0,H(λ, ξ)
∣∣FK (λ, ξ)

∣∣ dλdξ �
∫
Ds

dλdξ NH0,H(λ, ξ) < ∞.

Eventually, the finiteness of
∫
Rd+1\Ds

dλdξ NH0,H(λ, ξ)|FR(λ, ξ)| can be easily
derived from relation (4.11). Plugging the information above into (4.13), this com-
pletes the proof of our claim (4.12). ��

As we will see in the sequel, the renormalization procedure for W2,n is based on
the following decomposition.

Lemma 4.7 Let W2,n be the increment given by (3.3), and recall that the renormal-
ization constant c(n)

ρ,H0,H
is defined by (3.12). Then for all (s, x), (t, y) ∈ R

d+1 and
n ≥ 1, one has the decomposition

E
[
W2,n

s,x (t, y)
] = c

(n)
ρ,H0,H

+ En
s,x (t, y), (4.14)

for some function En
s,x such that, for every ε ∈ (0, 1), � ≥ 0 and ψ ∈ B�

s we have∣∣〈En
s,x , ψ

�
s,x 〉

∣∣ � 22�(1+d−(2H0+H)+ε). (4.15)

Moreover, in relation (4.15) the proportional constant does not depend on n, �, s, x.
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Proof With the definition (3.3) of W2,n in mind, we can obviously write

E
[
W2,n

s,x (t, y)
] = c

(n)
ρ,H0,H

+ En
s,x (t, y),

as stated in (4.14), where we have simply set

En
s,x (t, y) :=

{
E
[
(K ∗ Ẇ n)(t, y)Ẇ n(t, y)

] − c
(n)
ρ,H0,H

}
− E

[
(K ∗ Ẇ n)(s, x)Ẇ n(t, y)

]
.

(4.16)

We now analyze the terms

Qn(s, x; t, y) = E
[
(K ∗ Ẇ n)(s, x)Ẇ n(t, y)

]
(4.17)

in the right-hand side of (4.16). To this aim, we resort to a slight variation on (4.1)
and (4.2), which enables to write that for all (s, x), (t, y) ∈ R

d+1

Qn(s, x; t, y) = c2H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FK (λ, ξ)eı(λ(t−s)+ξ ·(y−x)) dλdξ.

Based on this expression, and along the same lines as for (4.6), one gets on the one
hand ∫

Rd+1
dtdy Qn(s, x; t, y)ψ�

s,x (t, y)

= c2H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)FK (λ, ξ)Fψ�
0,0(λ, ξ).

Hence owing to the fact that ψ�
0,0 = S2−�

0,0 ψ and performing the change of variable

λ := 2−2�λ, ξ = 2−�ξ , we get

∣∣∣∣
∫
Rd+1

dtdy Qn(s, x; t, y)ψ�
s,x (t, y)

∣∣∣∣
= c2H0,H 22�(d+2−(2H0+H))

∣∣∣∣
∫
Rd+1

dλdξ |Fρn(2
2�λ, 2�ξ)|2NH0,H(λ, ξ)FK (22�λ, 2�ξ)Fψ(λ, ξ)

∣∣∣∣.
At this point, observe that due to the assumption 2H0 + H ≤ d + 1, we can pick
a0, a1, . . . , ad in [0, 1] such that∑d

i=0 ai = 1−ε, 2H0+a0−1 < 1and2Hi+2ai−1 <

1 for i = 1, . . . , d. We can now apply Lemma 4.5 with this set of parameters to deduce
that∣∣∣∣

∫
Rd+1

dtdy Qn(s, x; t, y)ψ�
s,x (t, y)

∣∣∣∣
� 22�(d+1−(2H0+H)+ε)

∫
Rd+1

dλdξ
1

|λ|2H0+a0−1

d∏
i=1

1

|ξi |2Hi+2ai−1

∣∣Fψ(λ, ξ)
∣∣.

(4.18)
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Since 2H0 + a0 < 2 and 2Hi + 2ai < 2 for i = 1, . . . , d, we can finally appeal to
Lemma 4.3 to assert that the latter integral is finite, which gives the desired bound for
the second term in the right-hand side of (4.16).

Then, for the treatment of the difference into brackets in (4.16), let us separate the
two cases 2H0 + H < d + 1 and 2H0 + H = d + 1.

First case: 2H0 + H < d + 1 In this situation, going back to the definition (3.8) of
Jρ,H0,H, observe that the renormalization constant can also be expressed as

c
(n)
ρ,H0,H

= c2H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)F p(λ, ξ) dλdξ,

and accordingly

Qn(t, y; t, y) − c
(n)
ρ,H0,H

= −c2H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FR(λ, ξ) dλdξ ,

where R stands for the remainder term in the decomposition of Definition 2.6, item
(i). Invoking the inequality |Fρn(λ, ξ)| � 1 and the result of (4.12), we get

∣∣∣Qn(t, y; t, y) − c
(n)
ρ,H0,H

∣∣∣ � 1 ≤ 22�(1+d−(2H0+H)+ε), (4.19)

where the last inequality naturally stems from the fact that 2H0 + H < d + 1.

Second case: 2H0 + H = d + 1 Let us recall that in this situation,

c
(n)
ρ,H0,H

= c2H0,H

∫
|λ|+|ξ |2≥2−2n

|Fρ(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ.

In fact, using the relation 2H0 + H = d + 1, it is not hard to check that we can recast
the above quantity as

c
(n)
ρ,H0,H

= c2H0,H

∫
|λ|+|ξ |2≥1

|Fρn(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ,

and accordingly

Qn(t, y; t, y) − c
(n)
ρ,H0,H

= c2H0,H

∫
|λ|+|ξ |2≤1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FK (λ, ξ) dλdξ

− c2H0,H

∫
|λ|+|ξ |2≥1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FR(λ, ξ) dλdξ.

123



Stoch PDE: Anal Comp (2021) 9:819–866 843

Using the results of Lemmas 4.5 and 4.6, aswell as the uniform estimate |Fρn(λ, ξ)| �
1, we thus get∣∣∣Qn(t, y; t, y) − c

(n)
ρ,H0,H

∣∣∣
�
∫

|λ|+|ξ |2≤1
NH0,H(λ, ξ) dλdξ +

∫
|λ|+|ξ |2≥1

NH0,H(λ, ξ)|F R(λ, ξ)| dλdξ � 1 ≤ 22�ε,

(4.20)

which corresponds to the desired bound in this case.
We can now conclude our proof: combining (4.18), (4.19) and (4.20) with (4.16),

we immediately obtain (4.15). ��
We turn to a bound on the variance of the renormalized K -rough path Ŵn .

Proposition 4.8 Let Ŵn be the renormalized K -rough path defined by (3.11), where
we recall that WWWn := (Ẇ n,W2,n) andW2,n is introduced in (3.3). Then for all � ≥ 0,
n ≥ m ≥ 0, ψ ∈ B2(d+1)

s , (s, x) ∈ R
d+1 and ε ∈ (0, 1), it holds that

E
[|〈Ŵ2,n

s,x − Ŵ2,m
s,x , ψ�

s,x 〉|2
]

� 24�(1+d−(2H0+H)+ε)2−mε, (4.21)

where the proportional constant in (4.21) does not depend on n,m, �, s, x.

Proof For the sake of conciseness, we will only focus on the case m = 0, i.e. we will
show the uniform estimate

E
[|〈Ŵ2,n

s,x , ψ
�
s,x 〉|2

]
� 24�(1+d−(2H0+H)+ε).

The proof in the general case m ≥ 0 could in fact be obtained through elementary
adaptations of the subsequent estimates, using the fact that Fρ is Lipschitz (see e.g.
the arguments in the proof of [3, Proposition 3.3] for more details on the transition
from m = 0 to m ≥ 0).

Observe first that due toWick’s formula for products of Gaussian random variables
[and using the notation of (3.3)], we can write

E
[|〈W2,n

s,x , ψ
�
s,x 〉|2

] =
∫∫

Rd+1×Rd+1
dtdydt̃d ỹ ψ�

s,x (t, y)ψ
�
s,x (t̃, ỹ)

E
[
In
s,x (t, y)Ẇ

n(t, y)In
s,x (t̃, ỹ)Ẇ

n(t̃, ỹ)
]

= (〈
E
[
W2,n

s,x

]
, ψ�

s,x

〉)2 + U�,n
s,x + V�,n

s,x ,

where we have set

U�,n
s,x :=

∫∫
Rd+1×Rd+1

dtdydt̃d ỹ ψ�
s,x (t, y)ψ

�
s,x (t̃, ỹ)E

[
In
s,x (t, y)In

s,x (t̃, ỹ)
]
E
[
Ẇ n(t, y)Ẇ n(t̃, ỹ)

]

and

V�,n
s,x :=

∫∫
Rd+1×Rd+1

dtdydt̃d ỹ ψ�
s,x (t, y)ψ

�
s,x (t̃, ỹ)E

[
In
s,x (t, y)Ẇ

n(t̃, ỹ)
]
E
[
Ẇ n(t, y)In

s,x (t̃, ỹ)
]
.
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Based on this decomposition, we get that

E
[|〈Ŵ2,n

s,x , ψ
�
s,x 〉|2

] = E
[|〈W2,n

s,x − c
(n)
ρ,H0,H

, ψ�
s,x 〉|2

]
= (〈

E
[
W2,n

s,x

]
, ψ�

s,x

〉)2 + U�,n
s,x + V�,n

s,x − 2〈E[W2,n
s,x

]
, ψ�

s,x

〉〈c(n)
ρ,H0,H

, ψ�
s,x 〉 + 〈c(n)

ρ,H0,H
, ψ�

s,x 〉2

= (〈
E
[
W2,n

s,x

] − c
(n)
ρ,H0,H

, ψ�
s,x

〉)2 + U�,n
s,x + V�,n

s,x

= (〈
En
s,x , ψ

�
s,x

〉)2 + U�,n
s,x + V�,n

s,x ,

where we have used Lemma 4.7 (and the notation therein) to derive the last identity.
Owing to (4.15), our claim (4.21) is thus reduced to check that

∣∣U�,n
s,x

∣∣ � 24�(1+d−(2H0+H)+ε) and
∣∣V�,n

s,x

∣∣ � 24�(1+d−(2H0+H)+ε). (4.22)

The remainder of the proof is devoted to prove (4.22).
To this end, recall that In

s,x is defined by (3.4), which, together with relation (4.2),
yields

E
[
In
s,x (t, y)In

s,x (t̃, ỹ)
] = c2H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2|FK (λ, ξ)|2NH0,H(λ, ξ)

[
eı(λ(t−t̃)+ξ ·(y−ỹ)) − eı(λ(t−s)+ξ ·(y−x)) − eı(λ(s−t̃)+ξ ·(x−ỹ)) + 1

]
Combining this expression with formula (4.1) for E

[
Ẇ n(t, y)Ẇ n(t̃, ỹ)

]
, we easily

deduce that

U�,n
s,x = c4H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃ )|2|FK (λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

[∣∣Fψ�
s,x (λ + λ̃, ξ + ξ̃ )

∣∣2 − Fψ�
s,x (λ + λ̃, ξ + ξ̃ )Fψ�

s,x (λ̃, ξ̃ )e−ı(λs+ξ ·x)

− Fψ�
s,x (λ + λ̃, ξ + ξ̃ )Fψ�

s,x (λ̃, ξ̃ )eı(λs+ξ ·x) + ∣∣Fψ�
s,x (λ, ξ)

∣∣2]
= c4H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃ )|2|FK (λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

[∣∣Fψ�
0,0(λ + λ̃, ξ + ξ̃ )

∣∣2 − Fψ�
0,0(λ + λ̃, ξ + ξ̃ )Fψ�

0,0(λ̃, ξ̃ )

− Fψ�
0,0(λ + λ̃, ξ + ξ̃ )Fψ�

0,0(λ̃, ξ̃ ) + ∣∣Fψ�
0,0(λ, ξ)

∣∣2]
= c4H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃ )|2|FK (λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

∣∣Fψ�
0,0(λ + λ̃, ξ + ξ̃ ) − Fψ�

0,0(λ̃, ξ̃ )
∣∣2. (4.23)

Along similar arguments, we obtain first

V�,n
s,x = c4H0,H∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃ )|2FK (λ, ξ)FK (λ̃, ξ̃ )NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

[
Fψ�

0,0(λ + λ̃, ξ + ξ̃ ) − Fψ�
0,0(λ, ξ)

][
Fψ�

0,0(λ + λ̃, ξ + ξ̃ ) − Fψ�
0,0(λ̃, ξ̃ )

]
,
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and we can now apply Cauchy-Schwarz inequality to derive the estimate

∣∣V�,n
s,x

∣∣ ≤ c4H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃ )|2|FK (λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

∣∣Fψ�
0,0(λ + λ̃, ξ + ξ̃ ) − Fψ�

0,0(λ̃, ξ̃ )
∣∣2. (4.24)

Combining (4.23)–(4.24) with the uniform bound |Fρn(λ, ξ)| � 1, we have thus
shown that uniformly in (s, x) ∈ R

d+1 and n ≥ 1 the following holds true:

|U�,n
s,x | + |V�,n

s,x | � S�, (4.25)

where the quantity S� is given by

S� := c4H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃d ξ̃ |FK (λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

× ∣∣Fψ�
0,0(λ + λ̃, ξ + ξ̃ ) − Fψ�

0,0(λ̃, ξ̃ )
∣∣2.

Moreover, an easy scaling argument performed on ψ�
0,0 = S2�

0,0ψ shows that

S� = c4H0,H 24�(d+2−(2H0+H))S̃�,

where

S̃� =
∫∫

Rd+1×Rd+1
dλdξdλ̃d ξ̃ |FK (22�λ, 2�ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

× ∣∣Fψ(λ + λ̃, ξ + ξ̃ ) − Fψ(λ̃, ξ̃ )
∣∣2. (4.26)

Plugging this information into (4.25) and then (4.22) we are now reduced to show that
for any ε ∈ (0, 1) we have

S̃� � 2−4�(1−ε). (4.27)

We shall prove assertion (4.27) in the next subsection. ��

4.3 Proof of (4.27)

Let us start by highlighting a few inequalities satisfied by (H0,H), that will serve
us later in the proof. First, observe that due to (3.9) and H ≤ d, one has d + 1

2 <

2H0 + H < 2H0 + d, and so one has necessarily

H0 >
1

4
. (4.28)
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Likewise, it holds that d + 1
2 < 2H0 + H < 2H0 + H1 + (d − 1), and so

2H0 + H1 >
3

2
, (4.29)

while for d ≥ 2, one has d + 1
2 < 2H0 + H1 + H2 + (d − 2), and so

2H0 + H1 + H2 >
5

2
. (4.30)

Besides, for obvious symmetry reasons in both expression (4.26) of S̃� and condition
(3.9) on H , we can and will assume in the sequel that H1 ≤ H2 ≤ . . . ≤ Hd . As a
consequence of this assumption, we get that for d ≥ 3 and i ≥ 3, d+ 1

2 < 2H0+H <

2H0 + H1 + H2 + H3 + (d − 3) < 2 + 3Hi + (d − 3), and therefore

Hi >
1

2
for any i ≥ 3. (4.31)

With these conditions in hand, let us go back to our main purpose, that is proving
the estimate (4.27). With (4.26) in mind, our bound on S̃� relies on a proper control
of the difference

∣∣Fψ(λ + λ̃, ξ + ξ̃ ) − Fψ(λ̃, ξ̃ )
∣∣.

To this aim, let us introduce some additional notation. Namely for λ, λ̃ ∈ R we set

T (0)(λ) :=
(∫

Rd+1
dtdy |(∂d+1

t x1...xd ψ)(t, y)|
∣∣∣∣
∫ t

0
du e−ıλu

∣∣∣∣
d+1)1/(d+1)

,

(4.32)

Q(0)(λ, λ̃) :=
(∫

Rd+1
dtdy |(∂d+1

t x1...xd ψ)(t, y)|
∣∣∣∣
∫ t

0
du

∫ u

0
dv e−ı λ̃ue−ıλv

∣∣∣∣
d+1)1/(d+1)

,

(4.33)

and for i = 1, . . . , d,

T (i)(λ) :=
(∫

Rd+1
dtdy |(∂d+1

t x1...xd ψ)(t, y)|
∣∣∣∣
∫ yi

0
dzi e

−ıλzi

∣∣∣∣
d+1)1/(d+1)

, (4.34)

Q(i)(λ, λ̃) :=
(∫

Rd+1
dtdy |(∂d+1

t x1...xd ψ)(t, y)|
∣∣∣∣
∫ yi

0
dzi

∫ zi

0
dwi e

−ı λ̃zi e−ıλwi

∣∣∣∣
d+1)1/(d+1)

,

(4.35)

where the shortcut ∂d+1
t x1...xdψ refers to ∂t∂x1 . . . ∂xdψ . Using this notation, some ele-

mentary algebraic manipulations reveal that for all λ, λ̃ ∈ R and ξ, ξ̃ in Rd , we have

∣∣Fψ(λ + λ̃, ξ + ξ̃ ) − Fψ(λ̃, ξ + ξ̃ )
∣∣ � |λ|Q(0)(λ, λ̃)

d∏
i=1

T (i)(ξi + ξ̃i ). (4.36)
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Along the same lines, for i = 1, . . . , d we also get

∣∣Fψ(λ̃, ξ̃1, . . . , ξ̃i−1, ξi + ξ̃i , ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)

− Fψ(λ̃, ξ̃1, . . . , ξ̃i−1, ξ̃i , ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)
∣∣

� T (0)(λ̃)

( i−1∏
j=1

T ( j)(ξ̃ j )

) (
|ξi | · Q(i)(ξi , ξ̃i )

) ( d∏
j=i+1

T ( j)(ξ j + ξ̃ j )

)
. (4.37)

We now point out a lemma on the functions T (i) andQ(i) which will be crucial in the
sequel.

Lemma 4.9 Fix ψ ∈ Cd+1(Rd+1;R) with compact support, i ∈ {0, 1, . . . , d}, and let
T (i),Q(i) be the functions defined by (4.32)–(4.35).
(1) For all β1, β2 ∈ (0, 2) such that β1 + β2 > 1, it holds that

∫
R2

dx1dx2
|Q(i)(x1, x2)|2

|x1|β1−1|x2|β2−1 < ∞.

(2) For all λ1, λ2 ∈ (0, 2) it holds that

∫
|x1|≤1

dx1

∫
R

dx2
|T (i)(x1 + x2)|2
|x1|λ1−1|x2|λ2−1 < ∞ .

(3) For all λ1 > 0 and λ2 ∈ (0, 2) such that λ1 + λ2 > 3, it holds that

∫
|x1|≥1

dx1

∫
R

dx2
|T (i)(x1 + x2)|2
|x1|λ1−1|x2|λ2−1 < ∞ .

Proof The result of item (1) is borrowed from [3, Lemma 3.11].
As for the proofs of items (2) and (3), they both rely on the readily-checked bound

|T (i)(x)|2 � 1

1 + |x |2 .

For (2), we have

∫
|x1|≤1

dx1

∫
R

dx2
|T (i)(x1 + x2)|2
|x1|λ1−1|x2|λ2−1 �

∫
|x1|≤1

dx1

∫
R

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

�
∫

|x1|≤1

dx1
|x1|λ1−1

∫
|x2|≤2

dx2
|x2|λ2−1 +

∫
|x1|≤1

dx1
|x1|λ1−1

∫
|x2|≥2

dx2
|x2|λ2+1 < ∞.
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As for (3), we can first write

∫
|x1|≥1

dx1

∫
R

dx2
|T (i)(x1 + x2)|2
|x1|λ1−1|x2|λ2−1

�
∫

|x1|≥1
dx1

∫
|x2|≤ 1

2

dx2
1

|x1|λ1+1|x2|λ2−1 +
∫

|x1|≥1
dx1

∫
|x2|≥ 1

2

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2 .

The first integral is clearly finite. Then decompose the second integral as

∫
|x1|≥1

dx1

∫
|x2|≥ 1

2

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

=
∫

|x1|≥1
dx1

∫
{ 12≤|x2|≤ 1

2 |x1|}∪{|x2|≥ 3
2 |x1|}

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

+
∫

|x1|≥1
dx1

∫
1
2 |x1|≤|x2|≤ 3

2 |x1|
dx2

1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2 (4.38)

Now, on the one hand, note that if 1
2 ≤ |x2| ≤ 1

2 |x1| or |x2| ≥ 3
2 |x1|, then |x1 + x2| ≥

max 1
3

(|x1|, |x2|), and so, for any β ∈ [0, 1]
∫

|x1|≥1
dx1

∫
{ 12≤|x2|≤ 1

2 |x1|}∪{|x2|≥ 3
2 |x1|}

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

�
∫

|x1|≥1

dx1
|x1|λ1+2β−1

∫
|x2|≥ 1

2

dx2
|x2|λ2+2(1−β)−1

(4.39)

Due to the assumption λ1 + λ2 > 3, we can obviously write λ1 + λ2 > 2 + ε

for any small ε > 0, and from here we can pick β := λ2
2 − ε

2 ∈ [0, 1], so that
λ2 + 2(1− β) − 1 = 1+ ε > 1 and λ1 + 2β − 1 = λ1 + λ2 − ε − 1 > 1. For such a
value of β, both integrals in (4.39) are thus finite.

On the other hand, we can write

∫
|x1|≥1

dx1

∫
1
2 |x1|≤|x2|≤ 3

2 |x1|
dx2

1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

=
∫

|x1|≥1
dx1 x1

∫
1
2≤|r |≤ 3

2

dr
1

|x1|λ1+λ2−2|r |λ2−1

1

1 + |x1|2(1 + r)2

�
∫

|x1|≥1

dx1
|x1|λ1+λ2−2−ε

∫
1
2≤|r |≤ 3

2

dr

(1 + r)1−ε
.

Using the assumption λ1 + λ2 > 3, we can pick ε > 0 small enough such that
λ1 + λ2 − 2 − ε > 1, which shows that the above quantity is finite. Going back to
(4.38), this achieves the proof of item (3). ��
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With those notations and preliminary results in hand, let us go back to (4.26).
Invoking (4.36) and (4.37), our claim (4.27) amounts to show that

J 0,� :=
∫∫

Rd+1×Rd+1
dλdξdλ̃d ξ̃ |FK (22�λ, 2�ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

×
(
|λ|2Q(0)(λ, λ̃)2

) d∏
i=1

(
T (i)(ξi + ξ̃i )

)2
� 2−4�(1−ε), (4.40)

and that for every fixed i = 1, . . . , d, we have

J i,� :=
∫∫

Rd+1×Rd+1
dλdξdλ̃d ξ̃ |FK (22�λ, 2�ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

(
T (0)(λ̃)

)2

×
i−1∏
j=1

(
T ( j)(ξ̃ j )

)2 (|ξi |2Q(i)(ξi , ξ̃i )
2
) d∏

j=i+1

(
T ( j)(ξ j + ξ̃ j )

)2
� 2−4�(1−ε).

(4.41)

To establish these bounds, we will split the integration domain for the variables
λ, ξ along

D− := {λ ∈ R : |λ| ≤ 1} and D+ := {λ ∈ R : |λ| ≥ 1},

that is we set, for every s ∈ {−,+}d+1, Ds := ∏d
k=0 Dsk , and then consider

J 0,�
s :=

∫∫
Ds×Rd+1

dλdξdλ̃d ξ̃ |FK (22�λ, 2�ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )

×
(
|λ|2Q(0)(λ, λ̃)2

) d∏
i=1

(
T (i)(ξi + ξ̃i )

)2
. (4.42)

For every fixed i = 1, . . . , d, we also set

J i,�
s :=

∫∫
Ds×Rd+1

dλdξdλ̃d ξ̃ |FK (22�λ, 2�ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃ )
(
T (0)(λ̃)

)2

×
i−1∏
j=1

(
T ( j)(ξ̃ j )

)2 (|ξi |2Q(i)(ξi , ξ̃i )
2
) d∏

j=i+1

(
T ( j)(ξ j + ξ̃ j )

)2
. (4.43)

It is clear that (4.40) and (4.41) will hold true if we can show that for every s ∈
{−,+}d+1,

J 0,�
s � 2−4�(1−ε) and J i,�

s � 2−4�(1−ε). (4.44)

We will now treat the two integrals (4.42) and (4.43) separately.

Bound on (4.42) Let s ∈ {−,+}d+1 be fixed. We can apply Lemma 4.5 and recall
the definition (3.6) ofNH0,H in order to assert that for all a0, a1, . . . , ad ∈ [0, 1] such
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that a0 + a1 + . . . + ad < 1, the integral in (4.42) is bounded (up to a constant) by

2−4�(a0+a1+...+ad )

(∫
Ds0×R

dλdλ̃
Q(0)(λ, λ̃)2

|λ|(2a0+2H0−2)−1|λ̃|2H0−1

)

×
d∏

i=1

(∫
Dsi ×R

dξi d ξ̃i
T (i)(ξi + ξ̃i )

2

|ξi |4ai+2Hi−1|ξ̃i |2Hi−1

)
. (4.45)

The whole point now is that we can find parameters a0, a1, . . . , ad ∈ [0, 1] such that
a0+a1+ . . .+ad = 1−ε and such that the integrals involved in the above expression
are all finite. In order to justify this claim, we can refer to Lemma 4.9. According
to this property, the first integral in (4.45) is finite whenever 2a0 + 2H0 > 3 − 2H0
and 2a0 + 2H0 < 4. Moreover, since 0 < a0 < 1, we have 2H0 < 2a0 + 2H0 <

2 + 2H0 < 4. Summarizing those elementary considerations and similar ones for the
second integral in (4.45), we get that (4.45) is a finite expression as long as

⎧⎨
⎩
max(2H0, 3 − 2H0) < 2a0 + 2H0 < 2 + 2H0

2Hi < 4ai + 2Hi < 2 for i ∈ {i ∈ {1, . . . , d} : si = −}
3 − 2Hi < 4ai + 2Hi < 4 + 2Hi for i ∈ {i ∈ {1, . . . , d} : si = +}.

(4.46)

Provided (4.46) is met and a0 + a1 + . . . + ad = 1 − ε, we thus have that the
expression (4.45) is bounded, up to a constant, by 2−4�(1−ε). This proves (4.40).

We now show that the above-reported conditions can indeed be fulfilled under our
standing assumptions. In fact,
(i) Since H0 > 1

4 [see (4.28)], the first condition in (4.46) is easily shown to be satisfied
for some values of a0 ∈ (0, 1).
(ii) The conditions (4.46) can also be made consistent with the desired assumption∑d

i=0 ai = 1 − ε for ε > 0. In order to verify this assertion, sum the constraints in
(4.46). This yields

A0
s < 2(2a0 + 2H0) +

d∑
i=1

(4ai + 2Hi ) < B0
s , (4.47)

with two parameters As, Bs defined by

A0
s := 2max(2H0, 3 − 2H0) + 2

∑
i=1,...,d
si=−

Hi +
∑

i=1,...,d
si=+

(3 − 2Hi )

B0
s = 2(2 + 2H0) + 2

∣∣{i ∈ {1, . . . , d} : si = −}∣∣ + ∑
i=1,...,d
si=+

(4 + 2Hi ). (4.48)
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We now resort to the assumption
∑d

i=0 ai = 1 − ε. Recalling our notation H =∑d
i=1 Hi , we end up with the condition

A0
s < 4(1 − ε) + 2(2H0 + H) < B0

s . (4.49)

In order to see that these two inequalities are indeed satisfied (at least for ε > 0 small
enough), observe first that

B0
s = 2(2 + 2H0) + 2d + 2

∑
i=1,...,d
si=+

(1 + Hi ) ≥ 4 + 2(2H0 + d) > 4 + 2(2H0 + H),

where the last inequality immediately follows from the trivial bound H < d.
As for the first inequality in (4.49), note that

A0
s ≤ 2max(2H0, 3 − 2H0) + 2

∑
i=1,...,d
si=−

Hi +
∑

i=1,...,d
si=+

(3 − 2Hi )

≤ 2max(2H0, 3 − 2H0) +
d∑

i=1

max(2Hi , 3 − 2Hi )

≤ 2max(2, 3 − 2H0) + max(2, 3 − 2H1) + max(2, 3 − 2H2)1d≥2 + 2(d − 2)1d≥2, (4.50)

where we have used the observation (4.31) to derive the last inequality. The following
table collects the possible values of the bound in (4.50), depending on H0, H1, H2
(remember that H1 ≤ H2):

H0 H1 H2 A0s for d = 1 A0s for d ≥ 2

(0, 1
2 ] (0, 1

2 ] (0, 1
2 ] ≤ 9 − 2(2H0 + H1) ≤ 2d + 8 − 2(2H0 + H1 + H2)

(0, 1
2 ] (0, 1

2 ] ( 12 , 1) ≤ 9 − 2(2H0 + H1) ≤ 2d + 7 − 2(2H0 + H1)

(0, 1
2 ] ( 12 , 1) ( 12 , 1) ≤ 8 − 4H0 ≤ 2d + 6 − 4H0

( 12 , 1) (0, 1
2 ] (0, 1

2 ] ≤ 7 − 2H1 ≤ 2d + 6 − 2(H1 + H2)

( 12 , 1) (0, 1
2 ] ( 12 , 1) ≤ 7 − 2H1 ≤ 2d + 5 − 2H1

( 12 , 1) ( 12 , 1) ( 12 , 1) ≤ 6 ≤ 2d + 4

Based on these values, and using the three conditions (4.28)–(4.29)–(4.30), we can
easily conclude that

A0
s < 2d + 5 < 4 + 2(2H0 + H),

where the last bound is derived from the assumption 2H0 + H > d + 1
2 .

We have thus checked that (4.49) holds true, and this completes the proof of the
desired estimate

J 0,�
s � 2−4�(1−ε). (4.51)
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Bound on (4.43) Let us fix s ∈ {−,+}d+1 and i ∈ {1, . . . , d}. In order to bound J i,�
s ,

we proceed similarly to (4.45). Namely we apply Lemma 4.5 to assert that for all
a0, a1, . . . , ad ∈ [0, 1] such that a0 + a1 + . . . + ad < 1,

J i,�
s � 2−4�(a0+a1+...+ad )

(∫
Ds0

dλ

|λ|2a0+2H0−1

)
(∫

R

dλ̃
T (0)(λ̃)2

|λ̃|2H0−1

) i−1∏
r=1

(∫
R

d ξ̃r
T (r)(ξ̃r )

2

|ξ̃r |2Hr−1

)

×
i−1∏
k=1

(∫
Dsk

dξk

|ξk |4ak+2Hk−1

)

×
(∫

Dsi ×R

dξi d ξ̃i
Q(i)(ξi , ξ̃i )

2

|ξi |(4ai+2Hi−2)−1|ξ̃i |2Hi−1

)
d∏

p=i+1

(∫
Dsp×R

dξpd ξ̃p
T (p)(ξp + ξ̃p)

2

|ξp|4ap+2Hp−1|ξ̃p|2Hp−1

)
, (4.52)

where we recall that D− := [−1, 1] and D+ := R\[−1, 1].
Based on the criteria of Lemma 4.9, we get the following conditions on the param-

eters a0, a1, . . . , ad (so as to ensure that the integrals in (4.52) are all finite, and also
that each ai belongs to (0, 1)):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2H0 < 2a0 + 2H0 < 2 if s0 = −
2 < 2a0 + 2H0 < 2 + 2H0 if s0 = +
2Hk < 4ak + 2Hk < 2 for k ∈ {k ∈ {1, . . . , i − 1} : sk = −}
2 < 4ak + 2Hk < 4 + 2Hk for k ∈ {k ∈ {1, . . . , i − 1} : sk = +}
max(2Hi , 3 − 2Hi ) < 4ai + 2Hi < 4
2Hp < 4ap + 2Hp < 2 for p ∈ {p ∈ {i + 1, . . . , d} : sp = −}
3 − 2Hp < 4ap + 2Hp < 4 + 2Hp for p ∈ {p ∈ {i + 1, . . . , d} : sp = +}.

(4.53)

As in the proof of (4.40), we still have to verify that the parameters a0, . . . , ad can
be chosen so that

∑d
k=0 ak = 1−ε. To this aim, we use the same strategy as for (4.46).

Namely we sum all the constraints in (4.53), which yields the following condition:

Ai
s < 4(1 − ε) + 2(2H0 + H) < Bi

s , (4.54)

with two parameters Ai
s, B

i
s defined by

123



Stoch PDE: Anal Comp (2021) 9:819–866 853

Ai
s := 4{H0 1s0=− + 1s0=+} + 2

∑
k=1,...,i−1

sk=−

Hk + 2
∣∣{k ∈ {1, . . . , i − 1} : sk = +}∣∣

+ max(2Hi , 3 − 2Hi ) + 2
∑

p=i+1,...,d
sp=−

Hp +
∑

p=i+1,...,d
sp=+

(3 − 2Hp), (4.55)

Bi
s := 4{ 1s0=− + (1 + H0)1s0=+} + 2

∣∣{k ∈ {1, . . . , i − 1} : sk = −}∣∣ + ∑
k=1,...,i−1

sk=+

(4 + 2Hk)

+ 4 + 2
∣∣{p ∈ {i + 1, . . . , d} : sp = −}∣∣ + ∑

p=i+1,...,d
sp=+

(4 + 2Hp).

In order to see that Ai
s < 4 + 2(2H0 + H), observe first that

Ai
s < 4 + 2(i − 1) +

d∑
q=i

max(2Hq , 3 − 2Hq). (4.56)

Let us recall that, by (4.31), one has Hq > 1
2 for q ≥ 3, and so the above bound yields,

for i ≥ 3,

Ai
s < 4 + 2(i − 1) + 2(d − i + 1) = 4 + 2d < 3 + 2(2H0 + H),

where we have used the assumption d + 1
2 < 2H0 + H to derive the last inequality.

Then, using again (4.56), we have

A2
s < 6 + max(2H2, 3 − 2H2) + 2(d − 2) = 2 + 2d + max(2H2, 3 − 2H2)

< 5 + 2d < 4 + 2(2H0 + H),

where we have again used the assumption d + 1
2 < 2H0 + H to derive the last

inequality.
As for A1

s , we get by (4.56) that

A1
s < 4 + max(2H1, 3 − 2H1) + max(2H2, 3 − 2H2) + 2(d − 2)

< 2d + max(2, 3 − 2H1) + max(2, 3 − 2H2)

≤ 2d + max(4, 5 − 2H1, 5 − 2H2, 6 − 2(H1 + H2))

< 5 + 2d < 4 + 2(2H0 + H),

where we have used (4.30) to get the fourth inequality.
This completes the proof of the first inequality in (4.54).
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For the second inequality (i.e., 4(1 − ε) + 2(2H0 + H) < Bi
s ), let us write Bi

s as

Bi
s = 4{ 1s0=− + (1 + H0)1s0=+} + 2(i − 1) + 2

∑
k=1,...,i−1

sk=+

(1 + Hk)

+ 4 + 2(d − i) + 2
∑

p=i+1,...,d
sp=+

(1 + Hp)

= 2d + 2 + 4{ 1s0=− + (1 + H0)1s0=+} + 2
∑

k=1,...,i−1
sk=+

(1 + Hk) + 2
∑

p=i+1,...,d
sp=+

(1 + Hp),

and from here it is clear that

Bi
s > 6 + 2d ≥ 4 + 2(2H0 + H),

where the last inequality stems from the assumption 2H0 + H ≤ d + 1.
We have thus checked that (4.54) holds true, and this completes the proof of the

desired estimate: for every i = 1, . . . , d,

J i,�
s � 2−4�(1−ε). (4.57)

The combination of (4.51) and (4.57) precisely corresponds to (4.44), and accord-
ingly the proof of (4.27) is achieved.

4.4 Conclusion: proof of Theorem 3.3

Let us now see how we can use the moments estimates of Propositions 4.4 and 4.8 in
order to prove the desired convergence (3.13).

First, by applying Lemma 4.2 to a constant distribution ζs,x := Ẇ n − Ẇm (which
means that θ i = ζ �,i = 0 in Lemma 4.2), we get that for every k, p ≥ 1 ,

E

[∥∥Ẇ n − Ẇm
∥∥2p

α;k,w
]

� E

[
sup
ψ∈�

sup
�≥0

sup
(s,x)∈��

s∩([−(k+2),k+2]×Rd )

22�pα
|〈Ẇ n − Ẇm ,S2−�

s,x ψ〉|2p
w(x)2p

]

�
∑
ψ∈�

∑
�≥0

∑
(s,x)∈��

s∩([−(k+2),k+2]×Rd )

22�pα
E
[|〈Ẇ n − Ẇm ,S2−�

s,x ψ〉|2p]
w(x)2p

,

Furthermore, Ẇ n − Ẇm is a Gaussian process. Therefore we have

E

[∥∥Ẇ n − Ẇm
∥∥2p

α;k,w
]

�
∑
ψ∈�

∑
�≥0

∑
(s,x)∈��

s∩([−(k+2),k+2]×Rd )

22�pα
E
[|〈Ẇ n − Ẇm ,S2−�

s,x ψ〉|2]p
w(x)2p

� 2−mεp
∑
�≥0

22�p(α+d+2−(2H0+H)+ε)
∑

(s,x)∈��
s∩([−(k+2),k+2]×Rd )

w(x)−2p, (4.58)

where the last inequality follows from Proposition 4.4 and the fact that � is a finite
set.
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At this point, observe that

∑
(s,x)∈��

s∩([−(k+2),k+2]×Rd )

w(x)−2p =
( ∑

q0∈Z
1{−(k+2)≤q02−2�≤k+2}

)( ∑
q∈Zd

(
1 + 2−�|q|)−2κ p

)

� 22�k

{
1 + 22κ�p

∑
q∈Zd\{0}

|q|−2κ p
}
.

Owing to our assumption α < −(d + 2) + (2H0 + H), we can pick ε > 0 small
enough such that β := −α − (d + 2) + (2H0 + H) − ε > 0. Going back to (4.58),
we have obtained that for every k, p ≥ 1,

E

[∥∥Ẇ n − Ẇm
∥∥2p

α;k,w
]

� k 2−mεp
∑
�≥0

{
2−2�(β p−1) + 2−2�((β−κ)p−1)

∑
q∈Zd\{0}

|q|−2κ p
}
.

(4.59)

Without loss of generality, we can here assume that 0 < κ < β. Then we can pick
p ≥ 1 large enough so that (β − κ)p − 1 > 0 and 2κ p > d, which ensures that the
sum in (4.59) is finite, and so, for every k ≥ 1 and any such large p ≥ 1,

E

[∥∥Ẇ n − Ẇm
∥∥2p

α;k,w
]

� k 2−mεp . (4.60)

Using similar arguments [starting from Lemma 4.2, and also leaning on (2.17)], we
can then turn the estimate of Proposition 4.8 into the bound

E

[∥∥Ŵ2,n − Ŵ2,m∥∥2p
2α+2;k,w

]
� k 2−mεp , (4.61)

for every k ≥ 1, every ε > 0 small enough and every p ≥ 1 large enough.
Combining (4.60) and (4.61), we get that for all ε > 0 small enough and p ≥ 1

large enough

E
[
dα,w(ŴWW

n
, ŴWW

m
)2p

]
� 2−mεp,

for all n ≥ m ≥ 1, and accordingly (ŴWW
n
)n≥1 is a Cauchy sequence in

L p(�; (EK
α;w, dα;w)). By Lemma 2.8, we can assert that there exists an element

ŴWW ∈ EK
α;w satisfying

E
[
dα,w(ŴWW , ŴWW

m
)2p

]
� 2−mεp,

for every p ≥ 1 large enough. The desired conclusion, that is the almost sure conver-
gence of ŴWW

n
to ŴWW in (EK

α;w, dα;w), immediately follows from Borel-Cantelli lemma.
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5 Proof of Theorem 3.10

Aswe announced it earlier, the proof of Theorem 3.10 will in fact reduce to a review of
the few adaptations to be made with respect to the proof of Theorem 3.3. Observe first
that in this setting, identities (4.1) and (4.2) immediately give way to the following
covariance formulas:

Lemma 5.1 Let Ẇ n be the smoothed noise defined by (3.19) and recall that the kernel
K̃ is defined by (2.12). For every fixed n ≥ 1, the families {Ẇ n(y); y ∈ R

d} and
{K̃ ∗ Ẇ n(y); y ∈ R

d} are centered Gaussian processes with respective covariance
functions given by the formulas

E
[
Ẇ n(y)Ẇ n(ỹ)

] = c2H

∫
Rd

dξ |Fsρn(ξ)|2NH(ξ)eıξ ·(y−ỹ), (5.1)

and

E
[
(K̃ ∗ Ẇ n)(y)(K̃ ∗ Ẇ n)(ỹ)

] = c2H

∫
Rd

dξ |Fsρn(ξ)|2|Fs K̃ (ξ)|2NH(ξ)eıξ ·(y−ỹ),

(5.2)

where the notation NH has been introduced in (3.25) and the constant cH is the one
given in (1.4).

5.1 Moment estimate for the first component

Morally, we need to check that the result of Proposition 4.4 still holds for H0 = 1. In
a more rigorous way, one has here:

Proposition 5.2 For all � ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s and x ∈ R

d , it holds that

E
[|〈Ẇ n − Ẇm, ψ̃�

x 〉|2
]

� 22�(d−H+ε)2−mε, (5.3)

where ψ̃(x) := ∫
R
ds ψ(s, x), ψ̃�

x (y) := 2�d ψ̃(2�(y − x)), and the proportional
constant in � does not depend on n,m, �, s, x.

Proof It suffices to follow the arguments of the proof of Proposition 4.4, and therein
replace identity (4.1) with the covariance formula (5.1). ��

5.2 Moment estimate for the second component

The preliminary estimates on FK and FR (i.e., Lemmas 4.5 and 4.6) become esti-
mates on Fs K̃ and

∫∞
0 ds FsR(s, .) in the spatial setting. Just as their space-time

counterparts, these bounds follow from the analysis of the expansions contained in
(2.12).
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Lemma 5.3 Let K be the localized heat kernel of Definition 2.6, and define K̃ along
(3.23). For all fixed a1, . . . , ad ∈ [0, 1] such that

∑d
i=1 ai < 1, one has, for every

ξ ∈ R
d ,

|Fs K̃ (ξ)| �
d∏

i=1

|ξi |−2ai .

Lemma 5.4 Let R be the remainder term associated with the localized heat kernel K
(along Definition 2.6). Then, for all fixed a1, . . . , ad ≥ 0 such that

∑d
i=1 ai > 1, one

has, for every ξ ∈ R
d+1,

∣∣∣∣
∫ ∞

0
ds FsR(s, .)(ξ)

∣∣∣∣ �
d∏

i=1

|ξ |−2ai . (5.4)

As a consequence, if H = (H1, . . . , Hd) ∈ (0, 1)d is such that H < d − 1, it holds
that

∫
Rd

dξ NH(ξ)

∣∣∣∣
∫ ∞

0
ds FsR(s, .)(ξ)

∣∣∣∣ < ∞. (5.5)

A similar decomposition to (4.14) can also be exhibited in this time-independent
situation.

Lemma 5.5 Let W2,n be the increment given by (3.21), and recall that the renormal-
ization constant c(n)

ρ,H is defined by (3.28). Then for all x, y ∈ R
d and n ≥ 1, one has

the decomposition

E
[
W2,n

x (y)
] = c

(n)
ρ,H + En

x (y), (5.6)

for some function En
x such that for all ε ∈ (0, 1), � ≥ 0 and ψ ∈ B�

s, we have

∣∣〈En
x , ψ̃�

x 〉
∣∣ � 22�(d−H−1+ε). (5.7)

Moreover, in relation (5.7) the proportional constant does not depend on n, �, x.

Proof We mimic the proof of Lemma 4.7. First, one can of course write

E
[
W2,n

x (y)
] = c

(n)
ρ,H + En

x (y),

with

En
x (y) :=

{
Q̃n(y; y) − c

(n)
ρ,H

}
− Q̃n(x; y) and Q̃n(x; y) := E

[
(K̃ ∗ Ẇ n)(x)Ẇ n(y)

]
. (5.8)
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On the one hand, using (5.1)–(5.2), and along the same lines as for (4.18), we get

∣∣∣∣
∫
Rd

dy Q̃n(x; y)ψ̃�
x (y)

∣∣∣∣ = c2H 22�(d−H)

∣∣∣∣
∫
Rd

dξ |Fsρn(2
�ξ)|2NH(ξ)Fs K̃ (2�ξ)Fsψ̃(ξ)

∣∣∣∣.

Since H ≤ d − 1, we can pick a1, . . . , ad in [0, 1] such that
∑d

i=1 ai = 1 − ε and
2Hi + 2ai − 1 < 1 for i = 1, . . . , d. Applying Lemma 5.3 with these parameters and
invoking the inequality |Fsρn(ξ)| � 1, we deduce

∣∣∣∣
∫
Rd

dy Q̃n(x; y)ψ̃�
x (y)

∣∣∣∣ � 22�(d−H−1+ε)

∫
Rd

dξ

d∏
i=1

1

|ξi |2Hi+2ai−1

∣∣Fsψ̃(ξ)
∣∣ � 22�(d−H−1+ε).

Then, to bound the difference Q̃n(y; y) − c
(n)
ρ,H in (5.8), consider the two possible

situations for H .

First case: H < d − 1 In this case, going back to the definition (3.26) ofJρ,H, we can
write

c
(n)
ρ,H = 22n(d−H−1)c2HJρ,H = c2H0

∫
Rd

|Fsρn(ξ)|2NH(ξ)

(∫ ∞

0
ds Fs ps(ξ)

)
dξ.

(5.9)

Besides, using (2.12), it holds that

Fs K̃ (ξ) =
∫ ∞

0
ds FsK (s, .)(ξ) =

∫ ∞

0
ds Fs ps(ξ) −

∫ ∞

0
ds FsR(s, .)(ξ),

(5.10)

and so, in light of (5.9),

Q̃n(y; y) − c
(n)
ρ,H = −c2H

∫
Rd

|Fsρn(ξ)|2NH(ξ)

(∫ ∞

0
ds FsR(s, .)(ξ)

)
dξ.

Thus, thanks to (5.5) and to the uniform estimate |Fsρn(ξ)| � 1, we obtain

∣∣Q̃n(y; y) − c
(n)
ρ,H

∣∣ � 1 ≤ 22�(d−H−1+ε).

Second case: H = d − 1 Due to the latter relation, it can be checked that

c
(n)
ρ,H = c2H

∫
|ξ |≥1

|Fsρn(ξ)|2NH(ξ)

(∫ ∞

0
ds Fs ps(ξ)

)
dξ,
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and accordingly, by (5.10),

Q̃n(y; y) − c
(n)
ρ,H

= c2H

[ ∫
|ξ |≤1

|Fsρn(ξ)|2NH(ξ)Fs K̃ (ξ) dξ −
∫

|ξ |≥1
|Fsρn(ξ)|2NH(ξ)

(∫ ∞

0
ds FsR(s, .)(ξ)

)
dξ

]
.

Using the results of Lemma 5.3 and Lemma 5.4, we easily conclude that

∣∣Q̃n(y; y) − c
(n)
ρ,H

∣∣ �
∫

|ξ |≤1
NH(ξ) dξ +

∫
|ξ |≥1

NH(ξ)

∣∣∣∣
∫ ∞

0
ds FsR(s, .)(ξ)

∣∣∣∣ dξ � 1 ≤ 22�ε,

which corresponds to the desired bound in this case. ��
The spatial counterpart of the central Proposition 4.8 now takes the following

(expected) shape.

Proposition 5.6 Let Ŵn be the renormalized K -rough path defined in the statement of
Theorem 3.10. Then for all � ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)

s , x ∈ R
d and ε ∈ (0, 1),

it holds that

E

[
|〈Ŵ2,n

x − Ŵ2,m
x , ψ̃�

x 〉|2
]

� 24�(d−H−1+ε)2−mε, (5.11)

where the proportional constant in (5.11) does not depend on n,m, �, x.

Proof Just as in the proof of Proposition 4.8, we only focus on the proof of (5.11) for
m = 0.

Using the decomposition exhibited in Lemma 5.5, we get first

E
[|〈Ŵ2,n

x , ψ̃�
x 〉|2

] = E
[|〈W2,n

x − c
(n)
ρ,H, ψ̃�

x 〉|2
] = (〈

En
x , ψ�

x

〉)2 + U�,n
x + V�,n

x ,

where

U�,n
x :=

∫∫
Rd×Rd

dyd ỹ ψ̃�
x (y)ψ̃

�
x (ỹ)E

[
In
x (y)In

x (ỹ)
]
E
[
Ẇ n(y)Ẇ n(ỹ)

]
and

V�,n
x :=

∫∫
Rd×Rd

dyd ỹ ψ̃�
x (y)ψ̃

�
x (ỹ)E

[
In
x (y)Ẇ n(ỹ)

]
E
[
Ẇ n(y)In

x (ỹ)
]
.

From here, and due to (5.7), the proof of (5.11) consists in checking that |U�,n
x | +

|V�,n
x | � 24�(d−H−1+ε). In fact, we can follow line by line the arguments leading to

(4.25) [replacing of course (4.1)–(4.2) with (5.1)–(5.2)] to obtain that |U�,n
x |+|V�,n

x | �
24�(d−H)S̃�, where

S̃� =
∫∫

Rd×Rd
dξd ξ̃ |F K̃ (2�ξ)|2NH(ξ)NH(ξ̃ )

∣∣Fψ̃(ξ + ξ̃ ) − Fψ̃(ξ̃ )
∣∣2. (5.12)
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Therefore, in view of (5.11), it remains us to check that for any ε ∈ (0, 1) we have

S̃� � 2−4�(1−ε). (5.13)

To this end, we can bound the difference |Fψ̃(ξ + ξ̃ ) − Fψ̃(ξ̃ )| in S̃� using the
inequalities

∣∣Fψ(ξ̃1, . . . , ξ̃i−1, ξi + ξ̃i , ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d )

− Fψ(ξ̃1, . . . , ξ̃i−1, ξ̃i , ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d )
∣∣

�
i−1∏
j=1

T ( j)(ξ̃ j )
(
|ξi | · Q(i)(ξi , ξ̃i )

) d∏
j=i+1

T ( j)(ξ j + ξ̃ j ), i = 1, . . . , d,

where, for λ, λ̃ ∈ R, the quantities T (i)(λ) and Q(i)(λ, λ̃) are here defined by

T (i)(λ) :=
(∫

Rd
dy |(∂x1 . . . ∂xd ψ̃)(y)|

∣∣∣∣
∫ yi

0
dzi e

−ıλzi

∣∣∣∣
d)1/d

, (5.14)

Q(i)(λ, λ̃) :=
(∫

Rd
dy |(∂x1 . . . ∂xdψ)(y)|

∣∣∣∣
∫ yi

0
dzi

∫ zi

0
dwi e

−ı λ̃zi e−ıλwi

∣∣∣∣
d)1/d

.

(5.15)

With those notations, the claim (5.13) reduces to showing that for every fixed i =
1, . . . , d, we have

J i,� :=
∫∫

Rd×Rd
dξd ξ̃ |F K̃ (2�ξ)|2NH(ξ)NH(ξ̃ )

×
i−1∏
j=1

(
T ( j)(ξ̃ j )

)2 (|ξi |2Q(i)(ξi , ξ̃i )
2
) d∏

j=i+1

(
T ( j)(ξ j + ξ̃ j )

)2
� 2−4�(1−ε).

(5.16)

Let us again follow the pattern of the proof of Proposition 4.8 and split the integration
domain for the variables ξ1, . . . , ξd along D− := {λ ∈ R : |λ| ≤ 1} and D+ := {λ ∈
R : |λ| ≥ 1}. In other words, we set, for every s ∈ {−,+}d , Ds := ∏d

k=1 Dsk , and
then consider, for every i = 1, . . . , d,

J i,�
s :=

∫∫
Ds×Rd

dξd ξ̃ |F K̃ (2�ξ)|2NH(ξ)NH(ξ̃ )

×
i−1∏
j=1

(
T ( j)(ξ̃ j )

)2 (|ξi |2Q(i)(ξi , ξ̃i )
2
) d∏

j=i+1

(
T ( j)(ξ j + ξ̃ j )

)2
.
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By applying Lemma 5.3, we can assert that for all a1, . . . , ad ∈ [0, 1] such that
a1 + . . . + ad < 1,

J i,�
s � 2−4�(a1+...+ad )

i−1∏
r=1

(∫
R

d ξ̃r
T (r)(ξ̃r )

2

|ξ̃r |2Hr−1

)
×

i−1∏
k=1

(∫
Dsk

dξk

|ξk |4ak+2Hk−1

)

×
(∫

Dsi ×R

dξi d ξ̃i
Q(i)(ξi , ξ̃i )

2

|ξi |(4ai+2Hi−2)−1|ξ̃i |2Hi−1

)
d∏

p=i+1

(∫
Dsp×R

dξpd ξ̃p
T (p)(ξp + ξ̃p)

2

|ξp|4ap+2Hp−1|ξ̃p|2Hp−1

)
.

Based on the criteria of Lemma 4.9 [which clearly remain true for T (i) and Q(i)

defined by (5.14)–(5.15)], we deduce the following conditions on a1, . . . , ad (to ensure
finiteness of the above integrals):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Hk < 4ak + 2Hk < 2 for k ∈ {k ∈ {1, . . . , i − 1} : sk = −}
2 < 4ak + 2Hk < 4 + 2Hk for k ∈ {k ∈ {1, . . . , i − 1} : sk = +}
max(2Hi , 3 − 2Hi ) < 4ai + 2Hi < 4
2Hp < 4ap + 2Hp < 2 for p ∈ {p ∈ {i + 1, . . . , d} : sp = −}
3 − 2Hp < 4ap + 2Hp < 4 + 2Hp for p ∈ {p ∈ {i + 1, . . . , d} : sp = +}.

(5.17)

With (5.16) in mind, we need these inequalities to be also consistent with the relation∑d
k=1 ak = 1 − ε. The combination of these two constraints thus leads us to the

condition

Ai
s < 4(1 − ε) + 2H < Bi

s , (5.18)

with two parameters Ai
s, B

i
s defined by

Ai
s := 2

∑
k=1,...,i−1

sk=−

Hk + 2
∣∣{k ∈ {1, . . . , i − 1} : sk = +}∣∣ + max(2Hi , 3 − 2Hi )

+ 2
∑

p=i+1,...,d
sp=−

Hp +
∑

p=i+1,...,d
sp=+

(3 − 2Hp),

Bi
s := 2

∣∣{k ∈ {1, . . . , i − 1} : sk = −}∣∣ + ∑
k=1,...,i−1

sk=+

(4 + 2Hk)

+ 4 + 2
∣∣{p ∈ {i + 1, . . . , d} : sp = −}∣∣ + ∑

p=i+1,...,d
sp=+

(4 + 2Hp). (5.19)
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Before checking (5.18), observe that due to condition (3.27), it holds that d − 3
2 <

H < H1 + H2 + (d − 2) (recall that d ≥ 2), and so

H1 + H2 >
1

2
. (5.20)

Besides, for symmetry reasons, we can assume (from the beginning) that H1 ≤ H2 ≤
. . . ≤ Hd , and consequently, for d ≥ 3 and i ≥ 3, d − 3

2 < H < H1 + H2 + H3 +
(d − 3) ≤ 3Hi + (d − 3), so that

Hi >
1

2
for any i ≥ 3. (5.21)

Let us now back to the verification of (5.18). In order to see that Ai
s < 4+2H , observe

first that

Ai
s < 2(i − 1) +

d∑
q=i

max(2Hq , 3 − 2Hq). (5.22)

By (5.21), we immmediately deduce that for i ≥ 3, Ai
s < 2(i − 1) + 2(d − i + 1) =

2d < 4+2H , where the last inequality stems from the assumption d − 3
2 < H . Then,

using again (5.22) and (5.21),

A2
s < 2d − 2 + max(2H2, 3 − 2H2) < 2d + 1 < 4 + 2H .

Finally, for A1
s , we get by (5.22) and (5.21) that

A1
s < max(2H1, 3 − 2H1) + max(2H2, 3 − 2H2) + 2(d − 2)

< 2d − 4 + max(2, 3 − 2H1) + max(2, 3 − 2H2)

≤ 2d − 4 + max(4, 5 − 2H1, 5 − 2H2, 6 − 2(H1 + H2)) < 2d + 1 < 4 + 2H ,

where we have used (5.20) to get the fourth inequality.
For the second inequality in (5.18), let us write Bi

s as

Bi
s = 2(i − 1) + 2

∑
k=1,...,i−1

sk=+

(1 + Hk) + 4 + 2(d − i) + 2
∑

p=i+1,...,d
sp=+

(1 + Hp)

= 2d + 2 + 2
∑

k=1,...,i−1
sk=+

(1 + Hk) + 2
∑

p=i+1,...,d
sp=+

(1 + Hp),

and now it becomes clear that Bi
s > 2 + 2d ≥ 4 + 2H , since H ≤ d − 1.

This completes the proof of (5.18), and accordingly the proof of (5.16) and (5.11).
��
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5.3 Conclusion: proof of Theorem 3.10

With Propositions 5.2 and 5.6 in hand, we are exactly in the same position as in
Sect. 4.4, and accordingly we can reproduce the exact same reasoning in order to
conclude.

Acknowledgements We are grateful to an anonymous reviewer for his/her careful reading of the paper and
his/her comments about it. In particular, we would like to thank him/her for drawing our attention to the
other possible approach to the renormalization issue evoked in Remark 3.7.

Appendix

Proof of Lemma 3.2

We only focus on the treatment of Jρ,H0,H [defined in (3.8)] when 2H0 + H < d + 1.
It should however be clear to the reader that the subsequent arguments could also be
used to prove the finiteness of the integral in (3.7) when 2H0 + H = d + 1.

According to the definition (2.3) of the heat kernel p and recalling that F stands
for the space-time Fourier transform, it is readily checked that for (λ, ξ) ∈ R

d+1 we
have

F p(λ, ξ) =
( |ξ |2

2
+ ıλ

)−1

. (6.1)

Therefore, the integral under consideration can be bounded as

Jρ,H0,H ≤ J∞ + J0, (6.2)

where we consider a compact region Ds of Rd+1 defined by

Ds := {(λ, ξ) ∈ R
d+1 : λ2 + ξ41 + · · · + ξ4d ≤ 1}, (6.3)

and where the quantities J∞,J0 are respectively defined by

J∞ :=
∫
Rd+1\Ds

dλdξ

(λ2 + ξ41 + · · · + ξ4d )1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ)

J0 :=
∫
Ds

dλdξ

(λ2 + ξ41 + · · · + ξ4d )1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ). (6.4)

We now proceed to the evaluation of those two terms.
In order to estimate J∞, note that (Rd+1\Ds) ⊂ ∪d

i=0�i , where the regions �i

are defined by

�0 :=
{
(λ, ξ1, . . . , ξd) : λ2 ≥ 1

d + 1

}
and �i :=

{
(λ, ξ1, . . . , ξd) : ξ4i ≥ 1

d + 1

}
.
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According to this decomposition we write

J∞ ≤
d∑

i=0

J∞,i , (6.5)

where the terms J∞,i can be written as

J∞,i :=
∫

�i

dλdξ

(λ2 + ξ41 + · · · + ξ4d )1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ). (6.6)

Let us now show how to bound J∞,0 above. To this aim we invoke our bound (3.2)
in two different ways. Namely we take τ0 = 1, and τi = 0 if |ξi | ≤ 1, while τi = 1 if
|ξi | ≥ 1. Together with the trivial inequality λ2 +∑d

i=1 ξ4i ≥ λ2, the term J∞,0 given
in (6.6) can be bounded as follows

J∞,0 �
(∫

λ2≥ 1
d+1

dλ

|λ|2H0+2

) d∏
i=1

{∫
|ξi |≤1

dξi

|ξi |2Hi−1 +
∫

|ξi |≥1

dξi

|ξi |2Hi+1

}
< ∞,

(6.7)

where the last inequality is immediate. The terms J∞,i for i = 1, . . . , d in (6.6) are
handled similarly, and we omit the details for the sake of conciseness. Taking into
account the upper bound (6.5), we end up with the relation J∞ < ∞.

We now turn to a bound on J0 defined by (6.4), for which we invoke (3.2) with
τi = 0, for all i = 0, . . . , d. We get

J0 �
∫
Ds∩Rd+1+

dλdξ

(λ2 + ξ41 + · · · + ξ4d )1/2
NH0,H(λ, ξ). (6.8)

To see that the latter integral is indeedfinite, let us set ξ̃i := ξ2i , so that (λ, ξ1, . . . , ξd) ∈
Ds ∩ R

d+1+ if and only if (λ, ξ̃1, . . . , ξ̃d) ∈ B(0, 1) ∩ R
d+1+ , where B(0, 1) stands for

the standard Euclidean unit ball. This yields

J0 �
∫
B(0,1)∩Rd+1+

dλd ξ̃

(λ2 + ξ̃21 + · · · + ξ̃2d )1/2

1

|λ|2H0−1

( d∏
i=1

1

|ξ̃i |1/2
)
NH0,H

(
λ, ξ̃

1/2
1 , . . . , ξ̃

1/2
d

)

�
∫
B(0,1)∩Rd+1+

dλd ξ̃

(λ2 + ξ̃21 + · · · + ξ̃2d )1/2

1

|λ|2H0−1

d∏
i=1

1

|ξ̃i |Hi
�
∫ 1

0

dr

r2H0+H−d
, (6.9)

where we have used spherical coordinates to derive the last inequality. The finiteness
of J0 now follows from the assumption 2H0 + H < d + 1.

Summarizing our computations, we have seen that J0 < ∞ and J∞ < ∞. Recall-
ing relation (6.2), this proves our claim Jρ,H0,H < ∞.
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Proof of Proposition 3.8

Let us decompose the integral under consideration as
∫

|λ|+|ξ |2≥2−2n
|Fρ(λ, ξ)|2F p(λ, ξ)NH0,H(λ, ξ) dλdξ

=
∫
2−2n≤|λ|+|ξ |2≤1

F p(λ, ξ)NH0,H(λ, ξ) dλdξ

+
∫
2−2n≤|λ|+|ξ |2≤1

{|Fρ(λ, ξ)|2 − 1
}
F p(λ, ξ)NH0,H(λ, ξ) dλdξ + O(1). (6.10)

Using a series of elementary changes of variable, we get, for some constant CH0,H
that may change from line to line,

∫
2−2n≤|λ|+|ξ |2≤1

F p(λ, ξ)NH0,H(λ, ξ) dλdξ =
∫
2−2n≤|λ|+|ξ |2≤1

dλdξ

|ξ |2
2 + ıλ

1

|λ|2H0−1

d∏
i=1

1

|ξi |2Hi−1

= CH0,H

∫ ∞

0
dr

∫
2−2n≤|λ|+r2≤1

dλ

r2
2 + ıλ

r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞

0
dr

∫ ∞

0
dλ 12−2n≤λ+r2≤1

[
1

r2
2 + ıλ

+ 1
r2
2 − ıλ

]
r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞

0
dr

∫ ∞

0
dλ 12−2n≤λ+r2≤1

(
r2

r4
4 + λ2

)
r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞

0
dr

∫ ∞

0
dλ̃ 12−2n≤λ̃2+r2≤1

λ̃

r4
4 + λ̃4

r2d−2H+1

|λ̃|4H0−2

= CH0,H

(∫ ∞

0
dρ

12−2n≤ρ2≤1

ρ2(2H0+H)−2d−1

)(∫ π
2

0

dθ

cos4 θ
4 + sin4 θ

(cos θ)2d−2H+1

(sin θ)4H0−3

)

and so, recalling that 2H0 + H = d + 1, we end up with

∫
2−2n≤|λ|+|ξ |2≤1

F p(λ, ξ)NH0,H(λ, ξ) dλdξ = CH0,H

(∫ 1

2−n

dρ

ρ

)
= CH0,H · n. (6.11)

On the other hand, thanks to Assumption (ρ)-(i)-(i i), we have
∫
2−2n≤|λ|+|ξ |2≤1

∣∣|Fρ(λ, ξ)|2 − 1
∣∣∣∣F p(λ, ξ)

∣∣NH0,H(λ, ξ) dλdξ

=
∫
2−2n≤|λ|+|ξ |2≤1

∣∣|Fρ(λ, ξ)|2 − |Fρ(0, 0)|2∣∣∣∣F p(λ, ξ)
∣∣NH0,H(λ, ξ) dλdξ

�
∫
0≤|λ|+|ξ |2≤1

{|λ| + |ξ |}∣∣F p(λ, ξ)
∣∣NH0,H(λ, ξ) dλdξ

�
∫ ∞

0
dr

∫ ∞

0
dλ 10≤λ+r2≤1

{
λ + r

} r2d−2H−1

r2 + λ

1

λ2H0−1

�
∫ ∞

0
dr

∫ ∞

0
dλ 10≤λ2+r2≤1 λ

{
λ2 + r

} r2d−2H−1

r2 + λ2

1

λ4H0−2

�
∫
0≤ρ2≤1

dρ ρ3 ρ2d−2H−1

ρ2

1

ρ4H0−2 �
∫
0≤ρ2≤1

dρ

ρ2(2H0+H)−2d−2
� 1,
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where the last inequality is immediately derived from the assumption 2H0+H = d+1.
Thus,

sup
n≥1

∣∣∣∣
∫
2−2n≤|λ|+|ξ |2≤1

{|Fρ(λ, ξ)|2 − 1
}
F p(λ, ξ)NH0,H(λ, ξ) dλdξ

∣∣∣∣ < ∞.

(6.12)

Finally, injecting (6.11) and (6.12) into (6.10),we deduce the desired decomposition
(3.17).
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