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Abstract In this paper, we provide the exact forms of large and moderate devia-
tions for the empirical mean of population and the centered total population of a
sub-critical branching process with immigration. The rate functions in our large and
moderate deviations are explicitly identified. Our theorems also apply to the models of
the integer-valued autoregression. In computing the generating function requested by
Gärtner-Ellis theorem, our treatment substantially relies on an algorithm specifically
designed for the autoregressive structure of our models.
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1 Introduction

The goals of this paper are the large deviation principle (LDP) for the empirical
mean
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N1 + · · · + Nn

n

and the moderate deviation principle (MDP) for the centered total population

n∑

k=1

(Nk − λ)

arising from the Galton–Watson process {Nk} that is defined inductively by the equa-
tion

Nk =
Nk−1∑

j=1

ξk−1, j + εk k = 1, 2, . . . (1.1)

where {εk, k ∈ N
+} and {ξk−1, j } j,k are two mutually independent i.i.d. sequence and

array of nonnegative integer-valued random variables, λ = Eε/(1 − Eξ) (Eξ < 1 by
assumption). For each k, εk and {ξk−1, j } j stand for, respectively, the number of the
immigrants of the k-th generation and the numbers of the offsprings given birth by the
individuals in the (k − 1)-th generation. In this setup, the sequence Nk represents the
size of the population in the k-th generation and the partial sum N1 + · · · + Nn is the
size of the total population ever lived on the earth up to the generation n.

In this paper, we use ε and ξ for the generic copies of {εk, k ∈ N
+} and {ξk−1, j } j,k ,

respectively. Throughout, we focus on the sub-critical case given as Eξ < 1. In other
words, the average number of the children of each individual in the system is less than
one. Since ξ takes nonnegative integers, the sub-criticity implies P{ξ = 0} > 0. To
avoid degeneracy, on the other hand, we always assume that P{ξ = 0} < 1. Recall the
well-known fact that without immigration, the sub-critical branching process extinct
with probability 1. To prevent this from happening, we also assume that P{ε = 0} < 1
throughout the paper.

Galton–Watson process is also called branching process in literature. We refer the
book [4] by Athreya and Ney for the general information on branching processes and
the paper [12] by Pakes for the central limit theorem for the centered total population
of sub-critical branching process with immigration (Theorem 3, [12]). The branching
process with immigration is also mathematically linked to the models in time series.
In the special cases when ξ is Bernoulli ({0, 1}-valued) with Eξ = α and when ξ is
geometrically distributedwithEξ = α/(1+α), for example, {Nk} becomes an integer-
valued autoregressive process (known as INAR models ) with the relation (1.1) being
re-denoted as, respectively,

Nk = α ◦ Nk−1 + εk (1.2)

and

Nk = α ∗ Nk−1 + εk . (1.3)
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More specifically, the above autoregressive processes are classified as INAR(1)models
in statistical literature, due to the fact that they are “single-operator” systems. The
operators “◦” (known as binomial thinning operator) and “∗” (known as geometric
thinning operator) are introduced in Steutel and Van Harn [14] and Ristic et al. [13],
respectively. The INAR(1) models have been important research subjects in statistics
and finance. In application, the random term Nk can be used, for example, to measure
the claim numbers in the insurance industry or the number of the patients in a hospital
at the k-th period. Thus, the sum N1+· · ·+Nn is the accumulated claims up to the n-th
fiscal year. We refer the works byMckenzie [11], Al-Osh and Alzaid [1,2], Alzaid and
Al-Osh [3], Weiss [16], Jung and Tremayne [9,10] for the discussion on other aspects
of the autoregressive models.

Theorem 1.1 In the relation (1.1), let N0 ≥ 0 be a deterministic integer. Under the
assumptions

Eξ < 1, Eeθξ < ∞ and Eeθε < ∞ θ > 0,

we have

lim sup
n→∞

1

n
logP(

1

n

n∑

k=1

Nk ∈ F) � − inf
x∈F IL(x), (1.4)

for each close set F ∈ R
+; and

lim inf
n→∞

1

n
logP(

1

n

n∑

k=1

Nk ∈ G) � − inf
x∈G IL(x) (1.5)

for each open set G ∈ R
+, where the rate function IL(x) is given as

IL(x) = sup
θ∈R

{
x
(
θ − logEeθξ

)
− logE exp{θε}

}
x ≥ 0.

Theorem 1.2 Let bn be a sequence of positive numbers satisfying bn → ∞ and
bn/n → 0. Under the conditions same as the ones given in Theorem 1.1,

lim sup
n→∞

1

bn
logP

{
1√
nbn

n∑

k=1

(
Nk − Eε

1 − Eξ

)
∈ F

}
� − inf

x∈F IM (x) (1.6)

for each close set F ⊂ R; and

lim inf
n→∞

1

bn
logP

{
1√
nbn

n∑

k=1

(
Nk − Eε

1 − Eξ

)
∈ G

}
� − inf

x∈G IM (x) (1.7)
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for each open set G ∈ R, where the rate function IM (·) is given as

IM (x) = x2

2σ 2 x ∈ R, where σ 2 = Var (ε)

(1 − Eξ)2
+ (Eε)

Var (ξ)

(1 − Eξ)3
.

In the large deviation theory, the result given in Theorem 1.2 is referred as moderate
deviation principle (MDP) partially due to its connection to the following central limit
theorem (Theorem 3, [12]):

1√
n

n∑

k=1

(
Nk − Eε

1 − Eξ

)
d−→ N (0, σ 2).

What Theorem 1.2 tells is the story that the large deviation principle of Gaussian tail
passes through the central limit theorem.

It is worthy of mentioning that the rate functions in our theorems, especially in The-
orem1.1, are explicitly given. The explicitness in rate function is particularly important
when it comes to application. A careful reader may have noticed our unorthodox way
of setting the rate function IL(x). By putting ξ = 0 (so our system consists only of
immigrants) and Nk = εk ,

IL(x) = sup
θ∈R

{
θx − logEeθε

}
x ≥ 0

and Theorem 1.1 becomes the well-known Cramér’s LDP (Theorem 2.2.3, p. 27, [8]).
In the Sect. 2 below, we shall give the “close forms” of the rate function IL(x) in

some settings of INAR(1) models. Here we would like to list some properties of IL(x)
in the following lemma.

Lemma 1.3 (1) IL(x) ≥ 0 for each x ≥ 0. Further, IL(x) = 0 if and only if

x = Eε

1 − Eξ
.

(2) Let k0 ≥ 0 be the least integer such that P{ε = k0} > 0. Then IL(x) = ∞ on
[0, k0) as k0 ≥ 1 and IL(0) = log

(
P{ε = 0})−1

when k0 = 0.
(3) IL(x) is a good rate function in the sense that IL(x) is lower semi-continuous on

R
+ and for each l > 0, the level set {x ∈ R

+; IL(x) ≤ l} is compact.
The proof of this lemma will be given in Sect. 3 right after the proof of Theorem

1.1. Here we give a probabilistic interpretation of (2) instead. By the relation (1.1),

Nk ≥ εk ≥ k0 a.s. k = 1, 2, · · · .

Consequently, the probability that (N1 + · · · + Nn)/n takes a value less than k0 is
zero.
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Using (1) and (3) in Lemma 1.3, one can show that

inf
|x− Eε

1−Eξ
|≥δ

IL(x) > 0

for every δ > 0. Notice that Eε
1−Eξ

is the expectation of N under the invariant distribu-
tion. As a consequence of Theorem 1.1, we are able to claim the genuine exponential
decay for the probability that the sample average deviates away from its mathematical
equilibrium value.

Corollary 1.4 Under the assumption of Theorem 1.1, for every δ > 0 there is a
constant cδ > 0 such that

P

(∣∣1
n

n∑

k=1

Nk − Eε

1 − Eξ

∣∣ ≥ δ
)

≤ exp{−cδn} (1.8)

as n is sufficiently large.

In the language of population, Corollary 1.4 shows that a society with sub-critical
birth rate and sizable immigration is “exponentially” stable as far as its population is
concerned.

Since {Nk} can be viewed as a Markov chain taking values in Z
+ = {0, 1, 2, . . .},

we intend to make a comparison between our theorems and the existing large and
moderate deviations for additive functionals of an ergodic Markov chain {Xk}. In the
general setting, the underline random sequences are the sample average (LDP) of the
form

1

n

n∑

k=1

f (Xk) n = 1, 2, . . .

and the centered quantity (MDP)

1√
nbn

n∑

k=1

{
f (Xk) −

∫
f (x)π(dx)

}
(where π(dx) is the invariant distribution)

and the results are formulated in a way comparable to Theorem 1.1 (see, e.g., Theorem
1, deAcosta andNey [7] for the latest development) andTheorem1.2 (see, e.g.,Chapter
3, Chen [6]), respectively. Less general as they are, the theorems established in this
work have the following advantages. First, Theorem1.1 provides explicit and complete
information on the rate function IL that is crucial in applications but largely ignored in
literature where the rate function is essentially incomputable in any non-trivial setting.
Without knowing that IL(x) > 0 for all x �= Eε

1−Eξ
, for example, one could not claim

the exponential decay given in (1.8). To the best knowledge of the authors, the only
work in literature with the claim comparable to (1.8) is [7]. Second, the general results
usually require strong ergodicity of the underline Markov chains coupling with some
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technical integrability condition on the function f that demands f to be bounded, to say
the least (see, e.g., Theorem 1, de Acosta and Ney [7] for details). These assumptions
are either too technical to be examined or fail in our setting. In particular, Theorem 1
in de Acosta and Ney [7] does not apply to the function f (x) = x (in connection to
Theorem 1.1). In addition, the super-exponential ergodicity condition (applied to our
setting),

E0 exp{θτ0} < ∞ ∀θ > 0

assumed in Theorem 1, de Acosta and Ney [7] with τ0 = inf{k ≥ 1; Nk = 0}, is
not satisfied in our model. Unlike the previous work, the setup of our theorems does
not require the information on the invariant distribution which is not explicitly given
in some of our settings. Finally, our method is much more elementary and does not
use the any special tools developed in the area of Markov processes.

Suggested by the referee, we remark onGaussian autoregressive process(AR(1))[5]

Nk = αNk−1 + εk

for the purpose of comparison (Notice that the relation (1.1) only works for integral-
valued processes). Here we assume that 0 < α < 1, N0 is a constant and {εk} is a
sequence of i.i.d. N (μ, σ 2

0 )-random variables known as white noise. By the relation

n∑

k=1

Nk = α

1 − α
(N0 − Nn) + 1

1 − α

n∑

k=1

(Nk − αNk−1)

= α

1 − α
(N0 − Nn) + 1

1 − α

n∑

k=1

εk

the summation on the right hand side is Gaussian for each n ≥ 1 and

E

( n∑

k=1

Nk

)
= nμ

1 − α
+ O(1) and Var

( n∑

k=1

Nk

)
= nσ 2

0

(1 − α)2
+ O(1).

By the large deviation for Gaussian random variables (by Cramérs large deviation

principle (Theorem 2.2.3, [8]) with the i.i.d. N
(
μ(1 − α)−1, σ 2

0 (1 − α)−2
)
-random

variables, for example), Theorem 1.1 holds with the rate function IL(x) = I (x − λ)

and Theorem 1.2 holds with the rate function IM (x) = I (x) and λ = μ(1 − α)−1,
where

I (x) = (1 − α)2

2σ 2
0

x2 x ∈ R.

It shows that in the Gaussian setting, the LDP and MDP are essentially the same
thing. It is not difficult to extend this observation to some other types of Gaussian
autoregressive processes.
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We now comment on the approaches used in this work. As many other works in
the large deviations, our treatment involves Gärtner-Ellis theorem (see, e.g., Theorem
2.3.6, p. 44, [8]) which reduces the problem to the computation of the logarithmic
generating functions. What sets this work aside is our algorithm designed for the
autoregressive structure of our model. The computation of the logarithmic generating
functions will be carried out in Sect. 3 (for the LDP) and Sect. 4 (for the MDP).

2 Examples

In this section we consider some special settings that are linked to the integer-valued
autoregressive models. These cases are included by Theorem 1.1 and Theorem 1.2.
All we need is to specify the rate functions.

Example 1 Correspondent to the INAR(1) model given in (1.2) is the setting when ξ

is Bernoulli P{ξ = 1} = 1 − P{ξ = 0} = α and ε has the Poisson distribution with
Eε = (1 − α)λ. In this case,

IM (x) =
(1 − α

1 + α

) x2

2
x ∈ R.

To find IL(x), we need to maximize the function

f (θ) = x

(
θ − log

(
1 − α + αeθ

))
− (1 − α)λ

(
eθ − 1

)

for x > 0. By a simple but tedious calculus, the maximizer is

θ = log

(√
λ2(1 − α)2 + 4λαx − λ(1 − α)

2λα

)
.

That gives

IL(x) = x log
4λx

(
(1 − α)λ + √

λ2(1 − α)2 + 4λαx
)2

+
(
1 − 2x

λ(1 − α) + √
λ2(1 − α)2 + 4λαx

)
x ≥ 0.

One can directly exam that

IL(λ) = 0 for λ = Eε

1 − Eξ
.
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Example 2 We now consider the INAR(1) model defined by (1.3) where ξ and ε are
geometric distributed random variables with probability mass function given by

P(ξ = k) = P(ε = k) = αk

(1 + α)k+1 k = 0, 1, 2, . . . .

We have that Eξ = Eε = α, Var (ξ) = Var (ε) = α and

λ ≡ Eε

1 − Eξ
= α

1 − α
.

In particular,

IM (x) = (1 − α)3

2α(1 + α)
x2 x ∈ R.

Further,

E exp{θξ} = E exp{θε} = 1

1 + α(1 − eθ )
.

To compute IL(x), we maximize the function

f (θ) = x

(
θ + log

(
1 + α − αeθ

))
+ log

(
1 + α − αeθ

)

for x > 0. Indeed, the maximizer is

θ = log
(1 + α)x

α(2x + 1)

and

IL(x) = x log
(1 + α)2x(x + 1)

α(2x + 1)2
+ log

(1 + α)(x + 1)

2x + 1
x ≥ 0.

One can check that IL
(

α
1−α

)
= 0.

3 Proof of Theorem 1.1

According to Gärtner-Ellis theorem, our proof relies on computing the limit

lim
n→∞

1

n
logE exp

{
κ

n∑

j=1

N j

}
κ ∈ R.
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To this end, the function

φ(θ) � θ − logE exp
{
θξ

}
θ ∈ R

plays a crucial role. In the following, we shall list some analytic properties of φ(θ)

that are relevant to our work. First notice that φ(θ) is a concave continuous function
and φ(0) = 0. By Jensen’s inequality, logEeθξ ≥ E log eθξ = θEξ . Consequently,
φ(θ) ≤ θ(1 − Eξ). By the assumption that Eξ < 1 we have that φ(θ) < 0 for all
θ < 0. In addition, by the fact that

Eeθξ = P{ξ = 0} + eθ
∞∑

k=1

P{ξ = k}e(k−1)θ ∼ P{ξ = 0} (θ → −∞)

φ(θ) is asymptotically linear in the negative direction

φ(θ) ∼ θ (θ → −∞) and lim
θ→−∞ φ′(θ) = 1. (3.1)

The fact that φ(0) = 0 and φ′(0) = 1 − Eξ > 0 implies that φ(θ) maintains to
be positive and increasing at least in a right neighborhood of θ = 0. The behavior of
φ(θ) on the far right of zero divides our model into the following two different cases.
Case 1 The only setting contained in this case is when ξ is Bernoulli: P{ξ = 1} =
1−P{ξ = 0} = α. In this case, φ(θ) = θ − log

(
(1− α) + αeθ

)
is strictly increasing

on the real line and

lim
θ→∞ φ(θ) = log

1

α
. (3.2)

Case 2 The remaining setting, where P{ξ = k} > 0 for some integer k ≥ 2. Con-
sequently, φ(θ) ≤ θ − kθ − logP{ξ = k} and the right hand side tends to −∞ as
θ → ∞. By the continuity and the concavity of φ(θ), there are 0 < θ0 < θ1 such
that φ(θ) is strictly increasing on (0, θ0) (therefore on (−∞, θ0)) and strictly decreas-
ing on (θ0,∞); and that φ(θ) > 0 on (0, θ1), φ(θ) < 0 on (θ1,∞) (therefore on
(−∞, 0) ∪ (θ1,∞)). Obviously, φ′(θ0) = 0 and φ(θ1) = 0.

Example 1 and Example 2 listed in Sect. 2 belong to Case 1 andCase 2, respectively.
The graphs of φ(θ) in these two examples are given in Fig. 1 below with α = 0.05.

To have a uniform treatment for the both cases, we take θ0 = ∞, θ1 = ∞ and
φ(θ0) = log 1/α in Case 1 in the following discussion.

The crucial step of our proof is to show

Lemma 3.1 For any θ < θ0,

lim
n→∞

1

n
logE exp

{
φ(θ)

n∑

j=1

N j

}
= logE exp{θε}. (3.3)
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Fig. 1 Graphs of φ(θ) in Case 1 (a) and in Case 2 (b)

Proof Write

L(θ) = logE exp
{
θξ

}

and let Fk = σ(N1, · · · , Nk) be the σ -field generated by {N1, · · · , Nk}. Notice that
for any k,

E

{
exp

{
(θNk − L(θ)Nk−1

}∣∣∣Fk−1

}
(3.4)

= exp
{

− L(θ)Nk−1

}
E

{
exp

{
θNk

}∣∣∣Fk−1

}

= exp
{

− L(θ)Nk−1

}
E exp

{
θε

}
E

{
exp

{
θ

Nk−1∑

j=1

ξk−1, j

}∣∣∣Fk−1

}

= exp
{

− L(θ)Nk−1

}
E exp

{
θε

}(
E exp

{
θξ

})Nk−1

= E exp
{
θε

}
(θ ∈ R).

Consequently,

E exp
{ n+1∑

k=1

(θNk − L(θ)Nk−1)
}

=
(
E exp

{
θε

})n+1

.

By the facts that
n+1∑

k=1

(θNk − L(θ)Nk−1) = θNn+1 − L(θ)N0 + φ(θ)

n∑

j=1

N j
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and that N0 is deterministic

E exp

{
θNn+1 + φ(θ)

n∑

j=1

N j

}
= exp

{
L(θ)N0

}(
E exp

{
θε

})n+1

θ ∈ R. (3.5)

Our goal in the remaining argument is to remove the term θNn+1 from (3.5) without
drastic dynamic change. Notice that θ1 < ∞ in Case 2 and φ(θ) ≤ 0 as θ ≥ θ1. From
(3.5)

E exp

{
θNn+1

}
≥ exp

{
L(θ)N0

}(
E exp

{
θε

})n+1

(3.6)

for all θ ≥ θ1. This shows that the routine exponential approximation by Hölder
inequality is no longerworking here as the term θNn+1 can be exponentially significant
for large θ > 0.

First notice that (3.3) holds automatically for θ = 0 as φ(0) = 0. In the following,
we treat the cases 0 < θ < θ0 and θ < 0 separately.

Let 0 < θ < θ0 be fixed. By (3.5)

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≤ exp

{
L(θ)N0

}(
E exp

{
θε

})n+1

. (3.7)

Consequently,

lim sup
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≤ logE exp{θε}. (3.8)

We now work on the lower bound. Let δ > 0 be small but fixed and let m ≥ 1 be a
large but fixed integer. Define the stopping time

τ = min{k ≥ n − m; Nk ≤ δn}.

Consider the decomposition

E exp

{
θNn+1 + (

θ − L(θ)
) n∑

j=1

N j

}

= E exp

{
θNn+1 + (

θ − L(θ)
) n∑

j=1

N j

}
1{τ≤n}

+ E exp

{
θNn+1 + (

θ − L(θ)
) n∑

j=1

N j

}
1{τ>n}

= A(n,m) + B(n,m) (say).
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Applying (3.5) on the left hand side,

logE exp
{
θε

} ≤ max

{
lim inf
n→∞

1

n
log A(n,m), lim sup

n→∞
1

n
log B(n,m)

}
. (3.9)

For each n − m ≤ k ≤ n, write

θNn+1+
(
θ − L(θ)

) n∑

j=1

N j =θNk+
(
θ − L(θ)

) k−1∑

j=1

N j +
n+1∑

j=k+1

(
θN j − L(θ)N j−1).

Applying (3.4) repeatedly,

E

[
exp

{ n+1∑

j=k+1

(
θN j − L(θ)N j−1

)}∣∣∣Fk

]
=

(
E exp{θε}

)n−k+1

.

Thus

E exp

{
θNn+1 + (

θ − L(θ)
) n∑

j=1

N j

}
1{τ=k}

=
(
E exp{θε}

)n−k+1

E exp

{
θNk + (

θ − L(θ)
) k−1∑

j=1

N j

}
1{τ=k}

≤
(
E exp{θε}

)n−k+1

eθδn
E exp

{(
θ − L(θ)

) k−1∑

j=1

N j

}
1{τ=k}.

Hence

A(n,m) ≤ eδθn
n∑

k=n−m

(
E exp{θε}

)n−k+1

E exp

{(
θ − L(θ)

) k−1∑

j=1

N j

}
1{τ=k}

≤ eδθn
(
E exp{θε}

)m+1 n∑

k=n−m

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
1{τ=k}

≤ eδθn
(
E exp{θε}

)m+1

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
.

Consequently,

lim inf
n→∞

1

n
log A(n,m) ≤ δθ + lim inf

n→∞
1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
(3.10)

for any m ≥ 1.
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We now show that for large m, the quantity B(n,m) is negligible. By (3.7) and the
facts that Nn−m > δn, . . . , Nn > δn on {τ > n}, and that θ − L(θ) > 0 on θ < θ0,

exp
{
L(θ)N0

}(
E exp

{
θε

})n+1

≥ E exp

{(
θ − L(θ)

) n∑

j=n−m

N j

}
1{τ>n} ≥ exp

{
mδ

(
θ − L(θ)

)
n
}
P{τ > n}.

Consequently,

lim sup
n→∞

1

n
logP{τ > n} ≤ −mδ

(
θ − L(θ)

) + logE exp
{
θε

}
. (3.11)

Given A > 0, the right hand side is less than −A for a sufficiently large m.
Pick θ̃ ∈ (θ, θ0) and p > 1 such that pφ(θ) ≤ φ(θ̃). Further, one can make

pθ ≤ θ̃ . Let q > 1 be the conjugate of p. By Hölder inequality and (3.11)

B(n,m) ≤
(
E exp

{
pθNn+1 + p

(
θ − L(θ)

) n∑

j=1

N j

})1/p(
P{τ > n}

)1/q

≤
(
E exp

{
θ̃Nn+1 + (

θ̃ − L(θ̃)
) n∑

j=1

N j

})1/p

exp
{

− q−1An
}

= eL(θ̃ )N0/p
(
E exp{θ̃ε}

) n+1
p

exp
{

− q−1An
}
,

where the last step follows from (3.5).
Thus

lim sup
n→∞

1

n
log B(n,m) ≤ 1

p
logE exp{θ̃ε} − q−1A.

One may make the right hand side smaller than

logE exp{θε}

by making A sufficiently large. In view of (3.9) and (3.10), we conclude that

δθ + lim inf
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≥ logE exp{θε}.

Letting δ → 0+ on the left hand side leads to the lower bound

lim inf
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≥ logE exp{θε}. (3.12)
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Equations (3.8) and (3.12) together lead to (3.3) for 0 < θ < θ0.
Finally, we consider the case when θ < 0. By (3.5), we have

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≥ exp

{
L(θ)N0

}(
E exp

{
θε

})n+1

,

which leads to

lim inf
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≥ logE exp{θε}. (3.13)

We now come to the upper bound. Let τ be defined as before.

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}

= E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
1{τ≤n} + E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
1{τ>n}.

Notice that θ − L(θ) < 0. By the previous estimate the second term is bounded by

P{τ > n} ≤ exp{−An}

and A can be sufficiently large as one makesm large. So the second term is negligible.
As for the first term, by (3.5)

E exp

{(
θ − L(θ)

) n∑

j=1

N j

}
1{τ≤n}

≤
n∑

k=n−m

E exp

{(
θ − L(θ)

) k−1∑

j=1

N j

}
1{τ=k}

≤ e−θδn
n∑

k=n−m

E exp

{
θNk + (

θ − L(θ)
) k−1∑

j=1

N j

}

= e−θδn exp{L(θ)N0}
n∑

k=n−m

(
E exp{θε}

)k

≤ e−θδn exp{L(θ)N0}
∞∑

k=n−m

(
E exp{θε}

)k

= e−θδn exp{L(θ)N0}
(
1 −

(
E exp{θε}

))−1(
E exp{θε}

)n−m
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given the fact that

E exp{θε} < 1, as θ < 0.

In summary of our computation,

lim sup
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
1{τ≤n} ≤ −δθ + logE exp{θε}.

Thus,

lim sup
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≤ −δθ + logE exp{θε}.

Letting δ → 0+ on the right leads to the upper bound

lim sup
n→∞

1

n
logE exp

{(
θ − L(θ)

) n∑

j=1

N j

}
≤ logE exp{θε}.

Together with (3.13), this proves (3.3) for θ < 0. ��
In Case 1, let φ−1(κ) be the inverse function of φ(θ) with φ(θ) being viewed as a

function on (−∞,∞). In view of (3.1) and 3.2), the function φ−1(κ) has the domain
(−∞, log 1/α) and the range (−∞,∞). Set


(κ) �

⎧
⎨

⎩

logE exp
(
φ−1(κ)ε

)
κ < log 1/α

∞ κ ≥ log 1/α.

InCase 2,φ−1(κ) is defined as the inverse ofφ(θ)withφ(θ) being viewed as a func-
tion limited on (−∞, θ0]. Therefore, the functionφ−1(κ) has the domain (−∞, φ(θ0)]
and the range (−∞, θ0]. Set


(κ) �

⎧
⎨

⎩

logE exp
(
φ−1(κ)ε

)
κ ≤ φ(θ0)

∞ κ > φ(θ0).

A subtle difference between Case 1 and Case 2 is that 
(κ) is left continuous at the
intersection point φ(θ0) in Case 2.

Lemma 3.2 For any κ ∈ R,

lim
n→∞

1

n
logE exp

{
κ

n∑

k=1

Nk

}
= 
(κ). (3.14)
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Proof In light of Lemma 3.1, we need only to prove:

1. In Case 1,

lim
n→∞

1

n
logE exp

{
κ

n∑

j=1

N j

}
= ∞ (3.15)

for any κ ≥ log 1/α .
2. In Case 2,

lim
n→∞

1

n
logE exp

{
(θ0 − L(θ0))

n∑

j=1

N j

}
= logE exp{θ0ε}, (3.16)

and

lim
n→∞

1

n
logE exp

{
κ

n∑

j=1

N j

}
= ∞, κ > φ(θ0). (3.17)

We now prove (3.15). By monotonicity we only consider the case when κ = φ(∞) =
log 1/α. Since θ0 = ∞ and κ = φ(θ0) > φ(θ) for all θ > 0. Consequently, by (3.3),
we have

lim inf
n→∞

1

n
logE exp

{
κ

n∑

j=1

N j

}
≥ logE exp{θε}

for every θ > 0. Letting θ → ∞ on the right hand side leads to (3.15).
By letting θ → θ−

0 in (3.3), we conclude in Case 2 that

lim inf
n→∞

1

n
logE exp

{(
θ0 − L(θ0)

) n∑

j=1

N j

}
≥ logE exp{θ0ε}.

On the other hand, by (3.5), we have

E exp

{(
θ0 − L(θ0)

) n∑

j=1

N j

}
≤ E exp

{
θ0Nn+1 + (

θ0 − L(θ0)
) n∑

j=1

N j

}

= exp{L(θ0)N0}
(
E exp

{
θ0ε

})n+1

.

Consequently,

lim sup
n→∞

1

n
logE exp

{(
θ0 − L(θ0)

) n∑

j=1

N j

}
≤ logE exp{θ0ε}.
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So we have proved (3.16). From (3.16) and Lemma 3.1, we have that

lim
n→∞

1

n
logE exp

{
κ

n∑

j=1

N j

}
= E exp

(
φ−1(κ)ε

)
, κ ≤ φ(θ0).

It remains to prove (3.17). Let κ > φ(θ0) be fixed and we use the argument by
contradiction. For otherwise there would be a subsequence {nk} such that the limit


̃(κ) = lim
k→∞

1

nk
logE exp

{
κ

nk∑

j=1

N j

}

exists and finite. For any κ ′ < φ(θ0) ≡ κ0, by Hölder inequality


(κ0) = 

(κ − κ0

κ − κ ′ κ
′ + κ0 − κ ′

κ − κ ′ κ
)

≤ κ − κ0

κ − κ ′ 
(κ ′) + κ0 − κ ′

κ − κ ′ 
̃(κ),

or


̃(κ) ≥ 
(κ0) + (κ − κ0)

(κ0) − 
(κ ′)

κ0 − κ ′ = 
(κ0) + (κ − κ0)

′(κ̂),

where κ̂ ∈ (κ ′, κ0) and the second step follows from the mean value theorem. Notice
that


′(κ̂) =
(
E exp

{
κ̂ε

})−1

Eε exp
{
κ̂ε

} 1

φ′(θ̂)
−→ ∞

as κ ′ → κ−
0 and therefore φ′(θ̂) → φ′(θ0) = 0. Therefore, we must have 
̃(κ) = ∞

that leads to contradiction. ��
Proof of Theorem 1.1 We need to do two things in the proof: Identify the rate function
given in Theorem 1.1 with the function given as

IL(x) = sup
κ∈R

{
κx − 
(κ)

}
. (3.18)

and apply Gärtner-Ellis theorem (see. e.g., Theorem 2.3.6, [8]) based on Lemma 3.2.
We first consider Case 1. By the fact that 
(κ) = ∞ for κ ≥ log 1/α,

sup
κ∈R

{
κx − 
(κ)

}
= sup

κ<log 1/α

{
κx − 
(κ)

}
.

The substitution κ = φ(θ) leads to

sup
κ<log 1/α

{
κx − 
(κ)

}
= sup

θ∈R

{
φ(θ)x − 


(
φ(θ)

)} = sup
θ∈R

{
φ(θ)x − logE exp{θε}

}

where the last step follows from the definition of 
(κ).

123



58 J Theor Probab (2018) 31:41–67

We now come to Case 2. Notice that 
(κ) = ∞ for κ > φ(θ0). Thus,

sup
κ∈R

{
κx − 
(κ)

}
= sup

κ≤φ(θ0)

{
κx − 
(κ)

}
.

Consequently, the substitution κ = φ(θ) (θ ≤ θ0) leads to

sup
κ∈R

{
κx − 
(κ)

}
= sup

θ≤θ0

{
φ(θ)x − logE exp{θε}

}
.

Therefore, all we need is to show that for any x ≥ 0, the function

f (θ) = φ(θ)x − logE exp{θε}

can not approximate its global supremum on (−∞,∞) when θ is limited to (θ0,∞).
Indeed, this is obvious as on (θ0,∞),φ(θ) is decreasingwhile logE exp{θε} is increas-
ing.

We are in the position to apply Gärtner-Ellis Theorem with the rate function IL(x)
given in (3.18). By Part (a) of Theorem 2.3.6, p. 44 in Dembo-Zeitouni [8], Lemma
3.2 leads to the upper bound

lim sup
n→∞

1

n
logP

(
1

n

n∑

k=1

Nk ∈ F

)
� − inf

x∈F IL(x)

for each close set F ⊂ R.
The lower bound is harder to get. In addition to the exponential asymptotics given in

Lemma 3.2, it requires some extra conditions on 
(κ) known as essential smoothness
(Definition 2.3.5, p. 44, [8]). Recall that a convex function 
: R −→ (−∞,∞] is
called essentially smooth if its domain Dλ = {κ ∈ R; 
(κ) < ∞} has a non-empty
interior D0

λ = (a, b), if 
(κ) is differentiable on D0
λ, and if

lim
κ→a+ |
′(κ)| = ∞ and lim

κ→b− |
′(κ)| = ∞. (3.19)

The property in (3.19) is called the steepness at the domain boundary. Back to our
setting, it is not hard to see that D0

λ = ( − ∞, φ(θ0)
)
. Here we recall our convention

that θ0 = ∞ and φ(θ0) = log 1/α in Case 1. Further, 
(κ) is differentiable on D0
λ

with


′(κ) = Eε exp{φ−1(κ)ε}
E exp{φ−1(κ)ε}

1

φ′(φ−1(κ)
) . (3.20)

By the fact that limθ→θ−
0

φ′(θ) = 0,
(κ) is steep at its right boundary.More precisely,
one can see that

lim
κ→φ(θ0)−


′(κ) = ∞. (3.21)
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By (3.1), on the other hand, φ−1(κ) → −∞ and φ′(φ−1(κ)
) → 1 as κ → −∞.

In addition, by L’Hôpital’s rule

lim
q→∞

Eε exp{−qε}
E exp{−qε} = − lim

q→∞
1

q
logE exp{−qε} = k0

where k0 ≥ 0 is the least integer with P{ε = k0} > 0. Summarizing our computation,

lim
κ→−∞ 
′(κ) = k0. (3.22)

This implies that 
(κ) is not steep at the left boundary of its domain.
To fix this problem, we adopt a strategy that goes back to at least Varadhan (p. 11,

[15]). Let {gk, k ∈ N
+} be an i.i.d. sequence of N (0, γ 2)-random variables that are

independent of {Nk}. Here γ 2 > 0 is small but fixed.

E exp
{
κ

n∑

k=1

(Nk + gk)
}

=
{
E exp(κg1)

}n
E exp

{
κ

n∑

k=1

Nk

}

= exp{nκ2γ 2/2}E exp
{
κ

n∑

k=1

Nk

}
.

Therefore,

lim
n→∞

1

n
logE exp

{
κ

n∑

k=1

(Nk + gk)
}

= γ 2

2
κ2 + 
(κ) � 
γ (κ).

Clearly, D
γ = D
, 
γ (κ) is differentiable throughout D0

γ

with 
′
γ (κ) = κγ 2 +


′(κ). Most importantly, in connection to (3.21) and (3.22), 
γ (κ) is steep at the left
and right boundaries of its domain! Hence 
γ (κ) is essentially smooth.

ByGärtner-Ellis Theorem (Part (c), Theorem 2.3.6, p.44, [8]), the auxiliary random
sequence

1

n

n∑

k=1

(Nk + gk)

satisfies the large deviation principle with the rate function Iγ (x) = supκ∈R
{
κx −


γ (κ)
}
. In particular, the lower bound claims that

lim inf
n→∞

1

n
logP

(
1

n

n∑

k=1

(Nk + gk) ∈ G

)
≥ − inf

x∈G Iγ (x)

for every open set G ⊂ R
+.
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The obvious relation 
γ (·) ≥ 
(·) implies that Iγ (·) ≤ IL(·). Given x0 > 0 and
δ > 0, applying the above lower bound to the open set G = (x − 2−1δ, x + 2−1δ)

leads to

lim inf
n→∞

1

n
logP

(∣∣∣∣∣
1

n

n∑

k=1

(Nk + gk) − x0

∣∣∣∣∣ <
δ

2

)
≥ − inf

|x−x0|< δ
2

IL(x) ≥ −IL(x0).

(3.23)

On the other hand,

P

{∣∣∣∣∣
1

n

n∑

k=1

Nk − x0

∣∣∣∣∣ < δ

}
≥ P

{
∣∣∣∣∣
1

n

n∑

k=1

(Nk + gk) − x0

∣∣∣∣∣ <
δ

2
, |1

n

n∑

k=1

gk | <
δ

2

}

≥ P
{|1
n

n∑

k=1

(Nk + gk) − x0| <
δ

2

} − P
{|1
n

n∑

k=1

gk | ≥ δ

2

}

and

P

{∣∣∣∣∣
1√
n

n∑

k=1

gk

∣∣∣∣∣ ≥ x

}
= exp

{
−1 + o(1)

2γ 2 x2
}

(x → ∞).

Thus, we have

P

{∣∣∣∣∣
1

n

n∑

k=1

(Nk + gk) − x0

∣∣∣∣∣ <
δ

2

}
≤ P

{∣∣∣∣∣
1

n

n∑

k=1

Nk − x0

∣∣∣∣∣ < δ

}

+ exp{−1 + o(1)

2γ 2

(√
nδ

2

)2

}. (3.24)

Equations (3.23) and (3.24) together prove that

max

{
lim inf
n→∞

1

n
logP

{
|1
n

n∑

k=1

Nk − x0| < δ

}
, − 1

2γ 2 (δ/2)2
}

≥ −IL(x0).

Letting γ 2 → 0+ on the left hand side, we have

lim inf
n→∞

1

n
logP

{
|1
n

n∑

k=1

Nk − x0| < δ

}
≥ −IL(x0). (3.25)

Let G ⊂ R
+ be an arbitrary open set again. For any x0 ∈ G there is a δ > 0 such that

(x0 − δ, x0 + δ) ⊂ G. Hence

P

{
1

n

n∑

k=1

Nk ∈ G

}
≥ P

{∣∣∣∣∣
1

n

n∑

k=1

Nk − x0

∣∣∣∣∣ < δ

}
.
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Applying (3.25) to the right hand side

lim inf
n→∞

1

n
logP

{
1

n

n∑

k=1

Nk ∈ G

}
≥ −IL(x0).

Taking supremum over x0 ∈ G, we finally establish the desired lower bound

lim inf
n→∞

1

n
logP

{
1

n

n∑

k=1

Nk ∈ G

}
≥ − inf

x∈G IL(x). �

Proof of Lemma 1.3: Some of the approaches used belowmay be standard.We include
them here for the reader’s convenience. Recall that

IL(x) = sup
θ∈R

{
x
(
θ − logEeθξ

)
− logE exp{θε}

}
x ≥ 0.

Since the quantity inside the supremum is equal to zero as θ = 0, sowehave IL (x) ≥ 0.
In addition, by Jensen’s inequality,

logE exp{θξ} ≥ E log eθξ = θEξ, logE exp{θε} ≥ E log eθε = θEε

Thus,

Eε

1 − Eξ

(
θ − logEeθξ

)
− logE exp{θε} ≤ 0

for any θ ∈ R. Consequently, IL
(

Eε
1−Eξ

)
= 0.

Assume, on the other hand, that x ∈ R satisfies IL(x) = 0. Then we have that

x
(
θ − logEeθξ

)
− logE exp{θε} ≤ 0.

Or

x
(
θ − logEeθξ

)
≤ logE exp{θε}

for every θ ∈ R. In particular,

x
(
1 − 1

θ
logEeθξ

)
≤ 1

θ
logE exp{θε}

for θ > 0; and

x
(
1 − 1

θ
logEeθξ

)
≥ 1

θ
logE exp{θε}
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for θ < 0. Letting θ → 0+ and θ → 0−, respectively, we obtain that x(1−Eξ) ≤ Eε

and x(1 − Eξ) ≥ Eε. So we have x = Eε
1−Eξ

. We have completed the proof of (1).
We now come to (2). By the assumption we have that

logE0 exp{θε} ≤ k0θ θ < 0.

Combining this with the first relation in (3.1), therefore,

xφ(θ) − logE0 exp{θε} −→ ∞ (θ → ∞)

for x < k0. Consequently, IL(x) = ∞.
When k0 = 0, the function

f (θ) = − logE exp{θε} θ ∈ R

is decreasing with the limit log
(
P{ε = 0})−1 as θ → −∞. So IL(0) = log

(
P{ε =

0})−1.
We now prove (3). The lower-semi-continuity follows directly from the fact that

IL(x) is a convex conjugate of 
(κ) (see (3.18)). By the lower-semi-continuity the
level set {x; IL(x) ≤ l} is a close set. We just need to prove that the level set is
bounded. First notice that there is a M > 0 such that

c ≡ sup
|κ|≤M


(κ) < ∞.

From (3.18),

IL(x) ≥ κx − 
(κ) ≥ κx − c for any κ satisfying |κ| ≤ M.

In particular, IL(x) ≥ Mx − c for all x ≥ 0. This implies that

{
x; IL(x) ≤ l

} ⊂ {
x; 0 ≤ x ≤ M−1(l + c)

}
.

In other words,
{
x; IL(x) ≤ l

}
is bounded. ��

4 Proof of Theorem 1.2

Write λ = Eε
1−Eξ

. By Gärtner-Ellis theorem (Theorem 2.3.6, p.44, [8]), all we need to
show is that

lim
n→∞

1

bn
logE exp

{
β

√
bn
n

n∑

k=1

(Nk − λ)

}
= 1

2
σ 2β2 β ∈ R. (4.1)

Let β ∈ R be fixed but arbitrary and write

ln = logE exp
{
θn(ξ − Eξ)

}
,
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where θn =
√

bn
n

β
1−Eξ

. Notice that

Nk − λ =
Nk−1∑

j=1

(ξk−1, j − Eξ) + (Eξ)(Nk−1 − λ) + (εk − Eε) k = 1, 2, · · · .

Recall that Fk = σ {N1, · · · , Nk} and observe that for any k ≥ 1,

E

[
exp

{
θn

(
(Nk − λ) − (Eξ)(Nk−1 − λ)

)
− ln Nk−1

}∣∣∣Fk−1

]

= exp
{

− ln Nk−1

}
E

[
exp

{
θn

( Nk−1∑

j=1

(ξk−1, j − Eξ) + (εk − Eε)
)}∣∣∣Fk−1

]

= E exp
{
θn(ε − Eε)

}
.

Hence,

E exp

{ n+1∑

k=1

{
θn

(
(Nk − λ) − (Eξ)(Nk−1 − λ)

)
− ln Nk−1

}}

=
(
E exp

{
θn

(
ε − Eε

)})n+1

. (4.2)

On the other hand,

E exp

{ n+1∑

k=1

{
θn

(
(Nk − λ) − (Eξ)(Nk−1 − λ)

)
− ln Nk−1

}}

= exp
{

− (n + 1)λln
}
E

{
exp

{
θn(Nn+1 − λ) −

(
(Eξ)θn + ln

)
(N0 − λ)

}

× exp

{(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}}
(4.3)

=
(
1 + o(1)

)
exp

{
− nλln

}
E exp

{
θnNn+1 +

(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}
.

Here we use “
(
1 + o(1)

)
” to absorb all insignificant and deterministic factors.

Combining (4.2) and (4.3) and by the definition of ln

(
E exp

{
θn(ε − Eε)

})n+1(
E exp

{
θn(ξ − Eξ)

})nλ

=
(
1 + o(1)

)
E exp

{
θnNn+1 +

(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}
.
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By Taylor expansion, the left hand side is asymptotically equivalent to

exp
{1
2
σ 2β2bn

}
.

Thus

lim
n→∞

1

bn
logE exp

{
θnNn+1 +

(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}
= 1

2
σ 2β2.

By the fact that θn → 0 and by Lemma 4.1 below, a standard argument of exponential
approximation by Hölder inequality enables us to remove the term θnNn+1 from the
above equation. So we have

lim
n→∞

1

bn
logE exp

{(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}
= 1

2
σ 2β2. (4.4)

In addition, by Jensen’s inequality,

E exp
{
θn(ξ − Eξ)

}
≥ exp

{
θnE(ξ − Eξ)

}
= 1.

Consequently, ln ≥ 0. On the other hand, ln ∼ 2−1Var (ξ)θ2n = o(θn). By Hölder
inequality, therefore,

E exp

{(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}

≤
(
E exp

{
θn(1 − Eξ)

n∑

k=1

(Nk − λ)

}) θn (1−Eξ)−ln
θn (1−Eξ)

.

By the fact that θn(1 − Eξ) = β

√
bn
n and by (4.4), we obtain the lower bound

lim inf
n→∞

1

bn
logE exp

{
β

√
bn
n

n∑

k=1

(Nk − λ)

}
≥ 1

2
σ 2β2. (4.5)

On the other hand, given a small number 0 < δ < 1,

θn(1 − Eξ) − ln > (1 − δ)θn(1 − Eξ) = (1 − δ)β

√
bn
n
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as n is sufficiently large. By Hölder inequality

E exp

{
(1 − δ)β

√
bn
n

n∑

k=1

(Nk − λ)

}

≤
(
E exp

{(
θn(1 − Eξ) − ln

) n∑

k=1

(Nk − λ)

}) (1−δ)θn (1−Eξ)
θn (1−Eξ)−ln

.

By (4.4), therefore,

lim sup
n→∞

1

bn
logE exp

{
(1 − δ)β

√
bn
n

n∑

k=1

(Nk − λ)

}
≤ 1

2
σ 2β2.

Since β ∈ R can be arbitrary, replacing it by (1 − δ)−1β in the above leads to

lim sup
n→∞

1

bn
logE exp

{
β

√
bn
n

n∑

k=1

(Nk − λ)

}
≤ 1

2
σ 2

( β

1 − δ

)2
.

Letting δ → 0+ on the right hand side yields the desired upper bound which, together
with the lower bound (4.5), leads to (4.1). ��

Recall our notation L(θ) = logE exp{θξ} and our discussion on the function
φ(θ) = θ − L(θ) in the beginning of the previous section. In Case 1 where ξ is
Bernoulli, φ(θ) is positive and strictly increasing on (0,∞); while in the remaining
setting (Case 2), there is θ0 > 0 such that φ(θ) is positive and strictly increasing on
(0, θ0) but is decreasing on (θ0,∞). To have a uniform statement in the following
lemma. We use the convention that θ0 = ∞ in Case 1. Sharply contrary to (3.6) where
θ > 0 is large, we have

Lemma 4.1 For any 0 < θ < θ0,

sup
k≥1

E exp
{
θNk} < ∞.

Proof We start with the fact that the relation (1.1) implies that

E exp
{
θNk

} =
(
E exp{θε}

)
E exp

{
L(θ)Nk−1

}

for any θ ∈ R. Iterating the above argument gives that

E exp
{
θNk

} =
( k−1∏

j=0

E exp{L j (θ)ε}
)
exp

{
Lk(θ)N0

}
(4.6)

where the notation L j (·) is for the j-th fold composition of the function L(·).
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Fix 0 < θ < θ0. The derivative functionφ′(·) is strictly positive on [0, θ ].Moreover,
there is δ > 0 such that φ′(ζ ) ≥ δ for any ζ ∈ [0, θ ]. In other words, L ′(ζ ) ≤ 1 − δ

on [0, θ ]. Notice that L(0) = 0. By the mean value theorem, L(ζ ) ≤ (1 − δ)ζ for
any ζ ∈ [0, θ ]. In particular, L j (θ) ≤ (1 − δ) jθ for every integer j ≥ 1. By (4.6),
therefore,

E exp
{
θNk

} =
( k−1∏

j=0

E exp{(1 − δ) jθε}
)
exp

{
(1 − δ)kθN0

}
.

By Hölder inequality,

k−1∏

j=0

E exp{(1 − δ) jθε} ≤
k−1∏

j=0

(
E exp{θε}

)(1−δ) j ≤
(
E exp{θε}

)∑k−1
j=0(1−δ) j

≤
(
E exp{θε}

)∑∞
j=0(1−δ) j

=
(
E exp{θε}

)1/δ

.

Thus, the requested conclusion follows from the obvious boundedness of the factor
exp

{
(1 − δ)kθN0

}
on k.
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