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Abstract

In this paper we obtain a Feynman-Kac formula for the solution of a
fractional stochastic heat equation driven by fractional noise. One of the
main difficulties is to show the exponential integrability of some singular
nonlinear functionals of symmetric stable Lévy motion. This difficulty will
be overcome by a technique developed in the framework of large deviation.
This Feynman-Kac formula is applied to obtain the Hölder continuity and
moment formula of the solution.

1 Introduction

Let 0 < α < 2 and let ∆ =
∑d
i=1

∂2

∂x2
i

be the Laplacian. In this paper, we shall

obtain a Feynman-Kac type formula for the following stochastic equation driven
by fractional noise 

∂u

∂t
= −(−∆)

α
2 u+ u

∂d+1W

∂t∂x1 · · · ∂xd
u(0, x) = f(x) ,

(1.1)

where W (t, x) is a fractional Brownian sheet with Hurst parameters H0 in time
and (H1, . . . ,Hd) in space, respectively. More specifically, for the solution u(t, x)
to the above equation, we can write down the following Feynman-Kac formula

u(t, x) = EX
[
f(Xx

t ) exp

(∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy)

)]
, (1.2)

where EX denotes the expectation with respect to the symmetric α-stable Lévy
motion Xx

t , and δ denotes the Dirac delta function.

When
∂d+1W

∂t∂x1 · · · ∂xd
in (1.1) is replaced by a (deterministic) continu-

ous function c(t, x), this is the classical Feynman-Kac formula, which has been
widely studied (see [7]).
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In our above stochastic case, if −(−∆)α/2 in (1.1) is replaced by the
classical Laplacian ∆ (the case α = 2), the corresponding Feynman-Kac formula
was studied first in [11] in the case that all Hurst parameters H0, H1, · · · , Hd

are greater than or equal to 1/2 and then in [9] in the case H0 < 1/2. In
both papers, the symmetric α-stable Lévy motion is replaced by the standard
Brownian motion.

In [11], the main difficulties to overcome are the following: The first one
is to show the exponential integrability of some functionals of the Brownian
motion so that (1.2) is well-defined. The second one is to show that (1.2) is a
solution to (1.1). In [9], even the existence of the stochastic integral in (1.2)
becomes a big challenge and was dealt with great care. We expect the similar
difficulties will appear in our current situation.

We shall follow the approach of [11] and [9] to approximate the noise in
(1.1) by smooth ones. However, to show the exponential integrability of the
stochastic integral in (1.2) we shall use a technique developed in [4]. This will
largely simplify our computation even in the standard Brownian motion case.
We shall also use Malliavin calculus to show that (1.2) is indeed a weak solution
to (1.1).

It is straightforward to extend our results in the following two directions.
First, −(−∆)α/2 in (1.1) can be replaced by a generator of more general Lévy
process or more general Markov process. Secondly, W (t, x) in (1.1) can be
replaced by a more general Gaussian field. We restrict ourselves to the specific
case of (1.1) is to make our presentation simple and to present our idea and
approach in a clear way.

The paper is organized as follows. In Section 2, we very briefly present
some preliminary material on Malliavin calculus and stable Lévy motion that
we need to fix some notations. In Section 3, we give a definition to the stochastic
integral in (1.2). This is necessary since the integrand involves the Dirac delta
function. We also show the exponential integrability of the mentioned stochastic
integral. In Section 4, we use Malliavin calculus to prove that (1.2) is a solution
to (1.1) in a weak sense. Section 5 is an application of Feynman-Kac formula
(1.2). We prove that the solution u(t, x) given by (1.1) has a Hölder continuous
version. We also find the Hölder exponent. The main part of the paper assumes
that the stochastic integral involved in (1.1) is in the sense of Stratonovich.
In Section 6, we also discussed the Feynman-Kac formula where the stochastic
integral in (1.1) is in the sense of Itô-Skorohod. We also obtain a Feynman-Kac
formula to represent the Itô-Wiener chaos coefficients of the solution. A formula
for the moments of the solution is also given. Finally in Section 7, we present
some lemmas used in this paper.

2



2 Preliminaries

2.1 Fractional Brownian motion and Malliavin calculus

Fix a vector of Hurst parameters H = (H0, H1, . . . ,Hd), where Hi ∈
(
1
2 , 1
)
.

Suppose that W = {W (t, x), t ≥ 0, x ∈ Rd} is a zero mean Gaussian random
field with the covariance function

E(W (t, x)W (s, y)) = RH0(s, t)

d∏
i=1

RHi(xi, yi),

where for any H ∈ (0, 1) we denote by RH(s, t), the covariance function of the
fractional Brownian motion with Hurst parameter H, that is,

RH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H).

In other words, W is a fractional Brownian sheet with Hurst parameters H0 in
time variable and Hi in space variables, i = 1, . . . , d.

Denote by E the linear span of the indicator functions of rectangles of the
form (s, t]× (x, y] in R+ × Rd, where (x, y] = (x1, y1]× · · · × (xd, yd]. Consider
in E the inner product defined by

〈I(0,s]×(0,x], I(0,t]×(0,y]〉H = RH0
(s, t)

d∏
i=1

RHi(xi, yi).

In the above formula, if xi < 0 we assume by convention that I(0,xi] = −I[xi,0).
We denote by H the closure of E with respect to this inner product. The
mapping W : I(0,t]×(0,x] →W (t, x) extends to a linear isometry between H and
the Gaussian space spanned by W . We will denote this isometry by

W (φ) =

∫ ∞
0

∫
Rd
φ(t, x)W (dt, dx),

if φ ∈ H. Notice that if φ and ψ are functions in E , then

E (W (φ)W (ψ)) = 〈φ, ψ〉H = αH

×
∫
R2

+×R2d

φ(s, x)ψ(t, y)|s− t|2H0−2
d∏
i=1

|xi − yi|2Hi−2dsdtdxdy, (2.1)

where αH =
∏d
i=0Hi(2Hi − 1). Furthermore, H contains the class of mea-

surable functions φ on R+ × Rd such that∫
R2

+×R2d

|φ(s, x)φ(t, y)||s− t|2H0−2
d∏
i=1

|xi − yi|2Hi−2dsdtdxdy <∞. (2.2)

We will denote by D the derivative operator in the sense of Malliavin
calculus. That is, if F is a smooth and cylindrical random variable of the form

F = f(W (φ1), . . . ,W (φn)),
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φi ∈ H, f ∈ C∞p (Rn) (f and all its partial derivatives have polynomial growth),
then DF is the H-valued random variable defined by

DF =

n∑
j=1

∂f

∂xj
(W (φ1), . . . ,W (φn))φj .

The operator D is closable from L2(Ω) into L2(Ω;H) and we define the Sobolev
space D1,2 as the closure of the space of smooth and cylindrical random variables
under the norm

‖DF‖1,2 =

√
E(F 2) + E(‖DF‖2H).

We denote by δ the adjoint of the derivative operator, determined by duality
formula

E(δ(u)F ) = E (〈DF, u〉H) , (2.3)

for any F ∈ D1,2 and any element u ∈ L2(Ω;H) in the domain of δ. The operator
δ is also called the Skorohod integral because in the case of the Brownian motion
it coincides with an extension of the Itô integral introduced by Skorohod. We
refer to Nualart [16] for a detailed account on the Malliavin calculus with respect
to a Gaussian process. If DF and u are almost surely measurable functions on
R+×Rd verifying condition (2.2), then the duality formula (2.3) can be written
using the expression of the inner product in H given in (2.1):

E (δ(u)F ) = αH

×E

(∫
R2

+×R2d

Ds,xFu(t, y)|s− t|2H0−2
d∏
i=1

|xi − yi|2Hi−2dsdtdxdy

)
.

We recall the following formula, which will be used in the paper

FW (φ) = δ(Fφ) + 〈DF, φ〉H , (2.4)

for any φ ∈ H and any random variable F in the Sobolev space D1,2.

2.2 Symmetric α-stable Lévy motion

In this section we recall symmetric stable distribution and symmetric α-stable
Lévy motion. For more general and detailed result about stable processes, we
refer to [18].
A random variable X is said to be symmetric α-stable if there is parameters
0 < α ≤ 2 and σ ≥ 0 such that its characteristic function

EeiθX = e−σ
α|θ|α ,

and we will denote that X ∼ S(α, σ).
Notice that when α = 2, X is a Gaussian random variable. When α ∈ (0, 2), we
have E|X|p <∞ if −1 < p < α and E|X|p =∞ if p ≥ α.
A stochastic process {X(t), t ≥ 0} is called symmetric α-stable Lévy motion if
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(1) X(0) = 0 a.s..

(2) X has independent increments.

(3) X(t) − X(s) ∼ S(α, (t − s)
1
α ) for any 0 ≤ s < t < ∞ and for some

0 < α ≤ 2.

Throughout the paper C will denote a positive constant which may vary
from one formula to another one.

3 Definition and exponential integrability of the
generalized stochastic convolution

For any ε > 0 we denote by pε(x) the d-dimensional heat kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ Rd.

On the other hand, for any δ > 0 we define the function

ϕδ(x) =
1

δ
I[0,δ](x).

Then, ϕδ(t)pε(x) provides an approximation of the Dirac delta function δ(t, x)
as ε and δ tend to zero. We denote by W ε,δ the approximation of the fractional
Brownian sheet W (t, x) defined by

W ε,δ(t, x) =

∫ t

0

∫
Rd
ϕδ(t− s)pε(x− y)W (s, y)dsdy . (3.1)

Fix x ∈ Rd and t > 0. Suppose that X = {Xt, t ≥ 0} is a d-dimensional
symmetric α-stable Lévy motion independent of W . We denote by Xx

t = Xt+x
the symmetric α-stable Lévy motion starting at the point x. We are going to
define the random variable

∫ t
0

∫
Rd δ(X

x
t−r − y)W (dr, dy) by approximating the

Dirac delta function δ(Xx
t−r − y) by

Aε,δt,x(r, y) =

∫ t

0

ϕδ(t− s− r)pε(Xx
s − y)ds. (3.2)

We will show that for any ε > 0 and δ > 0 the function Aε,δt,x belongs to the
space H almost surely, and the family of random variables

V ε,δt,x =

∫ t

0

∫
Rd
Aε,δt,x(r, y)W (dr, dy) . (3.3)

converges in L2 as ε and δ tend to zero.
The specific approximation chosen here will allow us in Section 4 to

construct an approximate Feynman-Kac formula with the random potential
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Ẇ ε,δ(t, x) given in (4.1). Moreover, this approximation has the useful properties
proved in Lemmas 7.4 and 7.5. We may use other types of approximation
schemes with similar results. Also, we can restrict ourselves to the special case
δ = ε, but the slightly more general case considered here does not need any
additional effort.

Along the paper we denote by EX(Φ(X,W )) (resp. by EW (Φ(X,W )))
the expectation of a functional Φ(X,W ) with respect to X (resp. with respect
to W ). We will use E for the composition EXEW , and also in case of a random
variable depending only on X or W .

Theorem 3.1 Suppose that 2H0 + 1
α

∑d
i=1(2Hi− 2) > 1. Then, for any ε > 0

and δ > 0, Aε,δt,x defined in (3.2) belongs to H and the family of random variables

V ε,δt,x defined in (3.3) converges in L2 to a limit denoted by

Vt,x =

∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy) . (3.4)

Conditional to X, Vt,x is a Gaussian random variable with mean 0 and variance

VarW (Vt,x) = αH

∫ t

0

∫ t

0

|r − s|2H0−2
d∏
i=1

∣∣Xi
r −Xi

s

∣∣2Hi−2 drds . (3.5)

Proof Fix ε, ε′, δ and δ′ > 0. Let us compute the inner product〈
Aε,δt,x, A

ε′,δ′

t,x

〉
H

= αH

∫
[0,t]4

∫
R2d

pε(X
x
s − y)pε′(X

x
r − z)

×ϕδ(t− s− u)ϕδ′(t− r − v)

×|u− v|2H0−2
d∏
i=1

|yi − zi|2Hi−2dydzdudvdsdr. (3.6)

By Lemmas 7.4 and 7.5 we have the estimate∫
[0,t]2

∫
R2d

pε(X
x
s − y)pε′(X

x
r − z)

×ϕδ(t− s− u)ϕδ′(t− r − v)|u− v|2H0−2
d∏
i=1

|yi − zi|2Hi−2dydzdudv

≤ C|s− r|2H0−2
d∏
i=1

∣∣Xi
s −Xi

r

∣∣2Hi−2 , (3.7)

where and in what follows C > 0 denotes a constant independent of ε and δ.
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The expectation of this random variable is integrable in [0, t]2 because

EX
∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

∣∣Xi
s −Xi

r

∣∣2Hi−2 dsdr
=

d∏
i=1

E|X1|2Hi−2
∫ t

0

∫ t

0

|s− r|2H0+
∑d
i=1

1
α (2Hi−2)−2dsdr

=
2
∏d
i=1E|ξ|2Hi−2tκ+1

κ (κ+ 1)
<∞, (3.8)

where

κ = 2H0 +
1

α

d∑
i=1

(2Hi − 2)− 1 > 0. (3.9)

and ξ is a standard symmetric α-stable random variable.
As a consequence, taking the mathematical expectation with respect to

X in Equation (3.6), letting ε = ε′ and δ = δ′ and using the estimates (3.7) and
(3.8) yields

EX
∥∥∥Aε,δt,x∥∥∥2H ≤ C.

This implies that almost surely Aε,δt,x belongs to the space H for all ε and δ > 0.

Therefore, the random variables V ε,δt,x = W (Aε,δt,x) are well defined and we have

EXEW (V ε,δt,x V
ε′,δ′

t,x ) = EX
〈
Aε,δt,x, A

ε′,δ′

t,x

〉
H
.

For any s 6= r and Xs 6= Xr, as ε, ε′, δ and δ′ tend to zero, the left-hand side

of the inequality (3.7) converges to |s − r|2H0−2
∏d
i=1

∣∣Xi
s −Xi

r

∣∣2Hi−2. There-

fore, by dominated convergence theorem we obtain that EXEW (V ε,δt,x V
ε′,δ′

t,x )
converges to Σt as ε, ε′, δ and δ′ tend to zero, where

Σt =
2αH

∏d
i=1E|ξ|2Hi−2tκ+1

κ (κ+ 1)
.

Thus we obtain

E
(
V ε,δt,x − V

ε′,δ′

t,x

)2
= E

(
V ε,δt,x

)2
− 2E

(
V ε,δt,x V

ε′,δ′

t,x

)
+ E

(
V ε
′,δ′

t,x

)2
→ 0 .

This implies that V εn,δnt,x is a Cauchy sequence in L2 for all sequences εn and

δn converging to zero. As a consequence, V εn,δnt,x converges in L2 to a limit
denoted by Vt,x, which does not depend on the choice of the sequences εn and
δn. Finally, by a similar argument we show (3.5).

Proposition 3.2 Suppose 2H0 + 1
α

∑d
i=1(2Hi− 2) ≤ 1. Then, conditionally to

X the family V ε,δt,x does not converge in probability as ε and δ tend to zero, for
a non-zero set of trajectories of X.
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Proof We will prove by contradiction. Suppose V ε,δt,x converges to Vt,x in
probability as ε and δ tend to zero given X for almost all trajectories of
X. Since given X, V ε,δt,x is Gaussian, so EW (V 2

t,x) = lim
ε→0,δ→0

EW (V ε,δt,x )2 =∫ t
0

∫ t
0
|s − r|2H0−2

∏d
i=1 |Xi

s − Xi
r|2Hi−2dsdr < ∞ for almost all trajectories

of X. As in the Step 2 in the proof of the Theorem 3.3, we can prove that(∫ t
0

∫ t
0
|s− r|2H0−2

∏d
i=1 |Xi

s −Xi
r|2Hi−2dsdr

) 1
2

is sub-additive and it’s also fi-

nite almost surely, hence we have

E exp

(∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xi
s −Xi

r|2Hi−2dsdr

) 1
2

<∞,

implying that E
∫ t
0

∫ t
0
|s − r|2H0−2

∏d
i=1 |Xi

s − Xi
r|2Hi−2dsdr < ∞ which is a

contradiction.
The next result provides the exponential integrability of the random vari-

able Vt,x defined in (3.4).

Theorem 3.3 Suppose that 2H0 + 1
α

∑d
i=1(2Hi−2) > 1. Then, for any λ ∈ R,

we have

E exp

(
λ

∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy)

)
<∞ . (3.10)

Proof The proof will be done in several steps.

Step 1 From (3.5) we obtain

EeλVt,x = EX exp

(
λ2

2
αH

∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xi
s −Xi

r|2Hi−2dsdr

)
,

and the scaling property of the stable Lévy motion yields

EeλVt,x = EeµY , (3.11)

where µ = λ2

2 αHt
κ+1, where κ has been defined in (3.9), and

Y =

∫ 1

0

∫ 1

0

|s− r|2H0−2
d∏
i=1

|Xi
s −Xi

r|2Hi−2dsdr. (3.12)

Then, it suffices to show that the random variable Y has exponential moments
of all orders.
Step 2 Let

Zt =

(∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xi
s −Xi

r|2Hi−2dsdr

) 1
2

.
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We use the the identity

|s− r|2H0−2 = C0

∫
R
|s− u|

2H0−3
2 |r − u|

2H0−3
2 du

|Xi
s −Xi

r|2Hi−2 = Ci

∫
R
|Xi

s − x|
2Hi−3

2 |Xi
r − x|

2Hi−3

2 dx i = 1, · · · , d

where Ci only depends on Hi for i = 0, 1, · · · , d.
We have

Zt =

(∫
R×Rd

ξ2t (u, x1, · · · , xd)dudx1 · · · dxd
)1/2

where

ξt(u, x1, · · · , xd) =
( d∏
i=0

Ci

)∫ t

0

|s− u|
2H0−3

2

d∏
i=1

|Xi
s − xi|

2Hi−3

2 ds

For t1, t2 > 0, by triangular inequality

Zt1+t2 ≤ Zt1+

(∫
R×Rd

[
ξt1+t2(u, x1, · · · , xd)−ξt1(u, x1, · · · , xd)

]2
dudx1 · · · dxd

)1/2

Write X̃i
s = Xi

t1+s −X
i
t1 .

ξt1+t2(u, x1, · · · , xd)− ξt1(u, x1, · · · , xd)

=
( d∏
i=0

Ci

)∫ t1+t2

t1

|s− u|
2H0−3

2

d∏
i=1

|Xi
s − xi|

2Hi−3

2 ds

=
( d∏
i=0

Ci

)∫ t2

0

|s+ t1 − u|
2H0−3

2

d∏
i=1

|X̃i
s +Xi

t1 − xi|
2Hi−3

2 ds

By translation invariance,

∫
R×Rd

[
ξt1+t2(u, x1, · · · , xd)− ξt1(u, x1, · · · , xd)

]2
=

∫
R×Rd

ξ̃2t2(u, x1, · · · , xd)dudx1 · · · dxd

where

ξ̃2t2(u, x1, · · · , xd) =
( d∏
i=0

Ci

)∫ t2

0

|s− u|
2H0−3

2

d∏
i=1

|X̃i
s − xi|

2Hi−3

2 ds
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Therefore, the process Zt is sub-additive, which means that for any t1, t2 > 0,
Zt1+t2 ≤ Zt1 + Z̃t2 , where Z̃t2 is independent of {Zs; s ≤ t1} and has a
distribution same as Zt2 .
Step 3 Notice Zt ≥ 0 is non-decreasing and path-wise continuous. By Theorem
1.3.5 in [4], for any θ > 0 and t > 0

E exp
{
θZt
}
<∞

and the limit

lim
t→∞

1

t
logE exp

{
θZt
}

= Ψ(θ)

where 0 ≤ Ψ(θ) <∞. By the scaling Zt
d
= tγ/2Z1 with

γ = 2H0 +
1

α

d∑
i=1

(2Hi − 2), (3.13)

we have

lim
t→∞

1

t
logE exp

{
θZt
}

= lim
t→∞

1

tθ
2
γ

logE exp
{
θZ

tθ
2
γ

}
θ

2
γ = Ψ(1)θ

2
γ

Using Chebyshev inequality, we have eθtP
{
Zt ≥ t

}
≤ EeθZt . Hence we

have θt + logP
{
Zt ≥ t

}
≤ logEeθZt , and then lim supt→∞

1
t logP

{
Zt ≥ t

}
≤

limt→∞
1
t logEeθZt−θ = Ψ(θ)−θ = θ

2
γ Ψ(1)−θ which is strictly negative when

we choose θ > 0 sufficiently small. Hence there exists C > 0 such that

lim sup
t→∞

1

t
logP

{
Zt ≥ t

}
≤ −C.

So we have the bound

P
{
Z1 ≥ t

2−γ
2

}
≤ exp{−Ct}

Since for random variable X ≥ 0, EeX = E
∫X
0
eydy+ 1 =

∫∞
0

P
{
X ≥ y}eydy+

1, we have

EeθZ
2

2−r
1

≤
∫ ∞
0

P
{
θZ

2
2−r
1 ≥ y}eydy + 1

≤
∞∑
K=0

P
{
θZ

2
2−r
1 ≥ K}eK+1 + 1

≤
∞∑
K=0

e−
C
θ KeK+1 + 1
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This give the critical integrability

E exp
{
θZ

2
2−γ
1

}
<∞

for some θ > 0, which implies that E exp
{
λZ2

1

}
< ∞ for all λ > 0 since

1 < γ < 2.

4 Feynman-Kac formula

We recall that W is a fractional Brownian sheet on R+×Rd with Hurst param-
eters (H0, H1, . . . ,Hd) where Hi ∈ ( 1

2 , 1) for i = 0, . . . , d. For any ε, δ > 0 we
define

Ẇ ε,δ(t, x) :=

∫ t

0

∫
Rd
ϕδ(t− s)pε(x− y)W (ds, dy). (4.1)

In order to give a notion of solution for the heat equation with fractional noise
(1.1) we need the following definition of the Stratonovitch integral, which is
equivalent to that of Russo-Vallois in [17].

Definition 4.1 Given a random field v = {v(t, x), t ≥ 0, x ∈ Rd} such that∫ T

0

∫
Rd
|v(t, x)|dxdt <∞

almost surely for all T > 0, the Stratonovitch integral
∫ T
0

∫
Rd v(t, x)W (dt, dx) is

defined as the following limit in probability if it exists

lim
ε,δ↓0

∫ T

0

∫
Rd
v(t, x)Ẇ ε,δ(t, x)dxdt.

We are going to consider the following notion of solution for Equation
(1.1).

Definition 4.2 A random field u = {u(t, x), t ≥ 0, x ∈ Rd} is a weak solution
to Equation (1.1) if for any C∞ function ϕ with compact support on Rd, we
have∫

Rd
u(t, x)ϕ(x)dx =

∫
Rd
f(x)ϕ(x)dx− 1

2

∫ t

0

∫
Rd
u(s, x)(−∆)

α
2 ϕ(x)dxds

+

∫ t

0

∫
Rd
u(s, x)ϕ(x)W (ds, dx),

almost surely, for all t ≥ 0, where the last term is a Stratonovitch stochastic
integral in the sense of Definition 4.1.

The following is the main result of this section.
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Theorem 4.3 Suppose that 2H0+ 1
α

∑d
i=1(2Hi−2) > 1 and that f is a bounded

measurable function. Then process

u(t, x) = EX
(
f(Xx

t ) exp

(∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy)

))
(4.2)

is a weak solution to Equation (1.1).

Proof Consider the approximation of the Equation (1.1) given by the following
heat equation with a random potential

∂uε,δ

∂t
= −(−∆)

α
2 uε,δ + uε,δẆ ε,δ

t,x

uε,δ(0, x) = f(x).
(4.3)

¿From the classical Feynman-Kac formula we know that

uε,δ(t, x) = EX
(
f(Xx

t ) exp

(∫ t

0

Ẇ ε,δ(t− s,Xx
s )ds

))
,

where Xx is a d-dimensional symmetric α-stable Lévy motion independent of
W starting at x. By Fubini’s theorem we can write∫ t

0

Ẇ ε,δ(t− s,Xx
s )ds =

∫ t

0

(∫ t

0

∫
Rd
ϕδ(t− s− r)pε(Xx

s − y)W (dr, dy)

)
ds

=

∫ t

0

∫
Rd

(∫ t

0

ϕδ(t− s− r)pε(Xx
s − y)ds

)
W (dr, dy)

= V ε,δt,x ,

where V ε,δt,x is defined in (3.3). Therefore,

uε,δ(t, x) = EX
(
f(Xx

t ) exp
(
V ε,δt,x

))
.

Step 1 We will prove that for any x ∈ Rd and any t > 0, we have

lim
ε,δ↓0

EW |uε,δ(t, x)− u(t, x)|p = 0, (4.4)

for all p ≥ 2, where u(t, x) is defined in (4.2). Notice that

EW |uε,δ(t, x)− u(t, x)|p = EW
∣∣∣EB (f(Bxt )

[
exp

(
V ε,δt,x

)
− exp (Vt,x)

])∣∣∣p
≤ ‖f‖p∞E

∣∣∣exp
(
V ε,δt,x

)
− exp (Vt,x)

∣∣∣p ,
where Vt,x is defined in (3.4). Since exp

(
V ε,δt,x

)
converges to exp (Vt,x) in prob-

ability by Theorem 3.1, to show (4.4) it suffices to prove that for any λ ∈ R

sup
ε,δ

E exp
(
λV ε,δt,x

)
<∞. (4.5)

12



The estimate (4.5) follows from (3.3), (3.7), and (3.10):

E exp
(
λV ε,δt,x

)
= E exp

(
λ2

2

∥∥∥Aε,δt,x∥∥∥2H
)

≤ E exp

(
λ2

2
C

∫ t

0

∫ t

0

|r − s|2H0−2
d∏
i=1

∣∣Xi
r −Xi

s

∣∣2Hi−2 drds)
<∞. (4.6)

Step 2 Now we prove that u(t, x) is a weak solution to Equation (1.1) in the
sense of Definition 4.2. Suppose ϕ is a smooth function with compact support.
We know that,∫
Rd
uε,δ(t, x)ϕ(x)dx =

∫
Rd
f(x)ϕ(x)dx− 1

2

∫ t

0

∫
Rd
uε,δ(t, x)(−∆)

α
2 ϕ(x)dxds

+

∫ t

0

∫
Rd
uε,δ(t, x)ϕ(x)Ẇ ε,δ(s, x)dsdx. (4.7)

Therefore, it suffices to prove that

lim
ε,δ↓0

∫ t

0

∫
Rd
uε,δ(s, x)ϕ(x)Ẇ ε,δ(s, x)dsdx =

∫ t

0

∫
Rd
u(s, x)ϕ(x)W (ds, dx),

in probability. From (4.7) and (4.4) it follows that
∫ t
0

∫
Rd u

ε,δ(s, x)ϕ(x)Ẇ ε,δ(s, x)dsdx
converges in L2 to the random variable

G =

∫
Rd
u(t, x)ϕ(x)dx−

∫
Rd
f(x)ϕ(x)dx+

1

2

∫ t

0

∫
Rd
u(t, x)(−∆)

α
2 ϕ(x)dxds

as ε and δ tend to zero. Hence, if

Bε,δ =

∫ t

0

∫
Rd

(uε,δ(s, x)− u(s, x))ϕ(x)Ẇ ε,δ(s, x)dsdx

converges in L2 to zero, then∫ t

0

∫
Rd
u(s, x)ϕ(x)Ẇ ε,δdsdx =

∫ t

0

∫
Rd
uε,δ(s, x)ϕ(x)Ẇ ε,δdsdx−Bε,δ

converges to G in L2. Thus u(s, x)ϕ(x) will be Stratonovich integrable and∫ t

0

∫
Rd
u(s, x)ϕ(x)W (ds, dx) = G ,

which will complete the proof. In order to show the convergence to zero of
Bε,δ, we will express the product (uε,δ(s, x)−u(s, x))Ẇ ε,δ(s, x) as the sum of a

13



divergence integral plus a trace term (see (2.4))

(uε,δ(s, x)− u(s, x))Ẇ ε,δ(s, x)

=

∫ t

0

∫
Rd

(uε,δ(s, x)− u(s, x))ϕδ(s− r)pε(x− z)δWr,z

+〈D(uε,δ(s, x)− u(s, x)), ϕδ(s− ·)pε(x− ·)〉H .

Then we have

Bε,δ =

∫ t

0

∫
Rd
φε,δr,zδWr,z

+

∫ t

0

∫
Rd
ϕ(x)〈D(uε,δ(s, x)− u(s, x)), ϕδ(s− ·)pε(x− ·)〉Hdsdx

= B1
ε,δ +B2

ε,δ, (4.8)

where

φε,δr,z =

∫ t

0

∫
Rd

(uε,δ(s, x)− u(s, x))ϕ(x)ϕδ(s− r)pε(x− z)dsdx,

and δ(φε,δ) =
∫ t
0

∫
Rd φ

ε,δ
r,zδWr,z denotes the divergence or the Skorohod integral

of φε,δ.

Step 3 For the term B1
ε,δ we use the following L2 estimate for the Skorohod

integral
E[(B1

ε,δ)
2] ≤ E(‖φε,δ‖2H) + E(‖Dφε,δ‖2H⊗H) . (4.9)

The first term in (4.9) is estimated as follows

E(‖φε,δ‖2H) =

∫ t

0

∫
Rd

∫ t

0

∫
Rd
E
[
(uε,δ(s, x)− u(s, x))(uε,δ(r, y)− u(r, y))

]
×ϕ(x)ϕ(y)〈ϕδ(s− ·)pε(x− ·), ϕδ(r − ·)pε(y − ·)〉Hdsdxdrdy. (4.10)

Using Lemmas 7.4 and 7.5 we can write

〈ϕδ(s− ·)pε(x− ·), ϕδ(r − ·)pε(y − ·)〉H

= αH

(∫
[0,t]2

ϕδ(s− σ)ϕδ(r − τ)|σ − τ |2H0−2dσdτ

)

×

(∫
R2d

pε(x− z)pε(y − w)

d∏
i=1

|zi − wi|2Hi−2dzdw

)

≤ C|s− r|2H0−2
d∏
i=1

|x− y|2Hi−2, (4.11)

for some constant C > 0. As a consequence, the integrand on the right-hand
side of Equation (4.10) converges to zero as ε and δ tend to zero for any s, r,
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x, y due to (4.4). From (4.6) we get

sup
ε,δ

sup
x∈Rd

sup
0≤s≤t

E
(
uε,δ(s, x)

)2 ≤ ‖f‖2∞ sup
ε,δ

sup
x∈Rd

sup
0≤s≤t

E exp
(
2V ε,δs,x

)
<∞.

(4.12)
Hence, from (4.11) and (4.12) we get that the integrand on the right-hand side

of Equation (4.10) is bounded by C|s − r|2H0−2
∏d
i=1 |xi − yi|2Hi−2, for some

constant C > 0. Therefore, by dominated convergence we get that E(‖φε,δ‖2H)
converges to zero as ε and δ tend to zero.

Step 4 On the other hand, we have

D(uε,δ(t, x)) = EX
[
f(Xx

t ) exp(V ε,δt,x )Aε,δt,x

]
,

where Aε,δt,x is defined in (3.2). Therefore,

E〈D(uε,δ(t, x)), D(uε
′,δ′(t, x))〉H

= EWEX
(
f(X1

t + x)f(X2
t + x)

× exp(V ε,δt,x (X1) + V ε,δt,x (X2))〈Aε,δt,x(X1), Aε
′,δ′

t,x (X2)〉H
)
, (4.13)

where X1 and X2 are two independent d-dimensional symmetric α-stable Lévy
motions, and here EX denotes the expectation with respect to (X1, X2). Then
from the previous results it is easy to show that

lim
ε,δ↓0

E〈D(uε,δ(t, x)), D(uε
′,δ′(t, x))〉H

= E
[
f(X1

t + x)f(X2
t + x)

× exp

αH
2

2∑
j,k=1

∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xj,i
s −Xk,i

r |2Hi−2dsdr


×αH

∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|X1,i
s −X2,i

r |2Hi−2dsdr

]
. (4.14)

This implies that uε,δ(t, x) converges in the space D1,2 to u(t, x) as δ ↓ 0 and
ε ↓ 0. Letting ε′ = ε and δ′ = δ in (4.13) and using the same argument as for
(4.12), we obtain

sup
ε,δ

sup
x∈Rd

sup
0≤s≤t

E
∥∥D(uε,δ(s, x))

∥∥2
H <∞.

Then

E‖Dφε,δ‖2H⊗H =

∫ t

0

∫
Rd

∫ t

0

∫
R
E〈D(uε,δ(s, x)− u(s, x)), D(uε,δ(r, y)− u(r, y))〉H

×ϕ(x)ϕ(y)〈ϕδ(s− ·)pε(x− ·), ϕδ(r − ·)pε(y − ·)〉Hdsdxdrdy
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converges to zero as ε and δ tend to zero. Hence, by (4.9) B1
ε,δ converges to

zero in L2 as ε and δ tend to zero.

Step 5 The second summand in the right-hand side of (4.8) can be written as

B2
ε,δ =

∫ t

0

∫
Rd
ϕ(x)〈D(uε,δ(s, x)− u(s, x)), ϕδ(s− ·)pε(x− ·)〉Hdsdx

=

∫ t

0

∫
Rd
ϕ(x)EX

(
f(Xx

s ) exp
(
V ε,δs,x

)
〈Aε,δs,x, ϕδ(s− ·)pε(x− ·)〉H

)
dsdx

−
∫ t

0

∫
R
ϕ(x)EX

(
f(Xx

s ) exp (Vs,x) 〈δ(Xx
s−· − ·), ϕδ(s− ·)pε(x− ·)〉H

)
dsdx

= B3
ε,δ −B4

ε,δ

where

〈Aε,δs,x, ϕδ(s− ·)pε(x− ·)〉H = αH

∫
[0,s]3

∫
R2d

|r − v|2H0−2
d∏
i=1

|yi − zi|2Hi−2

×ϕδ(s− r)pε(Xx
r − y)

×ϕδ(s− v)pε(x− z)dydyzdrdrdv,

and

〈δ(Xx
s−· − ·), ϕδ(s− ·)pε(x− ·)〉H

= αH

∫
[0,s]2

∫
Rd

v2H0−2
d∏
i=1

|Xxi
r − yi|2Hi−2ϕδ(r − v)pε(x− y)dydvdr.

Lemma 7.4 and Lemma 7.5 imply that

〈Aε,δs,x, ϕδ(s− ·)pε(x− ·)〉H ≤ C
∫ s

0

r2H0−2
d∏
i=1

|Xi
r|2Hi−2dr, (4.15)

and

〈δ(Bxs−· − ·), ϕδ(s− ·)pε(x− ·)〉H ≤ C
∫ s

0

r2H0−2
d∏
i=1

|Xi
r|2Hi−2dr, (4.16)

for some constant C > 0. Then, from (4.15) and (4.16) and from the fact that

the random variable
∫ s
0
r2H0−2

∏d
i=1 |Xi

r|2Hi−2dr is square integrable because of
Lemma 7.6, we can apply the dominated convergence theorem and get that B3

ε,δ

and B4
ε,δ converge both in L2 to

αH

∫ t

0

∫
Rd
ϕ(x)EB

(
f(Xx

s ) exp (Vs,x)

∫ s

0

r2H0−2
d∏
i=1

|Xi
r|2Hi−2dr

)
dsdx,
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as ε and δ tend to zero. Therefore B2
ε,δ converges in L2 to zero as ε and δ tend

to zero. This completes the proof.
Remark. The uniqueness of the solution remains to be investigated in a
future work. The definition of the Stratonovich integral as a limit in probability
makes the uniqueness problem nontrivial, and it is not clear how to proceed.

As a corollary of Theorem 4.3 we obtain the following result.

Corollary 4.4 Suppose 2H0 + 1
α

∑d
i=1(2Hi− 2) > 1. Then the solution u(t, x)

given by (4.2) has finite moments of all orders. Moreover, for any positive
integer p, we have

E (u(t, x)p) = E

(
p∏
j=1

f(Xj
t + x) (4.17)

× exp

αH
2

p∑
j,k=1

∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xj,i
s −Xk,i

r |2Hi−2dsdr

) ,
where X1, . . . , Xp are independent d-dimensional standard symmetric α-stable
Lévy motions.

5 Hölder continuity of the solution

In this section, we study the Hölder continuity of the solution to Equation (1.1).
The main result of this section is the following theorem.

Theorem 5.1 Suppose that 2H0 + 1
α

∑d
i=1(2Hi − 2) > 1 and let u(t, x) be the

solution of Equation (1.1). Then u(t, x) has a continuous modification such
that for any ρ ∈

(
0, κ2

)
(where κ has been defined in (3.9)), and any compact

rectangle I ⊂ R+ × Rd there exists a positive random variable KI such that
almost surely, for any (s, x), (t, y) ∈ I we have

|u(t, y)− u(s, x)| ≤ KI(|t− s|ρ + |y − x|αρ).

Proof The proof will be done in several steps.

Step 1 Recall that Vt,x =
∫ t
0

∫
Rd δ(X

x
t−r − y)W (dr, dy) denotes the random

variable introduced in (3.4) and

u(t, x) = EX (f(Xx
t ) exp (V (t,x)) .

Set V = Vs,x and Ṽ = Vt,y. Then we can write

EW |u(s, x)− u(t, y)|p = EW |EX(eV − eṼ )|p

≤ EW
(
EX [|Ṽ − V |emax(V,Ṽ )]

)p
≤ EW

[(
EXe2max(V,Ṽ )

)p/2(
EX(Ṽ − V )2

)p/2]
≤ [EWEXe2pmax(V,Ṽ )

] 1
2
[
EW

(
EX(Ṽ − V )2

)p] 1
2 .
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Applying Minkowski’s inequality, the equivalence between the L2 norm and the
Lp norm for a Gaussian random variable, and using the exponential integrability
property (3.10) we obtain

EW |u(s, x)− u(t, y)|p ≤ C
[
EW

(
EX(Ṽ − V )2

)p] 1
2

≤ Cp
[
EXEW |Ṽ − V |2

]p/2
. (5.1)

In a similar way to (3.5) we can deduce the following formula for the conditional
variance of Ṽ − V

EW |Ṽ − V |2 = αHE
X

(∫ s

0

∫ s

0

|r − v|2H0−2
d∏
i=1

|Xi
s−r −Xi

s−v|2Hi−2drdv

+

∫ t

0

∫ t

0

|r − v|2H0−2
d∏
i=1

|Xi
t−r −Xi

t−v|2Hi−2drdv

−2

∫ s

0

∫ t

0

|r − v|2H0−2
d∏
i=1

|Xi
s−r −Xi

t−v + xi − yi|2Hi−2drdv

)
:= αHC(s, t, x, y). (5.2)

Step 2 Fix 1 ≤ j ≤ d. Let us estimate C(s, t, x, y) when s = t, and xi = yi
for all i 6= j. We can write

C(t, t, x, y) = 2

∫ t

0

∫ t

0

|r− v|κ−1
d∏
i 6=j

E
(
|ξ|2Hi−2

)
E
(
|ξ|2Hj−2−|z+ ξ|2Hj−2

)
drdv,

(5.3)

where z =
xj − yj
|r − v| 1α

and ξ is a standard α-stable variable. By Lemma 7.7 the

factor E
(
|ξ|2Hj−2 − |z + ξ|2Hj−2

)
can be bounded by a constant if |r − v| ≤

(xj−yj)α, and it can be bounded by C|xj−yj |2|r−v|−
2
α if |r−s| > (xj−yj)α.

In this way we obtain

C(t, t, x, y) ≤ C
∫
{0<r,v<t,|r−v|≤(xj−yj)α}

|r − v|κ−1drdv

+C|xj − yj |2
∫
{0<r,v<t,|r−v|>(xj−yj)α}

|r − v|κ−1− 2
α drdv

≤ C|xj − yj |ακ.

So, from (5.1) we have

EW |u(t, x)− u(t, y)|p ≤ C|xj − yj |
α
2 κp. (5.4)
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Step 3 Suppose now that s < t, and x = y. Set δ = 1
α

∑d
i=1(2Hi − 2). We

have

C(s, t, x, x)

=C

[∫ t

s

∫ t

s

|r − v|κ−1drdv

+

∫ s

0

∫ t

0

|r − v|2H0−2
(
|r − v|δ − |r − v + t− s|δ

)
drdv

]
.

The first integral is O((t− s)κ+1), when t− s is small. For the second integral
we use the change of variable σ = v − r, v = τ , and we have∫ s

0

∫ t

0

|r − v|2H0−2
(
|r − v|δ − |r − v + t− s|δ

)
drdv

≤
∫ s

0

dτ

∫ s

−t
|σ|2H0−2

∣∣|σ|δ − |σ + t− s|δ
∣∣dσ

=t

[ ∫ s

0

σ2H0−2
(
σδ − (σ + t− s)δ

)
dσ

+

∫ s−t

−t
(−σ)2H0−2

(
(−σ − t+ s)δ − (−σ)δ

)
dσ

+

∫ 0

s−t
(−σ)2H0−2

∣∣(−σ)δ − (σ + t− s)δ
∣∣dσ]

=t[A′ +B′ + C ′].

For the first term in the above decomposition we can write

A′ = (t− s)κ
∫ s

t−s

0

σ2H0−2
(
σδ − (σ + 1)δ

)
dσ

≤ (t− s)κ
∫ ∞
0

σ2H0−2
(
σδ − (σ + 1)δ

)
dσ

≤ C(t− s)κ,

because 2H0 − 2 + δ − 1 < −1. Similarly we can get that

B′ ≤ (t− s)κ
∫ ∞
1

σ2H0−2
(
σδ − (σ + 1)δ

)
dσ.

At last,

C ′ ≤
∫ t−s

0

σ2H0−2
(
σδ + (t− s− σ)δ

)
dσ = C(t− s)κ.

So we have
EW |u(s, x)− u(t, y)|p ≤ C(t− s)κ2 p. (5.5)

Step 4 Combining Equation 5.4 and Equation 5.5 with the estimates (5.1)
and (5.2), the result of this theorem now can be concluded from Theorem 1.4.1
in Kunita [13] if we choose p large enough.
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6 Skorohod type equations and chaos expansion

In this section we consider the following heat equation on Rd
∂u

∂t
= −(−∆)

α
2 u+ u � ∂d+1

∂t∂x1···∂xdW

u(0, x) = f(x) .
(6.6)

The difference between the above equation and Equation (1.1) is that here we
use the Wick product � (see [12], for example). This equation is studied in [10]
in the case H1 = · · · = Hd = 1/2. As in that paper, we can define the following
notion of mild solution.

Definition 6.1 An adapted random field u = {u(t, x), t ≥ 0, x ∈ Rd} such that
E(u2(t, x)) < ∞ for all (t, x) is a mild solution to Equation (6.6) if for any
(t, x) ∈ [0,∞) × Rd, the process {qt−s(x − y)u(s, y)1[0,t](s), s ≥ 0, y ∈ Rd} is
Skorohod integrable, and the following equation holds

u(t, x) = qtf(x) +

∫ t

0

∫
Rd
qt−s(x− y)u(s, y)δWs,y, (6.7)

where qt(x) denotes the density function of Xt and qtf(x) =
∫
Rd qt(x−y)f(y)dy.

As in the paper [10] the mild solution u(t, x) to (6.6) admits the following
Wiener chaos expansion

u(t, x) =

∞∑
n=0

In(fn(·, t, x)), (6.8)

where In denotes the multiple stochastic integral with respect toW and fn(·, t, x)
is a symmetric element in H⊗n, defined explicitly as

fn(s1, y1, . . . , sn, yn, t, x) =
1

n!
(6.9)

×qt−sσ(n)
(x− yσ(n)) · · · qsσ(2)−sσ(1)(yσ(2) − yσ(1))qsσ(1)f(yσ(1)).

In the above equation σ denotes a permutation of {1, 2, . . . , n} such that 0 <
sσ(1) < · · · < sσ(n) < t. Moreover, the solution if it exist, it will be unique
because the kernels in the Wiener chaos expansion are uniquely determined.

The following is the main result of this section.

Theorem 6.2 Suppose that 2H0+ 1
α

∑d
i=1(2Hi−2) > 1 and that f is a bounded

measurable function. Then the process

u(t, x) = EX

[
f(Xx

t ) exp

(∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy)

−1

2
αH

∫ t

0

∫ t

0

|r − s|2H0−2
d∏
i=1

∣∣Xi
r −Xi

s

∣∣2Hi−2 drds)](6.10)

is the unique mild solution to Equation (1.1).
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Proof ¿From Theorem 3.3, we obtain that the expectation EX in Equation
(6.10) is well defined. Then, it suffices to show that the random variable u(t, x)
has the Wiener chaos expansion (6.8). This can be easily proved by expanding
the exponential and then taken the expectation with respect to X.

Theorem 3.1 implies that almost surely δ(Xx
t−· − ·) is and element of

H with a norm given by (3.4). As a consequence, almost surely with respect
to the stable Lévy motion X, we have the following chaos expansion for the
exponential factor in Equation (6.10)

exp

(∫ t

0

∫
Rd
δ(Xx

t−r − y)W (dr, dy)

−1

2
αH

∫ t

0

∫ t

0

|r − s|2H0−2
d∏
i=1

∣∣Xi
r −Xi

s

∣∣2Hi−2 drds) =

∞∑
n=0

In(gn) ,

where gn is the symmetric element in H⊗n given by

gn(s1, y1, . . . , sn, yn, t, x) =
1

n!
δ(Xx

t−s1 − y1) · · · δ(Xx
t−sn − yn) . (6.11)

Thus the right hand side of (6.10) admits the following chaos expansion

u(t, x) =

∞∑
n=0

1

n!
In(hn(·, t, x)) , (6.12)

with

hn(t, x) = EX
[
f(Xx

t )δ(Xx
t−s1 − y1) · · · δ(Xx

t−sn − yn)
]
. (6.13)

This can be regarded as a Feynman-Kac formula for the coefficients of chaos
expansion of the solution of (6.6). To compute the above expectation we shall
use the following

EX
[
f(Xx

t )δ(Xx
t − y)

∣∣Fs] =

∫
Rd
qt−s(X

x
s − z)f(z)δ(z − y)dz

= qt−s(X
x
s − y)f(y) . (6.14)

Assume that 0 < sσ(1) < · · · < sσ(n) < t for some permutation σ of {1, 2, · · · , n}.
Then conditioning with respect to Ft−sσ(1) and using the Markov property of
the Lévy motion we have

hn(t, x) = EX
{
EX
[
δ(Xx

t−sσ(n)
− yσ(n))

× · · · δ(Xx
t−sσ(1) − yσ(1))f(Xx

t )
∣∣Ft−sσ(1)]}

= EX
[
δ(Xx

t−sσ(n)
− yσ(n)) · · · δ(Xx

t−sσ(1) − yσ(1))qsσ(1)f(Xx
t−sσ(1))

]
.
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Conditioning with respect to Ft−sσ(2) and using (6.14), we have

hn(t, x) = EB
{
EX
[
δ(Xt−sx

σ(n)
− yσ(n))

×δ(Xx
t−sσ(1) − yσ(1))qsσ(1)f(Xx

t−sσ(1))
]∣∣Ft−sσ(2)}

= EX

{
δ(Xt−sx

σ(n)
− yσ(n)) · · · δ(Xx

t−sσ(2) − yσ(2))

×EX
[
δ(Xx

t−sσ(1) − yσ(1))qsσ(1)f(Xx
t−sσ(1))

∣∣Ft−sσ(2)]
}

= EX

[
δ(Xt−sx

σ(n)
− yσ(n)) · · · δ(Xx

t−sσ(2) − yσ(2))

×psσ(2)−sσ(1)(X
x
t−sσ(2) − yσ(1))qsσ(1)f(yσ(1))

]
.

Continuing this way we shall find out that

hn(t, x) = qt−sσ(n)
(x− yσ(n)) · · · qsσ(2)−sσ(1)(yσ(2) − yσ(1))qsσ(1)f(yσ(1))

which is the same as (6.9).
Remark. The method of this section can be applied to obtain a Feynman-Kac
formula for the coefficients of the chaos expansion of the solution to Equation
(1.1):

u(t, x) =

∞∑
n=0

1

n!
In(hn(·, t, x)) ,

with

hn(t, x) = EX

[
f(Xx

t )δ(Xx
t−s1 − y1) · · · δ(Xx

t−sn − yn)

× exp

(
1

2
αH

∫ t

0

∫ t

0

|r − s|2H0−2
d∏
i=1

∣∣Xi
r −Xi

s

∣∣2Hi−2 drds)] .
(6.15)

From the Feyman-Kac formula we can derive the following formula for
the moments of the solution analogous to (4.17).

E (u(t, x)p) = E

(
p∏
j=1

f(Xj
t + x)

× exp

αH p∑
j,k=1,j<k

∫ t

0

∫ t

0

|s− r|2H0−2
d∏
i=1

|Xj,i
s −Xk,i

r |2Hi−2dsdr

),
where p ≥ 1 is an integer, and Xj , 1 ≤ j ≤ d, are independent d-dimensional
stable Lévy motions.
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7 Appendix

Lemma 7.1 For any deterministic sub-additive function a(t), t ∈ R+, the e-
quality

lim
t→∞

t−1a(t) = inf
s>0

s−1a(s)

holds in the extended real line [−∞,∞).

Lemma 7.2 Suppose 0 < β < 1, ε > 0, x > 0, and that X is a standard normal
random variable. Then there is a constant C independent of x and ε (it may
depend on β) such that

E|x+ εX|−β ≤ C min(ε−β , x−β) .

Proof It is straightforward to check that K = supz≥0E|z +X|−β <∞. Thus

E|x+ εX|−β = ε−βE|x
ε

+X|−β ≤ Kε−β . (7.16)

On the other hand,

E|x+ εX|−β =
1√
2π

∫
R
|x+ εy|−βe−

y2

2 dy

=
1√
2π

(∫
{|x+εy|> x

2 }
|x+ εy|−βe−

y2

2 dy

+

∫
{|x+εy|≤ x2 }

|x+ εy|−βe−
y2

2 dy

)
.

It is easy to see that the first integral is bounded by Cx−β for some constant
C. The second integral, denoted by B is bounded as follows.

B = C
1

ε

∫
|z|< x

2

|z|−βe−
(z−x)2

2ε2 dz ≤ C 1

ε

∫
|z|< x

2

|z|−βe−
x2

8ε2 dz

= C
x

ε
e−

x2

8ε2 x−β ≤ Cx−β .

Thus we have E|x + εX|−β ≤ C|x|−β . Combining this with (7.16), we obtain
the lemma.

Lemma 7.3 Suppose 0 < β < 1, ε > 0, a > 0, and that Y is a standard symmet-
ric α-stable distributed random variable. Then there is a constant C independent
of x and ε (it may depend on β) such that

E|x+ εY |−β ≤ Cε−β .

23



Proof

E|x+ εY |−β

=

∫
R
F{|x+ ε · |−β}(ξ)e−|ξ|

α

dξ

=

∫
R
F{|ε · |−β}(ξ)eixξe−|ξ|

α

dξ

=

∫
R

1

ε
F{| · |−β}(ξ

ε
)eixξe−|ξ|

α

dξ

=

∫
R

1

ε
|ξ
ε
|β−1eixξe−|ξ|

α

dξ

≤ε−β
∫
R
|ξ|β−1e−|ξ|

α

dξ

≤Cε−β

Lemma 7.4 Suppose α ∈ (0, 1). There exists a constant C > 0 , such that

sup
ε,ε′

∫
R2

pε(x1 + y1)pε′(x2 + y2)|y1 − y2|−αdy1dy2 ≤ C|x1 − x2|−α.

Proof We can write∫
R2

pε(x1 +y1)pε′(x2 +y2)|y1−y2|−αdy1dy2 = E
(
|εX1 − x1 − ε′X2 + x2|−α

)
.

Thus Lemma 7.4 follows directly from Lemma 7.2.

Lemma 7.5 Suppose α ∈ (0, 1). There exists a constant C > 0 , such that

sup
δ,δ′

∫ t

0

∫ t

0

ϕδ(t− s1 − r1)ϕδ′(t− s2 − r2)|r1 − r2|−αdr1dr2 ≤ C|s1 − s2|−α

Proof Since

pδ(x) ≥ pδ(x)I[0,
√
δ](x) =

1√
2πδ

e−
x2

2δ I[0,
√
δ](x) ≥ 1√

2πe
ϕ√δ(x) ,

the lemma follows from Lemma 7.4.

Lemma 7.6 Suppose that 2H0 + 1
α

∑d
i=1(2Hi − 2) > 1. Let X1, . . . , Xd be

independent one-dimensional symmetric α-stable Lévy motion. Then we have

E

(∫ t

0

s2H0−2
d∏
i=1

|Xi
s|2Hi−2ds

)2

<∞.
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Proof We can write

E

(∫ t

0

s2H0−2
d∏
i=1

|Xi
s|2Hi−2ds

)2

= 2

∫ t

0

∫ s

0

(sr)2H0−2

×
d∏
i=1

E(|Xi
s|2Hi−2|Xi

r|2Hi−2)drds

Let Y be a standard symmetric α-stable distributed random variable. ¿From
Lemma 7.3, taking into account that 2− 2Hi < 1, we have when r < s,

E(|Xi
r|2Hi−2|Xi

s|2Hi−2) = E[|Xi
r|2Hi−2E[|(s− r) 1

αY + x|2Hi−2|x=Xir ]]

≤ CE[|Xi
r|2Hi−2(s− r)

2Hi−2

α )

≤ Cr
2Hi−1

α (s− r)
2Hi−2

α . (7.17)

As a consequence, the conclusion of the lemma follows from the fact that∫ t

0

∫ s

0

r2H0−2+ 1
α

∑d
i=1(2Hi−2)s2H0−2(s− r) 1

α

∑d
i=1(2Hi−2)drds <∞,

because 2H0 − 2 + 1
α

∑d
i=1(2Hi − 2) > −1 and 1

α

∑d
i=1(2Hi − 2) > −1.

Lemma 7.7 For any 0 < β < 1,

E
(
|ξ|−β − |y + ξ|−β

)
≤ C min(1, y2),

for some constant C > 0, where y > 0 and ξ is a standard symmetric α-stable
random variable.

Proof Notice first that E
(
|ξ|−β − |y + ξ|−β

)
< C where C > 0 is a constant,

since limy→∞E|y + ξ|−α = 0.
On the other hand,

E
(
|ξ|−β − |y + ξ|−β

)
=

∫
R
F
{
| · |−β − |y + ·|−β

}
(ξ)e−|ξ|

α

dξ

=C

∫
R
|ξ|β−1e−|ξ|

α

(1− eiyξ)dξ

=C

∫
R
|ξ|β−1e−|ξ|

α

(1− cos(yξ))dξ

≤C
∫
R
|ξ|β−1e−|ξ|

α

y2ξ2dξ

≤Cy2
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248 (2007), no. 1, 1–26.

[21] Viens, F. G. and Zhang, T. Almost sure exponential behavior of a directed
polymer in a fractional Brownian environment. J. Funct. Anal. 255 (2008),
no. 10, 2810–2860.

[22] Walsh, J. B. An introduction to stochastic partial differential equations.
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