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Abstract

Almost nothing decisive has been said about collocation methods for solving SPDEs. Among the best of such SPDEs the Burgers
equation shows a prototypical model for describing the interaction between the reaction mechanism, convection effect, and diffusion
transport. This paper discusses spectral collocation method to reduce stochastic Burgers equation to a system of stochastic ordinary
differential equations (SODEs). The resulting SODEs system is then solved by an explicit 3-stage stochastic Runge-Kutta method
of strong order one. The convergence rate of Fourier collocation method for Burgers equation is also obtained. Some numerical
experiments are included to show the performance of the method.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

In recent years the study of stochastic partial differential equations (SPDEs) has been an important area of research.
Many phenomena in science and engineering that may have been modeled by deterministic partial differential equations,
have some uncertainty, due to existence of different stochastic perturbations. Therefore to represent a more accurate
detail of behavior of such phenomena they usually should be modeled by SPDEs. SPDEs have many applications in
continuum physics [3,4], finance, for example for contingent claim, bond pricing problem, interest rate of option and
forward caps [6]. Several authors investigated numerical solutions of SPDEs. Some authors have used finite differences,
finite elements or spectral Galerkin methods for spatial variable discertization and then solved the resulting system of
SODEs via Euler method or the Crank–Nicolson scheme [2,14,21,25,26,32–34].

The Monte-Carlo method is another relatively straight-forward method with a long history of applications in finance
and physics that can also be used. But this method is by far the most popular in simulating the effects modeled
by SPDEs. In Monte-Carlo method the SPDE problems by generating suitable random numbers are formulated as
deterministic PDEs and then are solved by standard numerical methods. However, this method has some limitations

in applications with complex stochastic term as many realizations have to be carried out in order to obtain reliable
estimates of various statistical properties. Hence, the Monte-Carlo method is generally computationally expensive and
only recommended as the last resort [9,22,31]. For optimization problems governed by SPDEs we refer the reader to
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24] in which the result of a comparison between Monte-Carlo and stochastic Galerkin and collocation methods is in
avor of collocation. Wiener Chaos expansion is another method that we can use for the solution of SPDE, but this
ethod is also computationally expensive because a large number of chaos coefficients in the expansions need to be

ccurately computed, and many realizations have to be performed to obtain accurate estimates of the required statistical
haracteristics [18,28]. In 1998 Machiels and Deville investigated Fourier spectral method for SPDE [27]. Some other
uthors used Galerkin approximation for SPDEs [15,19]. But to our knowledge collocation methods have not been yet
tudied for parabolic SPDEs of the type of Burgers equation. Obviously, the Galerkin and finite difference, or other
bove-mentioned methods, like any other numerical method, have their own advantages and disadvantages, but here
e just mention two major advantages of the collocation methods:

(i) Since no integration is required, the construction of the final system of equations is very efficient.
ii) The functions must be evaluated only at the collocation nodes in contrast to other methods.

In addition to these advantages with the collocation method the computational cost of calculating nonlinear terms
nd incorporating general boundary conditions (Dirichlet, Neumann, and mixed) is reasonably low with good numerical
ccuracy. It should also be mentioned that a vast majority of the researches have considered SPDEs in which the drift
unctions satisfy global Lipschitz condition (see [16,20,23,30]), while in many applications, such as Burgers equation,
he drift function fails to satisfy global Lipschitz condition. Therefore, in this paper, we study spectral collocation
ethod to approximate numerical solution of stochastic Burgers equation with additive noise such as

∂u

∂t
(t,  x) = ∂2u

∂x2 (t,  x) +  u(t,  x)
∂u

∂x
(t,  x) + ∂2W

∂t∂x
(t,  x) (1.1)

ith the initial condition

u(0,  x) =  u0(x),  (1.2)

nd boundary conditions

u(t,  0) =  0,  u(t,  π) =  0,  (1.3)

here ∂2W/∂t∂x(t, x) is a space-time white noise.
The solvability and the properties of its solution have been intensively studied in the literature, see [10,11,13]. For

patial discretization of Burgers equation Blömker and Jentzen [5] used spectral Galerkin approximation and Alabert
nd Gyöngy [1] introduced and theoretically investigated the following finite difference method

duNi (t) =  N2
N−1∑
k=1

Diku
N
k (t)dt  + 1

6
(|uNi+1|2(t) −  |uNi−1|2(t) +  uNi+1(t)uNi (t) −  uNi (t)uNi−1(t))dt  + √

NdWN
i (t),

i =  1,  2,  . .  .  ,  N  −  1,  (1.4)

here uN (t) :=  (uNi (t)) is column vector in RN−1, and WN (t) :=  (WN
i (t)) is an (N  −  1)-dimensional Wiener process,

nd Dii = −  2, Dik = 1, for |i  −  k| = 1, and Dik = 0, for |i  −  k| > 1, i  = 1, 2, .  .  ., N  −  1.
As a test of numerical performance, we also apply the method (1.4) to support the efficiency and robustness of

pectral collocation method presented here. It should also be emphasized that our main aim here is to investigate an
nalysis of the collocation method for the space discretization. Hence, for solving the resulting system of SODEs for
ime variable one could use any of the well-established and appropriate methods like Euler or some other stochastic
unge-Kutta methods. We have used an explicit 3-stage stochastic Runge-Kutta method with optimal strong order one

7].
The paper is organized as follows. In Section 2 we explain Fourier spectral collocation method briefly. In Section
 the formulations of this method for stochastic Burgers equation are obtained, then the formulas of an explicit 3
tage stochastic Runge-Kutta are recalled to be used for time discretization. In Section 4, analytical investigation of
onvergence and the rate of convergence of the Fourier spectral collocation method for this equation is carried out.
inally in the numerical section, the confirmation of theoretical rate of convergence is illustrated. Also some numerical
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comparison is made with the results of well-established method (1.4) for the support of the numerical performance of
collocation method.

2.  Spatial  discretization  by  spectral  collocation  method

Spectral methods are a class of spatial discretization for differential equations. The key components for their
formulations are the trial functions (or approximating functions) and test functions (also known as weight functions).

The choice of test functions distinguishes between the three earliest types of spectral schemes, namely, the Galerkin,
collocation and tau versions.

The collocation approach appears to have been first used by Slater and by Kantorovic (1934) in specific applications.
This approach is especially attractive whenever it applies to variable-coefficient and even nonlinear problems. One of
the trial functions that we can use is the Fourier sine series, that are advisable for problems with appropriate boundary
conditions as the Burgers equation considered here. These are defined on [0, π] by ek(x) = √

2/π  sin(kx),  k  =  1,  2,  . .  .

Thus for approximating function f(x) in the form of a sine series we choose the following interpolation points in the
interval [0, π]:

xj = πj

N
(j  =  1,  .  . .  ,  N  −  1).  (2.1)

In order to construct the interpolant of f(x) at these points we first define the polynomials [8]

Cj(x) = 2

N

N−1∑
m=1

sin(mxj) sin(mx),  (2.2)

to satisfy Cj(xi) = δij, i, j = 1, .  . ., N  −  1. For a given function f(x) which vanishes at x = 0 and π, we consider

PN (x) =
N−1∑
j=1

f  (xj)Cj(x),  (2.3)

as its interpolating projection trigonometric polynomial. In this case the projection space is B̃N =  span{sin(kx) : k  =
1, . .  . ,  N  −  1}  on which some further properties are explained in Appendix B. The second step in the spectral collocation
approximation is to express the derivative of f(x) at the collocation points xj, j  = 0, .  . ., N. By differentiating (2.3),
after extending to include j = 0 and j  = N, we obtain

dkPN (x)

dxk
=

N∑
j=0

f  (xj)
dk

dxk
Cj(x),  (2.4)

so that

dkPN (xi)

dxk
=

N∑
j=0

f  (xj)(Dk)i,j, i =  0,  .  . .  , N,  (2.5)

(Dk)i,j = dk

dxk
Cj(xi),  i,  j  =  0,  .  . .  , N,  (2.6)

where ⎧⎪⎪⎪0, j  =  0 or N;
(D1)ij =
⎨
⎪⎪⎪⎩

−0.5 cot(xj), i  =  j,

(−1)i+j+1 sin(xj)

cos(xi) −  cos(xj)
, otherwise.
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nd D2 = D′D1, where

(D′)ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, i  =  0 or i =  N,  all j,

0.5 cot(xj),  i  =  j; j  =  1,  . . .  ,  N  −  1,

(−1)j+1 sin(xi) cos(Nxi)

[cos(xi) −  cos(xj)]
,  otherwise.

bviously, using these approximate matrix representations one can approximate function f(x) and its derivatives.

. Formulation  of  stochastic  collocation  method

Let us assume that (�,  F,  {Ft}t≥0,  P) is a filtered probability space and the process W  = (W(t, x)), a Brownian sheet
n [0, π] ×  [0, T], is adapted to the filtration {Ft}t≥0, where [0, π] is the spatial domain. Recall that W is a zero mean
aussian process such that E(W(t,  x)W(s,  y)) =  (x  ∧  y)(t  ∧  s),  and W(t, x) −  W(s, x) + W(s, y) −  W(t, y) is independent
f Fs for all x, y  ∈  [0, π] and 0 ≤  s  ≤  t.

We will describe spectral collocation method for the approximation of solution of stochastic Burgers equation

∂u

∂t
(t,  x) = ∂2u

∂x2 (t,  x) +  u(t,  x)
∂u

∂x
(t,  x) + ∂2W

∂t∂x
(t,  x),  (3.1)

ith the initial condition

u(0,  x) =  u0(x),  (3.2)

nd boundary conditions

u(t,  0) =  0,  u(t,  π) =  0,  (3.3)

here u0 is a square integrable function over [0, π], and ∂2W/∂t∂x(t, x) is a space-time white noise.
These equations are important due to their role in modeling of certain turbulent effects. Now we apply the spectral

ollocation method to the stochastic Burgers equation.
Let N  be a non-negative integer and xi = πi/N, i  = 0, 1, .  . ., N, the points in the interval [0, π]. We discretize the

quation in its space variable by spectral collocation method.
We approximate u(t, x), the solution of (1.1), by uN(t, x) defined as

uN (t,  x) =
N∑
i=0

u(t,  xi)Ci(x),  (3.4)

here Ci(x) was introduced in (2.2). From (2.5) we have

∂uN

∂x
(t,  xi) =

N∑
j=0

(D1)i,ju
N (t,  xj),  (3.5)

nd

∂2uN

∂x2 (t,  xi) =
N∑
j=0

(D2)i,ju
N (t,  xj),  i  =  0,  1,  2,  .  . .  ,  N,  (3.6)

here
Dk =  [(Dk)i,j]

N
i,j=0,,  are spectral differentiation matrices of order k  for k = 1, 2, . .  . that were already introduced in

2.6). Then from (1.1) by using finite difference method for space discretization of the stochastic term and bearing in
ind that uN(t, x0) = 0 and uN(t, xN) = 0, we have
duN (t,  xi) =
⎛
⎝N−1∑
j=1

(D2)i,ju
N (t,  xj) +  uN (t,  xi)

N−1∑
j=1

(D1)i,ju
N (t,  xj)

⎞
⎠ dt  + N

π
d(W(t,  xi+1) −  W(t,  xi)).  (3.7)
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Using the notation uNi (t) =  uN (t,  xi), WN
i (t) = √

N/π(W(t,  xi+1) −  W(t,  xi)),  for i = 1, 2, .  . ., N  −  1, the system (3.7),
can be rewritten as

duNi (t) =
⎛
⎝N−1∑
j=1

(D2)i,ju
N
j (t) +  uNi (t)

N−1∑
j=1

(D1)i,ju
N
j (t)

⎞
⎠ dt  +

√
N

π
dWN

i (t).  (3.8)

for i = 1, 2, . . ., N  −  1. Notice that WN
i (t) is a Wiener process, see Appendix A.

Therefore for the stochastic Burgers equation (1.1) the following Itô stochastic differential system

duN (t) =  F (uN (t))dt  +  GdWN (t),  (3.9)

represents (3.8), where uN(t) denotes the unknown semi-discretized solution at time t, i.e., uN (t) :=  (uNi (t)), F(uN(t))
and G  denote the semi-discretized forms of deterministic and stochastic parts in (3.8), respectively. Here we have

F (uN (t)) :=  (Fi(u
N (t))),  (3.10)

Fi(uN (t)) =
N−1∑
j=1

(D2)i,ju
N
j (t) +  uNi (t)

N−1∑
j=1

(D1)i,ju
N
j (t) (3.11)

and G  is a N  − 1 ×  N  −  1 diagonal matrix that its ith entry is
√
N/π, and WN (t) :=  (WN

i (t)) is a N  −  1 dimensional
Wiener process and

uNi (0) =  u0(x(i)),  i  =  1,  2,  . .  . , N  −  1.  (3.12)

3.1. Stochastic  Runge-Kutta  schemes  for  time  integration

In order to solve the system of SODEs (3.9) we apply an explicit 3-stage SRK of the class of stochastic Runge-Kutta
methods. This is known as one of the best 3-stage explicit methods that has the strong convergence of order 1. Recall
that an approximate solution Y (t) approximates the solution Y(t) with order of accuracy p  in the strong sense, if the
following inequality holds:

E|YN −  Y (tN )|  ≤  Chp,

where YN is the numerical approximation to Y(tN), and constant C  > 0 is independent of h.
Here we apply a class of stochastic Runge-Kutta methods proposed in [7] as follows

Hi =  uN (n�t) +  �t

s∑
j=1

aijF ( Hj) +
n−1∑
k=1

s∑
j=1

bijG
kξk(�t)

1/2,  i  =  1,  . .  .  ,  s,

uN ((n  +  1)�t) =  uN (n�t) +  �t

s∑
j=1

αjF ( Hj) +
n−1∑
k=1

s∑
j=1

γjG
kξk(�t)

1/2,

(3.13)

where uN(0) is defined in (3.12), Gk denotes the kth column of the matrix G, and ξk are random variables with normal
distribution N(0, 1).

In this formulation, A  = (aij) and B  = (bij) are s  ×  s  matrices with real elements while αT = (α1, .  .  ., αs) and γT = (γ1,
. . ., γs) are row vectors in Rs. According to the Butcher tableau

A B

αT γT

for the members of the SRK family (3.13), the implemented s  = 3 stage explicit SRK method is as follows:
000 000
1
2 00 1

2 00

0 3
4 0 0 3

4 0
2
9

3
9

4
9

2
9

3
9

4
9
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It should be mentioned that for solving the stochastic system (3.9) we could also use another methods such as
hose proposed in [12,29], but as the analysis of collocation space discretization method has been the main purpose
f this paper, taking any suitable well-established scheme to solve the system of SODEs will suffice. Therefore, for
he system of SODEs, appearing here after spatial discretization which has more than one Wiener process, using the
imple 3-stage explicit SRK method (3.13), of first order strong convergence, could be appropriate [7].

. Convergence  and  order  of  convergence  of  the  spectral  collocation  method

In this section we assume that the system (3.7) has a solution uN. Because the analysis of space discretization method
as been the main purpose of this paper we investigate the error of spectral collocation method.

We rewrite Eq. (3.7) for the solution uN in the form

uN (t) =  etD2aN +
∫ t

0
e(t−s)D2 (H(uN (s))ds  +

√
N

π

∫ t

0
e(t−s)D2dWN (s),  (4.1)

here H  is a function from RN−1 to RN−1 with Hk(x1,  x2,  . . .  ,  xN−1) =  xk
∑N−1
j=1 (D1)k,jxj,  k  =  1,  2,  .  . .  ,  N  −  1.

onsider the RN−1-valued random processes

ηN (t) =
√
N

π

∫ t

0
e(t−s)D2dWN (s).  (4.2)

he vectors e1, .  . ., eN−1 defined by

ej =  (ej(k)) =
(√

2

N
sin

(
j
kπ

N

))
,  k  =  1,  2,  .  . . , N  −  1,  (4.3)

orm an orthonormal basis in RN−1, and they are eigenvectors of the matrix D2, with eigenvalues

λj =  −j2,  j =  1,  2,  . . . ,  N  −  1.  (4.4)

herefore, for the random field {ηN(t, x), t  ≥  0, x  ∈  [0, π]}  defined by

ηN (t,  xk) :=  ηNk :=
√
N

π

∫ t

0
e(t−s)D2dWN (s),  (4.5)

or xk : = kπ/N, k  = 1, . . ., N  −  1, and

ηN (t,  0) =  ηN (t,  π) =  0,  (4.6)

ηN (t,  x) :=  ηN (t,  κN (x)),  x  ∈ (0,  π),  (4.7)

N (x) :=  π
[Nx/π]
N

, we have

ηN (t,  x) =
∫ t

0

∫ π

0
GN (t  −  s,  x,  y)dW(s,  y),  (4.8)

or all t ≥  0, x ∈  [0, π], where

GN (t,  x,  y) :=
N−1∑
k=1

exp(λkt)ϕ
N
k (κN (x))ϕk(κN (y)),  (4.9)

ith ϕk(x) = √
2/π  sin(kx), ϕNk (x) =  ϕk(lπ/N) for x  = lπ/N  and

ϕNk (x) =  ϕk

(
lπ

N

)
+ Nx  −  lπ

π

(
ϕk

(
(l  +  1)π

N

)
−  ϕk

(
lπ

N

))
, (4.10)
or x  ∈  (lπ/N, ((l  + 1)π)/N).

heorem  4.1.  Let  N  ≥  2 be  an  integer.  For  uN,  the  solution  of  system  (3.7),  with  initial  condition

uNk (0) =  aNk ,  k  =  1,  2,  .  . .  ,  N  −  1,  (4.11)
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there  is  a  finite  random  variable  ξ  such  that

sup
t≤T

2

N

N−1∑
k=1

(uNk (t)2) ≤  ξ

(
2

N

N−1∑
k=1

|aNk |2 +  1

)
(a.s.) (4.12)

Proof. Assume

v(t) :=  vN (t) =  uN (t) −  ηN (t).  (4.13)

Then from Eqs. (3.7) and (4.1), v  satisfies

dvN (t) =  (D2v
N (t) +  H(vN (t) +  ηN (t)))dt,

vN (0) =  aN,
(4.14)

where aN :=  (aNk ) is a N  −  1-dimensional vector in RN−1 . This means

dvN (t,  xk) =
⎛
⎝N−1∑
j=1

(D2)k,jv
N (t,  xj) +  (vN (t,  xk) +  ηN (t,  xk))

N−1∑
j=1

(D1)k,j(v
N (t,  xj) +  ηN (t,  xj))

⎞
⎠ dt,

(4.15)

From (3.5) and (3.6) we conclude

∂vN

∂t
(t,  xk) = ∂2vN

∂x2 (t,  xk) +  (v(t,  xk) +  ηN (t,  xk))
∂(vN +  ηN )

∂x
(t, xk),  (4.16)

for k = 1, . .  ., N  −  1 . Let us multiply the kth equation of (4.16) by (2/N)vN (t,  xk) and sum over k. We get

1

2

d

dt

2

N

N−1∑
k=1

vN (t,  xk)
2 = 2

N

N−1∑
k=1

∂2vN

∂x2 (t,  xk)v
N (t,  xk) + 2

N

N−1∑
k=1

vN (t,  xk)(v
N (t,  xk)

+ ηN (t,  xk))
∂(vN +  ηN )

∂x
(t, xk).  (4.17)

Now we use the discrete inner product

(f, g)N = 2

N

N−1∑
k=1

f  (xk)g(xk)

for f  and g  ∈ B̃N . Then from the trapezoidal quadrature rule and because each element of B̃N vanishes at x  = 0 & π, it
is seen that the discrete inner product equals to the continuous inner product, see Appendix B, that is

(f, g)N = 2

π

∫ π

0
f  g  dx, for f,  g  ∈ B̃N.  (4.18)

Therefore, from (4.18) and the exactness of the quadrature formula, since vN and ∂2vN/∂x2 belong to B̃N and

∫ π

0

∂2vN

∂x2 (t,  x)vN (t,  x)dx  =  −
∫ π

0

(
∂vN (t,  x)

∂x

)2

dx, (4.19)

Eq. (4.17) is rewritten as
1

2

d

dt

∫ π

0
vN (t,  x)2dx  =  −

∫ π

0

(
∂vN (t,  x)

∂x

)2

dx  + π

N

N−1∑
k=1

vN (t,  xk)(v
N (t,  xk) +  ηN (t,  xk))

∂(vN +  ηN )

∂x
(t, xk).

(4.20)
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he second term on the right side of (4.20), which is denoted by C for simplicity, is trapezoidal quadrature approximation
f the integral value (1/2)I where

I =
∫ π

0
vN (t,  x)

∂(vN (t,  x) +  ηN (t,  x))2

∂x
dx.

ence for any ε  > 0 there exists N  such that

|C| ≤ 1

2
|I|  +  ε.  (4.21)

n the other hand

I =  vN (t,  x)(vN (t,  x) +  ηN (t,  x))2|π0 −
∫ π

0

∂vN (t,  x)

∂x
(vN (t,  x) +  ηN (t,  x))2dx

= −
∫ π

0

∂vN (t,  x)

∂x
vN (t,  x)2dx  −

∫ π

0

∂vN (t,  x)

∂x
ηN (t,  x)2dx  −  2

∫ π

0

∂vN (t,  x)

∂x
vN (t,  x)ηN (t,  x)dx

= −
∫ π

0

∂vN (t,  x)

∂x
ηN (t,  x)2dx  −  2

∫ π

0

∂vN (t,  x)

∂x
vN (t,  x)ηN (t,  x)dx,

nd

|I| ≤
(∫ π

0

(
∂vN (t, x)

∂x

)2

dx

)1/2

·
(∫ π

0

ηN (t, x)4dx

)1/2

+ 2|ηN |
(∫ π

0

(
∂vN (t, x)

∂x

)2

dx

)1/2(∫ π

0

vN (t, x)2dx

)1/2

≤ 2

(∫ π

0

(
∂vN (t, x)

∂x

)2

dx

)1/2((∫ π

0

ηN (t, x)4dx

)1/2

+ |ηN |
(∫ π

0

vN (t, x)2dx

)1/2
)

≤
∫ π

0

(
∂vN (t, x)

∂x

)2

dx +
((∫ π

0

ηN (t, x)4dx

)1/2

+ |ηN |
(∫ π

0

vN (t, x)2dx

)1/2
)2

≤
∫ π

0

(
∂vN (t, x)

∂x

)2

dx + 2

∫ π

0

ηN (t, x)4dx + 2|ηN |2
∫ π

0

vN (t, x)2dx

≤
∫ π

0

(
∂vN (t, x)

∂x

)2

dx + 2π|ηN |4 + 2|ηN |2
∫ π

0

vN (t, x)2dx,

(4.22)

here ηN =  sup
0≤x≤π

sup
0≤t≤T

|ηN (t,  x)|.
Therefore, from (4.20), (4.21), and (4.22) we have

d

dt

∫ π

0
vN (t,  x)2dx  ≤  −

∫ π

0

(
∂vN (t,  x)

∂x

)2

dx  +  2ε  +  2π|ηN |4 +  2|ηN |2
∫ π

0
vN (t,  x)2dx, (4.23)

ronwall inequality yields

sup
0≤t≤T

∫ π

0
vN (t,  x)2dx  ≤

(∫ π

0
vN (0,  x)2dx  +  2π|ηN |4T  +  2εT

)
e2|ηN |2T , (4.24)

ence

sup
0≤t≤T

2

N

N−1∑
k=1

vN (t,  xk)
2 ≤

(
2

N

N−1∑
k=1

|aNk |2 +  2|ηN |4T  +  2ε/πT

)
e2|ηN |2T . (4.25)

herefore
sup
0≤t≤T

2

N

N−1∑
k=1

uNk (t)2 ≤  ξN

(
2

N

N−1∑
k=1

|aNk |2 +  1

)
,  (4.26)
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where from Theorem 2.1 in [1], it can easily be proved that ξ  =  sup
N≥2

ξN =  e2|ηN |2T +  2|ηN |4T  +  2ε/πT  is a finite

random variable. �

Theorem  4.2.  Assume  u0 ∈  C([0, π]) almost  surely.  Then  uN almost  surely  converges  in  L2([0, π]) to  u(t),  the  solution
of (1.1),  uniformly  in  t  in  bounded  intervals  and  for  each  α  < 1/2,  T  > 0 there  exists  a finite  random  variable  ζα such
that

P

[
sup

0≤t≤T

(∫ π

0
|uN (t,  x) −  u(t,  x)|2dx

)1/2

≤  ζαN
−α
]

= 1,  (4.27)

for all  integers  N  ≥  2.

Proof. To prove this theorem we shall first obtain some estimates. Let G  denote the Green function for the heat
equation with Dirichlet boundary conditions, i.e.,

G(t, x,  y) =
∞∑
k=1

exp(−k2t)ϕk(x)ϕk(y),  ϕk(x) =
√

2

π
sin(kx), (4.28)

and

Gy(t,  x,  y) =
∞∑
k=1

k  exp(−k2t)ϕk(x)ψk(y),  ψk(x) =
√

2

π
cos(kx). (4.29)

It is well known that problem (1.1) has a unique solution u, which satisfies the integral equation

u(t, x) =
∫ π

0
G(t,  x,  y)u(0,  y)dy +

∫ t

0

∫ π

0
Gy(t  −  s,  x,  y)u2(s,  y)dyds  +

∫ t

0

∫ π

0
G(t  −  s,  x,  y)dW(s,  y).

(4.30)

Define

GNy (t,  x,  y) =  N

(
GN

(
t,  x,  y  + 1

N

)
−  GN (t,  x,  y)

)
=
N−1∑
k=1

exp(−k2t)ϕk(κN (x))N(ϕk(κ
+
N (y)) −  ϕk(κN (y))),

(4.31)

for t ≥  0, x, y  ∈  [0, π], where κ+
N (y) =  κN (y) +  (1/N). On the other hand, by an argument similar to the proof of Lemma

4.2 in [1] it can be shown that for each T  > 0 there exists a constant K  such that∫ T

0

(∫ π

0
|GNy −  Gy|2(s,  x,  y)dx

)1/2

ds  ≤  KN−1/2,  (4.32)

for all y  ∈  [0, π]. Then obviously uN satisfies the equation

uN (t,  x) =
∫ π

0
GN (t,  x,  y)uN (0,  κN (y))dy  +

∫ t

0

∫ π

0
GNy (t  −  s,  x,  y)uN (κN (y))2dyds

+
∫ t

0

∫ π

0
GN (t  −  s,  x,  y)dW(s,  y).  (4.33)

Let ‖· ‖ denotes the L2([0, π])-norm in the x-variable. Therefore, from (4.30) and (4.33) we obtain
‖uN (t,  ·  ) −  u(t,  · )‖  ≤  A(t) +  B(t) +  C(t),  (4.34)

with

A(t) =  ‖
∫ π

0
GN (t,  · ,  y)uN (0,  y)dy  −

∫ π

0
G(t,  · , y)u(0,  y)dy‖, (4.35)
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B(t) =  ‖
∫ t

0

∫ π

0
GNy (t  −  s,  · , y)uN (κN (y))2dyds  −

∫ t

0

∫ π

0
Gy(t  −  s,  ·  ,  y)u(s,  y)2dyds‖,  (4.36)

C(t) =  ‖
∫ t

0

∫ π

0
GN (t  −  s,  · , y)dW(s,  y) −

∫ t

0

∫ π

0
G(t  −  s,  · ,  y)dW(s,  y)‖.  (4.37)

rom the proof of Theorem 2.2 in [1] by taking uN(0, y) = u(0, y) we deduce

sup
0≤t≤T

|A(t)|2 ≤  ξ2
1N

−2,  (4.38)

or a finite random variable ξ1, and for all t  ∈  [0, T].
For B(t) we have B  ≤  B1 + B2, where

B2
1(t) =

∫ π

0

(∫ t

0

∫ π

0
(GNy −  Gy)(t  −  s,  x,  y)uN (y,  s)2dyds

)2

dx, (4.39)

B2
2(t) =

∫ π

0

(∫ t

0

∫ π

0
Gy(t  −  s,  x,  y)(uN (y,  s)2 −  u(y,  s)2)dyds

)2

dx. (4.40)

or B1 by Minkowski’s inequality, (4.32) and Theorem 4.1 we obtain

B2
1(t) ≤

(∫ π

0

∫ t

0

(∫ π

0
(GNy −  Gy)

2(s,  x,  y)dx

)1/2

uN (y,  s)2dsdy

)2

≤  KN−1
(∫ t

0

∫ π

0
uN (y,  s)2dyds

)2

≤  ξ2N
−1,

(4.41)

or all t ∈  [0, T], where ξ2 is a finite random variable independent of t and N.
For B2 by Lemma 3.1 (i) from [13], we have

B2
2(t) ≤  K

(∫ t

0
(t  −  s)−3/4‖uN (s,  .)2 −  u(s,  .)2‖1ds

)2

. (4.42)

here ‖  · ‖ 1 is L1([0, π])-norm.

‖u(s,  ·  )2 −  uN (s,  · )2‖1 =
∫ π

0
(uN (s,  y)2 −  u(s,  y)2)dy

=
∫ π

0
(uN (s,  y) −  u(s,  y))(uN (s,  y) +  u(s,  y))dy

≤
(∫ π

0
(uN (s,  y) −  u(s,  y))2dy

)1/2(∫ π

0
(uN (s,  y) +  u(s,  y))2dy

)1/2

≤  ‖uN (s,  · ) −  u(s,  ·  )‖  ‖uN (s,  ·  ) +  u(s,  ·  )‖
≤ ‖uN (s,  · ) −  u(s,  ·  )‖  (‖uN (s,  ·  )‖  +  ‖u(s,  · )‖).

(4.43)

rom Theorem 2.1 in [13], and Theorem 4.1 we conclude that there is a finite random variable ξ3 such that almost
urely

‖u(s, · )‖2 ≤  ξ3, ‖uN (s,  · )‖2 ≤  ξ3,  (4.44)

or all s  ∈  [0, T].
Thus by Cauchy-Schwarz inequality we obtain
|B2(t)|2 ≤  ξ3

(∫ t

0
(t  −  s)−3/4‖uN (s,  .) −  u(s,  .)‖2ds

)
, (4.45)

or all t ∈  [0, T].
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Fig. 1. Convergence rate: pathwise error of the collocation method versus N.
For C(t) by similar computations like the proof of Theorem 2.2 of [1] we can conclude for any α  ∈  (0, 1)

sup
t≤T

|C(t)|2 ≤  ξαN
−α. (4.46)

Therefore from (4.38), (4.41), (4.45), (4.46) we have

‖uN (t,  .) −  u(t,  .)‖2 ≤  ξ2
1N

−2 +  ξN−1 +  ξ3

(∫ t

0
(t  −  s)−3/4‖uN (s,  .) −  u(s,  .)‖2ds

)
+  ξαN

−α.  (4.47)

From Gronwall lemma we can conclude there exists a finite random variable ζα such that

sup
t≤T

‖uN (t,  .) −  u(t,  .)‖2 ≤  ζαN
−α.  �  (4.48)

5. Numerical  results

The theoretical and numerical performances of the presented collocation method for the Burgers equation are
discussed here.

To illustrate the theoretical rate of convergence, the related plot, obtained with different numbers of collocation
points N  = 16, 32, 64, 100, 200, has been shown in Fig. 1. It confirms that, as we expected from Theorem 4.2, the order
of convergence is 1/2 .

To test the numerical performance of the presented method we compare the following pathwise error for T  = M�t

max
0≤n≤M

‖u(tn, ·  ) −  u(tn,  · )‖,  (5.1)

of the numerical solutions of the Burgers equation from the two space discretization methods (1.4) and the collocation
method of this paper. u(t,  x), u(t, x) are, respectively, the exact and the numerical solutions at point x  and time t. The
exact solution u(t,  x) has been approximated with a very high accuracy using a reasonably small time step size.

Example 1.  Consider the stochastic Burgers equation
∂u

∂t
(t,  x) = ∂2u

∂x2 (t,  x) +  u(t,  x)
∂u

∂x
(t,  x) + ∂2W

∂t∂x
(t,  x),  (5.2)
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Table 1
Pathwise error (5.1) of the stochastic Burgers equation with space discretizations (1.4) and collocation method.

N = 64 T = 3/200 T = 1/20 T = 0.2 T = 1

C
F

w

a

I
1
u
T

−

−

ollocation method 4.969e−05 8.662e−05 4.670e−04 4.422e−04
inite difference method (1.4) 5.119e−05 3.182e−05 2.985e−04 1.231e−04

ith the initial condition

u(0,  x) = 6

5
sin(x),

nd boundary conditions

u(t,  0) =  0,  u(t,  π) =  0.

n Table 1, we present the pathwise errors for the Burgers equation with N  = 64 at four different times T  = 3/200,

/20, 0.2 and T  = 1 with 100 realizations. For time variable, the time discretization (3.13) with �t  = T/N2 has been
sed. In Fig. 2 we present the approximation of the solution of Eq. (5.2) computed by spectral collocation method for

 ∈  {3/200, 1/20, 0.2, 1}.
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1.2

1.4

1.6
Solution T=1

Fig. 2. Solution paths, u(t, x), of stochastic Burgers equation for x ∈ [0, π] and T ∈ {3/200, 1/20, 0.2, 1} with one random value ω ∈ �.
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6.  Conclusion

The main purpose of this work was to study the analysis of spectral collocation method as a suitable numerical
algorithm for solving SPDEs, particularly stochastic Burgers equation. We have studied theoretically and numeri-
cally the spectral Fourier collocation method for this equation. We have proved the convergence rate and illustrated
it numerically. Some numerical experiments have been reported to illustrate the performance of the collocation
method.

Acknowledgements

We would like to thank the anonymous reviewers and also the editor for their helpful comments that have improved
the quality of this paper.

Appendix  A.

We here prove that WN
i (t) as was defined by

√
N/π(W(t,  xi+1) −  W(t,  xi)) is a Wiener process:

1. WN
i (0) = √

N/π(W(0,  xi+1) −  W(0,  xi)) =  0,  with probability 1,  because of properties of the Brownian sheet.
2. For i  = 1, .  . ., N  −  1, and arbitrary t and h, WN

i (t  +  h) −  WN
i (t) has a Gaussian distribution with mean 0 and variance

h, as the following analysis shows:

E(WN
i (t  +  h) −  WN

i (t)) =
√
N

π
E(W(t  +  h,  xi+1) −  W(t  +  h,  xi) −  W(t,  xi+1) +  W(t,  xi)) =  0.  (A.1)

Thus its mean was shown to be zero.
For its variance, we use the fact that

E(W(t,  x)W(s,  y)) =  (x  ∧  y)(t  ∧  s),

to obtain

E(WN
i (t))2 = N

π
E(W(t,  xi+1) −  W(t,  xi))

2

= N

π
(E(W(t,  xi+1))2 +  E(W(t,  xi))

2 −  2E(W(t,  xi))(W(t,  xi+1)))

= N

π
(txi+1 +  txi −  2txi) = N

π
(t(xi+1 −  xi)) =  t,

(A.2)

which implies

E(WN
i (t))2 =  t,  (A.3)

and also

E(WN
i (s)WN

i (t)) = N

π
E((W(s,  xi+1) −  W(s,  xi)).(W(t,  xi+1) −  W(t,  xi)))

= N

π
( min{s,  t}xi+1 −  min{s,  t}xi −  min{s,  t}xi +  min{s,  t}xi)

= N
min{s, t}(xi+1 −  xi) =  min{s,  t}.

(A.4)
π

Hence,

E(WN
i (s)WN

i (t)) =  min{s,  t}.  (A.5)
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Therefore from (A.3) and (A.5) we conclude that

E(WN
i (t  +  h) −  WN

i (t))2 =  E(WN
i (t  +  h))2 +  E(WN

i (t))2 −  2E((WN
i (t  +  h))(WN

i (t)))

= t +  h  +  t  −  2t  =  h.
(A.6)

. By using (A.5), one can easily show that the increments of WN
i (t1) −  WN

i (t0),  WN
i (t2) −  WN

i (t1),  . .  .  ,  WN
i (tn) −

WN
i (tn−1) are also independent.
It is obviously seen, from (A.5), that

E(WN
1 (t).WN

2 (t)) =
√
N

π
E((W(t,  x2) −  W(t,  x1)).

√
N

π
E((W(t,  x3) −  W(t,  x2))

= N

π
E(W(t,  x2)W(t,  x3)) −  E(W(t,  x2))2 −  E(W(t,  x1)W(t,  x3)) +  E(W(t,  x1)W(t,  x2))

= N

π
(tx2 −  tx2 −  tx1 +  tx1) =  0.

(A.7)

Therefore for i /=  j,

E(WN
i (t).WN

j (t)) =  0.

ppendix  B.

Thus for approximating function f(x) in the form of a sine series we choose the following interpolation points in the
nterval [0, π]:

xj = πj

N
(j  =  1,  . . .  ,  N  −  1).  (B.1)

n order to construct the interpolant of f(x) at these points we first define the polynomials [8]

Cj(x) = 2

N

N−1∑
m=1

sin(mxj) sin(mx),  (B.2)

o satisfy Cj(xi) = δij, i, j  = 1, . . ., N  −  1. For a given function f(x) which vanishes at x = 0 and π, we consider

PN (x) =
N−1∑
j=1

f  (xj)Cj(x), (B.3)

s its interpolating projection trigonometric polynomial. In this case the projection space is
B̃N =  span{  sin(kx) : k  =  1,  .  . .  ,  N  −  1}  with dim(B̃N ) =  N  −  1. Now we use the discrete inner product

(f, g)N = 2

N

N−1∑
k=1

f  (xk)g(xk)

or f and g  ∈ B̃N . Then from the trapezoidal quadrature rule and because each element of B̃N vanishes at x  = 0 & π, it
s seen that the discrete inner product equals to the continuous inner product, that is∫ π
(f, g)N = 2

π 0
f  g  dx,  for f,  g  ∈ B̃N.

his is easily shown because (sin(kx),  sin(mx))N =  (2/π)
∫ π

0 sin(kx) sin(mx)dx  =  δk,m, k,  m  =  1,  . .  .  ,  N  −  1.
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