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Abstract. In this paper we study the convexity properties of geodesics and balls in
Outer space equipped with the Lipschitz metric. We introduce a class of geodesics called
balanced folding paths and show that, for every loop α, the length of α along a balanced
folding path is not larger than the maximum of its lengths at the endpoints. This implies
that out-going balls are weakly convex. We then show that these results are sharp by
providing several counterexamples.

1. Introduction

Let Out(Fn) be the group of outer automorphisms of a free group of rank n, and let
Outer space CVn be the space of marked metric graphs of rank n. The Outer space, which is
a simplicial complex with an Out(Fn) action, was introduced by Culler-Vogtmann [CV86]
to study Out(Fn) as an analogue of the action of mapping class group on Teichmüller
space or the action of a lattice on a symmetric space. The Outer space can be equipped
with a natural asymmetric metric, namely the Lipschitz metric. For points x, y ∈ CVn,

d(x, y) = inf
φ

log(Lφ)

where φ : x→ y is a difference of markings map from x to y and and Lφ is the Lipschitz
constant of the map φ. The geometry of CVn equipped with the Lipschitz metric is closely
related to the large scale geometry of Out(Fn) and has been the subject of extensive study
(see for example, [Vog15, AK11, BF12]).

In this paper, we examine the convexity properties of geodesics and balls in CVn. How-
ever, we need to be careful with our definitions since the metric d is asymmetric (the ratio
of d(x, y) and d(y, x) can be arbitrarily large [AKB12]) and there may be many geodesics
connecting two points in CVn. We introduce the notion of a balanced folding path along
which we have more control over the lengths of loops. Recall that, a geodesic in CVn (not
necessarily parametrized with unit speed) is an injective continuous map γ : [a, b]→ CVn.
For a ≤ t ≤ b, let x = γ(a) and y = γ(b), we have

d
(
x, γ(t)

)
+ d
(
γ(t), y

)
= d(x, y).

We often denote the image of γ by [x, y]. The length of a loop α in a graph x is denoted
by |α|x and we use |α|t to denote the length of α at γ(t). The balanced folding paths from
x to y is denoted by [x, y]bf . We show that, lengths of loops along a balanced folding path
satisfy a weak notion of convexity.

Theorem 1.1. Given points x, y ∈ CVn, there exists a geodesic [x, y]bf from x to y so
that, for every loop α, and every time t,

|α|t ≤ max
(
|α|x, |α|y

)
.
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The proof of this theorem is by construction. We then apply Theorem 1.1 to the
convexity of balls. There are two different notions of a round ball in CVn. For x ∈ CVn
and R > 0, we define the out-going ball of radius R centered at x to be

Bout(x,R) =
{
y ∈ CVn

∣∣ d(x, y) ≤ R
}
.

As an immediate corollary of Theorem 1.1 we have

Theorem 1.2. Given a point x ∈ CVn, a radius R > 0 and points y, z ∈ Bout(x,R),

[y, z]bf ⊂ Bout(x,R).

That is, the ball Bout(x,R) is weakly convex.

Corollary 1.3. The intersection of any number of out-going balls is connected.

Proof. The same balanced folding path is contained in all balls. �

We will also show that these theorems are sharp in various ways by providing examples of
how possible stronger statements fail. There are other ways to choose a geodesic connecting
y to z, for example, a standard geodesic which is a concatenation of a rescaling of the edges
and a greedy folding path (see Section 2 for definitions). In fact, when there is a greedy
folding path connecting y to z, Dowdall-Taylor [DT14, Corollary 3.3] following Bestvina-
Feighn [BF14, Lemma 4.4] have shown that the lengths of loops are quasi-convex. However,
we will show that these paths do not satisfy the conclusion of Theorem 1.1 and a standard
path or a greedy folding path with endpoints in Bout(x,R) may leave the ball. Here is a
summary of our counter-examples.

Theorem 1.4. Theorems 1.1 and 1.2 are sharp.

(1) (Lengths cannot be made convex.) There are points x, y ∈ CVn and a loop α so
that along any geodesic connecting x to y, the length of α is not a convex function
of distance in CVn.

(2) (The ball Bout is not quasi-convex) This is true even when one restricts attention to
(non-greedy)-folding paths. Namely, for any R > 0, there are points x, y, z ∈ CVn
and there is a folding path [y, z]ng connecting y to z so that

y, z ∈ Bout(x, 2) and [y, z]ng 6⊂ Bout(x,R).

That is, a folding path with endpoints in Bout(x, 2) can travel arbitrarily far away
from x.

(3) (Standard geodesics could behave very badly) There exists a constant c > 0 such
that, for every R > 0, there are points x, y, z ∈ CVn and a standard geodesic
[y, z]std connecting y to z such that

y, z ∈ Bout(x,R) and [y, z]std 6⊂ Bout(x, 2R− c).

That is, the standard geodesic path can travel nearly twice as far from x as y and
z are from x.

(4) (Greedy folding paths may not stay in the ball) For every R > 0, there are points
x, y, z ∈ CVn, n ≥ 6, where y and z are connected by a greedy folding path [y, z]gf

such that

y, z ∈ Bout(x,R) but [y, z]gf 6⊂ Bout(x,R).
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Construction of a balanced folding path. Given an optimal difference of markings
map φ : x → y where the tension graph is the whole x, there are many folding paths
connecting x to y. We need a controlled and flexible way to construct a folding path
between x to y. To this end, we introduce a notion of a speed assignment (see Section 2.4)
which describes how fast every illegal turn in x folds. Given a speed assignment, one can
write a concrete formula for the rate of change of the length of a loop α (Lemma 3.2). To
prove Theorem 1.1, we need to find a speed assignment so that, whenever |α|y < |α|x, the
derivative of length of α is negative and if |α|y > |α|x the length α does not grow too fast.

A difference of markings map φ : x→ y (again assuming the tension graph is the whole
x) can be decomposed to a quotient map φ : x→ y which is a local isometry and a scaling
map y → y. Our approach is to determine the contribution `τ of every sub-gate τ in x to
the length loss from x to y. For an easy example, consider F3 = 〈a, b, c〉, let x be a rose
with 3 pedals where the edges are labeled ac2, bc and c and the edge lengths are 1

2 , 1
3 and

1
6 and let y be the rose with labels a, b and c and edges lengths all 1

6 . Then y is obtained

from x by wrapping ac2 around c twice and bc around c once. The length loss going from
x to y is

|x| − |y| = 1− 1

2
=

1

2
.

Here, the sub-gate 〈bc, c〉 is contributing 1
6 to the length loss and the sub-gate 〈ac2, c〉 is

contributing 2 × 1
6 to the length loss. Of course, in general, the definition of length loss

contribution needs to be much more subtle.
These length loss contributions are then used to determine the appropriate speed as-

signment. That is, we fold each sub-gates proportional to the length loss they eventually
induce (see Section 3). For instance, in the above example, the sub-gate 〈ac2, c〉 should be
folded with twice the speed of the sub-gate 〈bc, c〉.

Decorated difference of markings map. If the tension graph of φ : x→ y is a proper
subset of x, there is no folding path between x to y. As we see in part (3) of Theorem 1.4,
standard paths are not suitable for our purposes. Instead, we emulate a folding path even
in this case. Namely, we introduce a notion of a decorated difference of markings map.
That is, by adding decoration to x and y (marked points are added to x and some hair
is added to y), we can ensure that the difference of markings map is tight. Then, we
show, a folding path can be defined as before and the discussion above carries through
(see Section 4).

A criterion for the uniqueness of geodesics. To prove part one of Theorem 1.4 and
Theorem 1.6 below, we need to know what all the geodesics connecting x to y are accounted
for. In general this is hard to characterize. Instead, we focus on a case where there is a
unique geodesic connecting x to y. It is not hard to prove the uniqueness of geodesic in
special cases, however, we prove a general statement giving a criterion for uniqueness. A
yo-yo is an illegal turn formed by a one-edge loop and a second edge, with no other edges
incident to the vertex of this illegal turn. We say a folding path from x to y is rigid if at
every point along the path there is exactly one illegal turn and it is not a yo-yo.

Theorem 1.5. For points x, y ∈ CVn, the geodesic from x and y is unique (up to
reparametrization) if and only if there exists a rigid folding path connecting x to y.
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The in-coming balls. In the last section we examine the convexity of in-coming balls.
For x ∈ CVn and R > 0, we define the in-coming ball of radius R centered at x to be

Bin(x,R) =
{
y ∈ CVn

∣∣ d(y, x) ≤ R
}
.

We show that a ball Bin(x,R), in general, is not even weakly quasi-convex. That is,

Theorem 1.6. For any constant R > 0, there are points x, y, z ∈ CVn such that, y, z ∈
Bin(x, 2) but, for any geodesic [y, z] connecting y to z,

[y, z] 6⊂ Bin(x,R).

Once again we use Theorem 1.5; we construct an example where there is a unique
geodesic between y and z and show that it can go arbitrarily far out.

Analogies with Teichmüller space. The problem addressed in this paper has a long
history in the setting of Teichmüller space. Let (T (Σ), dT ) be the Teichmüller space of a
surface Σ equipped with the Teichmüller metric. It was claimed by Kravetz [Kra59] that
round balls in Teichmüller space are convex and he used it to give a positive answer to the
Nielsen-realization problem. However, his proof turned out to be incorrect. Even-though
the Nielsen-realization problem was solved by Kerckhoff [Ker83], it was open for many
years whether or not the rounds balls are convex and was only resolved recently; It was
shown in [LR11] that round balls in (T (Σ), dT ) are quasi-convex and it was shown in
[FBR16] that there are non-convex balls in the Teichmüller space. The problem is still
open for the Teichmüller space equipped with the Thurston metric [Thu86], which is an
asymmetric metric and is more directly analogous to the Lipschitz metric in CVn. Hence,
the weak convexity in the case of Outer space is somewhat surprising.

Acknowledgements. We would like to thank Yael Algom-Kfir and Mladen Bestvina for
helpful comments on an earlier version of this paper.

2. preliminaries

2.1. Outer space. Let Fn be a free group of rank n and let Out(Fn) be the outer auto-
morphism group of Fn. Let cvn be the space of free, minimal actions of Fn by isometries
on metric simplicial trees [CV86]. Two such actions are considered isomorphic if there is
an equivariant isometry between the corresponding trees. Equivalently we think of a point
in cvn as the quotient metric graph of the tree by the corresponding action. The quotient
graph is marked, that is, its fundamental group is identified (up to conjugation) with Fn.

The Culler-Vogtmann Outer space, CVn, (or simply the Outer space) is the subspace
of cvn consisting of all marked metric graphs of total length 1. Let x be a metric graph of
total length 1, in which every vertex has degree at least 3. Let Rn be the graph of n edges
that are all incident to one vertex. A marking is a homotopy equivalence f : Rn → x.
Two marked graphs f : Rn → x and f ′ : Rn → x′ are equivalent if there is an isometry
φ : x→ x′ such that φ ◦ f ' f ′(homotopic). When the context is clear, we often drop the
marking out of the notation and simply write x ∈ CVn. In this paper, we refer to metric

graphs as x, y, etc. and the corresponding trees as Tx, Ty, etc. We also use φ̃ : Tx → Ty
for the lift of φ.

The set of marked metric graphs that are isomorphic as marked graphs to a given point
x ∈ CVn makes up an open simplex in CVn which we denote ∆x. Outer space CVn
consists of simplices with missing faces. The group Out(Fn) acts on CVn by precomposing
the marking: for an element g ∈ Out(Fn), (x, f)g = (x, f ◦ g). This is a simplicial action.
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2.2. Lipschitz metric. A map φ : x→ y is a difference of markings map if φ ◦ fx ' fy.
We will only consider Lipschitz maps and we denote by Lφ the Lipschitz constant of φ.
The Lipschitz metric on CVn is defined to be:

d(x, y) := inf
φ

logLφ

where the infimum is taken over all difference of markings maps. There exists a non-unique
difference of markings map that realizes the infimum [FM11]. Since such a difference of
markings map is homotopic rel vertices to a map that is linear on edges, we also use φ
to denote the representative that realizes the infimum and is linear on edges and refer to
such a map as an optimal map from x to y. Given an optimal map φ : x → y, the slope
of an edge e ∈ x associated to φ is the ratio of lengths |φ(e)| to |e|. For the remainder of
the paper, we always assume the difference of markings maps are optimal.

By a loop or an immersed loop in x, we mean a free homotopy class of a map from the
circle into x, or equivalently, a conjugacy class in Fn. Meanwhile, we use a simple loop
to mean a union of edges in a graph that forms a circle with no repeated vertices. Both
kinds of loops can be identified with a conjugacy class in the free group, call it α. We use
|α|x to denote the metric length of the shortest representative of α in x, where x can be
a point in CVn or cvn, depending on the context. It is shown [FM11] that if x, y ∈ CVn
then the distance d(x, y) can be computed as:

(1) d(x, y) = sup
α

log
|α|y
|α|x

,

where the sup is over all conjugacy classes. In fact, it is shown in [FM11] that:

Theorem 2.1. Given two points in Outer space x and y, the immersed loop that represents
α which realizes the supremum can be taken from a finite set of sub-graphs of x of the
following forms

• simple loops
• figure-eight: an immersed loop where there is exactly one vertex with two pre-

images in the circle
• dumbbell: an immersed loop that crosses edges in two disjoint loops once and edges

in the connecting arc twice.

This result implies we can compute distances between two points by calculating the

ratio
|α|y
|α|x for a finite set of immersed loops.

2.3. Train track structure. It is often convenient to use a difference of markings map
that has some additional structure. We define

λ(α) =
|α|y
|α|x

to be the stretch factor of a shortest immersed loop that represents α. For an optimal
map φ : x→ y, since it is linear on edges, one can define

λ(e) =
|φ(e)|y
|e|x

to be the stretch factor of an edge e and define the tension sub-graph, xφ, to be the
sub-graph of x consisting of maximally stretched edges.
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Let φ : x→ y be an optimal map. A direction at a vertex v ∈ xφ is a germ of geodesic
path [0, ε]→ xφ sending 0 to v. Let D(v) be the set of all directions at v. Now φ induces
a map:

φ∗ : D(v)→ D(φ(v))

since it sends a geodesic γ : [0, ε] → xφ to a geodesic φ ◦ γ : [0, ε] → y. Thus we have an
equivalence relation on D(v):

d ∼ d′ ⇔ φ∗(d) = φ∗(d
′).

A gate at v is an equivalence class. The size of a gate τ is denoted |τ | and is defined to
be the number of directions in the equivalence class. An unordered pair {d, d′} of distinct
directions at a vertex v of xφ is called a turn. The turn {d, d′} is φ–illegal if d and d′

belong to a same gate and is legal otherwise. The set of gates at xφ is also called the
illegal turn structure on xφ induced by φ. We can also use a pair of edges incident to a
given vertex to indicate a turn. That is, if ~e1 is an oriented edge ending on v and ~e2 is an
oriented edge starting from v then we use 〈~e1, ~e2〉 to denote the turn that traverses ~e1 first
and ~e2 second. If e1 and e2 share only one vertex then we do not even need to specify the
orientation and we use the notation 〈e1, e2〉. But if one or both of e1 and e2 start and end
at the same vertex v we need to be more careful with orientation.

Definition 2.2. A sub-gate is a subset of directions in a gate (including the gate itself).
The set of all sub-gates of x ∈ CVn under the difference of markings map φ is denoted Tφ,
or simply T if the associated map is clear from the context. With this terminology, we
can view an illegal turn as a sub-gate of size 2. A speed assignment is an assignment of
non-negative real numbers sτ to all elements of Tφ of size 2 and denote the assignment

S =
{
sτ

∣∣∣ τ ∈ T , |τ | = 2
}
.

For a gate τ = d1, d2, d3, we might have s{d1,d2} and s{d2,d3} are larger than s{d1,d3}. But
if we identify the edges associated to d1 and d2 as well as d2 and d3 alone some segment
of size ε, then the edges associated to d1 and d3 are also identified. To address this issue,
we add some extra assignment of the S.

For s > 0, we say directions d and d′ as a point v are s–equivalent if there is a sequence
of direction d = d1, . . . , dk and gate τ1, . . . , τk−1 so that {di, di+1} = τi and sτi ≥ s. We
say a speed assignment is coherent if for every gate τ = d1, . . . , d` and every s > 0

∀ 1 ≤ i, j ≤ k di, and dj are s–equivalent =⇒ sτ ≥ s.

For every speed assignment S there is a coherent speed assignment Sc where the s equiv-
alent classes are identical. In fact, we can define

scτ = sup
{
s > 0

∣∣ every d, d′ ∈ τ are s–equivalent
}
.

Note that replacing sτ with scτ does not change the s–equivalent classes since we are
increasing the speed only for directions that are already s–equivalent. We call Sc the
associated coherent speed assignment to S.

For an immersed loop αx ∈ x, the set of illegal turns of α is denoted Tα(φ), or Tα
when the associated map is clear from the context. Since α is immersed, Tα is a priori a
multi-set because an illegal turn τ = {d, d′} can appear in Tα more than once.
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An illegal turn structure is moreover a train track structure if there are at least two
gates at each vertex. For any two points x, y ∈ CVn, there exists an optimal map φ : x→ y
such that xφ has a train track structure [FM11].

2.4. Folding paths. In this section we construct a family of paths called folding paths.
The general definition can be found in [BF14], but we introduce it here in the language
that is adapted to this paper. Assume there is an optimal difference of markings map
φ : x → y with xφ = x that induces a train track structure on x [BF14, Proposition 2.1].
An immersed path in xφ = x is legal if whenever it passes through a vertex, the entering
and the exiting gates are distinct. A legal loop in a graph is a legal immersed path whose
last vertex coincides with the first vertex on the path. A legal segment is a legal immersed
path whose last vertex does not coincide with its first vertex.

Given this train track structure and an associated speed assignment S = {sτ}|τ |=2, we
define a folding segment, {xt}, for small t ≥ 0. The optimal difference of markings map
φt : x → xt is a composition of a quotient map φ̄t : x → x̄t and a scaling map xt → xt.
For t small enough, the quotient graph xt of x is obtained from x as follows. For every
sub-gate τ at vertex v with |τ | = 2 and two points u,w on the two edges eu, ew of the
sub-gate τ , we identify u and w if |v, u|x = |v, w|x ≤ tsτ (here |·, ·| measures the length of
the segment in the graph x). The graph xt inherits a natural metric so that this quotient
map is a local isometry on each edge of x. Since xt ∈ cvn, let xt be the projective class of
xt in CVn, and let φt : x→ xt be the composition φ̄t and the appropriate scaling.

Notice that in xt it is possible for edges in a sub-gate τ to be identified along a segment
that is longer than tsτ , depending on the identification of other edges in the gate containing
τ . However we still say xt constructed this way is the folding path associated with S =
{sτ}|τ |=2. That is, different speed assignments may result in the same folding path.

We assume t1 is small enough so that the combinatorial type of xt does not change on
the interval (0, t1). Also, for t small enough, any u and w as above are also identified
under φ because eu and ew are in the same gate. Hence, φ ◦ φ−1

t is a well defined map.
We always assume t small enough that is true and define the left-over map ψt at time t
to be defined by

ψt : xt → y, ψt = φ ◦ φ−1
t

Note that the norm of the derivatives of the map φ : x→ y is constant along x because it
is an optimal map and xφ = x hence φ stretches x by the same amount everywhere. The
same is true for φt. Therefore, the norm of the derivative of ψt : xt → y is also constant
along xt and in fact it is the ratio of the norm of the derivative of φ over that of φt. That
is,

d(xt, y) = d(x, y)− d(x, xt).

We call such a path {xt} a geodesic starting from x towards y since it does not necessarily
reach y. To summarize, we have shown:

Proposition 2.3. Assume a difference of markings map φ : x → y gives a train track
structure on x. For any speed assignment S = {sτ}|τ |=2, there is t1 > 0 and a geodesic
γS : [0, t1] → CVn starting from x towards y where the graph xt = γ(t) is obtained by
folding every gate τ at speed sτ .

Note that when we say the combinatorial type of xt does not change, it does not mean
it is the same as x or even xt1 . Typically, the geodesic segment γG starts from x which
lies on the boundary of simplex in CVn (not necessarily of maximal dimension) travels in
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the interior of this simplex and stops when it hits the boundary of the simplex. At this
point, if there is a new speed assignment, the folding could continue.

Globally, a folding path is a concatenation of such folding segments. Note that at the
end point of a folding segment, we have a difference of markings map φt1 : xt1 → y and
still xφt1 = xt1 . Then φt1 defines a train-track structure on xt1 and, choosing speed
assignments, we can continue the folding path further. It may be the case the a folding
path is divided into infinitely many folding segments. See Section 5 for more details on
how a global folding path can be constructed from folding segments.

In general, a folding path from x to y is denoted [x, y]f . If all values of the speed
assignment are equal at every time then the path is called a greedy folding path and
denoted [x, y]gf . In Section 3 we construct a specific type of folding path whose speed
assignment reflects the contribution of each sub-gate to the total length loss along the
path. However, one has to be careful to extend the local construction described here to
a geodesic connecting x to y. In Section 5 we extend the local construction to a global
construction.

2.5. Standard geodesic. Another important class of geodesic paths to consider is the
class of standard geodesic paths. For two points x, y ∈ CVn, there may not exist a
folding path connecting them. There is, however, a non-unique standard geodesic, denoted
[x, y]std, from x to y [BF14]. In [BF14, Proposition 2.5], Bestvina and Feighn give a
detailed construction of such a standard geodesic, which we summarize briefly here. First,
take an optimal map φ : x → y and consider the tension sub-graph xφ. Let ∆x ⊂ CVn
denote the smallest simplex containing x. By shortening some of the edges outside of
xφ (and rescaling to maintain total length 1), one may then find a point x′ ∈ ∆x in the
closed simplex ∆x (and a scaling map φscale : x→ x′) together with an optimal difference
of markings φ′ : x′ → y whose tension graph x′φ′ is all of x′ and such that

d(x, y) = d(x, x′) + d(x′, y)

If γ1 denotes the linear path in ∆x from x to x′ (which when parameterized by arc length

is a directed geodesic) and γ2 = γφ
′

denotes the folding path from x′ to y induced by φ′,
it follows from the equation above that the concatenation γ1γ2 is a directed geodesic from
x to y which is called a standard geodesic from x to y, which we denote [x, y]std.

2.6. Unique geodesics. We would like to show that, in certain situations, all geodesics
connecting a pair of points have some property. Here, we give a criterion for when the
geodesic between two points is unique. For a difference of markings map φ : x → y, we
define a yo-yo to be an illegal turn 〈e, e〉, e 6= e, at a vertex v induced by φ satisfying the
following (see Fig. 1):

• The edge e forms a loop at v.
• There are no other edges attached to v.

v e

e

Figure 1. A yo-yo illegal turn
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We say a folding path γr : [a, b]→ CVn is rigid if, for every t ∈ [a, b], there is a difference
of markings map φt : γr(t)→ y that induces a train-track structure which has exactly one
illegal turn, and that illegal turn is not a yo-yo. We show that unique geodesics are exactly
rigid folding paths.

Theorem 2.4. For points x, y ∈ CVn, where n ≥ 3, the geodesic from x to y is unique if
and only if there exists a rigid folding path γr connecting x to y.

Proof. Let γr : [0, a] → CVn be a rigid folding path connecting x to y. This implies, in
particular, that there is a difference of markings map φr : x→ y where tension sub-graph
of φr is all of x and where the train-track structure associated to φr has one, non-yo-yo
illegal turn. We need the following combinatorial statement.

Claim. Every edge, and every legal segment P = {e1, e2} in x is a subpath of an immersed
φr–legal loop α in x.

Proof of Claim. Let τ = 〈e, e〉 at v denote the only illegal turn in x. We first address
the case when e and e are the same edge. Since every vertex of the graph x has degree
two or higher, every edge or length-2 legal edge path is in an immersed loop. For this
immersed loop to be legal, we need to check that this loop does not go around e twice or
more consecutively. If the loop does go around e twice in a row, we modify the loop to go
around e only once. The modified loop still contains the edge or the length-2 legal edge
path we began with. Furthermore, it is now legal since it does not traverse the only illegal
turn in the graph. Thus we have established the claim in the case e = e.

Now assume e 6= e. The graph x \ e either has a vertex of degree one, or every vertex
of x \ e has degree at least two. In the first case, e, e forms a yo-yo, which contradicts the
assumption. In the second case, since every turn in x \ e is φr–legal and every vertex has
two or more gates, every edge and every length-2 legal segment is part of an immersed
legal loop. Similarly, in x \ e, every edge and every length-2 legal segment is part of an
immersed legal loop. Since every edge is contained either in x \ e or in x \ e, it is part of
an immersed φr–legal loop in x.

Given a legal segment P = {e1, e2} of lengths 2, one of the following holds:

• P ⊂ x \ e
• P ⊂ x \ e
• {e1, e2} = {e, e}, and the segment P starts and ends at vertex v
• {e1, e2} = {e, e}, and the segment P starts at v, and ends at a different vertex w

For the first two cases, we have already established that P is a subpath of an immersed
φr–legal loop α in x. In the third case, without loss of generality, suppose 〈~e1, ~e2〉 is legal,
and 〈~e2, ~e1〉 is the only illegal turn in x, occurring at the vertex v. Consider the graph that
is left after deleting e1 and e2 (but keeping the end vertices). If this graph is disconnected,
consider the component that contains v. Since n ≥ 3, the graph x \ {e1, e2} is non-trivial
and our chosen component has to have a nontrivial loop β which is legal. Let ω be a path
connecting v to β not containing e1 or e2. The the loop α = ~e1 ~e2 ω β ω

−1 is a legal loop
containing P .

For the fourth case, we can assume e1 starts and ends at v and e2 starts at v and ends in
w. Then there has to be another edge e3 connecting v to a vertex u otherwise, {e, e} forms
a yo-yo. If u can be connected to w, then this path and P form a legal loop. Otherwise,
we find an immersed loop passing through w and an immersed loop passing through u.
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Then a concatenation of these two loops, two copies of e2 and e3 each and the loop e1

forms an immersed legal loop containing P . This finishes the proof. �

Let z be a point that lies on a possibly different geodesic connecting x to y, that is

(2) d(x, z) + d(z, y) = d(x, y).

Let φ : x→ z be a difference of markings map that gives rise to a standard path γstd. We
decomposed φ = φ1 ◦φ2, where φ1 : x→ w represents the scaling segment of the standard
path. Assume that the tension graph of φ is not all of x and consider an edge e /∈ xφ.

x y

z
w

γ1
γ2

γr

By the claim, there exists a φr–legal immersed loop α containing e. Then

|α|xed(x,y) =
(
|α|xed(x,z)

)
ed(z,y)

< |α|zed(z,y)(3)

≤ |α|y.
But α is φr–legal, hence

|α|xed(x,y) = |α|y.
This is a contradiction. Thus xφ = x, which implies φ1 is degenerate, w = x and φ = φ2.
That is, there is a folding path γ connecting x to z.

Let u = γ(s) be the last point along γ where γr and γ agree, let ψr,s : u → y be the
leftover difference of markings map associated to γr and ψs : u→ z be the left over differ-
ence of markings map associated to γ. That is, the path γ

∣∣
[0,s]

is a (possibly degenerate)

sub-path of γr, but at u, there is a ψs–illegal turn τ that is ψr,s–legal. Consider the seg-
ment P consists of the pair of edges that form τ . This segment is legal in ψr,s, and hence
by the claim, there exists a ψr,s-legal immersed loop α containing P .

That is, α is not stretching maximally from ψs(s) to ψs(s + ε) and an identical to the
argument above gives a contradiction. Thus, the path ψs is subpath of γr and z lies on γr.

σ1τ
e

σ2

e

e

γ2(s0) γ2(s1)

γ̂2(s)

Figure 2. A yo-yo illegal turn gives rise to two geodesic paths.



CONVEXITY OF BALLS IN OUTER SPACE 11

We now show the other direction, that is, we establish that the uniqueness of a geodesic
implies that it is a rigid folding path. Consider a standard geodesic [x, y]std from x to
y. Again, the path [x, y]std is by definition a concatenation of a rescaling path γ1 and a
folding path γ2.

Suppose that, on γ2 there are two illegal turns at some point. Then [FM11] shows that
folding the two illegal turns at different speeds renders different geodesic paths, hence
obstructing uniqueness. Otherwise, suppose γ2 contains a yo-yo at some time s0. Then
a segment γ2|[s0,s1] can be replaced with a different geodesic γ̂2. Referring to Fig. 2,
the geodesic γ2|[s0,s1] is obtained from folding the yo-yo, labeled τ from γ2(s0) to γ2(s1).
However, one can also fold the edge e first at σ1 to the point γ̂2(s), s ∈ (s0, s1), and then
fold σ2 to reach γ2(s2) = γ̂2(s2). Thus, the geodesic γ2|[s0,s1] is not a unique geodesic
connecting its end points.

Consider now the segment γ1. Suppose there is more than one edge that is not in
xφ. Then we can choose how fast to rescale the lengths of these edges rendering multiple
geodesics with same endpoints as γ1. Otherwise, suppose e is the only edge that is not in
xφ. Similar to the paths illustrated in Fig. 2, e can be folded onto one of its neighboring
edges in a zigzag manner such that the end graph is isomorphic to the endpoint of γ1.
Thus γ1 is never a unique geodesic connecting its endpoints, unless it is degenerate, that
is γ = γ2.

To sum up, for a standard geodesic to be unique, γ1 is necessarily degenerate and γ2

contains only one non-yo-yo illegal turn at any point. That is to say, it is a rigid folding
path. �

Remark 2.5. Note that the first part of the proof still works for rank n = 2. That is,
if points x and y are connected via a rigid folding path, that path is the unique geodesic
from x to y. However, in CV2, even when there is a yo-yo, the geodesic is unique. In fact,
the paths γ2 and γ̂2 described in Fig. 2 are identical in CV2.

3. Weak convexity

The purpose of this section is to prove the following:

Theorem 3.1. Given a difference of markings map φ : x→ y, x, y ∈ CVn, where xφ = x,
there exists a speed assignment S defining a folding path γ : [0, t1] → CVn starting at x
towards y so that, for every loop α and every time t ∈ [0, t1],

|α|t ≤ max
(
|α|x, |α|y

)
.

Recall that a speed assignment is a set S = {sτ}|τ |=2 of speeds assigned to all sub-gates

of size 2. For t small enough, there is a quotient map φt : x→ x̄t (that is, φt is an isometry
along the edges of x) where the edges in gate τ are identified along a subsegment of length
t sτ . Let |S| be the speed at which x̄t is losing length, that is,

|S| = 1− total length of x̄t
t

Note that this is a constant for small values of t. Also, if Sc is the associated coherent
speed assignment, then |S| = |Sc| because the define the same quotient graph x̄t.

Lemma 3.2. Let [x, y]f be a folding path associated to a difference of markings map
φ : x → y and a coherent speed assignment S = {sτ}|τ |=2. Then, for every loop α, the
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derivative of the length of α along this path equals

(4) ˙|α|t = |α|t − 2
∑

τ∈Tφ(α)

sτ
|S|

where the derivative is taken with respect to distance in CVn.

Proof. For every τ ∈ Tα, there are two sub-edges of α of length t sτ that are identified
under the quotient map φt : x → x̄t. And xt is obtained from x̄t by a scaling of factor

1
1−t |S| . Since S is coherent, the length loss of the loop α associated for to every τ ∈ Tα is

exactly 2tsτ . Hence

(5) |α|t =
|α|x − 2t

∑
τ∈Tα sτ

1− t |S|
and, for s > t,

|α|s − |α|t =
(s− t) |S||α|x − 2(s− t)

∑
τ∈Tα sτ

(1− s |S|)(1− t |S|)
.

Also d(xt, xs) = log (1−s|S|)
(1−t|S|) . That is, when (s− t) is small,

d(xt, xs) = log

(
1− t|S|
1− s|S|

)
= log

(
1 +

(s− t)|S|
1− s|S|

)
∼ (s− t) |S|

1− s|S|
.

Therefore,

(6) ˙|α|t = lim
s→t

|αs| − |α|t
d(xt, xs)

=
|α|x − 2

∑
τ∈Tα

sτ
|S|

1− t |S|
.

On the other hand, replacing, |α|t in the right-hand side of (4) with the expression in
Equation (5), we get

(7) |α|t − 2
∑

τ∈Tφ(α)

sτ
|S|

=
|α|x − 2t

∑
τ∈Tα sτ

1− t |S|
− 2

∑
τ∈Tφ(α)

sτ
|S|

=
|α|x − 2

∑
τ∈Tα

sτ
|S|

1− t |S|
.

The right hand sides of Equation (6) and Equation (7) are the same, hence the left hand
sides are equal. But this is what was claimed. �

For given x and y, our goal is to find an appropriate speed assignment so that, for

every loop α, if |α|y ≤ |α|x then ˙|α|t=0 ≤ 0. To this end, we will define values `τ that
quantifies the contribution of sub-gate τ to the total length loss from x to y and then use
these to define a speed assignment. For the remainder of this section, let ȳ ∈ cvn be the
representative in the projective class of y so that the associated change of markings map
φ : x→ ȳ restricted to every edge is a length preserving immersion. Also, let Φ: Tx → Tȳ
be a lift of φ.

Consider a point p ∈ Tȳ and let Pre(p) ⊂ Tx denote the set of pre-images of p under
the map Φ and let CH(p) denote the convex hull of Pre(p) in Tx. Assume p is generic,
and thus, Pre(p) does not contain any vertex in Tx. We give CH(p) a tree structure where
there are no degree 2 vertices; some edges of CH(p) may consist of several edges in Tx.
The tree CH(p) also inherits its illegal turn structure from Tx, however, an edge of CH(p)
may contain one or more illegal turns. Also, note that since all endpoints of CH(p) map
to p, CH(p) does not contain any legal path connecting its end vertices.
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We denote the set of sub-gates of CH(p) by Θ. For each sub-gate σ ∈ Θ, we assign a
weight c(σ, p) to σ which measures how much of the branching of CH(p) is due to σ.

Proposition 3.3. For x, y, p and Θ as above, and for any σ ∈ Θ, there exists a weight
assignment c(σ, p) such that

(8)
∑
σ∈Θ

c(σ, p) = |Pre(p)| − 1

Furthermore, let α be a path in CH(p) with end points in Pre(p) and let Θα ⊂ Θ be the
set of gates associated to the illegal turns appearing along v. Then

(9)
∑
σ∈Θα

∑
σ̂⊇σ

c(σ̂, p)

|σ̂| − 1
≥ 1.

Proof. Note that all vertices of degree 1 in CH(p) are in Pre(p). But some points in Pre(p)
may lie on the interior of an edge of CH(p). First, we cut CH(p) along these points to
decompose CH(p) = tmi=1Ti. The vertices of degree 1 in Ti are exactly Pre(p) ∩ Ti and Ti
is the convex hull of Pre(p) ∩ Ti. This decomposes Θ = tmi=1Θi.

For a tree Ti, i = 1, . . . ,m, a vertex is an outer vertex if it has degree 1 and an edge is
an outer edge if one of its vertices has degree one. All other vertices and edges are called
inner vertices and inner edges. It follows that each tree Ti has the property that no legal
path joins outer vertices.

Note that if Equation (9) holds for each Ti it also holds for CH(p). Indeed, if α is a
path in CH(p) with endpoints in Pre(p) then the restriction of α to some Ti is non-empty.
Then, the sum of the weights along the whole path is larger than the sum of the weights
along the subpath that is contained in Ti.

Similarly, if we show

(10)
∑
σ∈Θi

c(σ, p) = |Pre(p) ∩ Ti| − 1.

we can conclude Equation (8). In fact,

(11)
m∑
i=1

|Pre(p) ∩ Ti| = |Pre(p)|+ (m− 1)

This is because the number of points in the interior of CH(p) is (m− 1) and these points
are counted twice on the left hand side of the above equation. We now have∑

σ∈Θ

c(σ, p) =
m∑
i=1

∑
σ∈Θi

c(σ, p)

=

m∑
i=1

(
|Pre(p) ∩ Ti| − 1

)
(Equation (10))

=

m∑
i=1

(
|Pre(p) ∩ Ti|

)
−m

= |Pre(p)|+ (m− 1)−m = |Pre(p)| − 1.(Equation (11))

Therefore it is sufficient to show that there is a weight assignment for each Θi. We do
this inductively. Namely, we will show
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Claim. Let T be a finite tree with a given illegal turn structure with the property that
there are no legal paths joining two different outer vertices of T . Let Θ be the set of gates
in T . Then there is a weight assignment such that Equation (9) and Equation (10) hold.

The base case is when T has one inner vertex v which is a one-gate vertex (denote
the gate by σ) and all the outer edges contain no illegal turns. In this case, we define
c(σ, p) = 1 and c(τ, p) = 0 for all sub-gates τ of σ. In general, for any sub-gate where we
do not specifically assign a weight, the weight assignment is assumed to be zero. In this
case, Equation (9) and Equation (10) clearly hold.

Note that if there is only one inner vertex, it is necessarily a one-gate vertex otherwise
there is a legal path joining outer vertices of T . Hence, if we are not in the base case, we
either have more than one inner vertex or some outer edge has an illegal turn.

Case 1: Assume there is an edge e of T that contains illegal turns σ1, . . . , σk. Then
we define c(σi, p) = 1

k and we remove this edge from T . We also remove any vertices that
have degree two to obtain a tree T ′. In T ′ each edge is again a topological edge, consistent
with our initial condition. Also, T ′ still has the property that it does not contain any
legal paths connecting its end vertices. To see this, notice that since we removed exactly
one topological edge, the degree of the vertex at which we removed this edge is still two
or higher. This implies we did not create a new leaf by removing one edge, which means
a legal path the would have appeared after this step already exists before the step. But
that contradicts our assumption. By induction, there is a weight assignment for gates
in T ′ satisfying Equation (10) and Equation (9). Equation (10) still holds for T because
total weights assigned was 1 and the number of end vertices of T is reduced exactly by
one. To see Equation (9), let α be a path joint end vertices of T . If α traverses e then
Equation (9) holds since the weight along e already add up to 1. Otherwise, α is a path
in T ′ and Equation (9) holds by induction.

σσ

τ

Figure 3. two sub-cases of Case 2

Case 2: Assume all outer edges of T contains no illegal turns. We claim that there is a
vertex v of T and a sub-gate σ at v so that σ contain all but one edge incident to v and all
edges of σ are outer edges (the remaining edge can be either inner or outer). To see this,
consider the longest embedded path v0, v1, . . . , vm in T . Then, all but one of the edges
incident to v1 are outer edges. Otherwise, the path can be made longer. In fact, all these
outer-edges have to be in some sub-gate σ. Otherwise, there is a legal path connecting
two outer vertices. This proves the claim.

There are two sub-cases. If all edges incident to v are in the same gate τ (which contains
σ and the remaining edge) then we define c(τ, p) = |τ | − 1 and we remove v and all edges
incident to v to obtain T ′ (this is consistent with what we did in the base case in which
case T ′ would be empty). The tree T ′ still has the property it does not contain any legal
path joining its end vertices because any such path could be extended to a legal path in
T hence the assumption of induction applies. The number of ends of T goes down by
|σ| = |τ | − 1. Therefore, since Equation (10) holds for T ′ by induction, it also holds for T .
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σ2 σ1

σ3

σ5

σ4

σ6 σ7

σ2 σ1

σ3

σ5

σ4

σ6

σ2 σ1

σ3 σ4

σ2 σ1

σ3

σ1

Figure 4. c(σ, p) is computed iteratively by applying Step 1 as many times
as possible and then apply Step 2, and then repeat.

Also, for any path α that passes through v, the sum in Equation (9) is at least 1 and any
other path is contained in T ′. Hence, Equation (9) also holds for T .

Otherwise, there are two gates at v, namely σ and a gate with one edge. In this case, we
define c(σ, p) = |σ| − 1 and delete all the edges associated to σ from T to obtain T ′. The
vertex v survives in T ′ and the number of ends of the tree is reduced by |σ| − 1. Again,
since Equation (10) holds for T ′ by induction, it also holds for T and the tree T ′ still has
the property it does not contain any legal path joining its end vertices because any such
path could be extended to a legal path in T . Let α be a path in T joining its end points.
If α is a two edge path consisting of twi edges in σ, the Equation (9) holds. If α does not
traverse v then α is in T ′ and Equation (9) holds by induction. If α passes through v but
contains one edge in σ, then let α′ be α minus this edge. Them α′ is a path in T ′ joing
its end points and, by induction, the sum in Equation (9) associated to α′ is at least 1.
But this is the lower bound for the sum associated to α since α′ is a sub-path of α. This
finishes the proof. �

Remark 3.4. The result of the algorithm is not unique. Different gates may be assigned
different values depending on the order in which we remove outer edges containing illegal
turns. However, we make these choices for every p once and for all so that the following
holds.

(1) Since, p is assumed to be generic, there is an open interval containing p so that
CH(p) has the same combinatorics. We apply the algorithm for all points in
this interval simultaneously to ensure c(σ, p) is a locally constant function almost
everywhere.

(2) We make choices so that c(σ, p) is equivariant. If p′ is in the orbit of p, CH(p) and
CH(p′) have the same combinatorics. We make sure the algorithm is applied the
same way for an equal length interval around p and every point in the orbit of p.

As a result, c(σ, p) is well defined for almost every point p, and it is equivariant and locally
constant almost everywhere. In particular, for every σ, c(σ, p) is an integrable function.

Example 3.5. The example in Fig. 4 illustrate the definition of c(σ, p). Suppose CH(p)
is as shown in the leftmost graph, with seven outer edges and seven gates, marked
{σ1, σ2, ...σ7}. First apply Step 1. There are two possible candidates for Step 1. The
illegal turns that occur as part of a topological edge are σ6 and σ7, which belong to dif-
ferent topological edges. It does not matter which one of them is assigned first. After
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applying Step 1 twice, we get

c(σ6, p) = 1 and c(σ7, p) = 1.

After deleting these two topological edges, σ5 no longer exists, therefore

c(σ5, p) = 0.

Next, Step 2 picks out either σ1 or σ4. Suppose we start with σ4, which contains 3 outer
edges, thus

c(σ4, p) = 3− 1 = 2.

After deleting these three outer edges of σ4, we apply Step 1 again and observe that there
is a new topological edge with two illegal turns σ2 and σ3. Thus

c(σ2, p) = c(σ3, p) =
1

2
.

And the topological edge is deleted at the end of the step. Lastly we have only one gate
with two outer edge, thus

c(σ1, p) = 1.

It can be verified that∑
σ∈Θ

c(σ, p) = 1 + 1 + 0 + 2 +
1

2
+

1

2
+ 1 = 6 = |Pre(p)| − 1.

We now use the c(σ, p) functions to define the length loss functions:

`σ =

∫
Tȳ

c(σ, p) dp

where the integral is taken with respect to the length in Tȳ. Note that c(σ, p) is defined
only for a generic p but the integral is still defined. Even though this is integral over a
non-compact set, for every σ, the set of points p where c(σ, p) is non-zero is compact and
hence the integral is finite. Also, since our construction is equivariant, for any sub-gate
τ ∈ T (Recall T is the set of all sub-gates in x under the map φ.) we can define `τ = `σ
where σ is any lift of τ to Tx.

The number `τ represents how much of the length loss from x to ȳ we are attributing
to the sub-gate τ . In particular, we have

Lemma 3.6. For φ : x→ ȳ and `τ defined as above, we have∑
τ∈T

`τ = |x| − |ȳ|

Proof. We denote points in y by q and Pre(q) represents the pre-image of q under φ. Since
the map φ is locally a length preserving immersion, we have

1 = |x| =
∫
ȳ
|Pre(q)| dq.
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Let T0 ⊂ Ty be a tree that is a fundamental domain of action Fn on Ty and let Θ0 be a
finite subset of Θ that contains exactly one lift for every τ ∈ T . Now,∑

τ∈T
`τ =

∑
σ∈Θ0

`σ =
∑
σ∈Θ0

∫
Tȳ

c(σ, p) dp

=
∑
g∈Fn

∑
σ∈Θ0

∫
T0

c(σ, g(p)) dp(Ty = ∪g g(T0))

=
∑
g∈Fn

∑
σ∈Θ0

∫
T0

c(g−1(σ), p) dp(c(�, �) is equivariant)

=

∫
T0

∑
σ∈Θ

c(σ, p) dp(Θ = ∪g g(Θ0))

=

∫
T0

|Pre(p)| − 1 dp(Equation (11))

=

∫
y
|Pre(q)| − 1 dq = |x| − |y|.

which is what was claimed in the lemma. �

Next, we use length loss contributions `τ to define a coherent speed assignment. For a
sub-gate τ with |τ | = 2, define

(12) sτ =
∑
τ̂⊇τ

`τ̂
|τ̂ | − 1

where the sum is over all sub-gates τ̂ containing τ . We are dividing `τ̂ by (|τ̂ |−1) because
if you fold edges of τ̂ along a segment of length t, the length loss is larger by factor
(|τ̂ | − 1). Let Sc be the coherent speed assignment induced by {sτ}|τ |=2. Then Sc is our
desired speed assignment. Since we only work with coherent speed assignments, we omit
the superscript in the rest of the paper and simply use S emphasizing each time that S is
coherent.

Example 3.7. We illustrate the computation of sτ with the example mentioned in the
introduction. Consider F3 = 〈a, b, c〉. Let x be a rose with three petals. The three edges
we refer to as e1, e2, e3. The edge e1 is labeled ac2, the edge e2 is labeled bc, the edge e3 is
labeled c. The edge lengths are 1

2 ,
1
3 ,

1
6 , respectively. The graph y is a rose of three petals

with labels {a, b, c} and lengths {1
6 ,

1
6 ,

1
6}. The construction is such that φ : x→ y satisfies

xφ = x. y is obtained from x by wrapping ac2 around c twice and bc around c once.
Ty contains three types of edges. If the point p is on an edge labeled a or b, then the

pre-image contains only one copy of p, and c(τ, p) = 0 for all τ . If p is on the c-edge, then
CH(p) is as shown in Fig. 5, where the four pre-images of p are marked with a circle.
CH(p) has two gates. One contains a black and green edge, which we denote σe1e3 . The

other gate contains three edges, black, green and blue, and we denote the gate σe1e2e3 . At
Step 1,

c(σe1e3 , p) = 1;

at Step 2,

σe1e2e3 = 2.
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c

c

a

c

c

a

c c

c
b

σe1e3 σe1e2e3

Figure 5. The CH(p) of Example 3.7 where p is a point on the edge
labeled c in y

Next, we compute the length loss function by integrating c(�, �) over Ty. In this case,
the only non-zero component of the integral is when integrating over edge labeled c, which
has length 1

6 , therefore:

`e1e3 = 1× 1

6
=

1

6

`e1e2e3 = 2× 1

6
=

1

3
.

Indeed, it is the case that

1

3
+

1

6
=
∑
σ

`σ = x− y = 1− 1

2
=

1

2

Based on the length loss functions we compute the folding speed of all sub-gates in x.
Again we can denote a sub-gate in x by the edges in the gate, so we have

se1e3 = le1e3 +
1

2
`e1e2e3 =

1

6
+

1

2
× 1

3
=

1

3

se1e2 = se2e3 =
1

2
`e1e2e3 =

1

2
× 1

3
=

1

6
That is to say, since ac2 wraps over c twice while bc wraps over c once, infinitesimally,

the folding associated with the former is twice as fast.

Lemma 3.8. For the coherent speed assignment S above, we have

|S| ≤
∑
τ∈T

`τ .

Proof. We organize the argument by considering one maximal gate τ and its sub-gates
only. The length losses at different gates add up, hence, it is sufficient to prove the lemma
one gate at the time. For the rest of the argument, let τ be a fixed gate in T .

By an ε–neighbourhood of a gate τ we mean the intersection of an ε–ball around the ver-
tex associated to τ with the edges associated to τ . For ε small enough, the ε–neighbourhood
of τ is a tree with one vertex v and |τ | edges e1, . . . , e|τ | of size ε. Choose t > 0 small
enough so that, for every 1 ≤ i, j ≤ |τ |, t si,j < ε.

The image of this ε–neighbourhood in xt is a quotient of the ε–neighbourhood of τ after
identifying ei and ej along a segment of length ts{ei,ej} starting from the vertex v. In fact,
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it is enough to do |τ | − 1 identifications. Namely, we choose the pair of edges e1, e
′
1 that

are identified along the longest segments (that is, for τ1 = {e1, e
′
1}, sτ1 is maximal among

all sub-gates of τ of size 2). We put e1 and e′1 in the same group and all other edges in
separate individual groups. Continue in this way for i = 2, . . . , (|τ | − 1), we choose a pair
of edges ei, e

′
i from different groups so that for τi = {ei, e′i}, sτi is maximal among all such

pairs and combine the groups associated to ei and e′i into one group. The maximality
implies that the amount of identification along τi is not caused by identifications along
other gates. That is, we have not changed the speed sτi to make S coherent and we still
have

sτi =
∑
τ̂⊇τi

`τ̂
|τ̂ | − 1

.

After |τ | − 1 steps, we have only one group (See Figure 6).

v

e1

e2

e3

e4

e5

−→ v

e1

e2

e3

e4

e5

−→ v

e1

e2

e3

e4

e5

−→ v

e1

e2

e3

e4

e5

−→ v

e1

e2

e3

e4

e5

τ1 = {e2, e3}, τ2 = {e4, e5}, τ3 = {e1, e3}, τ4 = {e2, e5}

Figure 6. We identify the edges of τi along a segment of length tsτi to
obtain the image of the ε–neighborhood of τ in x to x̄t.

The image of the ε–neighborhood of τ in x to x̄t can be obtained from the ε–neighborhood
of τ in x by identifying ei and e′i along a segment of length tsτi because any other identi-
fication between the two groups is along a smaller segment. That is, setting

|Sτ | =
|τ |−1∑
i=1

sτi

we have t|Sτ | is the length loss in the ε–neighborhood of τ .
The way τi are chosen, every sub-gate τ ′ ⊂ τ contains at most (|τ ′| − 1) of these τi.

This is because, after (|τ ′| − 1) sub-gates of τ ′ are chosen in the above process, every edge
in τ ′ is already in the same group. Therefore, letting Tτ to be the set of sub-gates of τ ,
we have

|τ |−1∑
i=1

sτi =

|τ |−1∑
i=1

∑
τ ′⊇τi

`τ ′

|τ ′| − 1
=
∑
τ ′∈Tτ

∣∣∣{i ∣∣ τi ⊆ τ ′}∣∣∣ · `τ ′

|τ ′| − 1
≤
∑
τ ′∈Tτ

`τ ′ .

Combining the last two equations, we have

|Sτ | ≤
∑
τ ′⊆τ

`τ ′ .

But |S| =
∑

τ maximal |Sτ | where the sum is over maximal gates. This finishes the proof. �
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A vanishing path for Φ: Tx → Ty is an immersion v : [0, 1] → Tx such that Φ ◦ v is
homotopic to a point relative to the endpoints. Abusing notation, we sometimes refer to
the image of v as a vanishing path and write v ⊂ Tx.

Lemma 3.9. Let v ⊂ Tx be a vanishing path and let Θv be the set of sub-gates in Tx that
appear along v.

|v|x ≤ 2
∑
σ∈Θv

sσ.

Proof. Since v is a vanishing path and let p ∈ Φ(v) ⊂ Ty be a generic point. Define

m(p) = #{Φ−1(p) ∩ v}.
Recall that, to compute the weights c(σ, p), we first write CH(p) = tTi (Step 0) so that
only the end points of each Ti are mapped to p. Then v ∩ CH(p) consists of m(p) − 1
separate segments α1, α2...αm(p)−1 where each αi is the intersection of v with Ti. If Θi are
the gates appearing along αi, we claim that for each i,

1 ≤
∑
σ∈Θi

∑
σ̂⊇σ

c(σ̂, p)

|σ̂| − 1
.

This is because, if αi passes through an edge e of Ti with an illegal turn, then the sum

1 =
∑
σ∈Θe

c(σ, p) ≤
∑
σ∈Θi

c(σ, p)

and the claim follows. Otherwise, a sub-gate σ ∈ Θi is contained in a sub-gate σ̄ that
appears in CH(p), where all the associated edges are legal, and hence, following the algo-
rithm, c(σ̂, p) = |σ̂| − 1. Again the claim follows. This gives

m(p)− 1 ≤
∑
σ∈Θv

∑
σ̂⊇σ

c(σ̂, p)

|σ̂| − 1
.

On the other hand, we know that |v|x =
∫

Φ(v)m(p) dp and, since p is a generic point, we

have
m(p) ≥ 2 and m(p) ≤ 2(m(p)− 1).

We now have

|v|x =

∫
Φ(v)

m(p) dp

≤
∫

Φ(v)
2(m(p)− 1) dp

≤ 2

∫
Φ(v)

∑
σ∈Θv

∑
σ̂⊇σ

c(σ̂, p)

|σ̂| − 1
dp(Using the claim)

≤ 2
∑
σ∈Θv

∑
σ̂⊇σ

∫
Ty

c(σ̂, p)

|σ̂| − 1
dp(Enlarging the domain of integration)

= 2
∑
σ∈Θv

∑
σ̂⊇σ

`σ
|σ̂| − 1

= 2
∑
σ∈Θv

sσ.

And we are done. �
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Proof of Theorem 3.1. Let S be the coherent speed assignment defined after Equation (12),
let t1 > 0 be a time for which the folding with the speed S is defined (see Proposition 2.3)
and let α be any loop. Denote the geodesic representative of α in x with αx and in y with
αy. Also for small enough t1, αx can be sub-divided to segments u1 ∪ w1 ∪ ... ∪ um ∪ wm
so that, for i = 1, . . . ,m,

• The segments ui are vanishing paths in x.
• The segments Φ(wi) are immersed and αy = ∪iΦ(wi).

In particular,

|α|x = |α|y +
∑
i

|ui|x.

Let vi be a lift of ui to Tx. We can assume vi are completely disjoint from each other.
Since wi are all legal, there is a one-to-one correspondence between sub-gates in Tα and
in ∪iΘvi . Thus, Lemma 3.9 implies

(13)
∑
i

|ui|x =
∑
i

|vi|x ≤ 2
∑
i

∑
σ∈Θvi

sσ = 2
∑
τ∈Tα

sτ .

We have

|α|x −
∑

i |ui|x
|y|

= |α|y = |α|x + (|α|y − |α|x)

|α|x −
∑
i

|ui|x = |α|x|y|+ (|α|y − |α|x)|y|.

By Equation (13), we replacing
∑

i |ui|x with 2
∑

τ∈Tα sτ , we get

|α|x(1− |y|)− 2
∑
τ∈Tα

sτ ≤ (|α|y − |α|x)|y|.

But (1− |y|) =
∑

τ∈T `τ ≥ |S|, therefore

|α|x − 2
∑
τ∈Tα

sτ
|S|
≤ (|α|y − |α|x)

|y|
1− |y|

.

Note that

d(x, y) = log
1

|y|
=⇒ |y| = e−d(x,y) =⇒ |y|

1− |y|
=

1

ed(x,y) − 1
.

Hence, letting Vα = 2
∑

τ∈Tφ(α)
sτ
|S| , we have

(14) |α|x − Vα ≤
|α|y − |α|x
ed(x,y) − 1

.

Now re-parametrize the folding path with arc-length and denote the new parameter
with s. Solving the differential equation given in Lemma 3.2, we have

(15) ˙|α|s = |α|s − Vα =⇒ |α|s = (|α|x − Vα)es + Vα.
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Note that if |α|y ≤ |α|x, then by Equation (14) the rate of change of the length is negative
and |α|t ≤ |α|x. If |α|y ≥ |α|x then,

|α|s = (|α|x − Vα)es + Vα

= (|α|x − Vα)(es − 1) + |α|x

≤ (|α|y − |α|x)
es − 1

ed(x,y) − 1
+ |α|x(Equation (14))

≤ |α|y.(s ≤ d(x, y))

That is, in either case, |α|t ≤ max
(
|α|x, |α|y

)
. This finishes the proof. �

4. decorated difference of markings map

In Section 3, we constructed a balanced folding path starting from x towards y assuming
that there is an optimal difference of markings map φ : x→ y such that xφ = x. In general,
such a difference of markings map does not exist. In this section, we decorate the graph
y and modify the map φ in a way that the tension graph becomes all of x. This modified
difference of markings map is called a decorated difference of markings map. Recall that,
given φ : x → y, one can construct a standard geodesic path [x, y]std ∈ CVn where first
every edge e outside of xφ is shortened. For a decorated difference of markings map, we
instead create an illegal turn in the interior of every such edge. The folding of that illegal
turn effectively shortens the length of e. But this can be done simultaneously with folding
of other illegal turns hence ensuring that a version of Theorem 3.1 still holds.

4.1. Decorating the graphs. Consider a pair of points x, y ∈ CVn. Consider an optimal
map φ : x → y. Recall, from Section 2.5, that φ = φ′ ◦ φscale where φscale : x → x′ is a
scaling map between x and some x′ ∈ ∆x and x′φ′ is the whole graph x′. First, we equip x

with the train track structure coming from φ′. We then add further illegal turns as follows
(See Fig. 7).

Let e be an edge outside of xφ, say connecting v0 to v3. Add two subdividing vertices
v1 and v2 to e such that the following holds: Let ei,j denote the edge with end vertices vi
and vj . Then, we require that

|e0,1|x = |e1,2|x, and λ |e2,3|x = |φ(e)|y.
Where λ = Lφ is such that log λ = d(x, y). This is always possible since λ|e|x > |φ(e)|y.
We call v1 and v2 pseudo-vertices and refer to the graph x with all the pseudo-vertices
added as xd.

v1v0 v2 v3

φd(v1)

φd(v0) = φd(v2) φd(v3)

Figure 7. Decoration of edges in x and y.

Next we decorate y. For every e ∈ x and vertex v0 ∈ x as above, we attach a new edge
of length λ|e0,1|x to y at the point φ(v0) ∈ y. The other end of this new edge is incident to
an added degree-one vertex. Thus we have added a hair at φ(v0). We denote the resulting
decorated graph by yd. By core of yd we mean the graph obtained from yd after removing
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all the hair. We denote the sum of the lengths of the hairs by |yd|H . Note that the core
of yd still has volume 1.

We now modify the optimal map φ : x → y to a map φd : xd → yd. For every edge e
outside of xφ and vertices v0, v1, v2 and v3 as above, we label the associated hair, oriented
away from φ(v0) ∈ y, by εe, and the same edge with opposite orientation by ε−1

e . We map
e0,1, e1,2, e2,3 to εe, ε

−1
e , φ(e), respectively. Note that the vertex v1 is a one-gate vertex. By

construction

L(φd) = λ.

and the tension subgraph xd
φd

= xd. Let T be the set of sub-gates of φd, let TH ⊂ T be set

of sub-gates that fold to obtain all the hairs and let TC = T − TH . Lastly let y d denote
the graph obtain by scaling yd by factor λ so that the core of y d has volume 1/λ. Then
the map

φ
d

: xd → y d

which is a compostion of φd and the scaling map, is a 1–Lipschitz map.

Remark 4.1. We have placed the hair at the beginning of the edge e near v0. However,
this is not essential and the hair could be placed at the end or anywhere in the middle.
The placement of the hair may result on a different folding path but they all satisfy the
properties we shall claim below.

4.2. Folding paths under the decorated difference of markings maps. We can use
the decorated graphs to construct a folding path from x to y.

As done previously, for small enough t, we can fold xd according to a given speed
assignments S = {sτ}|τ |=2 by identifying edges associated to τ along a sub-segment of
length t sτ for t small enough, to obtain a quotient map

φ
d
t : xd → x dt .

A hair in xdt is any segment associated to folding for gates in TH .
We also define a map Cor that removes hair of a graph. Specifically, let xt be the graph

obtained from x dt after removing the hair and let

Cor : x dt → xt

be the map that sends each hair in xdt to the attaching vertex. Note that the map Cor
can be used to mark the graph xt and we can consider xt as a point in cvn. Let xt be

the associated point in CVn which has volume one. Composition of Cor ◦φ dt with the
normalization map defines the map

φt : x→ xt.

Similarly, define y = Cor(y d) which we consider as a point in cvn, and define

φ : x→ y by φ = Cor ◦φ d.

The maps ψ
d
t and ψt are the leftover difference of markings maps defined as

ψ
d
t = φ

d ◦ (φ
d
t )−1 and ψt = φ ◦ φ−1

t .

We refer to the discussion in Section 2.4 and note that while (φdt )
−1, φ−1

t are only homotopy

equivalences, the maps ψ
d
t and ψt are well defined.
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Let L(φt) denote the Lipschitz constant of φt. By definition of distance,

logL
(
φt
)
≥ d(x, xt).

But also, L(φt) is the scaling factor form xt to xt and the length of any loop that is legal
in xd increases by this factor from x to xt. Thus,

logL
(
φt
)

= d(x, xt).

Also, since the Lipschitz constant of ψt is constant everywhere along xt, we have

L (ψt) =
L
(
φ
)

L
(
φt
) =⇒ d(xt, y) ≤ logL (ψt) = d(x, y)− d(x, xt).

But d(x, xt) + d(xt, y) ≥ d(x, y) by the triangle inequality. Therefore,

d(x, xt) + d(xt, y) = d(x, y)

and hence the path {xt} is a geodesic starting from x towards y. To summarize, similar
to Proposition 2.3 we have

Proposition 4.2. Given any two points x, y in CVn there exists a decorated difference
of markings map φd : xd → yd such that xd

φd
= xd. Furthermore, any speed assignment S

defines a geodesic γ : [0, t1]→ CVn starting from x towards y, for some t1 > 0.

We now prove an analogue of Theorem 3.1 for decorated folding paths following closely
the constructions and arguments of Section 3. We always assume t ∈ [0, t1] (Proposi-
tion 4.2), in particular, xt is in the same simplex at x.

Similar to Section 3, for any coherent speed assignment S, we define

(16) |S| = 1− |xt|
t

.

Then Lemma 3.2 still holds. Consider the lift of the map φ
d
,

Φ: Tx → Tyd

where Tyd is the universal cover of y d. As before, for any p ∈ Tyd let CH(p) be the

convex hull of Pre(p) and Θ denote the set of sub-gate of CH(p). We define the branching
contributions c(σ, p) as follows. If σ is associated to a hair and p is a point on this hair,
then we set c(σ, p) = 1 and if p is any other point then we set c(σ, p) = 0. Note that if p is
on a hair associated to σ, then CH(p) contains only one illegal turn and Θ = {σ}. For any
σ not associated to a hair and a point p that is not on a hair, we ignore all illegal turns in
CH(p) associated to hairs and apply the construction of Proposition 3.3 to obtain a value
for c(σ, p) for every σ that is not associated to a hair.

To summarize, the length loss associated to hairs are assigned to illegal turns in TH and
the rest of the length loss is assigned to illegal turns in TC according to Proposition 3.3.
Equations (8) and (9) still hold.

We now define the length loss function `σ by

`σ =

∫
T
y d

c(σ, p) dp
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and `τ = `σ where σ is any lift of τ . We have, for τ ∈ TH , `τ is the length of the hair
associated to τ since c(σ, p) = 1 exactly when p is on the hair and zero otherwise. The
proof of Lemma 3.6, show that ∑

τ∈T
`τ = |x| − |y d|.

But, y is obtained from y d by removing the hair, hence,

|y d| − |y| =
∑
τ∈TH

`τ .

Therefore,

Lemma 4.3. For `τ defined as above, we have∑
τ∈TC

`τ + 2
∑
τ∈TH

`τ = |x| − |ȳ|.

Exactly as in Equation (12) we define

(17) sτ =
∑
τ̂⊇τ

`τ̂
|τ̂ | − 1

The proof of Lemma 3.8 still works to show

(18) |S| ≤
∑
τ∈TC

`τ + 2
∑
τ∈TH

`τ ,

since the proof works one gate at the time and for an illegal turn τ associated to a hair,
the length loss associated to τ is 2`τ .

Now we are ready to prove the main theorem of this section:

Theorem 4.4. Given a difference of markings map φd : xd → yd, x, y ∈ CVn, where
xdφ = xd, there exists a speed assignment S defining a folding path γ : [0, t1] → CVn
starting at x towards y so that, for every loop α and every time t ∈ [0, t1],

|α|t ≤ max
(
|α|x, |α|y

)
.

Proof. We follow the proof of Theorem 3.1. Let S be the speed assignment describe above
and γ be the associated geodesic starting from x towards y coming from Proposition 4.2.
Recall that a decorated difference of markings map fold x into a graph with hairs xdt and
where the core graph of x̄dt is xt. By Lemma 3.2, for a given loop α,

˙|α|t=0 = |α|x − 2
∑

τ∈Tφ(α)

sτ
|S|

.

By Lemma 4.3, ∑
τ∈TC

`τ + 2
∑
τ ′∈TH

`τ ′ = |x| − |y|.
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Therefore, for every loop α such that |α|y ≤ |α|x,

|α|y =
|α|x −

∑
i |ui|x

|y|
≤ |α|x

|α|x −
∑
i

|ui|x ≤ |α|x |y| = |α|x

1−
∑
τ∈TC

`τ − 2
∑
τ ′∈TH

`τ ′


|αx|

∑
τ∈TC

`τ + 2
∑
τ ′∈TH

`τ ′

 ≤∑
i

|ui|x ≤ 2
∑
τ∈Tα

sτ .

Recall, from Equation (18), that

|S| ≤
∑
τ∈TC

`τ + 2
∑
τ ′∈TH

`τ ′ .

Therefore
|α|x ≤ 2

∑
τ∈Tα

sτ
|S|

.

It follows that |α|x < 2
∑

τ∈Tα
sτ
|S| and ˙|α|t=0 ≤ 0. Therefore the length |α| decreases and

is smaller than |α|x, satisfying the claim of the theorem. On the other hand, if |α|y > |α|x,
whatever the derivative may be, the claim of the theorem is satisfied until we have a time
t where |α|t ≥ |α|y, which falls into the case we address in the proof. �

5. Construction of the balanced folding paths

In this section we prove Theorem 1.1 restated below:

Theorem 5.1. Given points x, y ∈ CVn, there exists a geodesic [x, y]bf from x to y so
that, for every loop α, and every time t,

|α|t ≤ max
(
|α|x, |α|y

)
.

Proof. Given x and y, we consider the decorated graphs xd and yd and the decorated
difference of markings map φd : xd → yd. Applying Theorem 4.4, we obtain a geodesic
γ : [0, t1]→ CVn starting from x towards y. Now we consider the pair of points xt1 and y
and apply Theorem 4.4 again to continue the geodesic to an interval [t1, t2]. Continuing
in this way, we either reach y after finitely many steps or limit to a point x′ ∈ CVn. Note
that every point xt along this path has the property that

(19) d(x, xt) + d(xt, y) = d(x, y)

and the set of such points is a compact subset of CVn. Hence, the same holds for x′. In
particular x′ is a point in CVn and the geodesic does not exit CVn.

Now, we can apply Theorem 4.4 to the pair x′ and y and continue the geodesic even
further, getting closer to y. This results in a geodesic connecting x to y because if the
process stops at some points x′′ before y, then x′′ is still in the compact set defined by
Equation (19) and we could apply Theorem 4.4 again to go further.

We re-parametrize this geodesic by arc-length to obtain γ : [0, d] → CVn, d = d(x, y)
(and use the parameter s to emphasize this fact). Let Σ ⊂ [0, d] be the closure of set of
times, each of which is an endpoint of an interval coming from an application of Theo-
rem 4.4. Note that if s ∈ Σ, then an interval to the right of s is not in Σ. Hence, Σ is
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a well-ordered set. That is, [0, d] is a union of the interiors of countably many intervals
coming from Theorem 4.4 and the countable, well ordered set Σ which includes 0 and d.

For any loop α, we prove the theorem using transfinite induction on Σ. That is, for
every time s ∈ Σ, we show

(20) |α|s ≤ max
(
|α|x, |α|y

)
.

The theorem for other times then follows from Theorem 4.4.
Equation (20) is clearly true for s = 0. For any s ∈ Σ, assume Equation (20) holds for

every s′ ∈ Σ with s′ < s. We need to show that it also holds for s. There are two cases.
If s is an endpoint of an interval [s′, s] coming from Theorem 4.4, then, by Theorem 4.4

|α|s ≤ max
(
|α|s′ , |α|y

)
and by the assumption of induction

|α|s′ ≤ max
(
|α|x, |α|y

)
and the conclusion follows.

Otherwise, there is a sequence si ∈ Σ, with si < s, so that si → s. By the assumption
of induction, we have

|α|si ≤ max
(
|α|x, |α|y

)
.

But the length of α is a continuous function over CVn. Taking a limit, we obtain the
theorem. �

6. non-convexity

In this section we present examples that combine to prove Theorem 1.4. Some of the
examples are done in low-rank free groups, however, they can easily be generalized to a
higher rank. First, we show that there are points in Outer space such that no geodesic
between them gives rise to convex length functions for all curves.

Proposition 6.1. There are points x, y ∈ CVn and a loop α so that along any geodesic
connecting x to y, the length of α is not a convex function of distance in CVn.

Proof. We construct a simple example in CV2. Let a and b be generators for F2. Let
x ∈ CV2 be a graph that consists of two simple loops labeled a and b, wedged at a vertex
v where each loop has length 1

2 (a rose with two pedals). Let y be a quotient of x obtained

by identifying two subsegments of length 1
8 in the loop labeled a. Then y is a rank 2 graph

in the shape of a dumbbell with total length 7
8 , where the b–loop has length 1

2 and the

a–loop has a length 1
4 . Let y be y rescaled to have length 1 (by a factor 8

7). There is a
rigid folding path from x to y because y was obtained from x by identifying two sub-edges.
Hence, this path [x, y]f is the unique geodesic connecting x to y (see Remark 2.5). Let α
be the loop representing element a ∈ F2. Then

|α|x =
1

2
and |α|y =

8

7
· 1

4
=

2

7
.

Consider the length of |α|t of α along this folding path. By Lemma 3.2, the derivative
of the length of α at x is:

˙|α|t
∣∣∣
t=0

= |α|x − 2 =
1

2
− 2 < 0.
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And since the length of α is decreasing the derivative stays negative. In fact, for s > 0

˙|α|t
∣∣∣
t=s

= |α|s − 2

is a decreasing function as well. Therefore |α|t is concave along this folding path. That
is, there is no geodesic between x and y on which the length of α is a convex function of
distance. �

We now examine if Theorem 1.1 holds for other geodesics connecting two points in
CVn. We start by looking at a general folding path and we show that a folding path with
endpoints in a small ball can still go arbitrarily far away from the center of the ball.

Proposition 6.2. For any R > 0, there are points x, y, z ∈ CV3 and there is a folding
path [y, z]ng connecting y to z so that

y, z ∈ Bout(x, 2) and [y, z]ng 6⊂ Bout(x,R).

Proof. The example presented below is in CV3. For higher rank Outer spaces, one can
modify the example to roses with more loops such that the optimal map outside of the
simple loops labeled a, b, c is identity.

Consider constants ε > 0, δ > 0 and an integer m > 0 so that

ε ≤ δ � 1 and mδ = 1− 3δ.

Assume F3 is generated by elements a, b and c and let x, y, z and w be points in CV3

which are wedges of simple loops with lengths and labels summed up in the table below.

x y w z
label length label length label length label length

Edge 1 a ε
2 ab δ + δ2 ab 1+δ

3 a δ
2

Edge 2 b 1
2 b δ b 1

3 b 1
2

Edge 3 c 1−ε
2 cbm 1− 2δ − δ2 c 1−δ

3 c 1−δ
2

Note that if, in y, we fold the edge labeled cbm m–times around b (without rescaling),
we obtain a graph w with labels ab, b and c and lengths (δ + δ2), δ and

(1− 2δ − δ2)−mδ = (1− 2δ − δ2)− (1− 3δ) = δ − δ2

which is a graph that is projectively equivalent to w (by a factor of 1
3δ ). Similarly, if in w,

we fold the edge labeled ab once around b (without rescaling), we obtain a graph z with
labels a, b and c and lengths δ

3 , 1
3 and 1−δ

3 which a graph that is projectively equivalent

to z by a factor 3
2 . Therefore, there is a folding path from y to z that passes through w.

But this is not a greedy folding path since the edge labeled ab is not folded around b in
the segment [y, w].
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Let α be the loop representing the element a ∈ F3. Then

d(x, y) = log
|α|y
|α|x

= log
2(2δ + δ2)

ε

d(x, z) = log
|α|z
|α|x

= log
δ

ε

d(x,w) = log
|α|w
|α|x

= log
2
3(2 + δ)

ε
≥ log

4

3ε
.

If, for example, we let ε = δ then y, z ∈ Bout(x, 2), but w can be made arbitrarily far away
by making δ small. �

Next, we consider standard geodesic paths connecting two points which are the type of
geodesics most often considered to connect two arbitrary points in CVn (not every pair of
points can be connected via a folding path). The situation is improved somewhat but, by
taking the ball large enough, one can construct examples where a standard geodesic with
its endpoints in a ball goes arbitrarily far from the ball.

Proposition 6.3. There exists a constant c > 0 such that, for every R > 0, there are
points x, y, z ∈ CVn and a standard geodesic [y, z]std connecting y to z such that

y, z ∈ Bout(x,R) and [y, z]std 6⊂ Bout(x, 2R− c).

That is, the standard geodesic path can travel nearly twice as far from x as y and z are
from x.

Proof. As before, we construct the example in CV3. Let ψ ∈ Out(F3) be defined as follows

ψ(a) = ab ψ−1(a) = b

ψ(b) = a ψ−1(b) = b−1a

ψ(c) = c ψ−1(c) = c

It is known (and easy to see) that, for any integer m > 0, the word length of ψm(a) is Fm+3

and the word length of ψm(b) is Fm+2, where Fi is the i-th Fibonacci number. Similarly,
the word length of ψ−m(a) is Fm+2 and the word length of ψ−m(b) is Fm+3. For a large
integer m > 0, let

δ =
1

Fm+2 + Fm+3 + 1

and consider points x, y, z, w ∈ CV3 which are wedges of simple loops and where the
lengths and edge labels are summed up in the table.

x y w z
label length label length label length label length

Edge 1 a δ ψm(a) δ ψm(a) Fm+3 δ a 1
3

Edge 2 b δ ψm(b) δ ψm(b) Fm+2 δ b 1
3

Edge 3 c 1− 2δ c 1− 2δ c δ c 1
3
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If we let z be the rose with labels a, b and c and all edge lengths δ, then there is a
quotient map φ : w → z that maps the edge of w labeled ψm(a) to an edge path containing
Fm+3 edges and maps the edge of w labeled ψm(b) to an edge path containing Fm+2 edges.
The graph z is obtained from z by scaling by a factor 1

3 δ . Hence, w can be connected to
z using a folding path and tension graph of φ : w → z is all of w. The map from y to w
scales two of the edges and contracts the third. The loop ψm(a) is maximally stretched
from y to w because Fm+3 ≥ Fm+2. Both loops ψm(a) and ψm(b) are maximally stretched
from w to z. Since the same loop ψm(a) is stretched maximally from y to w and from
w to z, we have d(y, z) ≥ d(y, w) + d(w, z). Hence, the standard geodesic from y to z
constructed above passes through w.

Next, we compute the distance from x to these points. Let α be the loop representing
the element a ∈ F3 and β be the loop representing b ∈ F3. The loop α has a combina-
torial length Fm+2 (which is the word length of ψ−m(a)) in both y and w and β has a
combinatorial length Fm+3 (which is the word length of φ−m(b)) in both y and w. In
particular,

|β|w ≥ Fm+3 · (Fm+2 δ)

because the geodesic representative of β in w consists of Fm+3 edges each having a length
of at least Fm+2 δ. We have

d(x, y) = log
|β|y
|β|x

= log
Fm+3 δ

δ
= logFm+3

d(x, z) = log
|α|z
|α|x

= log
|β|y
|β|x

= log
1/3

δ
= log

1

3δ

d(x,w) ≥ log
|β|y
|β|x

> log
Fm+3 · (Fm+2 δ)

δ
= log(Fm+3 Fm+2).

We now set R = logFm+3 which is larger than log 1
3δ . Then, y, z ∈ Bout(x,R). There is a

constant c, (slightly larger than the logarithm of the golden ratio) so that

log(Fm+2 Fm+3) ≥ 2 log(Fm+3)− c = 2R− c

which implies w 6∈ Bout(x, 2R− c). This finishes the proof. �

The most well-behaved geodesic often considered is a greedy folding path. In fact, as
mentioned in the introduction, the lengths of curves are quasi-convex function of distance
along a greedy folding path. However, we show that a greedy folding path with endpoint
inside of a ball may exit the ball.

Proposition 6.4. For n ≥ 4 and every R > 0, there are points x, y, z ∈ CVn+2 where y
and z are connected by a greedy folding path [y, z]gf such that

y, z ∈ Bout(x,R) but [y, z]gf 6⊂ Bout(x,R).

Proof. Let x, y, z, w ∈ CVn+2 be four graphs that are each a bouquets of n + 2 simple
loops. Consider Fn+2 as being generated by a, b and ci, for i = 1, . . . , n. The lengths
and the labels of these graphs are described in the table below where ε is a small positive
number.
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x y z w
label length label length label length label length

Edge 1 a ε ab2 3/(2n+ 4) a 1/(n+ 2) ab 2/(n+ 3)

Edge 2 b (1−ε)
2 b 1/(2n+ 4) b 1/(n+ 2) b 1/(n+ 3)

Edge i ci
(1−ε)

2n cib 2/(2n+ 4) ci 1/(n+ 2) ci 1/(n+ 3)

Note that there is an obvious optimal map from y to z that linearly expands each edge
of y around the edges in z according to the labeling. The greedy folding path from y to
z passes through w. In fact, [y, z]gf consists of two subsegments, in the first part cib and
ab2 wrap around b simultaneously to reach w, and in the second part the edge labeled ab
wraps around b to reach z. The distance d(y, w) = log 2n+4

n+3 and the associated stretch
factors of edges are

λ(ab2) =
3/(n+ 3)

3/(2n+ 4)
=

2n+ 4

n+ 3

λ(b) =
1/(n+ 3)

1/(2n+ 4)
=

2n+ 4

n+ 3

λ(cib) =
2/(n+ 3)

2/(2n+ 4)
=

2n+ 4

n+ 3

are all the same. Likewise, the distance d(w, z) = log n+3
n+2 and associated stretch factors

of edges are

λ(ab) =
2/(n+ 2)

2/(n+ 3)
=
n+ 3

n+ 2

λ(b) =
1/(n+ 2)

1/(n+ 3)
=
n+ 3

n+ 2

λ(ci) =
1/(n+ 2)

1/(n+ 3)
=
n+ 3

n+ 2

which again are the same for every edge.
Next, we measure distances from the center of the ball x. Let α be the loop associated

with the element a ∈ F3. For ε small enough, all three distances are realized by the stretch
factor associated to α. That is,

d(x, y) = log
|α|y
|α|x

= log
5/2n+ 4

ε
= log

5

2nε+ 4ε

d(x, z) = log
|α|z
|α|x

= log
1/n+ 2

ε
= log

1

nε+ 2ε

d(x,w) = log
|α|w
|α|x

= log
3/n+ 3

ε
= log

3

nε+ 3ε
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But, for all n ≥ 4, we have

3

nε+ 3ε
> max

(
1

nε+ 2ε
,

5

2nε+ 4ε

)
Thus, if we set R = 1

nε+2ε , we have an example of a greedy folding path with endpoint in

Bout(x,R) that travels outside the ball. �

7. In-coming balls

In contrast with out-going balls, we prove that in-coming balls are not weakly quasi-
convex:

Theorem 7.1. For any constant R > 0, there are points x, y, z ∈ CVn such that, y, z ∈
Bin(x, 2) but, for any geodesic [y, z] connecting y to z,

[y, z] 6⊂ Bin(x,R).

Proof. We show that there exists a family of balls and pairs of points ym and zm in these
balls such that the geodesic connecting ym to zm is unique and it travels arbitrarily far
away from the center of the corresponding ball. Since the geodesic is unique, this can be
restated as: every geodesic connecting ym to zm travels arbitrarily far from the center of
the balls.

Fix an integer m > 0 and, as usual, let a, b and c be generators for F3. Examples in
higher dimension can be adapted from this example by adding loops on which the map is
identity along the path. Let x = xm, y = ym and z = zm be roses with labels and lengths
specified in the table.

x y w z
label length label length label length label length

Edge 1 a 1
2 −

1
m abm m+1

2m+4 a 1
m+4 a 1

3

Edge 2 b 1
m b 1

2m+4 b 1
m+4 b 1

3

Edge 3 c 1
2 cbma m+2

2m+4 cbma m+2
m+4 c 1

3

Note that w is obtained from y by wrapping the edge labeled abm around the edge
labeled b m–times and then scaling by a factor 2m+4

m+4 . Throughout this portion, the illegal

turn 〈abm, b〉 is the only illegal turn. Similarly, z is obtained from w wrapping the edge
labeled abm around the edge labeled a once, then around the edge labeled b m–times and
finally scaling by m+4

3 . Again, during each sub-segment, there is exactly one non-yo-yo
illegal turn; first 〈cbma, a〉 and next 〈cbm, b〉. The illegal turn is never a yo-yo since there
is no cut edge in the graphs along the paths. The loop labeled b in y is legal throughout
and hence is maximally stretched from y to w and from w to z. Therefore w lies on a
rigid folding path from y to z. By Theorem 1.5 the folding path is the unique (up to
re-parametrization) geodesic from y to z.

We now compute distance to the center of the ball. For large enough m, we have
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d(y, x) = log
|cbma|x
|cbma|y

= log
1
2 + 1 + 1

2 −
1
m

m+2
2m+4

= log
4m2 + 6m− 4

m2 + 2
< log 5 < 2

d(w, x) = log
|a|x
|a|w

= log
1
2 −

1
m

1
m+4

= log
m2 + 2m− 8

2m
≥ log

m

2

d(z, x) = log
|c|x
|c|z

= log
1
2
1
3

= log
3

2
< 2.

That is, y, z ∈ Bin(x, 2) and the distance d(w, x) can be made to be arbitrarily large. �

References

[AK11] Yael Algom-Kfir. Strongly contracting geodesics in outer space. Geom. Topol., 15(4):2181–2233,
2011.

[AKB12] Yael Algom-Kfir and Mladen Bestvina. Asymmetry of outer space. Geom. Dedicata, 156:81–92,
2012.

[BF12] M. Bestvina and M. Feighn. Subfactor projections. arXiv:1211.1730, November 2012.
[BF14] Mladen Bestvina and Mark Feighn. Hyperbolicity of the complex of free factors. Adv. Math.,

256:104–155, 2014.
[Cul84] M. Culler. Finite groups of outer automorphisms of a free group. In Contributions to group

theory, volume 33 of Contemp. Math., pages 197–207. Amer. Math. Soc., Providence, RI, 1984.
[CV86] Marc Culler and Karen Vogtmann. Moduli of graphs and automorphisms of free groups. Invent.

Math., 84(1):91–119, 1986.
[DT14] S. Dowdall and S. J. Taylor. Hyperbolic extensions of free groups. Geom. Topol. to appear, June

2014.
[FBR16] M Fortier Bourque and K. Rafi. Non-convex balls in the teichmüller metric. to appear in Journal

of Differential Geometry, arXiv:1606.05170, 2016.
[FM11] Stefano Francaviglia and Armando Martino. Metric properties of outer space. Publ. Mat.,

55(2):433–473, 2011.
[Ker83] S.P. Kerckhoff. The Nielsen realization problem. Ann. of Math. (2), 117(2):235–265, 1983.
[Khr85] D. G. Khramtsov. Finite groups of automorphisms of free groups. Mat. Zametki, 38(3):386–392,

476, 1985.
[Kra59] S. Kravetz. On the geometry of Teichmüller spaces and the structure of their modular groups.

Ann. Acad. Sci. Fenn. Ser. A I No., 278:35, 1959.
[LR11] Anna Lenzhen and Kasra Rafi. Length of a curve is quasi-convex along a Teichmüller geodesic.

J. Differential Geom., 88(2):267–295, 2011.
[Thu86] W.P. Thurston. Minimal stretch maps between hyperbolic surfaces. preprint,

arXiv:math.GT/9801039, 1986.
[Vog15] K. Vogtmann. On the geometry of outer space. Bull. Amer. Math. Soc. (N.S.), 52(1):27–46, 2015.
[Whi93] T. White. Fixed points of finite groups of free group automorphisms. Proc. Amer. Math. Soc.,

118(3):681–688, 1993.

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
E-mail address: yulan.qing@utoronto.ca

Dept. of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
E-mail address: rafi@math.toronto.edu


