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Abstract. In this paper, we show that the quasi-redirecting boundary (QR

boundary) is well-defined as a topological space for several classes of groups
with nonpositive curvature: admissible groups that act geometrically on CAT(0)

spaces, relatively hyperbolic groups relative to groups whose QR boundaries
are well defined, right-angled Coxeter groups whose flag complexes are planar,

and the fundamental groups of non-geometric 3-manifolds. Secondly, we give

a complete description of the QR boundaries of admissible groups that act
geometrically on CAT(0) spaces, which are non-Hausdorff and are one-point

compactifications of the Morse-like directions in the associated Bass-Serre tree.

Lastly, we prove that if G is a hyperbolic group relative to groups whose QR
boundaries are well-defined, then the QR boundary of G maps surjectively

onto the Bowditch boundary of G.
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1. Introduction

Gromov introduced hyperbolic groups in [Gro97] characterizing a large class of
infinite groups with solvable word problems. The class of Gromov-hyperbolic groups
is closed under quasi-isometry. Among the many tools developed by Gromov is an
equivariant and compact bordification of the Cayley graph of a group, now known
as the Gromov boundary. A basic property of the boundary is that quasi-isometries
on the group extend equivariantly to the Gromov boundaries.

Gromov asked the question whether this property holds if the hyperbolicity as-
sumption is dropped. Croke and Kleiner provided an example of a group to answer
the question in the negative [CK00]. Since then, various methods have been de-
veloped to address this issue. One breakthrough idea involves defining a boundary
using only geodesic rays that satisfy a Morse property[CS15], rather than consider-
ing all geodesic rays. The Morse property ensures that these rays have properties
similar to geodesic rays in hyperbolic spaces. This approach was first used to
develop a quasi-isometrically invariant boundary for CAT(0) spaces by Charney
and Sultan [CS15], and then extended to general metric spaces by Cordes [Cor17].
The topology used by Charney and Sultan is quite fine, but there is also a coarser
topology that resembles the visual topology and is still quasi-isometrically invariant
[CM19] by Cashen-Mackay. Notably, even though the Morse boundary is usually
an uncountable set, the Morse boundary can still consists of only a trivially small
fraction of all directions, from the point of view of random walk on groups [CDG20].
Furthermore, the Morse boundary is usually non-compact.

More recently, Qing, Rafi and Tiozzo ([QRT22], [QRT23]) developed sublinearly
Morse boundary, including geodesic rays whose Morse-ness can decay sublinearly
with distance from the base point. These boundaries are group invariants and
metrizable topological spaces. They resemble the Gromov boundary of hyperbolic
spaces and offer insights into groups containing hyperbolic-like features. A key
new property of sublinearly Morse boundaries is its connection with simple random
walks on groups. In many important classes of groups, such as right-angled Artin
groups, relatively hyperbolic groups, mapping class groups of surfaces of finite type,
and hierarchical hyperbolic groups, a sublinear function can be chosen appropri-
ately. The sublinearly Morse boundary has been shown to be large enough to be
used as a topological model for the Poisson boundaries of the group (with mild
assumptions) (see [QRT22], [QRT23], [NQ24]). Furthermore, genericity of sublin-
early Morse directions is also evidenced from the point of view of Patterson-Sullivan
measure on the sphere at infinity [GQR22, QY24].

Rafi-Qing recently introduced a new boundary for metric spaces called quasi-
redirecting boundary [QR24]. The quasi-redirecting boundary (or QR boundary, for
short) contains sublinearly Morse boundaries as topological subspaces and is often
compact. It identifies a new and large QI-invariant boundary. The QR boundary is
also shown to serve as a topological model for suitable random walks. It is shown
when the QR boundary contains 3 or more points, the sublinearly Morse boundaries
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are dense subsets of the QR boundary [GQV]. It is also established in [GQV] that
when X is either a rank-one CAT(0) space, the QR boundary, when it exists, is
a visibility space; and when X is a proper CAT(0) cube complex with cocompact
action, the QR boundary, when exists and is not mono-directional, contains a Morse
element. These properties provide evidence of the Gromov-like nature of the QR
boundary.

It is worth pointing out that in cases that are studied closely, there are new,
QI-invariant and Morse-like directions in the QR boundary. These new directions
are not sublinearly Morse and to our understanding are not previously identified in
boundary theories. This indicates that the QR boundary encodes more information
than the sublinearly Morse boundary. Now we give the definition.

Definition 1.1. Let α, β : [0,∞) → X be two quasi-geodesic rays in a metric space
X. We say α can be quasi-redirected to β (and write α ⪯ β) if there exists a pair of
constant (q,Q) such that for every r > 0, there exists a (q,Q)–quasi-geodesic ray γ
that is identical to α inside the ball B(α(0), r) and eventually γ becomes identical
to β. We say α ∼ β if α ⪯ β and β ⪯ α. The resulting set of equivalence classes
forms a poset, denoted by P (X). The post P (X) comes together with a “cone-like
topology” is called quasi-redirecting boundary (QR boundary) of X and denoted by
∂X.

β

α

γ

Figure 1. The ray α can be quasi-redirected to β at radius r.

We remark here that in [QR24], to define a “cone-like topology” on P (X), three
QR-Assumptions need to be satisfied (see Section 2.1) for X. However, it is un-
known which groups satisfy all three QR-Assumptions, and consequently, whether
the QR boundary is well-defined. In fact in [QR24, Question D], it is asked that do
all finitely generated group satisfy all three QR-Assumptions? On the one hand,
there is no known example of a finitely generated group which does not satisfy
QR-Assumptions. On the other hand, very few class of groups have been verified
to satisfy all three QR-Assumptions. In this paper, we answer [QR24, Question D]
in the affirmative for several classes of groups. These class of groups include:

(1) Admissible groups that act geometrically on CAT(0) spaces.
(2) Relatively hyperbolic groups.
(3) The fundamental groups of non-geometric 3-manifolds.
(4) Right-angled Coxeter groups whose flag complexes are planar.

Therefore, we provide evidence that the theory of QR-boundaries applies in a
variety of concrete contexts.
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1.1. CAT(0) admissible groups. In [CK02], Croke and Kleiner study a particu-
lar class of graph of groups with edge groups Z2 which they call admissible groups
and generalize fundamental groups of 3–dimensional graph manifolds and torus
complexes (see [CK00]). In this paper, an admissible group G is called CAT(0)
admissible group if it acts geometrically on a Hadamard space X. Such action
G ↷ X is called CKA action, and the space X is called a CAT(0) admissible space.

The admissible groups are modeled on the JSJ structure of graph manifolds
where (the fundamental groups of the) Seifert fibered pieces are replaced by the
following central extensions general hyperbolic groups H

(1) 1 → Z(G) = Z → G → H → 1

In some sense, admissible groups are the simplest interesting groups constructed
algebraically from any finite number of hyperbolic groups.

We give a complete description of the QR-boundary of admissible groups that
act geometrically on CAT(0) spaces in the following theorem.

Theorem A. (Theorem 4.23) Let G be an admissible group that acts properly
discontinuous, cocompactly and by isometries on a complete proper CAT(0) space.
Then the following properties hold.

(1) G satisfies all three QR-Assumptions. Thus ∂G is a quasi-invariant topo-
logical space.

(2) The boundary ∂G is non-Hausdorff.

Let G be an admissible group that acts properly discontinuous, cocompactly and
by isometries on a complete proper CAT(0)

Let Γ be a finite tree. If Γ is a segment, then AΓ is isomorphic to Z2, and
thus its QR-boundary consists of only one point. If Γ contains at least one vertex
of degree ≥ 2 then it is a well-known fact that the associated right-angled Artin
group AΓ is the fundamental group of a non-posiitvely curve graph manifold M .
In particular, AΓ is a CAT(0) admissible group. The following corollary is an
immediate consequence of Theorem A.

Corollary B. Let Γ be a finite tree, then the associated right-angled Artin group
AΓ satisfies all three QR-Assumptions and hence ∂AΓ is well-defined.

1.2. Relatively hyperbolic groups. The notion of relatively hyperbolic groups
can be formulated from a number of equivalent ways. Here we shall present a quick
definition due to Bowditch [Bow12].

Let G be a finitely generated group with a finite collection of subgroups P. Fixing
a finite generating set S for G, we consider the corresponding Cayley graph Γ(G,S)
equipped with path metric dS and we denote by |g|S = dS(1, g) for the word length.

Denote by P = {gP : g ∈ G,P ∈ P} the collection of peripheral cosets. Let

Ĝ(P) be the coned-off Cayley graph obtained from Γ(G,S) as follows. A cone
point denoted by c(P ) is added for each peripheral coset P ∈ P and is joined by
half edges to each element in P . The union of two half edges at a cone point is

called a peripheral edge. Denote by d̂S the induced path metric after coning-off.
The pair (G,P) is said to be relatively hyperbolic if the coned-off Cayley graph Ĝ(P)
is hyperbolic and fine: any edge is contained in finitely many simple circles with
uniformly bounded length.
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Theorem C. Let G be a hyperbolic group relative to the collection P. If P satisfies
the QR-Assumptions 0,1 and 2, then (G,P) satisfies QR-Assumptions 0,1 and 2.

1.3. 3-manifold groups. Let M be a non-geometric 3-manifold. The torus de-
composition of M yields a nonempty minimal union T ⊂ M of disjoint essential
tori, unique up to isotopy, such that each component Mv of M\T , called a piece,
is either Seifert fibered or hyperbolic.

There is an induced graph of groups decomposition G of π1(M) with underlying
graph Γ as follows. For each piece Mv, there is a vertex v of Γ with vertex group
π1(Mv). For each torus Te ∈ T contained in the closure of pieces Mv and Mw, there
is an edge e of Γ between vertices v and w. The associated edge group is π1(Te) ∼= Z2

and the edge monomorphisms are the maps induced by inclusion. Note that G is an
admissible graph of groups and (π1(M),G) is an admissible group. When all pieces
of M are Seifert fibered spaces then M is called a graph manifold. Otherwise, it is
called a mixed manifold.

As an application of Theorem A and Theorem C we obtain the following result.
For the detail discussion, we refer the reader to Section 5.

Theorem D. Let M be a non-geometric 3-manifold. Then G = π1(M) satisfies
all three QR-Assumptions and hence ∂G is well-defined.

1.4. Right-angled Coxeter groups. A simplicial complex ∆ is called flag if any
complete subgraph of the 1-skeleton of ∆ is the 1-skeleton of a simplex of ∆. Let
Γ be a finite simplicial graph. The flag complex of Γ is the flag complex with 1-
skeleton Γ. A simplicial subcomplex B of a simplicial complex ∆ is called full if
every simplex in ∆ whose vertices all belong to B is itself in B.

The flag complex of ∆ is planar if it can be embedded into the 2-dimensional
sphere S2. From now on every time we consider a flag complex it will be as a
subspace of the 2-dimensional sphere S2.

Definition 1.2. Given a finite simplicial graph Γ, the associated right-angled Cox-
eter group WΓ is generated by the set S of vertices of Γ and has relations s2 = 1
for all s in S and st = ts whenever s and t are adjacent vertices. The graph
Γ is the defining graph of a right-angled Coxeter group WΓ and its flag complex
∆ = ∆(Γ) is the defining nerve of the group. Therefore, sometimes we also denote
the right-angled Coxeter group WΓ by W∆ where ∆ is the flag complex of Γ.

Let S1 be a subset of S. The subgroup of WΓ generated by S1 is a right-angled
Coxeter group WΓ1

, where Γ1 is the induced subgraph of Γ with vertex set S1 (i.e.
Γ1 is the union of all edges of Γ with both endpoints in S1). The subgroup WΓ1

is
called a special subgroup of WΓ.

Corollary E (Theorem 6.3). Let Γ be a graph whose flag complex ∆ is planar.
Then the right-angled Coxeter group WΓ satisfies all three QR-Assumptions.

2. Preliminaries

In this section, we recall the construction of quasi-redirecting boundary as pre-
sented in [QR24]. Please refer to [QR24] for a complete treatment.

Let X and Y be metric spaces and f be a map from X to Y .

(1) We say that f is a (K,A)–quasi-isometric embedding if for all x, y ∈ X,

1

K
d(x, x′)−A ≤ d(f(x), f(x′)) ≤ Kd(x, x′) +A.
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(2) We say that f is a (K,A)–quasi-isometry if it is a (K,A)–quasi-isometric
embedding such that Y = NA(f(X)).

2.1. Quasi-redirecting boundary. Let X be a proper geodesic metric space.

Definition 2.1 (Quasi-Geodesics). A quasi-geodesic in a metric space X is a quasi-
isometric embedding α : I → X where I ⊂ R is an (possibly infinite) interval.
However, in this paper, we always assume α is Lipschitz. And again, we use q =
(q,Q) to indicate the constants. That is, α : I → X is a q–quasi-geodesic if, for all
s, t ∈ I, we have

|t− s|
q

−Q ≤ dX
(
α(s), α(t)

)
≤ q|s− t|.

The assumption that α is Lipschitz is needed so we can apply the Arzelà-Ascoli
theorem to a sequence of quasi-geodesics to obtain a limiting quasi-geodesic. How-
ever, this assumption can always be achieved by increasing the constants of the
quasi-geodesic ([QR24, Lemma 2.3])

2.2. Notation. Let o be a fixed basepoint inX. We use q = (q,Q) ∈ [1,∞)×[0,∞)
to indicate a pair of constants. For instance, one can say Φ: X → Y is a q–quasi-
isometry and α is q–quasi-geodesic ray or segment.

By a q–ray we mean a q–quasi-geodesic ray α : [0,∞) → X such that α(0) = o.
For an interval [s, t] ⊂ [0,∞), we denote the restriction of α to the time interval
[s, t] by α[s, t]. However, if points x, y ∈ X on the image of α are given, we denote
the sub-segment of α connecting x to y by [x, y]α. That is, if α(s) = x and α(t) = y
for s ≤ t, then [x, y]α = α[s, t].

Let α : [s1, s2] → X and β : [t1, t2] → X be two quasi-geodesics such that
α (s2) = β (t1). In this paper we denote the concatenation of α and β by α ∪ β by
which we mean the following quasi-geodesic:

α∪β : [s1, t2 − t1 + s2] → X, α∪β(t) =
{

α(t) for t ∈ [s1, s2]
β (t+ t1 − s2) for t ∈ [s2, t2 − t1 + s2]

.

For r > 0, let B◦
r ⊂ X be the open ball of radius r centered at o, let Br be the

closed ball centered at o and let Bc
r = X −B◦

r .
For a q–ray α and r > 0, we let tr ≥ 0 denote the first time when α first intersects

Bc
r and Tr ≥ tr be the last time α intersects Br. We denote α (tr) by αr ∈ X.

Also, let

α|r := α [0, tr] and α|≥r := α [Tr,∞)

be the restrictions α to the intervals [0, tr] and [Tr,∞) respectively. That is, α|r is
the subsegment of α connecting o to αr and α|≥r is the portion of α that starts at
radius r but never returns to Br.

Lastly, if p is a point on a q–ray α. We also use α[p,∞) to denote the tail of α
starting from the point p. Note such a point always exists as a quasi-geodesic is
always assumed to be a ray without loss of generality. This is because, as discussed
in [QRT22, Definition 2.2], one can adjust the quasi-isometric embedding of an
interval slightly to make it continuous (see [BH99, Lemma III.1.11]).

We also use d(·, ·) instead of dX(·, ·) when the metric space X is fixed. For
x ∈ X, ∥x∥ denotes d(o, x). Now we recall the first of three QR-Assumptions.
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QR-Assumption 0. (No dead ends) The space X is a proper, geodesic metric
space. Furthermore, there exist a pair of constants q0 such that every point x ∈ X
lies on an infinite q0–quasi-geodesic ray.

Remark 2.2. QR-Assumption 0 is satisfied by Cayley graphs of all finitely gener-
ated groups [QR24, Lemma 2.5].

Definition 2.3. LetX be a geodesic metric space. Let α, β and γ be quasi-geodesic
rays in X. We say

(1) γ eventually coincide with β if there are times tβ , tγ > 0 such that, for
t ≥ tγ , we have γ(t) = β(t+ tβ).

(2) For r > 0, we say γ quasi-redirects α to β at radius r if γ|r = α|r and β
eventually coincides with γ. If γ is a q–ray, we say α can be q–redirected to
β at radius r or α can be q–redirected to β by γ at radius r. We refer to tγ
as the landing time.

(3) We say α is quasi-redirected to β, denoted by α ⪯ β, if there is q ∈ [1,∞)×
[0,∞) such that α can be q–redirected to β at radius r.

β

α

γ
β

α

γ

Definition 2.4. Define α ≃ β if and only if α ⪯ β and β ⪯ α. Then ≃ is an
equivalence relation on space of all quasi-geodesic rays in X. Let P (X) denote the
set of all equivalence classes of quasi-geodesic rays under ≃. For a quasi-geodesic ray
α, let [α] ∈ P (X) denote the equivalence class containing α. We extend ⪯ to P (X)
by defining [α] ⪯ [β] if α ⪯ β. Note that this does not depend on the representative
chosen in the given class. The relation ⪯ is a partial order on elements of P (X).

Lemma 2.5. [QR24, Lemma 3.2] Let α, β, γ be quasi-geodesic rays. Suppose that
α can be (q1, Q1)–quasi-redirected to β at a radius r and β can be (q2, Q2)–quasi-
redirected to γ at every radius then α can be (q3, Q3)–quasi-redirected to γ at the
radius r where q3 = max{q1, q2 + 1} and Q3 = max{Q1, Q2}.

QR-Assumption 1. (Quasi-geodesic representative) For q0 as in QR-Assumption
0, every equivalence class of quasi-geodesics a ∈ P (X) contains a q0–ray. We fix
such a q0–ray and denote it by a ∈ a.

QR-Assumption 2. (Uniform redirecting function) For every a ∈ P (X), there is
a function

fa : [1,∞)× [0,∞) → [1,∞)× [0,∞),

called the redirecting function of the class a, such that if b ≺ a then any q–ray
β ∈ b can be fa(q)–redirected to a.
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Proposition 2.6. [QR24, Proposition 4.3] Let X = A × B where A and B are
proper metric spaces satisfying QR-Assumption 0, equipped with L∞–metric. Then
P (X) is a point.

Note that since P (X) is invariant under quasi-isometries, Proposition 2.6 also
holds if we equip X with the Lp–metric with p > 0.

2.3. Topology on X ∪ P (X). The topology on X ∪ P (X) is defined by defining
a system of neighbourhoods. Recall that points in P (X) are equivalence classes of
quasi-geodesic rays.

x =
{
quasi-geodesics rays passing through x

}
.

Again recall that a, b, c to denote elements of P (X) ∪ X, that is, either a set of
quasi-geodesic rays passing through a point x ∈ X or an equivalence class of quasi-
geodesic rays in P (X). For a ∈ P (X), define Fa : [1,∞)× [0,∞) → [1,∞)× [0,∞)
by

(2) Fa(q) = max{fa(q) + (1, 0), (4q + 3Q)} for q ∈ [1,∞)× [0,∞).

Definition 2.7. For a ∈ P (X) and r > 0, define

U(a, r) :=
{
b ∈ P (X) ∪X such that every q–ray

in b can be Fa(q)–redirected to a at radius r
}
.

A system of neighbourhoods. For each a ∈ P (X), recall that

B(a) =
{
V ⊂ X ∪ P (X)s.t.U(a, r) ⊂ V for some r > 0

}
and for every x ∈ X, define

B(x) =
{
V ⊂ X ∪ P (X)s.t.B(x, r) ⊂ V for some r > 0

}
.

We collect some important facts of QR boundary and poset P (X) from QR24.

Theorem 2.1. [QR24, Theorem B] Let X,Y be proper geodesic metric spaces.

(1) Suppose that Φ : X → Y is a (k,K) quasi-isometry sending the base point
oX ∈ X to the base point oY ∈ Y . Then there is a well defined induced map

Φ∗ : P (X) → P (Y ) where Φ∗([α]) = [Φ ◦ α].

Furthermore, Φ∗ preserves the partial order on P (X) and P (Y ).
(2) ∂X and X ∪ ∂X are QI-invariant as topological spaces.
(3) Sublinearly Morse boundaries are topological subspaces of ∂X.

2.4. Surgery on quasi-geodesics. We recall a few surgeries related to quasi-
geodesics that will be used often in the subsequent arguments.

Lemma 2.8. [QR24, Lemma 2.6] Let X be a metric space satisfying QR-Assumption
0.
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(1) (Nearest-point projection surgery) Consider a point x ∈ X and a (q,Q)–
quasi-geodesic segment β connecting a point z ∈ X to a point w ∈ X. Let
y be a closest point in β to x. Then

γ = [x, y] ∪ [y, z]β

is a (3q,Q)–quasi-geodesic.

z w

x

y

β

Figure 2. The concatenation of the geodesic segment [x, y] and
the quasi-geodesic segment [y, z]β is a quasi-geodesic.

(2) (Quasi-geodesic ray to geodesic ray Surgery) Let β be a geodesic ray and
γ be a (q,Q)–ray. For r > 0, assume that dX(βr, γ) ≤ r/2. Then, there
exists a (9q,Q)–quasi-geodesic γ′ where γ′(t) = β(t) for large values of t
and

γ|r/2 = γ′|r/2.
(3) (Segment to quasi-geodesic ray Surgery) Consider a (q,Q)-quasi-geodesic

ray α : [0,∞) → X and a finite (q,Q)–quasi-geodesic segment β : [a, b] → X.
Then there is s0 ∈ [0,∞) such that the following holds: for s ∈ [s0,∞) let
sγ ∈ [s,∞) and tγ ∈ [a, b] be such that [β(tγ), α(sγ)] is a geodesic segment
that realizes the set distance between α[s,∞) and β. Then

γ = β[a, tγ ] ∪ [β(tγ), α(sγ)] ∪ α[sγ ,∞)

is a (4q, 3Q)–quasi-geodesic.

o
α(s0) α(s)

α
xγ = α(sγ)

yγ = β(tγ)

β(b) β(a)

Figure 3. Segment-to-geodesic-ray Surgery

(4) (Fellow travelling surgery) Let X be a metric space satisfying QR-Assumption
0. Let q-rays α, β and t0 > 0 be such that, for all t ≤ t0, we have
d(α(t), β(t)) ≤ 1.

Then there exists a (q,Q+ 1)-quasi-geodesic ray β′ such that

β′|t0 = β|t0 and β′|(t0+1,∞) = α|(t0,∞) .
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Lemma 2.9. Let α be a (q1, Q1)–quasi-geodesic ray and β be a (q2, Q2)–quasi-
geodesic ray. Suppose there is a sequence of points {xn} on α so that ∥xn∥ → ∞
such that the following holds. At every xn, there exists a (q,Q)–quasi-geodesic ray
γn where q,Q depends only on q1, q2, Q1, Q2 such that γn and α are identical on the
subsegment [o, xn]α and γn is eventually concise with β. Then α is (q,Q)–quasi-
redirected to β.

Proof. Let sn be the first time in [0,∞) so that α(sn) = xn. Let consider the ball
B(o, rn) where rn := ∥xn∥. Let tn be the first time α intersects X − B(o, rn).
It follows that tn < sn. According to the assumption, (γn)|tn = α|tn and γn is
eventually concise with β. Note that the tn → ∞ and hence for every r > 0, we
pick a tn > r. This guarantees that α is quasi-redirected to β at radius r via γn.
Consequently, α ⪯ β. □

3. QR boundary of relative hyperbolic groups

In this section, we examine the case when X is a Cayley graph of a finitely
generated, relatively hyperbolic group pair (G,P) where G is a group and P is a
collection of subgroups. In [QR24] the authors show that if (G,P) is a relatively
hyperbolic group where the QR-boundaries of each P is a mono-directional set, i.e.
∂P is a point for each P ∈ P, then ∂G exists and is homeomorphic to the Bowditch
boundary of (G,P). In this section, we drop the assumption that P ’s are mono-
directional. We first show that if ∂P exists for all P ∈ P, the quasi-redirecting
boundary of (G,P) exists. Furthermore, we show in Theorem 3.2 that when it
exists, ∂G maps surjectively onto the Bowditch boundary of (G,P). The proof of
Theorem 3.2 is largely a modification of the proof of [QR24, Theorem 9.4] but we
include it here for the sake of self-containment.

3.1. Relative Hyperbolic groups and redirecting in relative hyperbolic
groups. We first collect the facts regarding the coarse geometry of relatively hy-
perbolic groups. These results are collected from [QR24, DS05, Hru10] and [Sis12].

Definition 3.1. Fix a finite generating set S once and for all and let Cay(G)
denote the Cayley graph of G with respect to this generating set. We refer to the
groups P ∈ P as peripheral subgroups. Let A be the set of subgraphs of of Cay(G)
associates to cosets of groups in P. Namely, for P ∈ P and g ∈ G, AP,g is the
induced subgraph of Cay(G) with vertex set gP . We form the coned-off Cayley
graph, denoted K(G) or simply K, by adding a vertex ∗pA for each A ∈ A, and
adding edges of length 1

2 from ∗pA to each vertex of A. Since Cay(G) is a subgraph
of K, for any two vertices v, w ∈ Cay(G), we have

(3) dK(v, w) ≤ dCay(G).

Definition 3.2. A graph is fine if for each integer n, every edge belongs to only
finitely many simple cycles of length n. If the coned-off Cayley graph is hyperbolic
and is fine, then G is relatively hyperbolic relative to P. A key property of the
relative hyperbolic group is the Bounded Coset Penetration [Farb98] which we state
now. An oriented path ℓ ∈ K is said to penetrate A ∈ A if it passes through the
cone point ∗pA of A; its entering and exiting vertices are the vertices immediately
before and after ∗pA on ℓ. The path is without backtracking if once it penetrates
A ∈ A, it does not penetrate A again. If for each q ≥ 1 there is a constant a = a(q)
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such that if ζ, ζ ′ ⊂ K are (q, 0)- quasi-geodesics without backtracking in K and
with the same pair of endpoints, then

(1) if ζ penetrates some A ∈ A, but ζ ′ does not, then the distance between the
entering and exiting vertices of ζ in A is at most a(q); and

(2) if ζ and ζ ′ both penetrate A ∈ A, then the distance between the entering
vertices of ζ and ζ ′ in A is at most a(q), and similarly for the exiting
vertices.

For the rest of this section, let X = Cay(G) denote the Cayley graph of (G,P).

Definition 3.3. [Sis12, Definition 3.9] Let α be a path in X. For M, c > 0, define
the deepM,c(α) to be the set of points x ∈ α such that there exists a subpath of α
containing x with endpoints x1, x2 and A ∈ A where

x1, x2 ∈ NM (A) and d(x, xi) ≥ c for i = 1, 2.

Thinking of α as a subset of X, define

transM,c(α) = α− deepM,c(α)

to be the set of (M, c)–transition points of α.

Proposition 3.4. [Sis12, DS05] Let X = Cay(G). For every q there exist constant
M = M(q), c = c(q), D = D(q) and ρ(q) such that the followings hold. Let
α : [a, b] → X be a q–quasi-geodesic segment.

(1) The set deepM,c(α) is a disjoint union of subpaths each contained in NρM (A)
for distinct sets A ∈ A.

(2) For any pair of q–quasi-geodesic segments α, β with the same endpoints, we
have

dHaus

(
transM,c(α), transM,c(β)

)
≤ D.

(3) Moreover, for every A ∈ A there are times t, s ∈ [a, b] such that during the
interval [a, s] α approaches A at a linear speed, during the interval [t, b] α
moves away from A at a linear speed and α[s, t] ⊂ NρM (A).

The same also holds for quasi-geodesic rays.

The statements of (1) and (2) are contained [Sis12, Proposition 5.7]. The state-
ment (2) follows from [DS05, Lemma 4.17].

Definition 3.5. Let α be a q–ray or q–segment in X. The saturation of α, denoted
by Sat(α), is the union of α and all A ∈ A with NM(q)(A) ∩ α ̸= ∅, where M(q) is
as in Proposition 3.4.

The saturation is quasi-convex (see [DS05, Lemma 4.25]).

Lemma 3.6 (Uniform quasi-convexity of saturations). For every q′, there exists
τ(q′) > 0 such that for every L > 1 and every q–ray or q–segment α, Sat(α) has
the property that, for every q′–segment γ with endpoints NL(Sat(α)), we have

γ ⊂ Nτ(q′)·L(Sat(α)).

The quasi-convexity of saturations provides a way to understand the quasi-
geodesic rays based on how many and which parabolic sets they travel nearby.
The next several definitions and results make this concrete.
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Definition 3.7. Let α be a q–quasi-geodesic segment or q–ray in X. We say a
point α(t) is a q–transition point of α if

α(t) ∈ transM(q),c(q)(α),

where M(q), c(q) are as Proposition 3.4.

Definition 3.8. Let α be a q–ray. We say α is a q–transient ray if, there is a
sequence of times ti → ∞ such that α(ti) is a q–transition point of α.

Note that if q′ ≥ q and α is a q–ray, then α is also a q′–ray. But, the set of q–
transition points is not necessarily a subset or a superset of the set of q′–transition
points because to ensure

deepM1,c1(α) ⊂ deepM2,c2(α)

we need c1 ≥ c2 and M1 ≤ M2. However, as we shall see, the quality of being a
transient ray is independent of the choice of q. We summarize here that there are
exactly two disjoint scenarios of redirecting based on whether a ray is transient or
not.

Lemma 3.9. [QR24, Proposition 8.14, Lemma 8.17]. Let α be a q–ray, and let
M, c and ρ be as in Proposition 3.4. Then either

• α is a q–transient ray, then all quasi-geodesic rays in a = [α] are transient.
The class a has a geodesic representative and

fa(q,Q) = (9q,Q).

• Otherwise, α is not transient, then α is eventually contained in NρM (A)
for some A ∈ A. Likewise all quasi-geodesic rays in [α] are nona-transient
and all quasi-geodesic rays are eventually contained in Nρ(q)M(q)A for the
same A.

Furthermore, if α is a q–transient ray and q′ ≥ q, then α is also a q′–transient ray.

We remark without illustration that K = K(G) is a proper hyperbolic space on
which G acts properly discontinuously and also the action is a geometrically finite
action. Every limit point of K is either a conical limit point or a bounded parabolic
point. [Bow12]. In particular, a limit point is a conical limit point if the associated
geodesic ray is a (1, 0)-transient ray.

3.2. Bowditch boundary. Now we define the Bowditch boundary for relatively
hyperbolic groups. Let ∂K denote the Gromov boundary of K. Let V (K) denote
the vertex set of K, let V∞K = {∗pA, A ∈ A} and let △K = V∞(K) ∪ ∂K.

Definition 3.10. For v, w ∈ (V (K) ∪ ∂K), let [v, w]K denote a geodesic segment
(or a geodesic ray) in K connecting v to w. Given any v ∈ (V (K) ∪ ∂K) and a
finite set W ⊆ V (K), we write

m(v,W ) =
{
w ∈ △K such that W ∩ [v, w]K ⊆ {v} for every geodesic [v, w]K

}
.

The Bowditch boundary ∂BG of the relative hyperbolic group G is the set △K
equipped with a topology generated by the neighborhoods of the form m(v,W ).

Every geodesic ray or segment in K can be associated to some quasi-geodesic in
Cay(G). Let ℓ be a path in K, a lift of ℓ, denoted ℓ, is a path formed from ℓ by
replacing edges incident to vertices in V∞(K) with a geodesic in Cay(G).
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Lemma 3.11. Let ℓ be a geodesic line or segment in K such that |ℓ| ≥ 3, then
there exists a geodesic line ℓ0 in Cay(G) such that there exists a uniform bound D
such that for any such ℓ, the projection of ℓ0 to K is in a bounded neighborhood of
ℓ in K.

We also recall the relative thin triangle property and by [Sis12, Theorem 1.1],
the condition holds for geodesic triangles in Cay(G).

Proposition 3.12. [Sis12, Definition 3.11] There exists a constant δ1 such that the
following holds. For point x, y, z ∈ Cay(G) consider a geodesic triangle (x, y, z) and
let w be a (1, 0)–transition point along [x, y]. Then there exists w′ ∈ [x, z] ∪ [z, y]
such that

dCay(G)(w,w
′) ≤ δ1.

We first show that (G,P) satisfies the assumptions associated to QR boundaries
if the parabolic subgroups do. We need first shadow any quasi-geodesic into a
parabolic subset A.

Definition 3.13. Let α be a (q,Q)-quasi-geodesic ray emanating from o, such that
α is non transient. By Lemma 3.9, all but a finite segment of α is in a bounded
neighborhood of A. Define ShA(α) by composing α|[t0,∞) with the closest-point
projection to A, and by [QR24, Lemma 2.3] the resulting map can be tamed to
be a (q′, Q′) quasi-geodesic that is also a 2(q + Q)–Lipschitz and fellow travels α.
This tamed (q′, Q′) quasi-geodesic we call the shadow of α in A and we write it as
ShA(α).

Theorem 3.1. Suppose the QR boundaries exist for each subgroup P ∈ P, then
the QR boundary of (G,P) exists.

Proof. By [QR24, Lemma 2.5], any metric space quasi-isometric to all finitely gen-
erated groups satisfies QR-Assumption 0. For QR-Assumption 1, it was shown in
Lemma 3.9 that all transient classes have a geodesic ray with a redirecting function

fa(q,Q) = (9q,Q).

Consider a quasi-redirecting equivalence class [α] that is non-transient. Then by
Lemma 3.9, α is eventually in the associated bounded neighborhood of A for some
A ∈ A. By Definition 3.13, Sh(α) is a (q,Q)-quasi-geodesic ray in A.

Let the basepoint of ∂A be point in the projection of o to A and denote it oA.
Since ∂A is a quasi-isometry invariant property and thus without loss of general-
ization we let oA be the basepoint of A via which ∂A is defined. By the Bounded
Geodesic Image Theorem, oA is bounded close to the start of Sh(α). By construc-
tion, Sh(α) and α are bounded distances for all but finite time, and thus α ∼ Sh(α)
and there exists a (q′′, Q′′)-quasi-geodesic ray, denoted α′′ that starts at oA whose
tail is Sh(α). By assumptions, there exists a central element emanating from oA
which we denote αA

0 and

α′′ ∼ αA
0 .

Lastly, we build a central element for [α] based on αA
0 . Indeed, consider the

geodesic segments [o, αA
0 (t)], t = 1, 2, 3.... The limit of the sequence is a geodesic

ray we denote α0. α0 is in a bounded neighborhood of αA
0 for all but finite time.

Thus we see that

(4) α ∼ Sh(α) ∼ α′′ ∼ αA
0 ∼ α0.
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Therefore α0 is a geodesic representative in the class [α] when α is non-transient.
The redirecting function for the non-transient class fbfa is thus a combination of
all the redirecting constants in Equation 4 together with the transitivity lemma.
Thus there exists a uniform function fa(q,Q). □

Definition 3.14. Define a map

ξ : ∂G → ∂BG

as follows. Let a ∈ ∂G and α0 ∈ a be the central element of a. If α0 is not transient,
then by Lemma 3.9 there exists a set A ∈ A such that a tail of α0 is in a bounded
neighborhood of A. In this case we define

ξ(a) := ∗pA.
Otherwise, α0 is transient. By the construction and hyperbolicity of K, α0 is an

unbounded unparameterized quasi-geodesic in K and hence converges to a point
α̂0 in ∂K. We define

ξ(a) := α̂0.

Lemma 3.15. The map ξ : ∂G → ∂BG is surjective.

Proof. Let v ∈ V∞(K) be a point in the Bowditch boundary and let A be the
associated set in A. Let α be a quasi-geodesic ray that connects [o, oA] with a
geodesic ray starting at oA and lie entirely in A. By [DS05, Lemma 4.19] α is
a bounded constant quasi-geodesic ray in the class of ∂A. Then it follows that
ξ([α]) = v. Otherwise, let v be a point in ∂K. Since K is hyperbolic, there exists an
equivalence class of quasi-geodesic rays associated with v and in fact there exists a
geodesic representative in this class (for instance by Arzelà-Ascoli Theorem), which
we refer to as α. Since α is a geodesic ray in K, by [Sis13a, Proposition 1.14], there
exists a bounded constant quasi-geodesic ray α′ in Cay(G) that is a lift of α. We
claim that, for a = [α′], we have

ξ(a) = v.

Indeed, the central element α0 of a is a geodesic in Cay(G), and an un parametrized
quasi-geodesic in K. Thus it stays in a bounded neighborhood of α and hence
converges to v. This finishes the proof. □

We now show that ξ and ξ−1 are both continuous. First we show that for every
v ∈ ∆(K) and every finite subset W ⊂ V (K), m(v,W ) is open in ∂G. It suffices
to verify this when W has one element as a finite intersection of open sets is open.

Lemma 3.16. For every b ∈ ∂G and p ∈ V (K) there exists r > 0 such that

ξ(U(b, r)) ⊂ m(ξ(b), p).

Therefore, ξ is continuous.

Proof. Let the geodesic ray β0 be the central element of b. We first assume that
b is transient. Consider β0 as a subset of K and let πξ(b)(p) be the closest point
projection of p to β0 in K (see Figure 4). Since K is hyperbolic, πξ(b)(p) has a
bounded diameter in K. Since b is transient, β0 has transition points that are
arbitrarily far from o. Choose r > 0 such that, (β0)r is a (1, 0)–transition point of
β0 and

(5) dK(o, (β0)r) ≫ dK(o, πξ(b)(p)) +D(9, 0) + 2δ,
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p

πξ(b)(p)

ξ(b)
(β0)r

q′

α ∈ ξ(a)

ℓ

Figure 4. A transition point (β0)r separates the point p and any
geodesic line that connects ξ(b) and ξ(a).

where δ is the hyperbolicity constant of K. D(9, 0) is as in [QY24, Corollary 8.8]
and dK(o, πξ(b)(p)) is the maximum distance in K between any point in πξ(b)(p)
to o.

Let a ∈ U(b, r) and let α0 be the central element in a. Since (β0)r is a transition
point, there exists points q ∈ α0 such that

d(q, (β0)r) < D((9, 0)),

Thus ∥q∥ ≥ r − D((9, 0)). Since K is hyperbolic, there exists either a geodesic
ℓ in K connecting ξ(a) to ξ(b). The line ℓ is an edge in the ideal quadrilateral
((β0)r, ξ(b), ξ(a), q) hence it stays in a bounded neighborhood of

β0|≥r ∪ α0|≥r ∪ [(β0)r, q].

Hence, ℓ is far from p in K and hence does not pass through p. Therefore, ξ(a) ∈
m(ξ(b), p).
Case II: Suppose otherwise that b is not transient. By Lemma 3.9 there exists a
unique set A ∈ A such that ξ(b) = ∗pA. Let β0 be the central element of b. Let

r ≫ 2
(
∥oA∥+ ∥p∥

)
.

Let a ∈ U(b, r) and let α0 be the central element of a. Then α0 can be fb(1, 0)–
redirect to β0 at radius r. Let e ∈ A be the point near where α0 leaves the
M0–neighborhood of A.

Consider any geodesic segment or ray ℓ in K connecting ξ(a) to ∗pA. By [Hru10,
Proposition 8.13], ℓ enters Nτ(fb(q))(A) at a point that is boundedly close to e. Since
∗pA is the final point in ℓ, ∗pA does not appear in interior of ℓ and hence, for any
other vertex x in ℓ, we have ∥x∥ ≥ ∥e∥−D(1, 0). This implies ∥x∥ ≫ ∥p∥ and hence
ℓ does not pass through p. Therefore,

a ∈ m(ξ(b), p)

and hence U(b, r) ⊂ m(ξ(b), p). □

Now we are ready to conclude:

Theorem 3.2. Let G be a relatively hyperbolic group with respect to subgroups
P1, P2, ...Pk. Assume that ∂A exists for each Cayley graph of the subgroups P ∈ P,
then the quasi-redirecting boundary ∂G exists and ∂G surjects onto ∂BG.

Proof. Since the map ξ : ∂X → ∂BX is onto and ξ is continuous, we conclude that
ξ : ∂G → ∂BG is a surjective homomorphism. □
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Corollary 3.17. Let G be a relatively hyperbolic group with respect to subgroups
P1, P2, ...Pk.Then the conical limit points of K are embedded as a subset in P (G).

Proof. Case I of Lemma 3.16 shows that if b has a transient geodesic ray representa-
tive then it maps to exactly one point in ∂K. Therefore there is a 1-1 map between
the set of conical limit points of G and the set of transient classes in P (G). □

4. QR boundary of CAT(0) admissible groups

CAT(0) Admissible groups were first introduced by Croke-Kleiner in [CK02].
They are a particular class of graph of groups that includes fundamental groups
of 3-dimensional graph manifolds. The QR-boundary of a specific case of CAT(0)
admissible group is computed in [QR24]. In this section we follow the the argu-
ments in [QR24, Section 11] closely but adapt and expand them to suit all CAT(0)
admissible groups.

Definition 4.1. A graph of groups G = (Γ, {Gv}, {Ge}, {τe}) consists of the fol-
lowing data:

(1) a graph Γ, called the underlying graph,
(2) a group Gv for each vertex v ∈ V Γ, called a vertex group,
(3) a subgroup Ge ≤ Ge− for each edge e ∈ EΓ, called an edge group,
(4) an isomorphism τe : Ge → Ge for each e ∈ EΓ such that τ−1

e = τe, called
an edge map.

The fundamental group π1(G) of a graph of groups G is as defined in [SW79].

Definition 4.2. A graph of groups G is admissible if

(1) G is a finite graph with at least one edge.
(2) Each vertex group Gv has center Z(Gv) ∼= Z, Hv : = Gv/Z(Gv) is a non-

elementary hyperbolic group, and every edge subgroup Ge is isomorphic to
Z2.

(3) Let e1 and e2 be distinct directed edges entering a vertex v, and for i = 1, 2,
let Ki ⊂ Gv be the image of the edge homomorphism Gei → Gv. Then
for every g ∈ Gv, gK1g

−1 is not commensurable with K2, and for every
g ∈ Gv −Ki, gKig

−1 is not commensurable with Ki.
(4) For every edge group Ge, if αi : Ge → Gvi is the edge monomorphism, then

the subgroup generated by α−1
1 (Z(Gv1)) and α−1

2 (Z(Gv1
)) has finite index

in Ge.

Definition 4.3. A group G is admissible if it is the fundamental group of an
admissible graph of groups. We say that an admissible group G is a CAT(0)
admissible group if there is a complete proper CAT(0) space X such that G ↷ X
properly discontinuous, cocompactly. Such action G ↷ X is called a CKA action
and the space X is called a CAT(0) admissible space of G.

Below are some examples of CAT(0) admissible groups.

Example 4.4.

(1) (Tori complexes) Let n ≥ 3 be an integer. Let T1, T2, . . . , Tn be a family
of flat two-dimensional tori. For each i, we choose a pair of simple closed
geodesics ai and bi such that length(bi) = length(ai+1), identifying bi and
ai+1 and denote the resulting space by X. The space X is a graph of spaces
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with n−1 vertex spaces Vi := Ti∪Ti+1/{bi = ai+1} (with i ∈ {1, . . . , n−1})
and n− 2 edge spaces Ei := Vi ∩ Vi+1.

The fundamental group G = π1(X) has a graph of groups structure
where each vertex group is the fundamental group of the product of a
figure eight and S1. Vertex groups are isomorphic to F2 × Z and edge
groups are isomorphic to π1(Ei) ∼= Z2. The generators [ai], [bi] of the edge
group π1(Ei) each map to a generator of either a Z or F2 factor of F2 × Z.
It is clear that with this graph of groups structure, π1(X) is an admissible
group.

(2) (Graph manifolds) Let M be a nongeometric graph manifold that admits

a nonpositively curved metric. Lift this metric to the universal cover M̃ of
M , and we denote this metric by d. Then the action π1(M) ↷ (M̃, d) is a
CKA action.

(3) One may build CAT(0) admissible groups algebraically from any finite num-
ber of hyperbolic CAT(0) groups. The following example is for n = 2 but
the same principle works for any n ≥ 2. Let H1 and H2 be two torsion-free
hyperbolic groups that act geometrically on CAT (0) spaces X1 and X2 re-
spectively. Then Gi = Hi × ⟨ti⟩ (with i = 1, 2) acts geometrically on the
CAT (0) space Yi = Xi×R. Any primitive hyperbolic element hi in Hi gives
rise to a totally geodesic torus Ti in the quotient space Yi/Gi with basis
([hi], [ti]). We re-scale Yi so that the translation length of hi is equal to that
of ti for each i. Let f : T1 → T2 be a flip isometry respecting these lengths,
that is, an orientation-reversing isometry mapping [h1] to [t2] and [t1] to
[h2]. Let M be the space obtained by gluing Y1 to Y2 by the isometry f .
There is a metric on the space M that gives rise to a locally CAT (0) space
(see e.g. [BH99, Proposition II.11.6]). By the Cartan-Hadamard Theorem,

the universal cover M̃ with the induced length metric from M is a CAT(0)

space. Let G be the fundamental group of M . Then the action G ↷ M̃ is
geometric, and G is an example of a Croke-Kleiner admissible group.

4.1. Vertex and edge spaces in CAT(0) admissible spaces. Let G be an
admissible group that acts properly discontinuous, cocompactly, and by isometries
on a complete proper CAT(0) space X. Let G ↷ T be the action of G on the
associated Bass-Serre tree T of the graph of group G (we refer the reader to [CK02,
Section 2.5] for a brief discussion).

Let V (T ) and E(T ) be the vertex and edge sets of T . For each σ ∈ V (T )∪E(T ),
we let Gσ ≤ G be the stabilizer of σ. We review facts from [CK02, Section 3.2] that
will be used thoroughly in this paper and refer the reader to [CK02] for further
explanation. From the given actions G ↷ X and G ↷ T we have

(1) for every vertex v ∈ V (T ), the set Xv := ∩g∈Z(Gv) Minset(g) splits as
metric product

Xv = Hv × R

where Z(Gv) acts by translation on the R–factor and the quotient Qv :=
Gv/Z(Gv) acts geometrically on the CAT(0) space Hv.

(2) for every edge e ∈ E(T ), the minimal set Xe := ∩g∈Ge
Minset(g) splits as

Xe × R2 ⊂ Xv

where Xe is a compact CAT(0) space and Ge = Z2 acts co-compactly on
the Euclidean plane R2.
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Definition 4.5. For every vertex v ∈ V (T ), edge e ∈ E(T ), the spaces Xv and Xe

are called vertex space and edge spaces of X.

Remark 4.6. For each vertex space Xv, since the quotient Qv := Gv/Z(Gv) is
a non-elementary hyperbolic group and it acts geometrically on the CAT(0) space
Hv, it follows that Hv is a hyperbolic space.

In the sequel, it will be useful to to make the following specific choices.

Definition 4.7. There exists a G–equivariant coarse L–Lipschitz map i : X → T 0

such that x ∈ Xi(x) for all x ∈ X. The map i is called an indexed map. We refer
the reader to Section 3.3 in [CK02] for existence of such a map i.

4.2. Strips and walls in CAT(0) admissible spaces. [CK02, Section 4.2] We
note that the assignments v → Xv and e → Xe are G–equivariant in the sense that
gXv = Xgv and gXe = Xge for any g ∈ G.

Definition 4.8 (Walls and strips). We first choose, in a G–equivariant way, a plane
Fe ⊂ Xe which we will call wall for each edge e ∈ E(T ).

For every pair of adjacent edges e, e′, we choose, again equivariantly, a minimal
geodesic from Fe to Fe′ ; by the convexity of Xv = Hv × R where v := e ∩ e′, this
geodesic determines a strip in the CAT(0) admissible space X:

See′ := hee′ × R

(possibly of width zero) for some geodesic segment hee′ ⊂ Hv.

Remark 4.9.

(1) Note that lines See′∩Fe and See′∩Fe′ are axes of Z(Gv). Hence if e, e′, e′′ ∈
E(T ) be three consecutive edges then the angle between the geodesics See′∩
Fe′ and Se′e′′ ∩ F ′

e is bounded away from zero.
(2) If ⟨f1⟩ = Z(Gv1), ⟨f2⟩ = Z(Gv2) then ⟨f1, f2⟩ generates a finite index sub-

group of Ge. We remark that the intersection of two strips Se1e and Se2e

is a point. Indeed, we have

Se1e ∩ Se2e = (Se1e ∩ Fe) ∩ (Se2e ∩ Fe)

As two lines Se1e ∩ Fe and Se2e ∩ Fe in the wall Fe are axes of ⟨fv1⟩ =
Z(Gv1), ⟨fv1⟩ = Z(Gv2) respectively and ⟨f1, f2⟩ generates a finite index
subgroup of Ge, it follows that these two lines are non-parallel, and hence
their intersection must be a single point.

Lemma 4.10. For every q ∈ [1,∞]× [0,∞) and ρ > 0, there is q′ ∈ [1,∞]× [0,∞)
such that the following holds. Let Fi be a wall, R ≥ (1+ ρ) · r > 0 be a pair of radii
and α and β be two q–rays. Assume αr ∈ Fi and that β|≥R starts at a point in Fi.

Then, α can be q′-redirected to β at radius r.

Proof. Since ρ > 0 there exists an annulus A = B(o, R)−B(o, r) such that α|r and
β|≥R are in different connect components of X−A. In polar coordinates, the point
αr can be denoted (θ1, r). Consider the geodesic segment ℓ1 connecting (θ1, r) and
the point p := (θ1, r+

1
2 (R− r)) = (θ1, (R+ r)/2). Likewise let β|R be a point with

coordinates (θ2, R) and let

ℓ2 := [(θ2, R), (θ2, R− 1

2
(R− r)],
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where we use q to denote the point (θ2, R − 1
2 (R − r) = (θ2, (R + r)/2). Lastly,

consider the arc (as part of the circle of radius r + 1
2 (R − r)) that connects p and

q along the shorter half of the circle and denote it C(p, q). The concatenation

α|r ∪ ℓ1 ∪ C(p, q) ∪ ℓ2 ∪ β|≥R

redirects α|r to the tail of β. Since β|≥R starts at βR, By Surgery Lemma 2.8 (1),
α|r ∪ ℓ1 is a (3q, Q)-segment. Now consider two points x, y on α|r and C(p, q),
respectively. Then the quasi-geodesic constants are bounded above by (D, 0) where

D = D(q, ρ) :=
ℓ(α|r) + 1

2 (R− r) + r(1 + ρ
2 )

ρ
2r

≤
qr +Q+ r 1

2ρ+ r(1 + ρ
2 )

ρ
2r

≤ 2(q +Q+ 1 + ρ)

ρ

Lastly apply Surgery Lemma 2.8 (3) to connect α|r ∪ ℓ1 ∪C(p, q) with β|≥R as the
segment ℓ2 realizes the set distance and we get that the concatenation is a (4D, 3Q)
quasi-geodesic ray that redirects αr to the tail of β. Since the construction holds
for all r and q′ := (4D, 3Q) depends only on q and ρ, we have that α q′-redirects
to β at r. □

That is, we can transition from α|r to β|≥R as long as there is buffer between
them that have a product structure and a thickness that is a linear function of r.

4.3. Types of quasi-geodesics. Let i : X → T be the index map given by Def-
inition 4.7 and fix a wall F in X. We also assume that the basepoint o ∈ F and
F ⊂ Xv0 where v0 := i(o).

Recall that Xv0 splits as a metric product Hv0 ×R. In the rest of this paper, we
fix a geodesic ray ζ based at o follows the line R in the R factor of Xv0 , and call it
the main flat ray.

We remark that the choice of ζ is arbitrary since any quasi-geodesic ray in Xv0

is the same equivalent class with ζ by Proposition 2.6.

Definition 4.11. Let α be a arbitrary q–ray in the CKA space X emanating from
o. There is a unique geodesic segment/ray γ in T associated with i(α) defined as
follows.

Let v1 ∈ Link(v0) be the vertex where i(α) enters immediately after i(α) leaves v0
in the sense that i(α) never visit v0 again. Similarly, we define v2 ∈ Link(v1), v3 ∈
Link(v2), etc.

(1) Note that it is possible that i(α) contains some vi infinitely many times. In
this situation, we call the q–ray α is of Type I.

(2) Otherwise, i(α) is a multiset that contains an ordered, infinite sequence of
vertices where each vi appears a finitely many times. The radii of vi in
i(α) tends to infinity monotonically. Since T is a tree there is exactly one
geodesic ray whose vertex set is contained in i(α). Denote this geodesic ray
γ. Relabel again such that γ traverses vertices v0, v1, v2, ...etc. In this case,
we will call the q–ray α is of Type II.
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v0
v1

v2

v3

Figure 5. The figure illustrates a portion of vertices i(α) visits.
With respect to i(α), there is the unique geodesic ray γα := [v0, v1]·
[v1, v2] · [v2, v3] · · · associated to α.

Since γ is unique and associated with α, it also makes sense to write γα. We
call γα and the associated ordered, infinite sequence of vertices v0, v1, v2, ..., etc the
simplified itinerary associated with α.

We define ei := [vi−1, vi] and let v0 := o. The geodesic in Xv0 = Hv0 × R that
realizes the distance d(o, Fe1) form a strip which we denote by Se0e1 = he0e1 × R
where the geodesic he0e1 ⊂ Hv0 is the projection to Hv0 of the intersection of this
minimal geodesic with Xv0 .

Lastly, for the rest of this paper, we adopt the notations below:

(1) The intersection point of any two adjacent strips by

pi := Sei−1ei ∩ Seiei+1

(2) For each i ≥ 2, denote the two singular geodesics in the wall Fei by

f−i := Fei ∩ Sei−1ei and f+i = Fei ∩ Seiei+1

Remark 4.12. These two singular geodesic rays f−i and f+i in the wall Fei will
form an angle denoted by θi. This angle is in (0, π). Up to group action, there are
only finitely many angles shown up.

Definition 4.13. Associated to the geodesic ray γα, we define

sα := [p0, p1] · [p1, p2] · · ·
to be the concatenation of geodesic segments [pi, pi+1]. The path sγ will be called
the special ray with respect to the simplified itinerary γα. There exists µ > 1 such
that all special rays are (µ, µ)–quasi-geodesics [NY23, Proposition 3.8], where µ
depends only on X and are independent of the specific itinerary addressed.

4.4. Backward spiral paths. In this section, we are going to show that every
q–ray α can be quasi-redirected to the main flat ray ζ at every radius r > 0 via a
quasi-geodesic γr with uniform quasi-geodesic constants see Proposition 4.16.

Definition 4.14. For each i ≥ 1, an L–path in a wall Fei of X is a concatenation of
two geodesics l and l′ in the wall Fei such that l is parallel to the singular geodesic
f−i and l′ is parallel to the singular geodesic f+i .

An extended L–path in X is a concatenation of an L–path in Fei with a geodesic
segment in and strip that either on one side or the other (spliced with l, or l′,
respectively).

Lemma 4.15. There exists a uniform constant R > 0 such that the following
holds. Let x and y be two points in walls Fe and F ′

e of a vertex space Xv =
Hv × R respectively. Then any path in Xv connecting x to y must come within
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the R–neighborhood of two singular geodesics fe := Fe ∩ See′ and fe′ := Fe′ ∩ See′

respectively.

Le

Le′

x

y

Figure 6. Any path from any point x ∈ Fe to any point y ∈ F ′
e

need not intersect fe and fe′ . However, this path must come within
an R–neighborhood of fe and fe′ .

Proposition 4.16. Let α be a q–ray in X. Then α can be q′–redirected to ζ where
q′ depends only on q. In particular, α ⪯ ζ.

Proof. If α does not intersect any wall then α necessarily lies in the same block as
the basepoint o. By Proposition 2.6, α and ξ redirect to each other. Otherwise, α
intersects a finite of infinite set of walls. According to Lemma 4.15, for each such
wall Fen , the path α must come within NR(f

−
n ). Let xn ∈ α be the first point α

enters NR(f
−
n ). Without lost of generality, we can assume that xn ∈ f−n .

In the following, we are going to construct a q′–ray γ so that [o, xn]α is a subpath
of γ and γ is eventually concise with ζ.

Since each wall is isometric to E2, every L–path is a (λ, 0)–quasi-geodesic where
λ is a constant depending on the angle between the two singular geodesics. Since
X is cocompact, there are only finitely many angles shown up, and thus λ can be
made to be a uniform constant, that is every L–path in X is (λ, 0)–quasi-geodesic.

(1) At xn, we choose a point yn in Fn so that [xn, yn] is parallel to f+n and
d(yn, xn) = 1. Since xn is a closest point in [o, xn]α to any point x ∈ [xn, yn],
it follows from Surgery Lemma 2.8(1) that

Ln+1 := α|[o,xn] ∪ [xn, yn]

is a (3q,Q)–quasi-geodesic. Next, let

(6) ρ > 36q2λ2

and at yn we attach to it an extended L–path

Ln := ζn · ηn−1

where ηn−1 is a geodesic in the Sn and ζn is an L–path in Fn so that

d((Ln)+, (Ln)−) ≥ ρ d((Ln+1)+, (Ln+1)−)
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Here for a path γ, we mean γ− and γ+ to be the initial and terminal points
of γ respectively.

(2) Next at the terminal point (Ln)+ of Ln we attach to it an extended L–path

Ln−1 := ζn−1 · ηn−2

where ηn−2 is a geodesic in the Sn−1 and ζn−1 is an L–path in Wn−1 so
that

d((Ln−1)+, (Ln−1)−) ≥ ρ d((Ln)+, (Ln)−)

(3) We continue this pattern to define extended L–paths:

Ln−2,Ln−3, . . . ,Li, . . . ,L1

(4) At the terminal point (L1)+ of L1 = ζ1 · η0 which belongs to the singular
geodesic f+0 , we then don’t attach an L–path in the wall F0, instead, we
just need to attach to it a geodesic ray, denoted by L0, perpendicular to
the singular geodsic f+0 .

Let L be the concatenation L := Ln+1 · Ln · · · L0, we refer to L as a backward
spiral path in X with slope ρ. It remains to show that L is a q′–ray where q′

depends only on q and Q. To simplify notations, we relabel Li by γn+2−i with
i ∈ {0, 1, . . . , n + 1}, and hence L = γ := γ1 · γ2 · · · γn+2. Let 0 = a0 < a1 < a2 <
. . . < an+1 so that γi = γ|[ai−1,ai]

with i ∈ {1, 2, . . . n+1} and γn+2 = L|[an+1,an+2)

with an+2 := ∞.
By Surgery Lemma 2.8(1), we obtain that every extended L–path is a (6λ, 0)–

quasi-geodesic. It follows that each γi is a (6λ, 0)–quasi-geodesic with i ≥ 2 except
γ1 is a (3q,Q)–quasi-geodesic. Thus all γ1, γ2, . . . , γn+2 are (6q,Q)–quasi-geodesic.
Again, using Surgery Lemma 2.8(1), we have that the concatenation γi · γi+1 is a
(18qλ,Q)–quasi-geodesic.

Now, let t1 and t2 be distinct points in [a0, an+2) = [0,∞). Since each γi is a
(6qλ,Q)–quasi-geodesic (in fact all are (6λ, 0)–quasi-geodesic except γ1 is (6qλ,Q)–
quasi-geodesic), we have

d (γ (t1) , γ (t2)) ≤ 6qλλ |t2 − t1|+Q

For the rest of the proof, we only need to work on the lower bound of d(γ(t1), γ(t2))
in terms of |t2 − t1|. Since γi ·γi+1 is a (18qλ,Q)–quasi-geodesic for every i, we only
need to consider the case where t1 ∈ [ak, ak+1] and t2 ∈ [aj , aj+1] with j ≥ k + 2.
By the triangle inequality,

(7) d (γ (t2) , γ (t1)) ≥ d (γ (t2) , γ (aj−1))− d (γ (aj−1) , γ (t1))

To simplify notation let us denote

|γi| := d (γ (ai−1) , γ (ai))

for i = 1, 2, 3..., n + 1. For i = n + 2 we denote |γn+2| := ∞ as γn+2 is a geodesic
ray.

The slope condition then says

(8)

j−1∑
i=1

|γi| ≤
1

ρ
|γj |
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From the triangle inequality and the fact |ak+1 − t1| ≤ |ak+1 − ak| we have

d (γ (t1) , γ (aj−1)) ≤ d (γ (t1) , γ (ak+1)) +

j−1∑
i=k+2

|γi|

≤ 6q |ak+1 − ak|+Q+

j−1∑
i=k+2

|γi|

≤ 6qλ(6qλ|γk+1|) + 6qλQ) +Q+

j−1∑
i=k+2

|γi|

≤ 36q2λ2

(
j−1∑

i=k+1

|γi|

)
+ 36q2λ2Q+Q

From the construction of γ, we have

d(γ(t2), γ(aj−1)) ≥ d(γ(aj), γ(aj−1)) ≥ |γj |

Then by applying inequality (8), we have

d(γ(t1), γ(aj−1)) ≤ 36q2λ2

(
j−1∑

i=k+1

|γi|

)
+ 36q2λ2Q+Q

≤ 36q2λ2 1

ρ
|γj |+ 36q2λ2Q+Q

≤ 36q2λ2 1

ρ
|γj |+ 36q2λ2Q+Q ≤ 36q2λ2 1

ρ
d(γ(t2), γ(aj−1)) + 36q2λ2Q+Q

Substituting this into inequality (7) and then use the fact that γj ∗ γj+1 is a
(18qλ,Q)–quasi-geodesic we obtain

d (γ (t2) , γ (t1)) ≥ (1− 36q2λ2 1

ρ
)d(γ(t2), γ(aj−1))− 36q2λ2Q−Q

≥ (1− 36q2λ2 1

ρ
)(

1

18qλ
|t2 − aj−1| −Q)− 36q2Qλ2 −Q

= (1− 36q2λ2 1

ρ
)

1

18q
|t2 − aj−1| −Q(1− 36q2λ2 1

ρ
)− 36q2λ2Q−Q

From inequality (8) and the fact γj is a (6λ, 0)–quasi-geodesic with j ≥ 2 and γ1
is (6qλ,Q)–quasi-geodesic, we obtain

1

ρ
(6qλ |aj − aj−1|+Q) ≥ 1

ρ
|γj | ≥

j−1∑
i=1

|γi| ≥
j−1∑
i=1

1

6qλ
|ai − ai−1| −Q

≥ 1

6qλ
|aj−1 − t1| −Q

Hence

|aj−1 − t1| ≤ 6qλ(Q+Q
1

ρ
+ 6qλ

1

ρ
|aj − aj−1|)
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and we can conclude

|t2 − t1| = |t2 − aj |+ |aj − aj−1|+ |aj−1 − t1|

≤ |t2 − aj |+ 6qλ(Q+Q
1

ρ
) + (1 + 36q2

ρ

ρ+ 1
)|aj − aj−1|

≤ |t2 − aj−1|+ 6qλ(Q+Q
1

ρ
) + (1 + 36q2λ2 ρ

ρ+ 1
)|t2 − aj−1|

≤ (2 + 36q2λ2 ρ

ρ+ 1
))|t2 − aj−1|+ 6qλ(Q+Q

1

ρ
)

and hence

|t2 − aj−1| ≥
1

2 + 36q2 ρ
ρ+1

|t2 − t1| −
6q(Q+Q 1

ρ )

2 + 36q2 ρ
ρ+1

Therefore

d (γ (t2) , γ (t1)) ≥ (1− 36q2λ2 1

ρ
)d(γ(t2), γ(aj−1))− 36q2λ2Q−Q

≥ (1− 36q2λ2 1

ρ
)

1

18qλ
(

1

2 + 36q2λ2 ρ
ρ+1

)|t2 − t1| − (1− 36q2
1

ρ
)

1

18qλ

6qλ(Q+Q 1
ρ )

2 + 36q2λ2 ρ
ρ+1

−Q(1− 36q2λ2 1

ρ
)− 36q2λ2Q−Q

≥ 1

q′
|t2 − t1| −Q′

where

q′ := (1− 36q2λ2 1

ρ
)

1

18q
(

1

2 + 36q2λ2 ρ
ρ+1

)

and

Q′ := (1− 36q2λ2 1

ρ
)
1

18q

6q(Q+Q 1
ρ )

2 + 36q2λ2 ρ
ρ+1

+Q(1− 36q2λ2 1

ρ
) + 36q2λ2Q+Q

Since we choose ρ sufficiently large, it implies that constants q′ and Q′ are possitive.
The claim is proved.

Since for every n > 0 we have shown that α can be quasi-redirected to ζ at xn

via a combinatorial spiral path γ that is a (q′, Q′)–quasi-geodesic. As ∥x∥n → ∞,
it follows from Lemma 2.9 that α is (q′, Q′)–quasi-redirected to ζ. □

4.5. Forward spiral path. In Section 4.4 we constructed backward spiral paths
that redirects any q-ray (Type I or Type II) to ζ. The Proof can be adapted to
show that if α is a type I, then ζ can also be redirected analogously to α. In this
section we address redirecting when α is of type II.

Definition 4.17. (Sub-exponential Excursion.) Let α be a ray of type II. Let α(ti)
be the first time α intersects Fei where Fei associated with vi in the simplified
itinerary of α. We say α has sub-exponential excursion with respect to the distance
in T if

lim
i→∞

log |ti − ti−1|
i

= 0
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Now we construct similar quasi-geodesic paths which we call forward spiral paths.
Let γ be the geodesic ray in the Bass-Serre tree T associated to α. Let sγ be the
special ray in X associated to γ. Recall that pi = f−i ∩ f+i , pi+1 = f−i+1 ∩ f+i+1 where

f+i and f−i+1 are the two singular geodesics of the strip Seiei+1 . Also recall that
p0 := o and the special path sγ is the concatenation

[p0, p1] · [p1, p2] · · ·

Let ℓ+i ⊂ f+i be the geodesic ray in f+i based at pi and ℓ−i+1 ⊂ f−i+1 be the geodesic

ray in f−i+1 based at pi+1 so that the projection point of pi+1 into f+i will belong to

ℓ+i (see Figure 7).
Assume that the excursion of α is sub-exponential. Note that d(α(si), α(ti−1))

is bigger than d(pi, pi+1). Pick a constant 0 < ρ0 < 1/4. Then there exists
C = C(ρ0) > 0 such that

wi := d(pi, pi+1) ≤ C(1 + ρ0)
i

for every i. For every r > C we define

κi = r(1 + ρ0)
i

which is greater than wi.
On each ℓ+i , choose zi so that d(zi, pi) = κi.

pi

pi+1

zi

yi

κi

≤ κi

ℓ+i

ℓ−i+1

δi

Figure 7. The figure illustrates how we choose geodesic rays ℓ+i
and ℓ−i+1 on the strip. Our choice of constant κi > wi = d(pi, pi+1)

ensures that the projection point yi of zi into f−i+1 will lie in ℓ−i+1

and d(yi, pi+1) ≤ κi.

Let us denote the width of the strip Seiei+1
by δi. Let yi be the projection point

of zi into f−i+1. We note that since wi < κi, it follows that yi ∈ ℓ−i+1, d(yi, zi) = δi,
and d(yi, pi+1) < κi.

Let Lr,k be the concatenation

Lr,k := ζ|[0,r] · [ζ(r), z1] · [z1, y1] · [y1, z2] · · · [yk−1, zk−1]
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pi

pi+1

zi+1

yizi

yi−1

zi−1 pi−1

κi

κi+1

κi−1

Figure 8. The figure illustrates a portion of Lr,k which is a con-
catenation of dashed segments. The sum of all dashed segments is
bounded above by an exponential function (1 + ρ0)

k up to some
multiplicative constant.

The forward spiral path Lr,k is the path obtained by attaching to zk−1 the
geodesic ray in f+k−1 based at zk−1 which does not contain pk−1.

We have
k−1∑
i=1

wi < r

k−1∑
i=1

(1 + ρ0)
i = r

1 + ρ0
ρ0

(
(1 + ρ0)

k−1 − 1)
)

and
k∑

i=1

κi =

k∑
i=1

r(1 + ρ0)
i < r

1 + ρ0
ρ0

(
(1 + ρ0)

k − 1)
)

By our construction, we have d(zi, yi) = δi ≤ wi and d(yi, zi+1) ≤ d(yi, pi+1) +
d(pi+1, zi+1) ≤ κi + κi+1. For i < j, let us denote the subpath of Lr,k from yi−1 to
zj by Lr,k|[yi−1,zj ]. We have

Length
(
Lr,k|[yi−1,zj ]

)
≤ d(yi−1

, zi) + d(zi, yi) + · · ·+ d(zj−1, yj−1) + d(yj−1, zj)

≤ 2

j∑
m=i−1

κm + 2

j−1∑
m=i−1

wm

≤ 4r

j∑
m=i−1

(1 + ρ0)
m ≤ 4r

ρ0
(1 + ρ0)

j+1

By [NY23, Proposition 3.8], the subpath [pi, pi+1] · · · [pj−1, pj ] of the special ray
sγ is a (µ, µ)–quasi-geodesic. By Lemma 2.8, the concatenation σ := [yi−1, pi] ·
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[pi, pi+1] · · · [pj−1, pj ] · [pj , zj ] is a (9µ, 9µ)–quasi-geodesic. It implies that

d(yi−1, zj) ≥
Length(σ)

9µ
≥ d(pj , zj)

9µ
≥ κj

9µ
=

r(1 + ρ0)
j

9µ

We thus can control the upper bound of the ratio:

Length
(
Lr,k|[yi−1,zj ]

)
d(yi−1, zj)

≤ 36µ

ρ0
(1 + ρ0)

Similar argument shows that there is an uniform constant ∆ = ∆(µ, ρ0) such
that for any points x, y in Lr,k, we have

Length
(
Lr,k|[x,y]

)
d(x, y)

≤ ∆

In other words, Lr,k is a (∆,∆)–quasi-geodesic. Applying Lemma 2.8(1), we have
that Lr,k is a (3∆,∆)–quasi-geodesic. The forward spiral path Lr,k has the following
property: Let ti be the first time Lr,k visists the wall Fei . By our construction, we
have

tk+1 − tk = d(pk, yk−1) + d(pk, zk) + d(zk, yk) = κk−1 + κk + δk < 2r(1 + ρ0)
k + δk

Routine computation yields to a constant ρ = ρ(ρ0) which tends to 0 when ρ0 → 0
such that

2r(1 + ρ0)
k < ρLength(Lr,k) = ρtk

for k sufficiently large. We then have

tk+1 − tk < ρtk + δk

for sufficiently large k. We summary the above discussion in the next proposition.

Proposition 4.18. Let α be a q–ray of Type II. Given any ρ0 > 0, let 0 < ρ < ρ0.
There exists a quasi-geodesic ray L with quasi-geodesic constants depending only on
ρ, q such that the following holds. If ti is the first time L visits the wall Fei then

tk+1 − tk < ρtk + δk

for sufficiently large k.

Proposition 4.19. Let α be an arbitrary q–ray of Type II in X. If the excursion
of α is not sub-exponential then α ∼ ζ.

Proof. Since α is not sub-exponential excursion, then there exists a constant ρ0 ∈
(0, 1/4) so that for every r > 0 then there exists k ∈ Z+ satisfying

tk − tk−1 ≥ r(1 + ρ0)
k

Let k ∈ Z+ be the first integer so that{
tk − tk−1 ≥ r(1 + ρ0)

k

ti − ti−1 < r(1 + ρ0)
i ∀1 ≤ i ≤ k − 1

We define

κi := rρ0(1 + ρ0)
i for each 1 ≤ i ≤ k

We have

κk = rρ0(1 + ρ0)
k < ρ0(tk − tk−1) <

tk − tk−1

4
since 0 < ρ0 < 1/4, and hence it implies that 4κk < tk − tk−1.
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pi

pi+1

zi

yi

κi

≤ κi + 2wi

ℓ+i

ℓ−i+1

δi

wi

Figure 9.

Let ℓ+i ⊂ f+i be the geodesic ray in L+
i based at pi and ℓ−i+1 ⊂ f−i+1 be the geodesic

ray in f−i+1 based at pi+1 so that the projection point of pi into f−i+1 will belong to

ℓ−i+1 (see Figure 9).
Let Lr,k be the concatenation

Lr,k := ζ|[0,r] · [ζ(r), z1] · [z1, y1] · [y1, z2] · · · [yk−1, zk−1]

Let Lr,k be the path obtained by attaching to zk−1 the geodesic ray in f+k−1 based
at zk−1 which does not contain pk−1.

Using similar arguments as forward spiral paths, we can verify that Lr,k is a
(3ν, 3ν)–quasi-geodesic for some constant ν = ν(ρ0, q).

As 4κk < tk − tk−1, applying Lemma 4.10, Lr,k can be quasi-redirected to α at
radius r, and hence ζ can be quasi-redirected to α at radius r because ζ|r = Lr,k|r.
Since this is true for every r > 0, it follows that ζ ⪯ α. By Proposition 4.16, we
have α ⪯ ζ. Therefore ζ ∼ α. □

Lemma 4.20. Let α be a q–ray of Type II. Then [α] ̸= z if and only if the excursion
of α is sub-exponential.

Proof. According to Proposition 4.19, α ∼ ζ if the excursion of α is not sub-
exponential. Thus, to complete the proof, we only need to show that if the excursion
of α is sub-exponential then ζ can not be quasi-redirected to α.

By way of contradiction, suppose that at every radius r, there is always a uniform
quasi-geodesic γ that quasi-redirects ζ to α at the radius r.

Let Tk be the first time γ visits Fek and denote

ℓk := d(pk, γ(Tk))

Since γ is a q–ray, there exists a constant ρ0 = ρ0(q,Q) > 0 such that

(9) T0 = r and Tk+1 − Tk ≥ ρ0ℓk
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Another way to travel from o = p0 to γ(Tk) is to go along the special path
[p0, p1], [p1, p2], . . . , [pk−1, pk] which is a (µ, µ)–quasi-geodesic (µ is mentioned in
Definition 4.13) and then go up or down a distance of ℓk to reach γ(Tk).

Again since γ is a q–ray we have that

(10) ℓk +

k−1∑
i=0

wi ≥ ρ0Tk

Define

ρ1 = ρ20/2

and pick an arbitrary 0 < ρ < ρ1.
Since the excursion of α is sub-exponential, it implies that there exists a constant

C = C(ρ) such that for every i ≥ 0 then

d(α(ti), α(ti−1)) ≤ C(1 + ρ)i

and hence
k∑

i=0

wi ≤ C

k∑
i=0

(1 + ρ)i ≤ C

ρ
(ρ+ 1)k

as we know that wi ≤ d(α(ti), α(ti−1)).
Claim 3:

(11) ∀r > 2C/(ρρ0) =⇒ Tk+1 ≥ r(1 + ρ1)
k+1 and ℓk ≥ rρ0

2
(1 + ρ1)

k+1

Indeed, we prove the above claim by induction. The base case is obvious, so we
assume the claim is true for all i ≤ k. We have

Tk+1 ≥ Tk + ρ0ℓk

≥ r(1 + ρ1)
k +

rρ20
2

(1 + ρ1)
k ≥ r(1 + ρ1)

k(1 +
ρ20
2
)

≥ r(1 + ρ1)
k+1

Using this and (10), we have

ℓk+1 ≥ ρ0Tk+1 −
k∑

i=0

wi ≥ ρ0Tk+1 −
C

ρ0
(1 + ρ0)

k+1

≥ rρ0(1 + ρ1)
k+1 − C

ρ0
(1 + ρ1)

k+1

= (1 + ρ1)
k+1(rρ0 −

C

ρ
) ≥ rρ0

2
(1 + ρ1)

k+1

On the other hand, we have

k∑
i=0

d(α(ti), α(ti−1)) ≤
C

ρ
(1 + ρ)k < r(1 + ρ1)

k <
C

ρ
(1 + ρ1)

k < Tk

for r sufficiently large. In other words, γ arrives in Fek long after α has left Fek

and the distance between γ and α goes to infinity. In particular, it is impossible
for γ to eventually coincide with α.

In conclusion, we have shown that for every q = (q,Q), there exists a sufficiently
large constant r > 0 such that there is no q–ray γ with γ|r = ζ|r and γ is eventually
equal to α. Therefore ζ can not be quasi-redirected to α. □
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Proposition 4.21. Let α be a q-ray that is of Type II and is sub-exponential.
Let α0 in X be a geodesic ray whose simplified itinerary is the sequence γα. Then
α ∼ α0.

Proof. Consider the geodesic segments [o, pi], by Arzela-Ascoli Theorem, the se-
quence {[o, pi]} has a limit that is a geodesic ray which we denote as α0. By way
of contradiction, suppose α is not sub-exponential. By Lemma 4.20, α ∼ z and for
every r > 0 and every C > 0, there exists a bounded-constants quasi-geodesic that
is a forward spiral path that redirects to α eventually in a wall. In particular, in a
infinite sequence of walls, these forward spiral paths intersects Fei at a point whose
distances to the associated pi is greater than C∥pi∥. Therefore, for each C > 0,
there exists an infinite sequence of times where

d(pk, α) ≤ ρ ∥pk∥
Therefore for s large enough, the segment [x, y] that realizes the distance between
α(s,∞) and α0|pk

, where x ∈ α0|pk
has

∥x∥ ≥ 9

10
∥pk∥ .

Therefore, by Surgery Lemma 2.8 (3), there exists a (4q, 3Q)-quasi-geodesic ray
that redirects α0|x to α where ∥x∥ → ∞ as k → ∞. Thus α0 ⪯ α. On the other
hand, by Surgery Lemma 2.8(2), we obtain that α ⪯ α0 with redirecting constant
(9q,Q). □

Proposition 4.22. Let α and α′ be two q–rays of Type II in X with different
simplified itineraries and with sub-exponential excursions. Then α can not be quasi-
redirected to α′ and vice versa.

Proof. By way of contradiction, suppose that [α] = [α′]. In particular, we have
α′ ⪯ α. We claim that ζ ⪯ α. Indeed, let r > 0 be an arbitrary constant. Let γ be
an arbitrary forward spiral path given by Proposition 4.18 such that γ|r = ζ|r.

Let tk be the first time γ (tk) ∈ Fek and denote

ℓk := d (γ (tk) , pk)

Now choose R ≫ ℓk we consider a quasi-geodesic β′ quasi-redirecting α′ to α at
radius R. Such a β′ exists since α′ ⪯ α. Then β′ arrives at and leaves Fek much
later than γ. Hence, by Lemma 4.10, we can redirect γ to β′, that is, construct
a quasi-geodesic ray γ′ where γ [0, tk] = γ′ [0, tk] and γ′ is eventually equal to β′.
Since β′ is eventually equal to α it implies that γ′ quasi-redirects ζ to α at radius
r. This can be done for every r with uniform constants. Hence ζ ⪯ α. This would
contradict to Proposition 4.19(2). □

Now we have enough ingredients to claim the existence of the QR-boundary of
X.

Theorem 4.23 (Theorem A). The quasi-redirecting boundary ∂X exists and it is
non-Hausdorff.

Proof. By [QR24, Lemma 2.3], all finitely generated groups satisfy QR Assumption
0. Here we check QR-Assumptions 1 and 2. That is, for every a ∈ P (X), there is
a geodesic representative, and there is a function

fa : [1,∞)× [0,∞) → [1,∞)× [0,∞),
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any q–ray α ∈ a can be fa(q)–redirected to the representative of a. If α is of Type
I or of Type II but it does not have sub-exponential excursion, then by Proposi-
tion 4.16 α ⪯ ζ with constants q′(q). If otherwise, Proposition 4.19 show that ζ ⪯ α
with constant (3ν(ρ0, q), 3ν(ρ0, q)). Thus ζ is a suitable geodesic representative of
[α] and f[α] = q′(q). Otherwise, α is of type II and sub-exponential, then Propo-
sition 4.21 shows that α0 is a geodesic representative of [α] and the redirecting
function is f[α] = (9q,Q). Thus X satisfies all three QR-Assumption 0, 1, 2, and
∂X is well-defined and QI-invariant.

To see that ∂X is not Hausdorff, we first argue that ⪯ on ∂G is not symmetric,
then by [QR24, Theorem 7.3], ∂G is not Hausdorff. To see this, let α be a q–ray
α with sub-exponential excursion. By Proposition 4.16, we have α ⪯ ζ and by
Proposition 4.19, ζ ⪯̸ α. Therefore, QR relation ⪯ on ∂G is not symmetric. □

5. QR boundaries of 3-manifold groups

It is important to note that Theorem A applies to non-positively curved graph
manifolds. However, it is worth mentioning that there exist many graph manifolds
such that their fundamental groups are not CAT(0) groups [KL96]. As a result,
Theorem A cannot be applied directly to graph manifolds.

Fortunately, it has been demonstrated by Kapovich-Leeb [KL98] that graph man-
ifolds are Hadamard spaces in the large-scale sense, meaning that they are quasi-
isometric to CAT(0) graph manifolds. Hence, as the quasi-redirecting boundary is
a quasi-isometric invariant, Theorem A can be applied to graph manifolds without
the CAT(0) assumption.

Proposition 5.1. Let M be a graph manifold and let G = π1(M). Then the
following properties hold.

(1) G satisfies all three QR-Assumptions. Thus ∂G is a quasi-invariant topo-
logical space.

(2) The boundary ∂G is non-Hausdorff.

Proof. We equip M with a Riemannian metric. By [KL98, Theorem 1.1], there
exists a nonpositively curved graph manifold N and a bilipschitz homeomorphism

ϕ : M̃ → Ñ such that ϕ preserves their geometric decompositions. Here the metrics

on M̃ and Ñ are the induced metrics from M and N respectively. Since π1(N) is

an admissible group and the action π1(N) ↷ Ñ is a geometric action, we apply

Theorem A to π1(N) ↷ Ñ to obtain the existence of the quasi-redirecting boundary
of π1(N). Since π1(M) and π1(N) are quasi-isometric and QR-boundary is a quasi-
isometric invariant, it implies the existence of the quasi-redirecting boundary of
π1(M). □

Proposition 5.2. Let M be a mixed 3-manifold. Then the quasi-redirecting bound-
ary of π1(M) exists.

Proof. Let M1, . . . ,Mk be the maximal graph manifold components and Seifert
fibered pieces of the torus decomposition of M . Let S1, . . . , Sℓ be the tori in the
boundary of M that bound a hyperbolic piece, and let T1, . . . , Tm be the tori in the
torus decomposition of M that separate two hyperbolic components. According to
[Dah03] (see also [BW13]), π1(M) is hyperbolic relative to

P = {π1(Mp)}kp=1 ∪ {π1(Sq)}ℓq=1 ∪ {π1(Tr)}mr=1.
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We note that the quasi-redirecting boundaries of π1(Sq), π1(Tr) exist since they
are isomorphic to Z2. Proposition 5.1 implies the existence of the quasi-redirecting
boundary of π1(Mp). Thus, we apply Theorem C to conclude that the quasi-
redirecting boundary of π1(M) exists. □

Proof of Theorem D. The proof is a combination of Proposition 5.1 and Proposi-
tion 5.2. □

6. QR boundary of certain right-angled Coxeter groups

Given a graph Γ, define Γ4 as the graph whose vertices are induced 4–cycles of
Γ. Two vertices in Γ4 are adjacent if and only if the corresponding induced 4-cycles
in Γ have two nonadjacent vertices in common.

Definition 6.1 (Constructed from squares). A graph Γ is CFS if Γ is the join
Ω ∗K where K is a (possibly empty) clique and Ω is a non-empty subgraph such
that Ω4 has a connected component T such that every vertex of Ω is contained in
a 4–cycle that is a vertex of T . If Γ is CFS, then we will say that the right-angled
Coxeter group WΓ is CFS.

Standing Assumptions. The planar flag complex ∆ ⊂ S2:

(1) is connected with no separating vertices and no separating edges (W∆ is
one-ended);

(2) contains at least one induced 4-cycle (W∆ is not hyperbolic);
(3) is not a 4-cycle and not a cone of a 4-cycle (G∆ is not virtually Z2).

Proposition 6.2. Let ∆ ⊂ S2 be a flag complex satisfying Standing Assumptions.
Assume that either ∆ = S2 or the boundary of each region in S2 −∆ is a 4–cycle.
Then the quasi-redirecting boundary of the right-angled Coxeter groups WΓ exists.

Proof. It is shown in [NT19, Theorem 1.1] and [HNT19] that there are mutually
exclusive cases as bellow:

(1): If ∆ is a suspension of some n-cycle (n ≥ 4) or some broken line (i.e a
finite disjoint union of vertices and finite trees with vertex degrees 1 or 2), then
G contains a finite index subgroup G′ which is isomorphic to π1(M) with M is a
Seifert manifold. In this case, there is a finite coverM ′ → M such thatM ′ = F×S1

where F is a hyperbolic surface with a nonempty boundary, and thus ∂(π1(M
′))

consists only one point by Proposition 2.6. Since G is quasi-isometric to π1(M
′), it

follows from Theorem 2.1 that ∂G consists only one point.
(2): If the 1-skeleton of ∆ is CFS and does not satisfy (1) then G contains a

finite index subgroup G′ which is isomorphic to π1(M) with M is a graph manifold.
If the 1-skeleton of ∆ contains a separating induced 4-cycle and is not CFS, then
M is a mixed manifold. In these two cases, it follows from Theorem D that the
quasi-redirecting boundary of π1(M) exists, and so does G.

(3): If the 1-skeleton of ∆ has no separating induced 4-cycle and is not CFS, then
G contains a finite index subgroup G′ which is isomorphic to π1(M) with M is a
hyperbolic 3-manifold with tori boundary. In this case, π1(M) is hyperbolic relative
to a finite collection of Z2 which have trivial QR-boundaries, and Theorem C implies
the existence of the quasi-redirecting boundary of π1(M), and so does G. □

Theorem 6.3. Let Γ be a graph whose flag complex ∆ is planar. Then the quasi-
redirecting boundary of the right-angled Coxeter group WΓ exists.



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 33

Proof. According to [HNT19, Theorem 1.2], there is a collection J of CFS sub-
graphs of Γ such that the right-angled Coxeter group GΓ is relatively hyperbolic
with respect to the collection P = {GJ | J ∈ J }. By Proposition 6.2, the quasi-
redirecting of each peripheral subgroup GJ ∈ P. We now apply Theorem C to
obtain the conclusion. □
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