
GEOMETRICITY OF OUTER AUTOMORPHISMS IS

ALGORITHMIC

EDGAR A. BERING IV, YULAN QING, AND DERRICK R. WIGGLESWORTH

Abstract. An outer automorphism of a free group is geometric if it can be

represented by a homeomorphism of a compact surface. Bestvina and Handel
gave an algorithmic characterization of geometricity for irreducible automor-

phisms, using relative train tracks. Using advances in train-track theory, in

conjunction with the Guirardel core of tree actions and Nielsen-Thurston the-
ory for surfaces, we give an algorithm that can decide if a general outer auto-

morphism is geometric. The algorithm is constructive and produces a realizing

surface homeomorphism if one exists.

1. Introduction

A free group F of rank n can be realized as the fundamental group of a surface
Σ with boundary, and homeomorphisms of Σ induce outer automorphisms on Fn.
Any outer automorphism φ ∈ Out(F) that arises from this construction is geometric
(see Section 2.4). We describe an algorithm to decide whether or not an outer
automorphism is geometric. Our algorithm is constructive, in the sense that if a
realization exists there is a procedure to compute the surfaces together with the
homeomorphism.

Theorem A. Let φ ∈ Out(F) be an outer automorphism. There exists an algorithm
that decides if φ is geometric and a procedure to compute a realization of φ if one
exists.

Geometric free-by-cyclic groups. A finitely-generated, free-by-infinite-cyclic
group is a group G which admits an epimorphism onto Z such that the kernel
is a finitely generated non-cyclic free group. For brevity we refer to such groups as
free-by-cyclic groups. If G is a free-by-cyclic group, then the epimorphism G → Z
splits, and we can thus write G as a semidirect product

F oφ Z

where F is a non-cyclic free group and φ : F→ F is an isomorphism. If φ is geometric
and is realized by a surface homeomorphism h : Σ→ Σ, then G is the fundamental
group of the mapping torus of h, a 3–manifold with non-trivial torus boundary.
Not every free-by-cyclic group is the fundamental group of a 3-manifold. However,
it is a consequence of Stallings’ fibering theorem [18, Chapter 11] that if a free-by-
cyclic group G is the fundamental group of a 3-manifold then it is a mapping torus
of some surface homeomorphism realizing the monodromy. As a consequence, our
algorithm can detect 3-manifold groups among all free-by-cyclic groups.

Corollary B. There exists an algorithm to decide whether a given free-by-cyclic
group is a 3-manifold group.
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History. An (outer) automorphism of F is fully irreducible if no conjugacy class
of a nontrivial proper free factor is periodic. An (outer) automorphism of F is
irreducible if it fixes no conjugacy class of a nontrivial proper free factor. Bestvina
and Handel characterized irreducible automorphisms that are geometric [4]. Given
an outer automorphism φ, Bestvina and Handel’s characterization finds a periodic
conjugacy class [c]. This conjugacy class represents a boundary curve of the surface,
and a surface where φ can be realized as a homeomorphism can be obtained from
a suitable graph by attaching an annulus along a cycle representing [c]. This idea
is one of the building blocks of our algorithm.

Using the core of tree actions, Guirardel gave a limiting characterization of a
geometric fully irreducible. The projectivization of the space of actions of F on
very-small R-trees is known as the compactification of Culler-Vogtmann outer space,
CV [3,7,9]. For a fully irreducible automorphism φ acting on CV there are unique
forward and backward limit points, with representatives T+ and T−. Guirardel
proved that if both T+ and T− are dual to measured foliations on surfaces, then φ is
realized by a pseudo-Anosov homeomorphism of a punctured surface [15, Corollary
9.3]. Moreover, the universal cover of the realizing surface, equipped with the
singular Euclidean metric coming from the transverse foliations for the pseudo-
Anosov is the core of the two tree actions. The core (though not of limit points)
also plays a role in our algorithm.

There has been relatively little progress in understanding the geometricity of ele-
ments of Out(F) beyond the irreducible setting. Ye treated the case of polynomially
growing outer automorphisms with an analysis of generalized Dehn twists [27]. For
any given polynomially growing automorphism φ ∈ Out(F), Ye provides an explicit
power t(n) and an algorithm to decide whether φt(n) is geometric or not.

Key tools and technical advances. Our algorithm proceeds in two stages. First,
we pass to what is known as a rotationless power to avoid the complications of finite
order behavior. Algorithm 1 uses Feighn and Handel’s algorithmic CT represen-
tatives to decide if a rotationless outer automorphism is geometric. Once this is
done, Algorithm 2 uses the Guirardel core and Krstic, Lustig, and Vogtmann’s
equivariant Whitehead algorithm to decide if a given root of a geometric rotation-
less outer automorphism is again geometric. To combine these tools we requires
certain extensions of ideas in the literature that we highlight here, in hopes they
have broader application.

Surface data of CT representatives. CTs are graph maps representatives of outer
automorphisms designed by Feighn and Handel to satisfy the properties that have
proven most useful for investigating elements of Out(F) [11, 12]. Moreover, given
an outer automorphism, a CT representative can be produced algorithmically [13].
Algorithm 1 uses such a representative as a starting point. A wealth of data can
be derived from a CT representative, including surfaces and pseudo-Anosov home-
omorphisms that represent surface-like exponentially growing behavior of the outer
automorphim [17, Chapter I.2]. We add to this literature with Corollary 3.11,
which roughly says that all of the exponentially growing surface data of a CT is a
property of the outer automorphism alone and does not depend on the choice of
representative. This extends work of Handel and Mosher, as detailed in Section 3.
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Using this surface data, the final step of Algorithm 1 is to verify that the candi-
date boundary curves can all be glued together into a surface. This is accomplished
using the Whitehead algorithm.

Cores and spines. Guirardel generalized the idea of intersection of curves on sur-
faces to the intersection complex of a pair of minimal group actions on a tree [15].
In the context of Out(F), suppose φ is a geometric outer automorphism, and T is
the universal cover of a spine for a surface Σ where φ is realized as a homeomor-
phism. Twisting the action by φ gives two F actions on trees, and Guirardel proved
that the intersection core Core(T, Tφ) embeds in the universal cover Σ. We extend
this characterization to what we call partially geometric outer automorphisms. An
outer automorphism is partially geometric if it can be realized as a homotopy equiv-
alence of a surface h : Σ→ Σ equipped with a subsurface Q ⊆ Σ. Subject to some
technical conditions, we prove a relative version of Guirardel’s result in Proposi-
tion 6.5. Roughly, given a spine K for Q, where K is a subgraph of a spine for Σ, the
portion of the intersection core Core(T, Tφ) projecting to K embeds in some copy
of the universal cover of Q inside the universal cover of Σ. That is, this “surface
detection” is a local property.

Behrstock, Bestvina, and Clay give an algorithm for computing a fundamental
domain for Core(T, Tφ) for any outer automorphism φ, so our local condition is
algorithmic [1]. This is used by our general case algorithm, Algorithm 2, to verify
that an outer automorphism with geometric rotationless power is compatible with
the surface data of that rotationless power. As in the rotationless case, the final
verification is completed with the Whitehead algorithm. However, due to finite-
order behavior we require the equivariant Whitehead algorithm of Krstic, Lustig,
and Vogtmann [19].

Organization of the paper. This paper draws on a breadth of Out(F) theory;
we endeavor to recall all relevant definitions with a common notation. This is done
in Section 2. The first part of the paper is devoted to developing the necessary tools
for the rotationless case: Section 3 introduces the geometric models of EG strata
and derives new invariance results; these results are used in Section 4 to give an
algorithm for handling the rotationless case. The second part of the paper develops
the notion of partially geometric outer automorphisms and connects detecting this
notion to Guirardel’s core (Sections 5 and 6). The general algorithm is given in
Section 8 after developing one more tool for treating some finite order behavior in
Section 7. Illustrative examples of some of the varied behavior of different cases in
the algorithm are provided in Section 9.

Acknowledgements. The authors are grateful to the Fields Institute for hospital-
ity during the 2018 thematic program on “Teichmüller Theory and its Connections
to Geometry, Topology and Dynamics”, where this work began. E. A. Bering and
Y. Qing thank the American Institute of Mathematics for hospitality where this
work was completed. E. A. Bering was also partially supported Azraeli foundation.

2. Preliminaries

Let F denote the free group of rank r ≥ 3. For an element or subgroup of F,
we use [·] to denote its conjugacy class. Let Out(F) = Aut(F)/ Inn(F) denote the
group of outer automorphisms of F.
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2.1. Graphs, paths, and splittings. Fix an identification F = π1(R, ∗) for the
r-petaled rose R. A marked graph G is a graph where each vertex has degree
at least three and a homotopy equivalence m : R → G called a marking, which
identifies F with π1(G,m(∗)). The outer automorphism group of F acts on the set
of marked graphs on the right by twisting the marking: (G,m) 7→ (G,m ◦ φ). A
homotopy equivalence f : G → G determines an outer automorphism φ ∈ Out(F)
by φ = [m̄◦f ◦m] where m̄ is a homotopy inverse to m. If f sends vertices to vertices
and is an immersion on each edge, then we say f is a topological representative of
φ.

A path in a marked graph is an isometric immersion σ : I → G of an interval or a
constant map, the latter is called a trivial path. Any map σ : I → G is homotopic
relative to endpoints to a unique path [σ], called its tightening. A circuit is an
immersion σ : S1 → G, and similarly any map σ : S1 → G has a tightening. Any
path or circuit has a decomposition into edges E1 . . . E`(σ) where `(σ) is the length
of this decomposition, and each Ei is an isometry to a given edge. For any path
or circuit σ denotes σ with reversed orientation. A finite graph is a core graph if
every edge is contained in some circuit, and every finite graph deformation retracts
onto a unique core subgraph.

2.2. Lines and laminations. For a free group F the boundary pairs

B̃(F) = (∂F× ∂F \∆)/(Z/2Z)

is the set of unordered pairs of distinct boundary points of ∂F, given the topology
induced by the usual topology on ∂F. The space of abstract lines in F is the quotient
B(F) = B̃(F)/F of boundary pairs by the action of F, equipped with the quotient

topology. For a line ` ∈ B(F) a lift is any point ˜̀∈ B̃(F) that projects to `. Every
conjugacy class [w] ∈ F determines a well-defined axis characterized as the image
of a boundary pair fixed by a representative w. For a finite rank subgroup K ≤ F
there is a natural inclusion B̃(K) ⊆ B̃(F) which induces an inclusion B(K) ⊆ B(F).
The image of the latter map depends only on the conjugacy class [K].

A closed subset Λ ⊆ B(F) is called a lamination of F. A line ` ∈ Λ is a leaf of
the lamination and ` is a generic leaf if the closure of ` equals Λ. A lamination
fills a subgroup K ≤ F if it is not carried by any proper free factor system of K. It
is a consequence of the Shenitzer and Swarup theorems on cyclic splittings of free
groups that if a lamination is carried by the vertex group of a cyclic splitting then
it is not filling [24,25].

Associated to each φ ∈ Out(F) is a finite φ-invariant finite set of laminations
L(φ), called the set of attracting laminations, and a bijection L(φ) → L(φ−1), a
pair of laminations Λ+,Λ− related by this bijection are a dual lamination pair for
φ and the set of dual lamination pairs is denoted L±(φ).

Given a finite graph G the space of lines in G, denoted B(G) is the set of all
isometric immersions ` : R → G. The space of lines is topologized by the weak
topology which has a basic open set V (G,α) for each path α consisting of lines that
have α as a subpath. The marking m of a marked graph identifies B(G) and B(F)

via homeomorphism, induced by the identification of ∂F with the ends of G̃. An
outer automorphism φ induces a self-homeomorphism

φ# : B(F)→ B(F)
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and if f is a topological realization of φ the composition

B(F) ∼= B(G)
f#→ B(G) ∼= B(F)

is equal to φ#. For a marked graph G, we say a line or lamination in B(G) realizes
the corresponding line or lamination in B(F).

2.3. Free factor systems and supports. A free factor system of F is a finite
collection of proper free factors of F such that there exists a free factor decomposi-
tion

F = A1 ∗ · · · ∗Ak ∗B.
A free factor system F is the collection

F = {[A1], . . . , [Ak]}, where k ≥ 0.

We say that a free factor system carries a conjugacy class [K] if there is some
[A] ∈ F such that K ≤ A. Free factor systems are partially ordered by extending
the carrying relationship F1 @ F2 if F2 carries each [A] ∈ F1.

A subgroup K carries a set of lines W if W ⊂ B(K), and a free factor system
F carries W if each element of W is carried by some [A] ∈ F . For a set C of
conjugacy classes of subgroups, conjugacy classes of elements and lines we define
the free factor support Fsupp(C) is the @-minimal free factor system carrying each
element of C. Such a support exists and is unique [17, Fact I.1.10].

2.4. Out(F) and surface homeomorphisms. When Σ is a compact surface the
mapping class group Map(Σ) is the set of isotopy classes of homeomorphisms of Σ.
We explicitly include homeomorphisms that permute the boundary and orientation-
reversing homeomorphisms, in order to fully capture the behavior exhibited by
geometric outer automorphisms.

Similar to a marked graph, a marked surface is a compact surface Σ and a
homotopy equivalence m : R→ Σ called a marking, identifying F and π1(Σ,m(∗)).
As with graphs we will suppress the marking unless necessary.

For algorithmic purposes, for each rank n we fix a finite list Sn,1, . . . , Sn,k of
standard surfaces such that R ⊂ Sn,i and Sn,i deformation retracts onto R; one
for each homeomorphism type of surface with fundamental group Fn (including
non-orientable surfaces). Observe that if (Σ,m) is a marked surface homeomorphic
to some Sn,i then there is an outer automorphism φ such that (Sn,i, φ) is marked-
homeomorphic to (Σ,m).

An outer automorphism φ is geometric if there exists a marked surface Σ and a
homeomorphism g : Σ → Σ with g∗ a representative of φ. It is important to note
Σ need not be orientable and g may not restrict to the identity on ∂Σ. In addition
to this standard notion, our algorithm will need a partial notion in intermediate
steps. A connected subsurface Q ⊆ Σ is essential if it has infinite fundamental
group and is π1 injective. A general subsurface Q ⊆ Σ is essential if each connected
component is essential and no component of the complement Σ \Q is an annulus.

Definition 2.1. An outer automorphism φ is partially geometric on a marked
surface Σ with respect to a (possibly disconnected) essential subsurface Q ⊂ Σ if φ
is realized by a homotopy equivalence g : Σ→ Σ such that:

• The decomposition of Σ into Q and Σ \Q is g invariant,
• g restricted to Q is a homeomorphism.

Any homotopy equivalence with these properties is a geometric witness for φ.
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Remark 2.2. Note that the notion of a partially geometric outer automorphism is
stronger than that of an outer automorphism having geometric strata, because the
complementary subsurface is preserved up to homotopy.

As we are working with un-oriented compact, connected surfaces and not requir-
ing that our homeomorphisms restrict to the identity on the boundary, we quote
the following two classical surface theorems in full with references to the specific
formulations used.

Theorem 2.3 (Dehn-Nielsen-Baer Theorem). Let f : Σ→ Σ′ be a homotopy equiv-
alence between compact, connected surfaces with χ(Σ) = χ(Σ′) < 0. Assume that f
restricts to a homeomorphism ∂Σ = ∂Σ′. Then f is homotopic (relative to ∂Σ) to
a homeomorphism g : Σ ' Σ′.

Proof. Fujiwara [14, §3] records the non-orientable case of Maclachlan and Harvey’s
generalization of the Dehn-Nielsen-Baer theorem for so-called type-preserving outer
automorphisms of a Fuchsian group [21, Theorem 1]. In the setting of homotopy
equivalences of compact surfaces with negative Euler characteristic, type-preserving
reduces to preserving the set of boundary conjugacy classes. Thus, the hypothesis
on f is exactly that it induces a type-preserving isomorphism of π1(Σ) → π1(Σ′).
In turn this implies the two surfaces are homeomorphic and f is homotopic to a
homeomorphism by Fujiwara’s formulation of the Dehn-Nielsen-Baer theorem. �

In this article we will need to apply the Dehn-Nielsen-Baer theorem to restrictions
of maps to disconnected subsurfaces. To do so we need the following standard result.

Lemma 2.4. Suppose Q,R are homeomorphic connected subsurfaces of a compact
surface Σ. Let φ : Σ → Σ be a homotopy equivalence preserving the decomposition
of Σ into Σ \ (Q ∪ R) and Q ∪ R, and that φ(Q) = R . For any homeomorphism
h : R→ Q, the composition h◦φ : Q→ Q is homotopic to a homeomorphism if and
only if the restriction φ : Q→ R is homotopic to a homeomorphism.

Proof. One direction is clear. Suppose that h ◦ φ : Q → Q is homotopic to a
homeomorphism and let H be the homotopy. The composition h−1H is the desired
homotopy. �

Given a surface Σ, let Map(Σ) denote the equivalence classes of orientation-
preserving homeomorphisms on Σ, up to isotopy. Let [g] ∈ Map(Σ) be a mapping
class represented by a homeomorphism g. A reducing system for g is a collection
of disjoint, simple closed curves C such that, g(C) = C. A mapping class is re-
ducible if it has a representative with a reducing system and irreducible otherwise.
The reduction of [g] along C is the image of [g] under the natural homomorphism
Map(Σ) → Map(ΣC), where ΣC is the complement of a system of disjoint open
neighborhoods of C. The canonical reduction system for g is the intersection of all
inclusionwise maximal reduction systems. If C is the canonical reduction system,
C has a power such that ḡ fixes each component and each restriction is finite-order
or irreducible.

Theorem 2.5 (Thurston Normal Form [10, 26]). If [g] ∈ Map(Σ) is a mapping
class of a compact, connected surface Σ, then either [g] is irreducible or there is a
representative g and a canonical reduction system C fixed by g.
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It is a standard consequence of this normal form that after passing to a sufficient
power any mapping class can be factored as a product of Dehn twists about the
reducing curves and the images of irreducible mapping classes on the complement
under inclusion; see 4.2 for the precise formulation.

2.5. Automorphisms and lifts. In this section we introduce all the notations and
facts needed for actions and dynamics on F and ∂F. As in the previous sections
R is a rose with base-point (∗) and G is a marked rose. Let φ ∈ Out(F) and let
f : G → G be a topological representative of φ. Let b = m(∗) ∈ G be the base-
point in G. The set of paths σ from b to f(b) determines a bijection between the

automorphism lifts of φ and lifts of f to G̃. This bijection can be seen without
reference to a base-point as we now detail.

Let Φ be an automorphism of F that represents φ. Each u ∈ F acts on G̃ by the
covering transformation τu. Additionally, there are a pair of points

{u+
∞, u

−
∞} ⊂ ∂F

that are respectively the limits of positive and negative powers of u. The marking

identifies ∂F with ∂G̃. The line in G̃ whose ends converge to u+
∞ and u−∞ is called

the axis of τu. The bijection between lifts and automorphisms pairs f̃ to Φ when

f̃ τu = τΦ(u)f̃ for all u ∈ F.

An automorphism Φ of F induces a homeomorphism Φ̂ on ∂F. The action of
the group Aut(F) on F has a continuous extension to an action on the Gromov

compactification F∪ ∂F: Given Φ ∈ Aut(F), let Φ̂ : ∂F→ ∂F denote its continuous

extension, and let Fix(Φ̂) ⊂ ∂F be the set of fixed points of Φ̂. Let Fix(Φ) < F
denote the subgroup of elements fixed by Φ.

Let Fix+(Φ̂) denote the set of attractors in Fix(Φ̂), a discrete subset consisting of

points ξ ∈ Fix(Φ̂) such that for some neighborhood U ⊂ ∂F of ξ we have Φ̂(U) ⊂ U
and the sequence Φ̂n(η) converges to ξ for each η ∈ U . Let

Fix−(Φ̂) := Fix+(Φ̂−1)

denote the set of repellers in Fix(Φ̂). This gives a decomposition of the fixed set of

Φ̂:

(2.1) Fix(Φ̂) = ∂ Fix(Φ) ∪ Fix−(Φ̂) ∪ Fix+(Φ̂).

In the sequel we are interested primarily in the nonrepelling fixed points,

FixN (Φ̂) = Fix(Φ̂) \ Fix−(Φ̂).

We also denote the periodic point set

Per(Φ̂) :=
⋃
k≥1

Fix(Φ̂k)

and its subsets Per+(Φ̂),Per−(Φ̂),PerN (Φ̂) defined by similar unions.

2.6. Principal lifts and rotationless outer automorphisms.

Definition 2.6. A representative Φ ∈ Aut(F) of an outer automorphism φ ∈
Out(F) is a principal lift if either:

• FixN (Φ̂) contains at least three points.
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• FixN (Φ̂) is a two point set that is neither the set of endpoints of an axis
nor the set of endpoints of a lift of a generic leaf of an element of L(φ).

The corresponding lift f̃ : G̃→ G̃ of a topological representative of φ is also called
a principal lift. The set of principal lifts for φ is denoted P (φ).

Note that there is a map P (φ) → P (φk) for k ≥ 1. Two automorphisms
Φ1,Φ2 are isogredient if there is a c ∈ F such that for the inner automorphism
ic, Φ2 = icΦ1i

−1
c . An outer automorphism φ has finitely many iso-gredience classes

of principal lifts [12, Remark 3.9].

Definition 2.7. An outer automorphism φ is (forward) rotationless if for all k ≥ 1
the map P (φ)→ P (φk) is a bijection and FixN (Φ) = PerN (Φ) for all Φ ∈ P (φ).

Rotationless automorphisms are without periodic behavior: if φ is rotationless
then any φ-periodic conjugacy class, lamination, or free factor system is in fact φ
invariant [12, Lemma 3.30].

2.7. Principal lifts and the Nielsen approach to Map(Σ). Suppose now φ ∈
Map(Σ) for a compact surface Σ. There exists a homeomorphism g : Σ → Σ rep-
resenting φ that preserves both the stable and unstable geodesic laminations [5,
Lemma 6.1]. If in addition g preserves each individual principal region of the stable
and unstable geodesic laminations, its boundary leaves, and their orientations then
we say that g is rotationless; A rotationless power of g exists because there are only
finitely many principal regions and boundary leaves. We say that φ is rotationless

if it has a rotationless representative. If g is rotationless and if g̃ : Σ̃→ Σ̃ is a lift of
g, we say that g̃ is an s-principal lift (s stands for stable) if there exists a principal

region Rsof the stable geodesic laminations such that g̃ preserves R̃ and preserves

some (every) boundary leaf of R̃.

Observation 2.8. As shown by Handel and Mosher the principal lifts in the Out(F)
and Map(Σ) sense agree [17, Proposition I.2.12].

For geometric outer automorphims, the boundary curves of the surface can be
detected by the dynamics of principal lifts.

Proposition 2.9. Suppose g is a pseudo-Anosov diffeomorphism of a compact
surface Σ. Then the following are equivalent:

(1) c ∈ π1(Σ) is a boundary conjugacy class.
(2) There is a principal lift of g̃ such that the endpoints of c are a non-repelling

fixed point for the action of g̃ on ∂H2.
(3) The endpoints of c are non-repelling fixed points for the action of g̃∗ on

∂π1(Σ).

Proof. The equivalence of (2) and (3) is standard [23], since there’s a continuous
embedding of ∂π1(Σ) ∈ ∂H2 that respects the action. The equivalence of (1) and
(2) is established with care by Handel and Mosher [17, Proposition 2.12]. �

2.8. Train tracks, splittings, and CTs. Our analysis of individual outer auto-
morphisms requires the consequences of particularly refined topological represen-
tatives, known as completely split improved relative train-track maps (CTs), intro-
duced by Feighn and Handel [12]. In lieu of the precise definition, the statement of
which requires significant structure that we do not use directly, we introduce the
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parts of the definition needed for this paper, and indicate whenever a particular
quoted lemma for topological representatives applies only to CTs.

A filtration of a topological representative f : G→ G of an outer automorphism
φ is a choice of an f -invariant chain of subgraphs

∅ = G0 ⊂ G1 ⊂ · · · ⊂ GR = G.

Associated to a filtration of a marked graph G is a nested free factor system

Fi = [π1(Gi)]

that comes from the fundamental group of each connected component of Gi. The
action of f on the edges of G determines a square matrix known as the transition
matrix. The set Hi = Gi \Gi−1 is the ith stratum of G, and the submatrix of
M corresponding to the rows and columns indexed by Hi is denoted Mi. For
the topological representatives in this article, Mi will be either a zero matrix, a
1 × 1 identity matrix, or an irreducible matrix with Perron-Frobenius eigenvalue
λi > 1. We refer respectively to the stratum Hi as a zero, non-exponentially growing
(NEG), or exponentially growing stratum. Any stratum that is not a zero stratum
is irreducible.

If f : G → G is a topological representative and σ a path or circuit in G define
f#(σ) = [f(σ)]. A decomposition of σ = σ1 · σ2 · · ·σn into subpaths is a splitting
for f if

fk#(σ) = fk#(σ1) · fk#(σ2) · · · fk#(σn) for all k ≥ 1;

we reserve · to denote splittings and use adjacency for plain concatenation. A path
or circuit σ is called a periodic Nielsen path if fk#(σ) = σ for some k ≥ 1, if k = 1
then σ is a Nielsen path. A Nielsen path is indivisible if it is not a concatenation
of non-trivial Nielsen paths. In general a closed path σ is root-free if σ 6= γk for a
closed path γ. If w is a closed, root-free Nielsen path and E is an edge such that
f(E) = Ewk then we call E a linear edge and w the axis of E. If E and E′ have

a common axis w where k 6= k′ and k, k′ > 0, then any path of the form Ew∗E
′

is
an exceptional path.

For an EG stratum Hr a nontrivial path σ in Gr−1 with endpoints in Hr ∩Gr−1

is a connecting path for Hr. A path σ contained in a zero stratum is taken if
there is an edge E in an irreducible stratum and k ≥ 1 such that σ is a maximal
subpath of fk#(E) contained in that zero stratum. A non-trivial path or circuit σ
is completely split if there is a splitting σ = σ1 · σ2 · · ·σk where each σi is one of
the following: a single edge in an irreducible stratum, an indivisible Nielsen path,
an exceptional path, or a maximal connecting taken path in a zero stratum. Each
piece σi is referred to as a splitting unit of σ.

Definition 2.10 ([12, Definition 4.7]). A filtered topological representative

f : G→ G

of a rotationless outer automorphism φ with filtration

∅ = G0 ⊂ G1 ⊂ · · · ⊂ GR = G

is a completely split improved relative train-track map (CT) if it is a relative train
track map satisfying

(Completely Split): For every edge E in an irreducible stratum f(E) is
completely split; and for every taken connecting path σ in a zero stratum
f#(σ) is completely split.
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(NEG Nielsen Paths): If the highest edges in an indivisible Nielsen path
σ belong to an NEG stratum then there is a linear edge E and a closed
root-free Nielsen path w such that f(E) = Ewd for d 6= 0 and σ = EwE.

(Other Good Stuff): The requirements of the cited definition due to Feighn
and Handel, which will not be directly appealed to in this paper, but are
necessary for the quoted consequences.

For a rotationless outer automorphism φ, the EG strata of the CT are intimately
related to the set of attracting laminations. Specifically, there is a bijection between
L(φ) and EG strata of a CT [17, Fact I.1.55]: given any lamination Λ ∈ L(φ), we
can associate it with the stratum i where

Fsupp(Λ) 6@ Fi−1 and Fsupp(Λ) @ Fi.

In this case we say Λ is the lamination associated to the stratum Hi.
While the definition provides complete splittings only for edges and taken con-

necting paths, iteration suffices to obtain complete splittings of any path.

Lemma 2.11 ([12, Lemma 4.25]). If f : G→ G is a CT and σ ⊂ G is a path with
endpoints at vertices then fk#(σ) is completely split for all sufficiently large k.

In order to analyze certain CTs we make routine use of the “moving up through
the filtration” lemma, which describes how the strata change as we move from
filtration element that is a core graph to the next filtration element that is a core
graph.

Lemma 2.12 ([11, Lemma 8.3]). Suppose f : G→ G is a CT. Fix a filtration level
r such that Gr is core, and let s > r be the smallest integer such that Gs is a core
graph. Then there are two possible cases:

Hs is NEG: In this case either s = r+1 or s = r+2 and Hr+1 is also NEG.
Hs is EG: In this case there exists r ≤ u < s such that

• For each r < j ≤ u the stratum Hj is a single non-fixed edge with
terminal vertex in Gr.

• For each u < j < s, Hj is a zero stratum enveloped by Hs.

2.9. Computing with CTs. Feighn and Handel introduced an algorithm that
produces a CT for any rotationless outer automorphism, which additionally can
start from any prescribed filtration as input. This algorithm is instrumental in our
algorithm.

Theorem 2.13 ([13, Theorem 1.1]). There is an algorithm, refered to as Com-
puteCT, that takes as input a rotationless φ ∈ Out(F) and a nested sequence
F0 @ F1 @ · · · @ Fk of φ-invariant free factor systems and produces a filtered
topological representative f : G → G such that every non-empty Fi = F(Gr) for a
core filtration element Gr and f is a CT.

In addition to an algorithm for computing a CT, Feighn and Handel demonstrate
that many properties of a CT are computable from the CT. Specifically, there are
algorithms, referred to as ZeroStrata?, NonlinearNEG?, and Nongeomet-
ricEG?, that take as input a CT f and decide respectively if f has zero, nonlinear
NEG, or nongeometric EG strata [13].
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2.10. The (equivariant) Whitehead algorithm. In its most general form, the
classical Whitehead algorithm is a procedure for understanding orbit-equivalence
of tuples of conjugacy classes under the action of Out(F). We will make repeated
use of this formulation, as recorded in Lyndon and Schupp.

Theorem 2.14 ([20, Proposition 4.21]). Let C denote the set of conjugacy classes
of F with its natural Out(F) action. Let Cn denote the product of n copies of C with
diagonal Out(F) action. Then there is an algorithm which takes as input c, c′ ∈ Cn
and either produces φ ∈ Out(F) such that φ(c) = c′ or No if no such automorphism
exists.

Krstic, Lustig, and Vogtmann, in their solution to the conjugacy problem for
roots of Dehn twists in Out(F), gave an equivariant generalization of the Whitehead
algorithm that respects finite subgroups of Out(F), which we will also need.

Theorem 2.15 ([19, Theorem 1.1]). Let C denote the set of conjugacy classes
of F with its natural Out(F) action. Let Cn denote the product of n copies of C
with diagonal Out(F) action. Let G be a finite group. Then there is an algorithm
which takes as input c, c′ ∈ Cn and homomorphisms α, α′ : G→ Out(F) and either
produces φ ∈ Out(F) such that φ(c) = c′ and (α(g))φ = α′(g) for all g ∈ G or No if
no such automorphism exists.

2.11. Guirardel’s core. Given two simplicial T, T ′ with G-actions, Guirardel [15]
constructed a core, denoted Core(T, T ′), that captures the compatibility of the two
actions. Guirardel defines the core in a greater generality than what we require,
and we recall a specialized definition.

Definition 2.16. Suppose T and T ′ are simplicial trees with F action. There exists
a unique smallest non-empty, closed, connected, F-invariant subset C ⊂ T×T ′ with
convex fibers. We denote this set Core(T, T ′) and call it the core of T, T ′.

The decision to use the connected subset is usually called the augmented core,
but for our applications the connectivity is technically convenient, and we pray the
reader will accept our slight abuse of terminology. Guirardel proved that a core
always exists, and gave an explicit characterization of it in terms of the dynamics
of the F action on each tree [15].

We will use a different construction of the Guirardel core found in different gen-
eralities in separate work of the first two authors and in Behrstock, Bestvina, and
Clay [1, 2, 6]. Given a simplicial F–tree T , let v be a fixed vertex of T . Fix orien-
tations on all edges of T . For a given edge e ⊆ T , the complement of the interior
partitions T into two connected components, which we call δ+(e) and δ−(e) ac-
cording to the orientation of e. This induces a partition of the loxodromic elements
Fhyp = ∂+(e) ∪ ∂−(e) by the rule

∂±(e) = {g ∈ F|gnv ∈ δ+(e) for large n}
Note that the sets ∂±(e) are independent of the choice of v.

Definition 2.17. Consider an edge a in T and an edge b in T ′. We say a × b is
an intersection square if all of the following four intersections, as subsets of F, are
nonempty:

∂+(a) ∩ ∂+(b) 6= ∅ ∂+(a) ∩ ∂−(b) 6= ∅
∂−(a) ∩ ∂+(b) 6= ∅ ∂−(a) ∩ ∂−(b) 6= ∅
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We call this intersection condition the 4-sets condition.

A square a× b ⊂ Core(T, T ′) if and only if it is an intersection square [2, Lemma
3.4.1; 6, Lemma 3.4].

3. Geometric models of geometric EG strata

One of the major ingredients in our algorithm is the relationship between the
irreducible pieces of Thurston normal form and the EG strata of any CT represent-
ing a geometric automorphism φ. Before we make the connection with Thurston
normal form, we recall the definition of a geometric model for an EG stratum, some
key facts established by Handel and Mosher about such models, and use them to
derive invariants of φ.

3.1. Defining the models.

Definition 3.1 ([17, Definition I.2.1]). A weak geometric model for the EG stratum
Hr of a CT f : G→ G is the following collection of objects:

(1) A compact, connected surface S with nonempty boundary, enumerated as
∂S = ∂0S ∪ · · · ∪ ∂mS. The component ∂0S is called the upper boundary of
S and ∂1S, . . . , ∂mS are called the lower boundaries.

(2) For each lower boundary ∂iS, i = 1, ...,m, a homotopically nontrivial closed
edge path αi : ∂iS → Gr−1.

(3) The 2-complex Y that is the quotient of the disjoint union S tGr−1 by the
attaching map tiαi on the lower boundaries, with quotient map

j : S tGr−1 → Y.

(4) An embedding Gr ↪→ Y which extends the embedding Gr−1 ↪→ Y such that
Gr∩∂0Σ is a single point denoted pr, and there is a closed indivisible Nielsen
path ρr of height r in Gr and based at pr, such that the loop ∂0Σ based at
pr and the path ρr are homotopic rel base point in Y . The existence of this
embedding implies the existence of a deformation retraction d : Y → Gr
such that d|∂0S is a parameterization of ρr.

(5) A homotopy equivalence h : Y → Y and a homeomorphism

g : (S, ∂0S)→ (S, ∂0S)

whose mapping class [g] ∈ Map(S) is infinite order and irreducible, subject
to the following compatibility conditions:
(a) The maps (f |Gr) ◦ d and d ◦ h are homotopic.
(b) The maps j ◦ g and h ◦ j are homotopic.

Following Handel and Mosher, we will make use of Thurston’s theorem that
[g] ∈ Map(Σ) is infinite order and irreducible if and only if there is a pseudo-Anosov
representative, and when working with geometric models take g to be pseudo-
Anosov. The full data of a weak geometric model is quite notationally heavy,
for brevity we will say Y is a weak geometric model for the stratum Hr, and
use the other notation introduced by the definition in a standard fashion. When
working with several geometric models we will consistently decorate Y and the other
notation the same way, e.g. S′ is the surface associated to the weak geometric model
Y ′.
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Definition 3.2. An EG stratum Hr of a CT f : G → G is geometric if there is a
weak geometric model Y for Hr.

We recall that geometric EG strata are characterized by Nielsen paths.

Fact 3.3 ([17, Fact I.2.3]). For an EG stratum Hr of a CT f : G→ G, the following
are equivalent:

• Hr is geometric.
• There exists a closed, height r indivisible Nielsen path ρr.
• There exists a closed, height r indivisible Nielsen path ρr which crosses each

edge of Hr exactly twice.

Furthermore each component of Gr−1 is non-contractible.

Combining this fact with a lemma of Feighn and Handel gives two useful struc-
tural results about geometric EG strata.

Lemma 3.4 ([12, Lemma 4.24]). Suppose f : G→ G is a CT and Hr is a geometric
EG stratum. If E is an edge of Hr then each maximal subpath of f(E) in Gr−1 is
a Nielsen path.

Lemma 3.5 ([12, Lemma 4.24]). Suppose f : G→ G is a CT and Hr is a geometric
EG stratum. Then Hr does not envelop a zero stratum.

A weak geometric model Y for a stratum Hr only captures a CT f : G→ G up
to height r of the filtration, but encapsulates most of the technical notation and
results. To connect the weak geometric model to the full automorphism we recall
the definition of a geometric model for a stratum.

Definition 3.6 ([17, Definition I.2.4]). A geometric model X for a geometric EG
stratum Hr of a CT f : G → G is the quotient of Y t G obtained by identifying
the embedded copies of Gr in each, where Y is some weak geometric model for
Hr, a deformation retraction d : X → G extending d : Y → G and a homotopy
equivalence h : X → X extending h : Y → Y such that d ◦ h is homotopic to f ◦ d.

The extra information contained in a geometric model but not a weak geometric
model needed for this work is encapsulated in the peripheral splitting associated
to X. This is a Z-splitting of F obtained from a decomposition of the geometric
model X as a graph of spaces [17, Definition I.2.10]. Vertex spaces are the surface
S and components of the “complementary subgraph” (G−Hr) ∪ ∂0S; edge spaces
are annuli (coming from boundary components of S) and intervals (coming from
attaching points of the G − Gr to interior points of Hr). This splitting need not
be minimal. Using this splitting, one can see that for a geometric model X of an
EG stratum of f : G→ G, the composition dj : S → G is π1-injective [17, Lemma
I.2.5].

3.2. Geometric models as invariants. We need a few facts about the invariance
of geometric models for EG strata that are suggested by, but not proved in, Chapter
I.2 of Handel and Mosher’s monograph [17]. In that chapter, Handel and Mosher
prove the following structure proposition for the surface laminations of a geometric
stratum.

Proposition 3.7 ([17, Proposition I.2.15]). Given any finite type surface S and
any pseudo-Anosov homeomorphism g : S → S with stable and unstable lamination
pair Λs,Λu ⊂ B(π1S), we have:
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• Λs/Λu is an attracting/repelling lamination pair for g∗ ∈ Out(π1S).
• Λs and Λu each fill π1S.

Furthermore, suppose that f : G→ G is a CT representative for some φ ∈ Out(F),
that Hr ⊂ G is an EG-geometric stratum of f corresponding to a geometric lamina-
tion pair Λ± of φ, and that the given surface S is the surface associated to a weak
geometric model for f and Hr. If in addition g is the associated pseudo-Anosov
homeomorphism of the weak geometric model then we have:

• The map d̂j : B(π1Σ) → B(F) takes Λu,Λs homeomorphically to Λ+,Λ−

respectively.
• Every leaf of Λ+ is dense in Λ−, and similarly for Λ−.
• All leaves of Λ+ and Λ− are generic.
• Fsupp(Λ+) = Fsupp(Λ−) = Fsupp([π1S]).

From this structural result on laminations, they conclude that geometricity is a
property of a lamination pair Λ± ∈ L±(φ) associated to an outer automorphism,
independent of the geometric model or CT used.

Proposition 3.8 ([17, Proposition I.2.18]). If Λ± ∈ L±(φ) is an invariant lami-
nation pair associated to φ ∈ Out(F) and there is some rotationless iterate φk and
CT f : G → G for φk such that Λ± is associated to a geometric EG stratum of f ,
then for any CT f ′ : G′ → G′ of any rotationless iterate φm, the EG stratum of f ′

associated to Λ± is geometric.

In this section we pick up where Handel and Mosher leave off, and expand upon
Proposition 3.8 to conclude that “for a weak geometric model of a geometric EG
stratum of a rotationless automorphism, the homeomorphism type of the surface,
the mapping class of the pseudo-Anosov, and the conjugacy class of the inclusion
of the surface fundamental group under dj are invariants of φ”; they do not depend
on the CT representative.

Lemma 3.9. Suppose φ ∈ Out(F) is a rotationless outer automorphism and Λ± ∈
L±(φ) is a geometric lamination pair. Suppose f : G→ G and f ′ : G′ → G′ are two
CT representatives for φ. Let Hr be the EG stratum of f corresponding to Λ with
weak geometric model Y , and H ′s be the EG stratum of f ′ corresponding to Λ with
weak geometric model Y ′. Let [K] ≤ F be the conjugacy class of the fundamental
group of the surface S associated to Y ; that is, [K] = [(d ◦ j)∗(π1S)]. Similarly, let
[K ′] be the conjugacy class of the fundamental group of the surface S′ associated to
Y ′. Then [K] = [K ′].

Proof. By Proposition 3.7, both [K] and [K ′] carry Λ±. Thus, for a representative

K ∈ [K] there is a subset Λ̃±K of B̃(K) ⊆ B̃(F) that is a lift of Λ±. Let K ′ ∈ [K ′] be

the representative such that Λ̃±K ⊆ B̃(K ′) ⊆ B̃(F). This choice exists since there a
representative of [K ′] carries some lift of Λ± and all such lifts are F conjugate.

We first show that the intersection Γ = K ∩K ′ has finite index in K (and K ′).
Indeed, for a contradiction suppose [K : Γ] = ∞ and consider the cover SΓ of S
corresponding to Γ. Intersections of finitely generated subgroups of free groups
are finitely generated, so SΓ is an infinite sheeted cover with compact core. The
laminations Λ± are carried by both K and K ′, and therefore by Γ as well. Thus Λ±

lift to SΓ and are therefore not filling. However, Proposition 3.7 specifies that that
Λ± are precisely the images of the stable and unstable laminations of the pseudo-
Anosov model g : S → S under the map B(S) ↪→ B(F). This is a contradiction: the
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stable and unstable laminations of any pseudo-Anosov homeomorphism are filling.
Thus Γ has finite index in K. By a symmetric argument [K ′ : Γ] <∞.

It remains to show that K ′ ≤ K; equality will follow by symmetry. Let T be
the F-minimal subtree of the Bass-Serre tree coming from the peripheral splitting
associated to the full geometric model X. The subgroup K is the stabilizer of a
vertex v in T , so it suffices to show that the K ′-minimal subtree of T is v. Let
TK′ be the minimal subtree for K ′. If TK′ had an infinite orbit of vertices, then
Stab(v) ∩K ′ = K ∩K ′ = Γ would have infinite index in K ′, which we have ruled
out. So TK′ has finitely many vertices and contains v. Since TK′ is finite, the
fixator Fix(TK′) ≤ K ′ is finite-index in K ′ and contained in each edge stabilizer of
TK′ . Recall now that T is a subtree of the Bass-Serre tree of a Z-splitting, hence all
edge groups are trivial or cyclic. However, the group K ′ is the fundamental group
of a surface carrying a pseudo-Anosov homeomorphism, so is a free group of rank
at least 2. Since Fix(TK′) is finite index in K ′ it is also free of rank at least 2, and
contained in each edge stabilizer of TK′ . The only way for this to be possible is if
TK′ contains no edges, that is TK′ = v. Hence K ′ ≤ K. As equality follows by
symmetry this completes the proof. �

Lemma 3.10. Suppose f : G → G is a CT representative of a rotationless φ ∈
Out(F) and Λ± ∈ L±(φ) is a geometric lamination pair. Let Hr be the geometric
EG stratum of f associated to Λ± and Y a geometric model for Hr. Let [K] ≤ F
be the fundamental group of the surface S associated to Y ; that is, [K] = [(d ◦
j)∗(π1S)]. For any representative K the set of K-conjugacy classes representing
∂S is independent of the CT and depends only on φ.

Proof. Let g be the pseudo-Anosov homeomorphism of S coming from the geo-
metric model. Denote the stable and unstable laminations of g by Λs and Λu.

By Proposition 3.7 d̂j is a homeomorphism from Λu to Λ+ and from Λs to Λ−.
We will identify the boundary classes of K using principal lifts, so some care with
basepoints is required.

Fix the basepoint b ∈ Hr ⊆ G, as well as a basepoint ∗ ∈ S such that dj(∗) = b

in the image of the geometric model attaching maps. Fix basepoints b̃ ∈ G̃, and

∗̃ ∈ S̃, and a lift d̃j : S̃ → G̃ covering dj at these base-points. Let K ∈ [K] be the
representative image of π1(S) picked by these base0point choices.

For each principal lift Ψ of φ that fixes some element of [K] there is an iso-gredient
principal lift Φ fixing K. Since [K] carries Λ± by Proposition 3.7, there is a lift of

the laminations Λ± to Λ̃± ⊆ B̃(K). A principal lift Φ satisfies |Λ̃+ ∩ FixN (Φ)| ≥ 3
if and only if it fixes K.

Let Φ be a principal lift of φ fixing K, and select a realization f̃ : G̃ → G̃ so

that f̃(b) ∈ d̃j(S̃). This is possible since Φ fixes K. Let g̃ be a lift of g such that

d̃j(g̃(∗̃)) = f̃(b). By the homotopy lifting property of covers and item 5a in the
definition of geometric model, the action of g̃ on the lifts of Λs and Λu is conjugate

via d̃j to the action of f̃ on Λ̃±. Thus g̃ is a principal lift of g.
In fact, every principal lift of g arises this way. Indeed, if g̃ is a principal lift

of g, then, again by the homotopy lifting property and item 5a in the definition of

geometric model, the lift of f such that f̃(b) = d̃j(g̃(∗)) is a realization of a principal
lift of φ.

By Lemma 3.9 the conjugacy class [K] is an invariant of φ. For each represen-
tative K the boundary conjugacy classes of S are determined by the dynamics of
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the principal lifts of g on B̃(K), see Proposition 2.9. Since each principal lift of g
fixing K arises as a principal lift of φ fixing K, these dynamics are invariants of φ.
This completes the proof. �

Corollary 3.11. Suppose Λ± ∈ L(φ) is a geometric lamination pair. Let f :
G → G be a CT representing φ and suppose Hr is the geometric EG stratum of f
corresponding to Λ±. The surface S associated to a weak geometric model Y for Hr

and the mapping class of g : S → S are both invariants of the outer automorphism
φ and do not depend on Y or f .

Proof. Suppose f ′ : G → G is another CT for φ and H ′s is the geometric EG
stratum of f ′ corresponding to Λ±. Let S′ be the surface associated to a geometric
model Y ′ of H ′s. We will show that there is a homeomorphism η : S → S′ such
that [ηgη−1] = [g′] ∈ Map(S′).

Pick base-points in the strata Hr and the surface S to fix a representative K =
dj∗(π1(S), ∗) ≤ F. By Lemma 3.9, [K] = [d′j′∗(π1(S′))], so there is a choice of
basepoint in H ′s and on S′ such that d′j′∗(π1(S′, ∗′) = K.

Let

F∗ = (d′j′
−1
∗ ) ◦ dj∗ : π1(S, ∗)→ π1(S′, ∗)

be the induced isomorphism (this is indeed well defined as both dj∗ and d′j′∗ are
isomorphisms onto their images). Since π1(S, ∗) is free, there is a homotopy equiv-
alence Θ inducing this isomorphism.

By Lemma 3.10, Θ∗ takes the boundary classes of S to the boundary classes of S′,
so by the Dehn-Nielsen-Baer theorem (Theorem 2.3) Θ is homotopic rel boundary
to a homeomorphism η : S → S′.

Finally, by Proposition 3.7, η̂ = Θ̂ induces homeomorphisms from Λs to Λs′ and
Λu to Λu′, and g and g′ have the same dilatation, thus

[ηgη−1] = [g′] ∈ Map(S)

by the recognition theorem for pseudo-Anosov mapping classes [22, Theorem 1]. �

4. Deciding geometricity for rotationless automorphisms

In this section we introduce Algorithm 1, which decides if a rotationless outer
automorphism φ is geometric, and verify its correctness. Our description of Al-
gorithm 1 begins with an investigation of the properties of CTs representing a
geometric automorphism φ.

This investigation begins with a particular CT coming from the surface on which
φ is realized. We then examine the extent to which these properties are shared by
all CTs representing φ. In this way, we provide a list of computable necessary condi-
tions for any CT representing a rotationless automorphism to be geometric. These
conditions are split into dynamical constraints on the strata of a representative CT
(Section 4.1) and algebraic constraints on the fixed subgroups (Section 4.2).

Feighn and Handel [13] provide an algorithm to compute a CT representative of a
rotationless outer automorphism. We arrive at Algorithm 1 by computing a surface
and a realizing homeomorphism from a CT satisfying the necessary conditions,
demonstrating their sufficiency.
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4.1. CT representatives of a geometric automorphism. The following nota-
tion will be used throughout the remainder of this subsection and the next.

Notation 4.1. Fix a rotationless element φ ∈ Out(F) which we assume to be
geometric. Let Σ be a (possibly non-orientable) connected compact surface whose
fundamental group is identified with F (π1Σ ' F). Let g : Σ → Σ be a homeomor-
phism inducing φ ([g∗] = φ). We assume further that g is in Thurston normal form
for its homotopy class, so that it has no periodic behavior as detailed in Lemma 4.2.

Lemma 4.2. The Thurston normal form of g is without periodic behavior. That is,
let {c1, . . . , cm} be the canonical reduction system of g and choose representatives
ci with pairwise disjoint closed neighborhoods R1, . . . , Rm. Let Rm+1, . . . , Rm+n

denote the closures of the connected components of the complement of the reduction
system Σ − ∪mi=1Ri. Let ηi : Homeo(Ri, ∂Ri) → Homeo(Σ) denote the homomor-
phism induced by the inclusion Ri ↪→ Σ. Then g(Ri) = Ri for all i and moreover,

g =

m+n∏
i=1

ηi(gi)

where [gi] ∈ Map(Ri) is a power of a Dehn twist for i ∈ {1, . . . ,m} and [gi] ∈
Map(Ri) is either pseudo-Anosov or the identity for i ∈ {m+ 1, . . . ,m+ n}.

Proof. This follows immediately from the fact that if φ ∈ Out(F) is rotationless
and c is a periodic conjugacy class, then c is in fact fixed by φ. Were it necessary
to pass to a power of g to obtain the above form, there would be a conjugacy class
which is periodic but not fixed. �

We now choose a nested sequence ∅ = F0 ≤ F1 ≤ . . .FM = F of φ-invariant free
factor systems determined by (the fundamental groups of) an appropriately chosen
maximal nested sequence Q1 ⊂ Q2 ⊂ . . . ⊂ QM of g-invariant subsurfaces of Σ.
One way to ensure such a sequence of subsurfaces determines a nested sequence
of free factor system is as follows. Using the notation in Lemma 4.2, assume after
reordering that R1, . . . , Rb are annular neighborhoods of the boundary components
of Σ. Start by defining Qi = R1 ∪ . . . ∪Ri for i ∈ {1, . . . , b− 1}; note that we have
omitted the last boundary component, as carried by Rb. Then “work towards”
the final boundary component as follows: define a partial order on the remaining
invariant subsurfaces Ri for i ∈ {b+1,m+n} by Ri ≤ Rj if Fsupp(π1Ri, π1Qb−1) @
Fsupp(π1Rj , π1Qb−1). Then for i ∈ {b + 1, . . . ,m + n} inductively define Qi =
Qi−1 ∪ R where R is any subsurface which is minimal with respect to this partial
order. Finally, define Fi = Fsupp(π1Qi) as the smallest free factor system carrying
the fundamental group(s) of the not necessarily connected subsurface.

Notation 4.3. Let f : G→ G be a CT representing φ with filtration

∅ = G0 ⊂ . . . ⊂ GN = G

and realizing the (not necessarily maximal) nested sequence of φ-invariant free fac-
tor systems defined above.

The first step in the construction of a CT involves completing the prescribed
nested sequence of φ-invariant free factor systems to a maximal one. We will
distinguish those core subgraphs Gr whose fundamental groups are elements of the
prescribed filtration (that is Fsupp([π1(Gr)]) ∈ {Fi}) from those core subgraphs
whose fundamental groups are not in the prescribed filtration; will say subgraphs
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in the former category and their strata determine subsurfaces, while subgraphs in
the latter category do not determine subsurfaces.

4.1.1. Strata of the preferred CT. In the previous section we proved that the surface
data of a geometric EG stratum of a CT is an invariant. We now use f : G→ G to
show that these invariants agree with the pieces of the Thurston normal form of g.

Observation 4.4. Suppose the restriction of g : Σ→ Σ to a subsurface R is pseudo-
Anosov, and that Qi is the subsurface of Σ such that Qi = Qi−1∪R as defined above,
with associated φ-invariant free factor system Fi. Then there are no φ-invariant
free factors properly containing Fi−1 and properly contained in Fi.

Lemma 4.5. If Hr is an EG stratum of f : G→ G, then Hr is geometric and the
subsurface R of Σ such that Qr = Qr−1 ∪ R can be attached to Gr−1 to produce a
weak geometric model for Hr.

Proof. Since Hr is an EG stratum, Gr is necessarily a core graph; let Fsupp([π1Gr])
be the associated φ-invariant free factor system. Again because Hr is EG there
are conjugacy classes in Fsupp([π1Gr]) that grow exponentially under iteration by
φ and are not contained in Fsupp([π1Gr−1]). In particular, this implies that the
φ-invariant free factor system Fsupp([π1Gr]) determines a subsurface Qi of Σ. Let
R be the subsurface of Σ such that Qi = Qi−1 ∪ R. Note that the presence of
exponentially growing conjugacy classes in R and the maximality of the filtration
imply that g|R is pseudo-Anosov. There is a simple closed curve c in ∂R which is
not homotopic into Qi−1 and is fixed by g (it’s the “upper boundary component”).
Since g|R is pseudo-Anosov, Observation 4.4 implies that the core graph of Gr−1

has fundamental group equal to Fi−1. Abusing notation and thinking of c as an
element of F, it is clear that [c] is not carried by Fi−1 and therefore not carried by
Gr−1. Thus there is a conjugacy class in G of height r that is φ-invariant, so is
represented by a height r closed indivisible Nielsen path ρr. This is equivalent to
Hr being geometric by Fact 3.3.

Now suppose S
j→ X

d→ G is a geometric model for Hr. The argument is similar
to Lemma 3.9. Both π1(R) and π1(S) carry the laminations of the stratum Λ±,
so the intersection K = π1(R) ∩ π1(S) is finite index in both groups. Indeed, in
both surfaces Λ± are realized as attracting laminations for pseudo-Anosov home-
omorphisms, so each is filling and carried by K; this is impossible if K is infinite
index.

Let X be a geometric model of Hr and T be the minimal tree associated to
the corresponding Z-splitting. As in Lemma 3.9 we conclude that π1(R) ≤ π1(S).
While we cannot appeal to symmetry exactly, to see that π1(S) ≤ π1(R), consider
the Bass-Serre tree TR coming from the Z-splitting of Σ induced by ∂R. The
minimal tree TS for the action of π1(S) must be finite since the intersection K is
finite-index in π1(S); since π1(S) is free of rank at least 2 this implies it is a single
vertex.

Finally the upper boundary ∂0S represents [c] by the definition of a geomet-
ric model so upper boundaries of S and R are identified. Since π1(S) ∼= π1(R)
to see that the lower boundaries are identified we appeal to Lemma 3.10. The
boundary classes are an invariant of the lamination pair Λ±, independent of the
CT or geometric model. Moreover, as the surface and free group notions of prin-
cipal lift coincide [12], the lamination pair Λ± determines the boundary classes
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of R. Thus, for an appropriate choice of basepoints we obtain an isomorphism
Θ∗ = ι−1

∗ ◦ dj∗ : π1(S) → π1(R) that takes boundary classes to boundary classes,
respecting the distinction of upper and lower classes. As in the proof of Corol-
lary 3.11 it follows from the Dehn-Nielsen-Baer theorem that there is a homeo-
morphism η : S → R conjugating the geometric model homeomorphism to the
restriction of the Thurston normal form to R. The homeomorphism η can be used
to attach R to Gr to produce a new weak geometric model. �

Geometricity also imposes a strict constraint on NEG strata of f , capturing the
growth dichotomy for conjugacy classes under iteration by a surface homeomor-
phism.

Lemma 4.6. If Hr is a non-fixed NEG stratum, then it is linear.

Proof. Suppose for a contradiction that there exists a nonlinear NEG stratum and
let Hr be the lowest such. The stratum Hr consists of a unique edge E such that
f(E) = Ew for some completely split conjugacy class w. We first show that if w
contains an EG edge E′ as a splitting unit, there will be a conjugacy class [σ] in
F whose asymptotic growth rate is super-exponential and this behavior does not
occur for geometric automorphisms.

To produce such a conjugacy class, we simply need to construct a completely
split conjugacy class containing E as a splitting unit. To do so, consider the smallest
integer s ≥ r r such that Gs is a core graph.

We first argue that Hs cannot be an EG stratum. If Hs were EG, then it would
be geometric by Lemma 4.5. Thus, by Lemma 3.4, for each edge E′′ of Hs, the
maximal subpaths of f(E′′) in Gs−1 are Nielsen paths. Thus, the EG case of
Lemma 2.12 implies the existence of a Nielsen path w of height r whose first edge
is E. This is a contradiction to (NEG Nielsen Paths), since E is non-linear. Thus,
Hs cannot be EG.

So we conclude that Hs is NEG and the relation between Hs and Gr is described
in the NEG case of Lemma 2.12. Since Gs is core, there exists a closed loop σ in Gs
crossing E either once or twice according to whether or not E is separating in Gs.
Iterating f , we may assume that σ is completely split, and we claim E is a splitting
unit in the complete splitting of σ. Indeed, the edge E is not contained in a zero
stratum, so it is not a taken path. It also cannot appear in an indivisible Nielsen
path or exceptional path in the complete splitting of σ: Gupta and Wigglesworth
characterize the structure of indivisible Nielsen paths and exceptional paths that
cross non-fixed irreducible strata [16, Lemma 7.4], and their characterization rules
out the possibility of E appearing in either type of splitting unit.

Therefore, the asymptotic growth of iterates of E gives a lower bound for the
asymptotic growth of σ. Our assumption that f(E) contains an EG edge as a
splitting unit implies that `(fn(E)) ≥ nλn (here λ is the exponential growth rate
of the EG edge E′). Hence `(fn(σ) ≥ nλn but this cannot occur for geometric
automorphisms. Thus w contains no EG edges as splitting units.

The minimality of Hr implies that, absent EG splitting units, w must contain
a linear edge E′ in its complete splitting. A similar argument then implies the
existence of a conjugacy class that grows quadratically under iteration by φ (and
hence by g), something that cannot happen for conjugacy classes under iteration
by a surface homeomorphism. �
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4.1.2. Strata of an arbitrary CT. We now consider an arbitrary CT representing
the geometric automorphism φ.

Notation 4.7. For the remainder of this section, we let f ′ : G′ → G′ be any
CT representing the geometric automorphism φ. In particular, f ′ need not have
anything to do with a surface Σ on which φ can be realized.

Lemma 4.8. If f ′ : G′ → G′ is as above, then every EG stratum of f ′ is geometric
and every nonfixed NEG stratum is linear.

Proof. The first statement is implied by Lemma 4.5 together with Proposition 3.8.
For the second, we simply note that the proof of Lemma 4.6 relies only on the
asymptotic growth rates of conjugacy classes in F, and this depends only on φ and
not f . �

As a consequence of Lemma 4.8 we obtain two more necessary conditions for a
rotationless automorphism to be geometric:

Corollary 4.9. There are no elements Λ1,Λ2 ∈ L(φ) such that Λ1 ) Λ2. Any CT
f ′ : G′ → G′ representing φ does not have a zero stratum.

Proof. Since φ is geometric, by Lemma 4.8 every EG stratum H ′r is geometric.
For every E edge in an EG stratum H ′r Lemma 3.4 implies each maximal subpath

of f ′(E) in G′r−1 itself a Nielsen path. In particular, there are no EG edges of height
< r in the complete splitting of f ′(E), so the lamination Λ associated to H ′r cannot
contain a sub-lamination.

Every zero stratum is enveloped by some EG stratum, but Lemma 3.5 states
that geometric EG strata do not envelop zero strata. �

In fact, the pseudo-Anosov pieces used for geometric models are an invariant of
φ independent of the CT.

Lemma 4.10. With the conventions established by Notation 4.1, Notation 4.3, and
Notation 4.7 above, there is a bijection

{EG strata of f ′} ←→ {R ⊆ Σ | g(R) = R and g|R is pA}.
Moreover, a subsurface on the right-hand side of the bijection can be used as the
surface part of a geometric model for the corresponding stratum.

Proof. For the CT f : G → G obtained using a filtration coming from the surface
Σ; this is a consequence of Lemma 4.5. For any other CT f ′ the requisite the bijec-
tion comes from the bijection between EG strata of f ′ and attracting laminations
L(φ). That this bijection provides surface pieces of geometric models follows from
Corollary 3.11. �

In summary, we conclude that for any CT f ′ representing a rotationless geometric
automorphism φ, every stratum of f ′ must be either fixed, linearly growing, or
geometric.

4.2. The fixed subgroups. Beyond the “stratum constraints” from the previous
section, the fixed subgroups of a rotationless geometric automorphism reflect the
fixed subsurfaces of the Thurston normal form. The precise formulation is the
notion of a ∂-realizable set of conjugacy classes, Definition 4.11. We first show
that this property is algorithmic, and then apply it to the fixed subgroups of a
rotationless automorphism.
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We continue to use Notation 4.1, Notation 4.3, and Notation 4.7 in this subsec-
tion.

4.2.1. ∂-realizable sets in a free group.

Definition 4.11. Let F be a finite rank free group and C a finite set of conjugacy
classes of F. We say that C is ∂-realizable if there exists a surface Σ and an
identification F ' π1(Σ) such that the free homotopy class corresponding to every
element of C is the class of a boundary component of Σ. We do not allow a class
[c] ∈ C to be a proper power of a boundary component. A finite multiset C is
∂-realizable if either C is in fact a ∂-realizable set, or if F = 〈c〉 and C is [c] with
multiplicity at most 2.

Suppose that C is ∂-realizable and let Σ be a surface witnessing this fact. If
[∂Σ] is the collection of conjugacy classes of elements of π1(Σ) ' F determined
by the boundary components of Σ, then there are two possibilities: either C =
[∂Σ] or else C ( [∂Σ]. In the latter case, C will be part of a basis for F, so
Whitehead’s algorithm (Theorem 2.14) will determine if such an C is ∂-realizable.
The following corollary shows that the same holds when C = [∂Σ] again using
Whitehead’s algorithm.

Corollary 4.12. There is an algorithm ( ∂-realizable?) that determines whether
a multiset C of conjugacy classes is ∂-realizable in F.

Proof. By definition a multiset is ∂-realizable if either it is a ∂-realizable set (not
multiset) or if F ∼= Z and C is a generator of F with multiplicity at most 2. This
second condition is readily computed, so it remains to give an algorithm for the
case that C is a set.

Observe that a set of conjugacy classes C is ∂-realizable if and only if C is in the
Out(F) orbit of the set of conjugacy classes [∂Sn,i] represented by the boundary of
some standard surface Sn,i. Thus, ∂-realizability is computable with Whitehead’s
algorithm (Theorem 2.14): For each standard surface Sn,i of the relevant rank,
use Theorem 2.14 to determine if any |C|-subset of [∂Sn,i] and C are in the same
Out(F)-orbit. �

4.2.2. ∂-realizable sets and the fixed subgroups of φ. We now consider the collection
of conjugacy classes of subgroups Fix(φ) for the geometric automorphism under
consideration. Indeed, computing Fix(φ) = {[K1], . . . , [Kl]} from the CT f : G→ G
can be done easily [13, §8]. On the other hand, computing Fix(φ) from g : Σ →
Σ is also straightforward from its Thurston normal form: Fix(φ) consists of the
conjugacy classes of fundamental groups of subsurfaces on which g restricts to the
identity. This second characterization leads to the conclusion developed in this
section: that the boundary curves of the fixed subsurfaces can be computed from
a CT, and geometricity on the identity components reduces to a question of ∂-
realizability.

We recall the details of the computation of Fix(φ) from a CT f : G → G, as a
familiarity with this procedure is important in the sequel; the reader is directed
to Feighn and Handel [13, §9-11] for complete details of the construction and its
computability. The reader may wish to look ahead to Example 9.1.

Definition 4.13. Define the graph Ŝ(f) as follows. Start with the subgraph Ŝ1(f)
of G consisting of all vertices in Fix(f) and all fixed edges. Given a linear edge
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E of G, we have f(E) = EudE for some d 6= 0 and some root-free loop uE in G
that is fixed by f (up to free homotopy). For each such edge, attach a “lollipop”

YE to Ŝ1(f); YE is the union of an edge labeled E and a circle labeled uE , which

is attached at the initial vertex of E, considered as an element of Ŝ1(f). For each
geometric EG stratum Hr with an indivisible Nielsen path of height r, choose one
such indivisible Nielsen path ρ (there are only two and they differ by a choice of

orientation) and attach an edge path labeled by ρ to Ŝ1(f) with endpoints equal

to those of ρ. The result is Ŝ(f).

When v ∈ Fix(f), we abuse notation and also denote by v the unique vertex

of Ŝ1(f) ⊂ Ŝ(f) labeled by v. The component of Ŝ(f) containing this vertex is

denoted by Ŝ(f, v). Each component of Ŝ(f) has its fundamental group identified
with a subgroup of F by the immersion determined by edge labels. The collection of
conjugacy classes of such subgroups is precisely Fix(φ). The graph Ŝ(f) is clearly
computable from the data of a CT and we will use its components as computable
representatives of Fix(φ).

Heuristically, linear strata in a CT representing a geometric outer automorphism
should correspond to Dehn twists in the associated surface. This motivates the
following definition, which will record the set of Dehn twist curves in a reducing
system for such an automorphism. This definition should be compared to Handel
and Mosher’s definition of Twist(φ) [17, Definition II.2.7]. Taken as a set LK is the
intersection up to conjugacy of K and Twist(φ), however the multiset structure is
necessary for determining geometricity.

Definition 4.14. For each [K] ∈ Fix(φ), we define a multiset LK of conjugacy
classes of K as follows (L is for “linear”). Consider each linear edge E of f : G→ G
in turn. For each edge, write f(E) = EudE for some root-free reduced loop uE in
G and some integer d 6= 0. Let v and v′ be the initial and terminal endpoints of
E respectively, both of which are necessarily in Fix(f). If v is in the component

of Ŝ(f) corresponding to [K] add EuEE to LK . If v′ is in the component of Ŝ(f)
corresponding to [K] add uE to LK .

Our definition of LK is computable from a CT representative, for it to be useful
we also must know that LK is an invariant of φ independent of the choice of CT.
To do this we will make use of an alternate definition, in terms of the axes of
φ. Recall that a root-free conjugacy class µ is an axis of φ if there are distinct
principal lifts Φ,Ψ ∈ P (φ) that fix a representative u of µ. The number of distinct
principal lifts in P (φ) fixing u is the multiplicity of u, denoted m(µ). This does not
depend on the particular representative, µ and its multiplicity are invariants of φ.
For a fixed u representing µ there is a unique base lift Φ0 ∈ P (φ), characterized as

corresponding to the unique lift f̃0 with fixed points in the axis of u and commuting
with the covering translation τu [12, pg. 95]. With this notion of base lift, Feighn
and Handel connect the axes of an outer automorphism φ to the linear edges of a
CT representative.

Lemma 4.15 ([12, Lemma 4.40]). Suppose that φ is forward rotationless and that
the unoriented conjugacy class µ is an axis for φ. Let f : G → G be a CT rep-
resentative of φ. Fix a representative circuit u in G for µ and let Φ0 be the base
lift corresponding to the choices of u and f . There is a bijection between the set
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Φj ∈ P (φ) such that Φj 6= Φ0 and Φj fixes u, and the set of linear edges Ej for f
such that f(Ej) = Eju

d.

Remark 4.16. The bijection depends on the choice of base lift but the collection
{Φ0, . . . ,Φm(µ)−1} ⊂ P (φ) depends only on u and φ. Given Φ ∈ P (φ) that fixes u,
this collection is equal to P (φ) ∩ {inu ◦ Φ}n∈Z.

Lemma 4.17. The multisets LK , as [K] varies over Fix(φ), depend only on φ and
not on the CT used to compute them.

Proof. We give an alternate definition of LK in terms of the principal lifts and
axes of φ. (Compare Handel and Mosher’s Fact II.2.8 [17].) For each conjugacy
class in Fix(φ), fix a representative subgroup. We will define a multiset L′K for
each representative subgroup. For each axis µ of φ, pick a representative element
u and an automorphism Φ ∈ P (φ) fixing u. (As we are giving a CT independent
definition, Φ may not be a base lift, but as remarked this will not matter.) The fixed
subgroup KΦ is conjugate by some v to a representative K. For each Ψ ∈ P (φ)
not equal to Φ that fixes u, the fixed subgroup KΨ is conjugate by some w to a
representative K ′ (it is possible K = K ′ if Ψ and Φ are isogredient), we add iv(u)
to LK and iw(u) to L′K . Following this procedure for all axes defines the multisets
L′K , and up to conjugacy these are well-defined and depend only on φ.

We claim that LK = L′K .
Fix representatives of Fix(φ). The axes of an automorphism φ are precisely the

root-free conjugacy classes that are suffices of linear NEG edges. Let µ be an axis
of φ with representative circuit u and linear edges E1, . . . Em(µ)−1 with suffix u. In
Feighn and Handel’s proof of Lemma 4.15 a bijection is constructed as follows. Let
v be the initial (and terminal) vertex of u and fix a lift ṽ ∈ G̃. The base lift Φ0 is

realized by the lift of f at ṽ. Each linear edge Ej has a unique lift Ẽj terminating
at ṽ, and the bijection sends Ej to the principal lift Φj of f at the initial vertex of

Ẽj . The fixed subgroup of Φ0 is conjugate via some v to the representative K; each
Ej contributes a copy of iv(u) to LK and to L′K by definition. For each j let Kj be
the fixed subgroup of Φj , conjugate via some w to its representative K ′ the edge

Ej contributes iw(EjuEj) to L′K by definition. As verified by Feighn and Handel
this correspondence is a bijection [12, Proof of Lemma 4.40]. Thus LK = L′K is an
invariant of φ. �

It follows from the definition of a weak geometric model (in particular the fact
that Gr embeds into Y ) and the EG case of Lemma 2.12 “moving up through
the filtration” that each attaching map αi of a lower boundary component is ei-
ther a local homeomorphism, or else has image EwE for some linear edge E of G
and a closed loop w which is a Nielsen path. We now record the elements of F
corresponding to boundaries of the surfaces of EG strata in G.

Definition 4.18. Define a multiset EK of elements of [K] ∈ Fix(φ) as follows (E is
for exponential). Let Hr be a (necessarily geometric, c.f. Lemma 4.5) EG stratum
of f : G→ G, with associated weak geometric model as above. The upper boundary
component is a closed height r indivisible Nielsen path, which is represented in some
component of Ŝ(f). Let S be the surface associated to a weak geometric model
Y for Hr. The image under αi of each lower boundary component ∂iS is either a
loop in some component of Ŝ(f), or an indivisible Nielsen path corresponding to

a lollipop in a component Ŝ(f). The multiset EK is the (multiset)-union over EG
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strata of f of the boundary classes that are represented in the component of Ŝ(f)
corresponding to [K].

The reader should note that the elements of LK are always root-free conjugacy
classes; the definition asks us to take roots. On the other hand this is not necessarily
the case for elements of EK . See Example 9.1.

Definition 4.19. The candidate boundary multiset of [K] ∈ Fix(φ), denoted CK =
LK∪̇EK is the multiset union of the two multisets defined previously.

As observed in their definitions, both multisets in the union are computable from
a CT f and the graph Ŝ(f). Thus for each [K] ∈ Fix(φ) (represented as a connected

component of Ŝ(f)), the multiset CK is computable.

Lemma 4.20. If φ is a geometric rotationless outer automorphism then for every
[K] ∈ Fix(φ), CK ∂-realizable in K.

Proof. Since φ is geometric, there is a bijection between Fix(φ) and the fixed sub-
surfaces of the Thurston normal form of a realization g : Σ→ Σ. Fix [K] ∈ Fix(φ)
and the corresponding subsurface ΣK . The components of ∂ΣK are partitioned
into 3 types: those that the Thurston normal form Dehn twists around, those that
separate ΣK from pseudo-Anosov subsurfaces, and components of ∂Σ.

Lemma 4.17 characterizes the elements of LK in terms of principal lifts; the
surface and outer automorphism notions of principal lift coincide, so LK is also
determined by the Dehn twist boundary curves of ΣK .

It follows from Lemma 4.10 and the definition of EK that the components of
∂ΣK that separate ΣK from a pseudo-Anosov subsurface are equal to EK .

Thus, either ΣK is an annulus and CK is a multiset with 2 copies of the generator
of π1ΣK , or CK is a ∂-realizable set with ΣK witnessing the realization. �

As a consequence we further observe:

Corollary 4.21. If φ is geometric, then for every [K] ∈ Fix(φ)

(1) LK is a set – the multiplicity of every element is 1
(2) no element of EK is a proper power.

4.3. The algorithm.

Proposition 4.22. Algorithm 1 is correct.

Proof. First Algorithm 1 halts: every procedure used is an algorithm and there are
finitely many components in Ŝ for any CT.

Now suppose φ is a rotationless outer automorphism. There are two possible
results of running Algorithm 1 on φ, we consider them in turn.

No. If the algorithm returns No from line 4, then, by the contrapositive of
Lemma 4.8 or Corollary 4.9, φ is not geometric. If the algorithm returns No from
line 10, then by the contrapositive of Lemma 4.20, φ is not geometric. In either
case, it correctly reports non-geometric.

Yes. Let f be the CT for φ used by the algorithm. Since the algorithm did not
return from line 4, we know that every EG stratum of f is geometric, so let {Si} be
the set of surface pieces of the weak geometric models for these strata, with pseudo-
Anosov homeomorphisms gi; The attaching maps determine an identification of
each Si with a conjugacy class of subgroup of F and so a marking up to choice of
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Algorithm 1 Decide if a rotationless outer automorphism is geometric.

1: procedure RotationlessGeometric?(φ)
2: f ← ComputeCT(φ)
3: if ZeroStrata?(f) ∨ NonlinearNEG?(f) ∨ NongeometricEG?(f)

then
4: return No

5: end if
6: Ŝ ← ComputeŜ(f)

7: for K ∈ ConnectedComponents(Ŝ) do
8: C ← ComputeCandidateBoundary(K, f)
9: if ¬∂-realizable?(C, K) then

10: return No

11: end if
12: end for
13: return Yes

14: end procedure

basepoint. Further, since the algorithm did not return from line 10, we know that
for each [K] ∈ Fix(φ) the multiset CK is ∂-realizable in K; let SK be a surface
witnessing this realization, marked by the choice of representative K.

Each element of CK matches to a unique boundary component of a surface S′K
or Si, according to whether it came from EK or LK . Since CK is ∂-realizable, this
identifies each boundary component of SK with a unique boundary component of
some S′K or Si. Moreover, if two EG pieces Si and Sj have boundaries ci and cj
which have conjugate proper powers, then there is some [K] ∈ Fix(φ) such that
{ci, cj} ⊂ EK . It follows from ∂-realizability that ci and cj are not proper powers
and indeed K = 〈ci〉 = 〈c±j 〉. So we can glue the surfaces SK and Si according to
the boundary identifications coming from their boundary conjugacy classes in F, in
a way that extends the marking. Call the resulting marked surface Σ.

Define a homeomorphism g : Σ → Σ by gi on each Si component, the identity
on each SK component, and a Dehn-twist by the twist power of φ around each
curve from each LK . By construction g∗ and φ have the same set of laminations
and the same twist coordinates, so by the Recognition Theorem [12] for Out(F) we
conclude g∗ = φ, that is φ is geometric. �

Porism 4.23. There is an algorithm RotationlessGeometricWitness that
takes as input a geometric rotationless φ ∈ Out(F) and outputs a marked sur-
face Σ and distinguished subsurface Q such that φ is realized by a homeomorphism
g on Σ, g|Σ\Q = id and g is not isotopic to the identity on any subsurface of Q.

Proof. Observe that in the Yes case of the proof of Proposition 4.22 the proof
describes how to construct Σ from data computed from a CT for φ, and that
Q = Σ \ (t[K]∈Fix(φ)S

◦
K is also computable from data computed from a CT for

φ. �

Remark 4.24. A consequence of Corollary 3.11 and lemma 4.10 is that the subsur-
face Q, carrying the pseudo-Anosov pieces of φ is determined by the outer auto-
morphism φ. This observation is essential for the root-finding algorithm.
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5. Manipulating partially geometric surface pairs

Given an outer automorphism φ with rotationless power φN , we can use Algo-
rithm 1 to produce a marked surface pair (Σ, Q) such that φN is geometric on Σ
realized by a homeomorphism g. Moreover gΣ\Q◦ = id. (If φ is finite order this

produces an empty Q.) The subsurface Q is an invariant of φN , and a necessary
condition for φ to be geometric is that φ is partially geometric on some other pair
(Σ′, Q). Here we need to be precise by what we mean by (Σ′, Q).

Definition 5.1. Two marked surface pairs (Σ, Q), (Σ′, Q′) are outer-equivalent if
Q is homeomorphic to Q′ and there is a difference-of-markings map h : Σ→ Σ′ such
that h|Q is a homeomorphism and the induced outer automorphism h∗ restricts to
the identity on π1Q. For convenience we will abuse notation and often refer to
outer-equivalent pairs (Σ, Q) and (Σ′, Q).

Observe that if φ is a partially geometric outer automorphism on (Σ, Q) then φ
is also partially geometric on every outer-equivalent (Σ′, Q).

The primary way we will obtain outer-equivalent pairs is by deleting a connected
component K ⊂ Σ \Q◦ and re-attaching a different surface K ′ along ∂K such that
[π1K] = [π1K

′]. We refer to this operation as replacing a subsurface, K ′ is the
replacement for K and Σ′ is obtained from Σ by replacing K.

Remark 5.2. If Σ is triangulated and K is a sub-triangulation replacing K with a
triangulated K ′ is a computable operation.

It is clear this operation will be useful in determining if the finite-order behavior
on the identity components of Thurston normal form for a rotationless power are
geometric. It turns out that this operation is also useful in developing an algorithm
to decide if an outer automorphism is partially geometric, so we treat the notion in
this section before continuing with the algorithm.

Lemma 5.3. An outer automorphism φ is partially geometric on a pair (Σ, Q)
if and only if ∂Q is φ-invariant and there exists an outer-equivalent surface pair
(Σ′, Q) and a subsurface Q′ ⊇ Q such that every connected component of ∂Q′ has
nontrivial intersection with ∂Σ′ and φ is partially geometric on (Σ′, Q′). Moreover
this extension is computable and (Σ′, Q′) does not depend on φ.

Proof. First, we prove the forward direction. Since φ is partially geometric on
(Σ, Q), the boundary ∂Q is φ-invariant by definition.

In each component of Σ\Q contains a boundary curve of Σ this is straightforward:
for each component c of ∂Q that does not already meet ∂Σ choose an arc connecting
c to ∂Σ, and chose this family of arcs to be disjoint. Then set Q′ to be the union of
Q and regular neighborhoods of these arcs. Since Q′ is isotopic to Q we can modify
a geometric witness for φ by a homotopy to obtain a geometric witness for φ on
(Σ, Q′).

If a component R of Σ \ Q does not meet ∂Σ and the fundamental group is
not generated by the components of ∂Q meeting R, replace each surface in the
φ-homotopy orbit of R with a copy of a surface R′ with boundary and fundamental
group of the same rank. By construction φ induces a homotopy equivalence of
Σ′, and we are now in the previously considered case. If the component R has
fundamental group generated by the boundary, then by the Dehn-Nielsen-Baer
theorem φ is homotopic to a homeomorphism on R, so adjust the realization of φ
and take Q′ = Q ∪R.
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Observe that all of these operations can be done with finite refinements of finite
triangulations, so the extension is computable.

Conversely, if such an extension exists then since ∂Q is φ-invariant φ has a
realization as a homotopy equivalence of Σ′ that is a homeomorphism of Q, so φ is
partially geometric on (Σ′, Q) and hence on (Σ, Q). �

6. Partial geometricity and the core

In this section we give a criterion for an outer automorphism φ to be partially
geometric on a surface pair (Σ, Q) in terms of the Guirardel core. This criterion
is computable using Behrstock, Bestvina, and Clay’s [1] algorithm for computing
certain cores, which leads to an algorithm for testing partial geometricity (Corol-
lary 6.9). The starting point for this analysis is Guirardel’s motivating observation
that if γ, γ′ are a pair of filling curves on a closed surface Σ, then the core of the
Bass-Serre trees coming from the induced splittings along γ and γ′ is the universal
cover of the square tiling dual to their minimalgeneral position intersection. Similar
square tilings are central, leading to a definition.

Definition 6.1. A nonempty connected marked square complex mX : R → X is
surface type if there is an embedding η : X → Σ for a marked surface (Σ,mΣ) such
that m−1

Σ∗η∗mX∗ = id ∈ Out(F). A nonempty subcomplex Y ⊆ X of a marked
square complex is surface type if each component of Y is surface type with the
induced marking.

A free F action on a connected square complex X̃ is surface type if it is the
universal cover of a surface type marked square complex X/F. A non-empty sub-
complex Y ⊆ X is surface type if it is surface type with respect to the Stab(Y )
action.

Remark 6.2. We allow square complexes that themselves are not homeomorphic to
surfaces. A rose is a surface type square complex. Two squares joined at a single
vertex is also a surface type square complex.

Definition 6.3. Suppose X is a surface type marked square complex. A surface
boundary class of X is a conjugacy class [γ] ⊂ F that can be represented by a
connected component of the boundary of a regular neighborhood of an embedding
X in some marked surface Σ. The set of surface boundary classes for a particular
embedding is denoted ∂ΣX. This notion is similarly applied to complexes with free
F action.

Note that the definition of surface boundary class depends on the embedding,
a surface type complex may embed in more than one non-homeomorphic marked
surface.

To connect surface structures to square complexes, we also make use of a stan-
dard combinatorial model of surfaces.

Definition 6.4. Suppose G ⊆ Σ is a graph embedded in a surface Σ. This embed-
ding induces a ribbon structure on G: an assignment of a rectangle to each edge, a
polygon to each vertex, and gluing data attaching these rectangles to polygons such
that the result is a cell complex homeomorphic to a regular neighborhood of G in
Σ. The dual arc system to a ribbon structure is the collection of arcs transverse to
G, each arc intersecting a unique edge exactly once and joining the unglued sides
of the corresponding rectangle.
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The relationship between partial geometricity and the Guirardel core is explored
in the following two propositions. The two propositions are presented separately,
as the conclusion of Proposition 6.5 is significantly stronger than the hypothesis of
Proposition 6.6, but together they imply a characterization of partial geometricity
in Corollary 6.8.

Proposition 6.5. Suppose φ is a partially geometric automorphism in Out(F),
realized on (Σ, Q), such that every component of ∂Q meets ∂Σ. Let G ⊆ Σ be a
spine for Σ with a subgraph K that is a spine of Q. Let T be the universal cover
of G. For each pair of connected components K1,K2 of K and each elevation Ti of
Ki to T , the subcomplex (T1 × T2φ) ∩Core(T, Tφ) is surface type. Here T2φ is the
minimal subtree for φ(Stab(T2)).

Proof. Let A be the collection of arcs dual to the ribbon structure of K, represen-
tatives chosen so that the endpoints of each α ∈ A are on ∂Σ. This is possible since
each component of ∂Q meets ∂Σ and the dual arcs start and end on ∂Q.

Let Σd be the 2-complex obtained by doubling Σ along (Σ \ Q) ∪ ∂Q. By Van
Kampen’s theorem1, the fundamental group is

π1(Σd) = π1(Σ) ∗π1((Σ\Q)∪∂Q) π1(Σ).

We fix an identification of F with one of the two π1(Σ) factors of the amalgam,
which will be used throughout the proof. The double of A, denoted Ad, is a a
collection of embedded essential circles in Σd that do not pass through any non-
manifold points as no point of A is contained in Σ \ Q by construction. Let T be
the universal cover of G, and let Ad be the Bass-Serre tree of the splitting of π1(Σd)
defined by Ad. By construction, the minimal subtree for the fixed F action, T̄ = AF

d

of Ad is the cover of the graph of groups obtained by collapsing the complement of
K in G. The tree T̄ is a collapse of T . Indeed, for γ ∈ π1(Σd) the translation length
of γ on Ad is equal to the intersection number of γ with Ad, and for γ ∈ F this is
equal to the number of edges of K in a cyclically reduced path in G representing
γ, again by construction.

Let g : Σ→ Σ be a partial geometric witness for φ. Then g(K) is also a spine for
Q. There is a dual arc system B = g(A) dual to the induced ribbon graph structure
on g(K). Since ∂Q meets ∂Σ and ∂Q is g-invariant we can take the endpoints of
B to lie on ∂Σ. Moreover, since g preserves the decomposition of Σ, it induces a
map ĝ : Σd → Σd on the double, and ĝ(Ad) = Bd. As before, the double of the dual
arc system Bd is a collection of embedded essential circles in Σd that do not pass
through any non-manifold points. Hence they induce a splitting of π1(Σd) and a
Bass-Serre tree Bd. The minimal subtree BF

d is the Bass-Serre tree for the graph of
groups obtained by collapsing the complement of Kφ in Gφ (recall the action on
the right is by twisting the marking, we are not using a topological representative
of φ here). Observe that BF

d = T̄ φ and is a collapse of Tφ, and that we have the
following commutative diagram of F trees.

T Tφ

T̄ T̄φ

φ

φ

1If (Σ\Q)∪∂Q has more than one component, this is a shorthand for the two-vertex, multi-edge

graph of groups splitting of π1(Σd) induced by (Σ \Q) ∪ ∂Q
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Guirardel [15, Section 2.2 Example 3] shows that the core of two Bass-Serre trees
dual to curve systems on a surface is surface type and identifies the cell structure
as the universal cover of the square complex dual to the intersection pattern, with
connected components of the non-augmented core corresponding to the subsurfaces
filled by the curve system. In fact, while Guirardel analyzes surfaces, the argument
is local and applies to any collection of curves on a surface subset of a 2-complex.
For clarity, we present the argument in full.

Let p : Σ̃d → Σd be the universal cover of Σd. There are equivariant maps
f : Σ̃d → Ad and g : Σ̃d → Bd since these trees are dual to the collections of curves.
The components of Qd are closed surfaces with infinite fundamental group. Fix a
constant curvature metric on each component of Qd. This induces a metric on each
component of Q̃d = p−1(Qd) making them either a hyperbolic or euclidean plane.

Suppose a ∈ Ad is an edge of Ad dual to an element α ∈ π1(Σd) and b ∈ Bd is
an edge of Bd dual to β ∈ π1(Σd). Then, by construction, α and β are represented

by closed curves contained in the subsurface Qd. Let α̃ and β̃ be the axes of α and
β in Σ̃d (use a single representative parallel line in the case that α or β represents a
curve in a torus component of Qd). Analyzing the axes of other elements allows us
to compute the partition for applying the 4-sets condition by analyzing connected
components in the universal cover and applying the maps f and g. There are four
cases:

Case 1: α̃ and β̃ are in distinct components of Q̃d. Using the maps f and g
it is clear that either ∂+(a) or ∂−(a) contains one of ∂±(b), so a and b do
not satisfy the 4-sets condition of Definition 2.17.

Case 2: α̃ and β̃ are in a common hyperbolic plane component of Q̃d but
disjoint. Again, using the maps f and g it is clear that either ∂+(a) or
∂−(a) contains one of ∂±(b), so a and b do not satisfy the 4-sets condition.

Case 3: α̃ and β̃ are in a common hyperbolic plane piece inside Σ̃d and
intersect. Then, using the maps f and g we can see that each of the four
sets

∂±(a) ∩ ∂±(b)

have non-empty intersection, since there are curves which witness the non-
empty intersection in this component of ∂Qd.

Case 4: α̃ and β̃ are in a common euclidean plane component of Q̃d. Then
either α̃ is parallel to β̃, in which case, up to orientation ∂+(a)∩∂−(b) = ∅,
or α̃ and β̃ intersect, in which case a and b satisfy the 4-sets condition with
witnesses coming from the plane as in the hyperbolic case.

Thus, the squares of Core(Ad, Bd) are in one-to-one correspondence with π1(Σd)
orbits of intersection points of the curve systems Ad and Bd. We conclude that the
squares of the core are the lift to the universal cover Σ̃d of the surface type square
system dual to the intersection of Ad and Bd.

Further, restricting the π1(Σd) action to the F action coming from the fixed copy
of π1(Σ) in the van Kampen decomposition, we obtain the equivariant inclusion

Core(T̄ , T̄ φ) ⊆ Core(Ad, Bd).

Since AF
d = T and BF

d = Tφ, for each pair of components K1,K2 of K, and lifts
T1, T2 to T , the intersection

(T1 × T2φ) ∩ Core(T, Tφ) = (T1 × T2φ) ∩ Core(AF
d, B

F
d)
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is either empty or contained in a surface subset of Σ̃d; i.e. the intersection is surface
type, as required. �

Proposition 6.6. Suppose there is a marked graph G with covering tree T and a
subgraph K that carries a φ-invariant free factor system for φ ∈ Out(F). Suppose

• the subcomplex Y = π−1(K) ⊂ Core(T × Tφ)/F = X is surface type,
• there is an embedding such that the surface boundary classes of Y are φ-

invariant,
• the graph of spaces decomposition of X into Y and X \ Y ◦ is φ-invariant.

Then φ is partially geometric on a marked surface pair (Σ, Q).

Proof. First, by hypothesis there is a homotopy equivalence f : X → X representing
φ such that Y and X \ Y ◦ are f -invariant.

Let Q be the regular neighborhood of an embedding of Y into a surface Σ
such that ∂Q is a set of φ-invariant conjugacy classes. Such an object exists by
hypothesis, and we may extend f to X ∪ Q. By the Dehn-Nielsen-Baer theorem
(Theorem 2.3), the restriction f |Q is homotopic to a map g such that g|Q is a
homeomorphism. Extending this homotopy by the constant homotopy on X \Q we
obtain a homotopy equivalence g : X → X such that Q and X \Q are g-invariant
and Q|g is a homeomorphism.

Finally, the pair (X,Q) is homotopy equivalent rel Q to a surface pair (Σ, Q).
Since Q and X \Q are g-invariant, g induces a homotopy equivalence h of Σ such
that h|Q = g|Q is a homeomorphism, as required. �

Lemma 5.3 allows us to combine Proposition 6.5 and Proposition 6.6 to charac-
terize partially geometric outer automorphisms.

Theorem 6.7. An outer automorphism φ ∈ Out(F) is partially geometric if and
only if there exists a marked graph G with cover T such that X = Core(T, Tφ)/F
has a surface type subcomplex Y where Y has φ-invariant surface boundary classes
and the splitting induced by X \ Y and Y is φ-invariant.

Corollary 6.8. An automorphism in Out(F) is geometric if and only if there exists
some free simplicial F-tree T such that Core(T, Tφ) is geometric and has φ-invariant
surface boundary classes.

Proof of Theorem 6.7. If φ is partially geometric on (Σ, Q) then, by Lemma 5.3
it is partially geometric on a surface pair (Σ′, Q′) where every component of ∂Q′

intersects ∂Σ′. Let G be a spine for Σ′ with a subgraph K that is a spine for Q′

and covering tree T . By Proposition 6.5 the core quotient X = Core(T, Tφ)/F
has a surface type subcomplex Y = π−1(K) that has φ-invariant surface boundary
classes and induces a φ-invariant splitting.

The converse is exactly the content of Proposition 6.6. �

Finally, the criterion of Theorem 6.7 is computable. Moreover, it is computable
for a specific desired subgraph K, which allows us to determine if an outer auto-
morphism is partially geometric on a given marked surface pair.

Corollary 6.9. Given an outer automorphism φ, a marked surface Σ and a sub-
surface Q there is an algorithm PartiallyGeometric? to decide if φ is partially
geometric on (Σ, Q).
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Proof. It is algorithmic to verify if ∂Q is φ-invariant, and report No if not. Next use
Lemma 5.3 to compute an outer-equivalent pair (Σ′, Q) and an extension Q′ ⊃ Q
such that every component of ∂Q′ meets ∂Σ′. By Lemma 5.3 φ is partially geometric
on (Σ, Q) if and only if it is partially geometric on (Σ′, Q′). By Theorem 6.7 and
Proposition 6.5, φ is partially geometric on (Σ′, Q′) if and only if for any spine G
of Σ′ with subgraph K carrying Q′, the subcomplex π−1(K) of the core quotient
Core(T, Tφ)/F is surface type with φ invariant surface boundary and splitting.

It is algorithmic to compute a desired spine G and subgraph K. Moreover the
core quotient Core(T, Tφ)/F where T is the cover of G is finite can be computed
using Behrstock, Bestvina, and Clay’s algorithm [1]. Finally, it is algorithmic to
verify if a finite subcomplex is surface type, there are finitely many possible surface
boundary classes, and it is algorithmic to test φ invariance. �

Corollary 6.9 alone is not sufficient to determine if an outer automorphism is
geometric algorithmically, as it does not offer any method for searching the space
of marked surfaces in finite time. However, in combination with Algorithm 1 it can
be used to reduce the problem of determining if an outer automorphism is geometric
to an extension problem, which we explore next.

7. From partially geometric to geometric

With a method to test if an outer automorphism is partially geometric in hand,
we turn our attention to deciding an extension problem: given a partially geometric
outer automorphism φ realized by g on the marked pair (Σ, Q) such that

gN |Σ\Q◦ ∼ id,

can it be extended to be partially geometric on a larger subsurface, partially after
replacing components of Σ \ Q. We will solve the extension problem at hand by
giving an algorithm to replace surfaces (or certify that no geometric replacements
exist).

Our first extension result deals with the special case of finding a geometric re-
placement for a φ-invariant splitting factor.

Lemma 7.1. Suppose φ ∈ Out(F) is partially geometric on (Σ, Q). Let R ⊂ Σ\Q◦
be a connected component of the complement such that φ([π1R]) = [π1R]. There is
an algorithm to produce a finite list R1, . . . , Rs of replacements for R such that

• φ is partially geometric on (Σi, Ri ∪Q), where Σi is the result of replacing
R with Ri;
• all possible replacements R′ such that φ is partially geometric on (Σ′, R′∪Q)

are listed, up to the action of the Out(π1R) stabilizer of [∂Q] ∩ [∂R].

Proof. Let C = [∂Q ∩ ∂R] be the set of conjugacy classes joining R to Q. Let
n = rank(π1R) and m : Rn → R be the induced geometric marking from the
inclusion π1R→ F. Observe that C is ∂-realizable, and that any ∂-realization of C
can be used as a replacement for R.

Suppose there is a replacement R′ of R such that φ is partially geometric on
(Σ′, R′ ∪ Q), the result of replacing R with R′ in Σ. Then φ|R in the Out(R)
conjugacy class of a finite order mapping class for of the standard surface Sn,i
homeomorphic to R. Moreover, the conjugating element θ satisfies θ(C) ⊆ [∂Sn,i].

Conversely, suppose φ|R is conjugate by θ in Out(R) to some α which is a
finite order mapping class on a standard surface Sn,i, and θ(C) ⊆ [∂Sn,i]. Then
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(Sn,i, θ) is a marked replacement R′ for R such that φ|R′ is geometric, realized by a
homeomorphism representative of α. Thus φ is partially geometric on (Σ′, R′ ∪Q)
as desired.

This condition allows us to use the equivariant Whitehead algorithm of Krstic,
Lustig, and Vogtmann (Theorem 2.15). The restriction α = φ|R is finite order.
For each standard surface Sn,i, enumerate representatives of the finitely many
Map(Sn,i) conjugacy classes of finite order mapping classes as αn,i,j . For each αn,i,j
use the equivariant Whitehead algorithm to decide if there is some θ ∈ Out(R) such
that θαθ−1 = αn,i,j and θ(C) ⊂ [∂Sn,1]. Use each result to report a replacement
R′; if none are found report the empty list. �

As a consequence, we obtain an algorithm to handle the general finite-order case.

Corollary 7.2. There is an algorithm FiniteOrderGeometric? to decide if a
finite order outer automorphism is geometric.

Proof. Use the above algorithm with Q = ∅. �

Note that, if φ is partially geometric on (Σ, Q), a witness for φ homotopy per-
mutes the complementary components of Q. So, it remains to handle the replace-
ment of entire φ orbits.

Lemma 7.3. Suppose φ ∈ Out(F) is partially geometric on (Σ, Q), realized by
g : Σ→ Σ. Let R0 ⊂ Σ \Q◦ be a connected component of the complement such that
[π1R0] is φ-periodic with period k and φk|π1R0

is finite-order. Let R0, . . . , Rk−1 be
the components visited by the forward orbit of R0 under g.

There is an algorithm GeometricOrbitReplacement? that takes φ, Σ, and
R0 and decides if there are replacements R′0, . . . , R

′
k−1 such that φ is partially geo-

metric on (Σ′, Q ∪ R′) where R′ =
⋃k−1
i=0 Ri. Moreover there is a procedure to

produce Σ′ if it exists.

Proof. First, apply Lemma 7.1 to φk and R0, to obtain a list of candidate replace-
ments {R0,i}. If this list is empty, report No; if φ is geometric then φk will have
at least one geometric replacement for R0, and finitely many up to the action of
Out(π1R0).

Observe that if there is a family of replacements as in the hypotheses, φ([∂R′0]) is
a ∂-realizable subset of [π1R1]. Since ∂Q is φ-invariant, a ∂-realization of φ([∂R′0])
can replace R1.

Moreover, R′0 is homeomorphic to a candidate replacement R0,i. Let m′,mi be
the respective markings so that m = θm′ for some θ ∈ Out(π1R0), then

φm = φθm′ = φθφ−1φm′.

Thus φm′ and φmi differ by the action of Out(π1R1). We deduce that there is
a family of replacements as in the hypothesis if, and only if, for some candidate
replacement R0,i, the set φj([∂R0,i]) is ∂-realizable in π1Rj for all 0 < j < k.

To finish the algorithm, for each candidate replacement R0,i, check

∂-realizable?(φj([∂R0,i]), π1Rj),

for each 0 < j < k. If each iterate is ∂-realizable, report Yes and provide the
∂-realizations of the iterates as the desired replacements. Otherwise, report No.
Remark 5.2 assures us that Σ′ can be computed if desired. �
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8. Deciding geometricity in general

Algorithm 2 Decide if an outer automorphism is geometric.

1: procedure Geometric?(φ)
2: ψ ← RotationlessPower(φ)
3: if ψ = id then
4: return FiniteOrderGeometric?(φ)
5: end if
6: if ¬RotationlessGeometric?(ψ) then
7: return No

8: end if
9: (Σ0, Q0)← RotationlessGeometricWitness(ψ)

10: (Σ, Q)← BoundaryContactExtension(Σ0,Q0)
11: if ¬PartiallyGeometric?(φ,Σ,Q) then
12: return No

13: end if
14: for R ∈ ConnectedComponents(Σ \Q◦) do
15: if ¬GeometricOrbitReplacement?(φ,Σ,R) then
16: return No

17: end if
18: end for
19: return Yes

20: end procedure

Theorem 8.1. Algorithm 2 is correct.

Proof. First, Algorithm 2 halts: there are finitely many connected components of
Σ \Q◦ as Σ, Q are compact surfaces.

Next, Algorithm 2 reports the correct result. If φ is geometric, then any power
is geometric; thus if the No result comes from line 7 it is correct. Next, since Q is
the subsurface where the rotationless power φN is non-identity, it is determined up
to topological type and marking by Corollary 3.11 and Lemma 4.10, so a necessary
condition for φ to be geometric is that φ is relatively geometric relative to (Σ, Q);
thus line 12 is correct. By Lemma 7.3, if φ is geometric for each homotopy orbit
of connected complementary component there is a geometric replacement. So the
algorithm correctly reports No at line 16 if any orbit fails to have a geometric
replacement.

Finally, if φ is relatively geometric on (Σ, Q) and every homotopy orbit of con-
nected complementary component has a geometric replacement, then φ is geometric
on Σ′, the result of conducting all of these geometric replacements, so the report of
Yes is correct. �

Porism 8.2. There is an algorithm GeometricWitness that takes as input an
outer automorphism φ ∈ Out(F) and produces a marked surface Σ where φ is
realized by a homeomorphism.

Proof. If φ is geometric, the surface Σ′ constructed in the proof of Theorem 8.1
is the desired marked surface. The process of finding and attaching geometric
replacements is algorithmic (Lemma 7.3). �
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9. Illustrative examples

Example 9.1. Consider the genus two surface with two punctures Σ = Σ2,2 de-
picted in Figure 1 thought of as a union of a pair of pants Σ′ = Σ2

1,0 and a torus

with one puncture and two boundary components Σ′′ = Σ2
1,1, glued appropriately.

Let h : Σ′′ → Σ′′ be a pseudo-Anosov homeomorphism and let g : Σ→ Σ be defined
by g = h ◦D4

β ◦D2
γ where Dc is the right Dehn twist about the curve c.

There is a nested sequence of g-invariant subsurfaces (starting with a neighbor-
hood of α) Nα ⊂ Nα t Nβ ⊂ Σ′ ⊂ Σ that, on the level of fundamental groups,
determines a nested sequence of g∗-invariant free factor systems of π1Σ = F5. A
CT f : G → G realizing this nested sequence will have six strata (see the figure
for a schematic): Hi for i = 1, 2, 3 each consist of a single fixed edge Ei, with the
first two being disjoint loops (corresponding to α and β respectively) and the third
connecting these loops; H4 is a linear edge, E4, with f(E4) = E4E

4
2 ; H5 is a lin-

ear edge E5 with f(E5) = E5(E2E3E1E3)2; finally H6 is a geometric EG stratum
whose geometric model has two lower boundary components with attaching maps
α1(∂1S) = E4E2E4 and α2(∂2S) = E5E2E3E1E3E5.

α

δ
Σ

g : Σ y

β γ

E1 E2E3

δ

γ

E4

Fix(φ)

β

E5

f : G→ G

G

E1 E2E3

H6

δ

E4 E5

Figure 1. A surface homeomorphism g : Σ → Σ with associated
CT f : G→ G.

The graph Ŝ(f) is shown on the right side of the figure. It has four components,
each of whose fundamental groups is a subgroup of F5 that is preserved by a partic-
ular Φ ∈ [φ]; we denote these subgroups by K3, . . . ,K6 according to the stratum of
the CT. We now compute the sets LKi

and EKi
in this example; rather than write

out the edge paths, we will abuse notation and write the corresponding curve on
the surface. Indeed,

LK3
= {β, γ} LK4

= {E4βE4} LK5
= {E5γE5} LK6

= ∅.

And

EK3
= ∅ EK4

= {E4βE4} EK5
= {E5γE5} EK6

= {δ}.
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The reader may find it instructive to consider how these sets change when Σ is
replaced with: the 2-complex obtained by “making a duplicate copy of Σ”, or the
2-complex obtained by cutting Σ along β and then re-gluing the resulting upper
boundary β+ to the lower boundary β− via with a 2-1 map of the circle.

Example 9.2. Consider the following reducible automorphism:

φ :a→ ab5

b→ b

Let T be the universal cover of the rose whose loops are labeled a and b. The
quotient of the core Core(T, Tφ)/F is shown in Figure 2, this was computed with [8];
the red edge paths of length 3 are identifed. The projection from this core to the
horizontal direction is a homotopy equivalence (the edge labelled a is the diagonal
of a rectangle) which provides a marking.

b

b

b

b

b

b

b

b

b

b

a

Figure 2. Core(T, Tφ)/F for a typical Dehn twist.

The core is shown in Figure 3 and can be embedded in a surface, the edge labels
indicate the horizontal marking (roughly) to guide the embedding.

b

b

a

a

Figure 3. The surface S in which the Guirardel core embeds.

There is only one boundary component in this surface, which is associated via
the marking to the word ab−1a−1b (half of the top and bottom b . The surface is
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homeomorphic to a torus with one boundary component. One can check that:

φ(ab−1a−1b) = ab−1a−1b.
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