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ABSTRACT. We introduce a numerical invariant ¢(X) measuring the end-complexity of ¥ and
use it to organize coarse-geometric features of Map(X). Our main tool is the non-peripheral
curve graph Chp(X), whose vertices are those essential simple closed curves that cannot be
pushed out of every compact subsurface, with edges given by disjointness. Assuming Map(X)
is CB-generated and ((X) > 5, we prove that Cy,p(3) is connected, has infinite diameter, is
Gromov hyperbolic, and that the Map(X)-action has unbounded orbits. As applications, we
show that if ((¥) > 4 then Map(X) has infinite coarse rank, and if ((X) > 5 then Map(X)
has at most quadratic divergence, hence is one-ended.
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1. INTRODUCTION

Let 3 be a connected, orientable, infinite-type surface such that the end space of 3 is stable
(Definition . Let Map(X) denote its mapping class group: the group of orientation-
preserving homeomorphisms up to isotopy. Equipped with the compact-open topology,
Map(X) is a Polish group [Ros21]. In contrast to the finite-type case, Map(X) is never
countably generated. Nevertheless, for many infinite-type surfaces it admits a robust large-
scale geometry in the sense of Rosendal: if Map(X) is CB-generated (i.e. generated by a
coarsely bounded neighborhood of the identity together with finitely many additional ele-
ments), then any two word metrics coming from CB-generating sets are quasi-isometric, so

the quasi-isometry type of Map(X) is well-defined [Ros21l, MR23].

CB-generation and coarse geometry. In [MR23] Mann and Rafi give a classification of
those infinite-type surfaces ¥ for which Map(X) is CB-generated. In this setting, one can
equip Map(X) with a word metric coming from any coarsely bounded generating set, and the
resulting quasi-isometry type is independent of the choice of CB generators [Ros21l, MR23].

Date: January 6, 2026.



THE NON-PERIPHERAL CURVE GRAPH AND DIVERGENCE IN BIG MAPPING CLASS GROUPS 2

This classification opens the door to a systematic study of quasi-isometry invariants for big
mapping class groups, in direct analogy with the coarse geometry of finitely generated groups.

Several recent works develop this viewpoint. Grant—Rafi-Verberne [GRV] investigate quasi-
isometry invariants such as asymptotic dimension and introduce essential shifts (shift maps
that are countable and cannot be pushed to infinity); existence of essential shifts implies the
existence of high-dimensional quasi-flats in Map(X). Related results on asymptotic dimen-
sion for various classes of big mapping class groups appear in the recent preprint [KS25],
where Kopreski-Shaji construct arc-and-curve models for locally bounded Polish subgroups
of Map(X), and use these models to show (in particular) that the asymptotic dimension of a
CB-generated Map(X) is infinite unless Map(X) is CB. We emphasize that asymptotic dimen-
sion alone does not detect coarse rank: in general, infinite asymptotic dimension does not rule
out the possibility that the coarse rank is finite. In a different direction, Horbez—Qing—Rafi
[HQR22] classify when (CB-generated) big mapping class groups admit nonelementary ac-
tions on hyperbolic spaces and derive applications. It turns out that Map(X) has a non-trivial
action on a Gromov hyperbolic space if and only if ¥ contains non-displaceable subsurfaces.
These results relate the topology of ¥ to the large-scale geometry of Map(X).

A complexity for end spaces. In this paper we introduce a numerical invariant ()
(defined in Section see Definition , which measures the “end-complexity” of ¥ in
a way that is tailored to the CB setting. Concretely, ((X) is defined using the minimal
anchor surface Ky from [MR23] such that the stabilizer of Ky is a CB subgroup of Map(X).
One should think of {(X) as an analogue of the finite-type complexity parameter “number
of boundary components” (or punctures), which strongly influences the coarse geometry of
Map(S) for finite-type surfaces. We show that ((X) predicts several coarse-geometric features
of Map(X).

Main results. The first application concerns coarse rank. For finitely generated mapping
class groups, the (coarse) rank is the largest n such that Z" quasi-isometrically embeds into
the group, and it is finite for finite-type mapping class groups [BMO§|. In the present setting,
CB-generation gives a well-defined quasi-isometry type of word metrics, and hence coarse
rank is again a quasi-isometry invariant.

Theorem A (Mapping class groups with infinite coarse rank). Suppose ¥ is stable, Map(X)
is CB-generated, and ((X) > 4. Then Map(X) has infinite coarse rank.

In forthcoming work-in-progress by Bar—Natan - Verberne - Schaeffer—-Cohen announce a
proof that Map(X) is Gromov hyperbolic and not CB if and only if {(¥) < 3 and Map(X) has
no essential shifts. Together with the results in [GRV], this yields the following dichotomy in
the CB-generated setting.

Corollary B. Suppose ¥ is stable and Map(X) is CB-generated. Then Map(X) is either
Gromov hyperbolic or it has infinite coarse rank.

Our second application concerns divergence, a quasi-isometry invariant that measures how
long detours must be in order to connect two points while avoiding a large ball. Gersten
introduced divergence as a quasi-isometry invariant in [Ger94A]; in Euclidean space diver-
gence is linear, while in d-hyperbolic spaces divergence is at least exponential. Over the
past two decades it has become clear that quadratic divergence is remarkably common: Ger-
sten constructed CAT(0) examples with quadratic divergence in [Ger94A], and in [Ger94B]
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he showed that fundamental groups of closed geometric 3-manifolds have divergence that
is either linear, quadratic, or exponential, with quadratic divergence corresponding to graph
manifold groups; this characterization was strengthened by Kapovich—Kleiner—Leeb [KKL9S].
In higher rank, Drutu—Mozes—Sapir [DMS09] develop a robust definition of divergence for ge-
odesic metric spaces and conjecture that many higher rank lattices have linear divergence;
and Behrstock—Charney [BC12] show that right-angled Artin groups have either linear or qua-
dratic divergence, with the linear case characterized by the defining graph being a join. For
mapping class groups and Teichmiiller space of finite-type surfaces, quadratic divergence was
proved Behrstock [Beh06] and Duchin—Rafi [DR09] who give a flexible detour construction;
we will follow the approach of [DR09|.

Theorem C (Quadratic divergence bound). Suppose X is stable, Map(X) is CB-generated,
and ((X) > 5. Then Map(X) has at most quadratic divergence.

As a geometric consequence, we obtain one-endedness (in the sense of ends of the Cayley
graph associated to any CB word metric).

Corollary D. Suppose X is stable, Map(X) is CB-generated, and ((X) > 5. Then Map(X)
1s one-ended.

See also [OQW?25|, where one-endedness is established for avenue surfaces.

A (-based picture. A recurring theme is that ((3) organizes coarse geometry of Map()
much like finite-type complexity organizes the geometry of Map(S). The following table
summarizes the picture for stable surfaces. Recall that, if there is an essential shift, then
Map(X) has infinite coarse rank [GRV].

Complexity ¢(X) | Group properties of Map(X)

((X)=1 Map(X) is always coarsely bounded [MR23].

¢(X)=2 Map(X) is coarsely bounded if and only if there are no essential
shifts.

((X)=3 Map(2) is not coarsely bounded. Moreover, if there are no essential

shifts then Map(X) is Gromov hyperbolic (Bar-Natan—Verberne—
Shaeffer-Coehn, in progress).

4 Map(X) has infinite coarse rank (Theorem [A]).

5 Map(X) is one-ended and has at most quadratic divergence (The-

orem [C| and Corollary @

The non-peripheral curve graph. The main tool in this paper is a new curve graph
adapted to CB coarse geometry. In the finite-type setting, Masur—Minsky’s curve graph is
central: the action of Map(S) on the curve graph captures much of the large-scale geometry
of Map(S) and underlies powerful hierarchical structure. For infinite-type surfaces, finding
useful analogues has been a major theme; recent years have produced several hyperbolic
graphs with big mapping class group actions, including [DFV18, BNV23, [HQR22] among
others.

A naive adaptation of the classical curve graph does not directly serve coarse geometry
in the big setting. Indeed, the “usual” curve graph on ¥ (vertices all essential curves, edges
disjointness) is algebraically interesting (see, for instance, [DFV18,[MR23] and the discussion
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therein), but in the infinite-type cases it has finite diameter (in fact diameter 2), so the action
of Map(X) on this graph does not detect large-scale features of Map(X).

Our starting point is that, in the CB framework, the stabilizer of a sufficiently large
compact subsurface is a coarsely bounded subset of Map(X), i.e. it is small from the viewpoint
of coarse geometry. Therefore, to build a curve-type graph that sees unbounded geometry,
one should focus on curves that cannot be pushed out of every compact region. In the finite-
type case, the word peripheral means the curve bounds a once-punctured disk; equivalently,
it can be pushed into a cusp away from all compact sets. For infinite type we adopt the latter
point of view: a curve (or compact subsurface) is peripheral if for every compact subsurface
K C ¥ there exists g € Map(X) such that g(a) N K = (. Curves that fail this are non-
peripheral. This definition is tightly related to the notion of essential shift from [GRV]: a
shift map is geometrically essential only when its support cannot be pushed into an end
neighborhood, i.e. when it is supported on a non-peripheral region. This philosophy also
explains why non-peripheral subsurfaces and curves are the natural objects to examine in
CB coarse geometry.

We define the non-peripheral curve graph Cyp(X) to be the graph whose vertices are non-
peripheral simple closed curves and whose edges connect disjoint pairs. Our first main struc-
tural result is that, at sufficiently high end-complexity, Cyp(X) becomes a useful Masur—
Minsky type object.

Theorem E (Geometry of Cyp(X)). Let ¥ be stable, Map(X) be CB-generated, and suppose
C(X) > 5. Then Cnp(X) is connected and has infinite diameter, Map(X) acts on Cnp(X) with
unbounded orbits, and Cyp(X) is Gromov hyperbolic.

A related study of Qing—Thomas [QT25] (using and adapting the unicorn-path technology
of Hensel-Przytycki-Webb [HPW15]) establishes uniform hyperbolicity of Cpp(X) in a broad
range of cases; we expect further structural parallels with the curve graph in finite type.

Questions. This paper introduces Cpp(3) as a basic tool and uses it for coarse rank and
divergence. Much remains to be understood, and we conclude with several questions.

Question 1.1 (Lower bounds for divergence). When ((X) > 5, is the divergence of Map(3)
bounded below by a quadratic function? Equivalently, does there exist a pair of geodesic rays
in Map(X) whose divergence grows at least quadratically?

In the finite-type setting, quadratic lower bounds follow from strong contraction proper-
ties of pseudo-Anosov axes [DR09]. It would be interesting to know whether appropriate
analogues exist for big mapping class groups in the range () > 5.

Question 1.2 (When is Cp,(2) hyperbolic?). Find necessary and sufficient topological con-
ditions on ¥ for Cnp(X) to be Gromov hyperbolic.

When 3. has finite genus, it is natural to introduce a combined complexity
§(X) :==39(%) — 3+ ((2),

which plays the role of the usual finite-type complexity 3g — 3 4+ n. It is plausible that £(X)
is the correct parameter for an “if and only if” hyperbolicity statement for Cy,(X) in the
finite-genus setting, analogous to the finite-type case.
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Question 1.3 (Quadratic divergence beyond ¢ > 5). Are there finite-genus surfaces with
¢(X) =4 for which Map(X) has quadratic divergence? More generally, can one characterize
(topologically) when Map(X) has quadratic divergence in terms of £(3) 7

Question 1.4 (Automorphisms of Cyp(X)). Assume X is stable, Map(X) is CB-generated,
and ((X) > 5. Is every simplicial automorphism of Cyp(X) induced by an element of Map(X) ¢
Equivalently, is Aut(Cpp (X)) = Map(X) in this range?

Organization of the paper. In Section[2.5|we recall the CB framework, the notion of stable
surfaces, and the anchor-surface technology from [MR23], and we define the end-complexity
¢(X). In Section [3| we introduce peripheral and non-peripheral compact subsurfaces, develop
subsurface-projection length functions, and prove Theorem [A] on infinite coarse rank when
¢(X) > 4. In Section {4 we define the graph Cy,(X), prove connectivity and infinite diameter,
and establish Gromov hyperbolicity, proving Theorem [E| Finally, in Section |§| we use Cyp(X)
together with chains of commuting twists and a “persistent twist” detour argument inspired
by [DRO9] to obtain the quadratic upper bound on divergence (Theorem , and then deduce
one-endedness (Corollary @

Acknowledgements. Kasra Rafi is supported by NSERC Discovery grant RGPIN-05507.

2. PRELIMINARIES

2.1. Surfaces and mapping class group. A surface X is a connected 2-dimensional topo-
logical manifold, i.e., a second-countable Hausdorff 2-dimensional space with no boundary. In
this paper, we assume all surfaces to be orientable. The mapping class group of X is defined
as the group Map(X) of all isotopy classes of orientation-preserving homeomorphisms of 3.
The group Map(X) is equipped with the quotient topology of the compact-open topology on
the group Homeo™ (X) of all orientation-preserving homeomorphisms of .

In this paper, a subsurface S of a surface ¥ is a connected closed subset of 3 that is
a manifold with boundary whose boundary consists of a finite number of pairwise non-
intersecting simple closed curves, such that none of these boundary curves bounds a disk
or a once-punctured disk in . A surface X is of finite type if its fundamental group is finitely
generated. We always assume ¥ has infinite type. Similarly, a subsurface S of ¥ is of finite
type if its fundamental group is finitely generated.

2.2. The space of ends. The space of ends of a surface 3 is defined to be the inverse limit
of the system of components of complements of compact subsets of . Intuitively, each end
corresponds to a way of leaving every compact subset of ¥ (see |[Ric63| for details). Let
End(X) be the end space of ¥ and End?(X) C End(X) be the subspace of End(X) consisting
of non-planar ends. Also, let genus(X) be the genus of ¥ (possibly infinite). By a theorem
of Richards [Ric63], connected, orientable surfaces ¥ are classified up to homeomorphism by
the triple (genus(X), End(X), End?(X)).

Given a subsurface S C 3, the space of ends of S is defined similarly and is denoted by
End(S). The embedding of S in ¥ gives a natural embedding of End(S) into End(X).

Every subsurface S C X of finite type determines a finite partition Ilg of the ends of X
where each part of the partition is the space of ends of a connected component of ¥ — S.
Given two subsets X,Y C End(X), we say that a subsurface K separates X and Y if X and
Y belong to distinct subsets of the partition Ilx.
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Definition 2.1. For € End(X), we call a neighborhood U of x stable if for any smaller
neighborhood U’ C U of x, there is a homeomorphism from U to U’ fixing z. (See [BDR25,
Proposition 3.2] for equivalent definitions of a stable neighborhood). We say ¥ is stable if
every end = € End(X) is stable.

In this paper, we always assume the surface ¥ is stable. For an end x € End(X), we denote

the orbit of x by

E(x) = {¢(x) | ¢ € Map(%)}.
We say x and 2’ are of the same type if 2’ € E(x). This defines a partial order on the set of
ends as follows. We say x < y if F(z) accumulates to y. It was shown in [MR23] that <y
and y < x implies = € E(y).

Let M(End(X)) be the set of maximal ends, that is, the set of points € End(X) such
that if z < y then y € E(x). For a stable surface, M(End(X)) is non-empty and consists
of finitely many different types. We refer to elements of M(End(X)) as mazimal ends. For
every maximal end x, either E(x) is finite or it is a Cantor set. We refer to these as maximal
ends of finite type and maximal ends of Cantor type, respectively.

2.3. Curves and curve graphs. A simple closed curve a on a surface X is a free homotopy
class of an essential simple closed curve. Here, simple means « has a representative that does
not self-intersect and essential means that o does not bound a disk or a once-punctured disk.
For a subsurface S of ¥, a curve « is in S if it has a representative that is contained in S
and if « is essential in S, that is, « is not parallel to a boundary component of S.

The curve graph of 3, denoted by C(¥), is defined [Har81] to be the graph whose vertex set
is the set of curves in ¥ and whose edges are pairs of distinct curves in X that have disjoint
representatives. Similarly, for a finite type surface S of X, let the curve graph of S, C(5),
be the graph whose vertex set is the set of curves in S and whose edges are pairs of distinct
curves in S that have disjoint representatives. Then C(S) is an induced subgraph of the curve
graph C(X).

We equip the curve graph with a metric where every edge has length 1. We denote the
associated distance by dx; and dg, that is, for curves o and S in S, dg(c, ) is the smallest
number n such that there is a sequence

a=ay,q...,0, =0

where «; and a;y1 are disjoint for i =0,...,n — 1.

Recall that, for finite type surfaces S, the curve graph C(S) has infinite diameter [Har&1]
and is Gromov hyperbolic [MMOOb], and the mapping class group acts on C(S) by isometries
with unbounded orbits [Har81]. For infinite type surfaces, the curve graph (defined as in the
case of finite type surfaces) has bounded diameter [BDR25].

2.4. Markings on a surface. We say a set of curves {«;} in ¥ fill a subsurface S if a; are
contained in S and for every curve § in S, there exists a curve «; such that

BNa; # 0.
A marking pg of a finite-type surface S is a collection of simple closed curves
Hs = {ala"'aanaﬁh"'aﬁn}
such that:
e The curves {«;} form a pants decomposition of S.
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e a; N J3; = 0 whenever i # j.
e For any i, either a; and §; fill a punctured torus and |a; N B;| = 1, or they fill a
four-times punctured sphere and |a; N G;] = 2.

It follows from the definition that a marking ug fills the subsurface S. See [MMOObD] for
more details.

2.5. Coarse geometry of big mapping class groups. Let G be a Polish topological
group. A subset A C G is coarsely bounded, abbreviated CB, if every compatible left-
invariant metric on G gives A finite diameter. CB sets behave in many ways like finite sets
and, by work of Rosendal [Ros21], the theory of uncountable groups that are generated by
CB sets resembles the theory of finitely generated groups.

Theorem 2.2 ([Ros21]). Let G be a Polish group that has both a CB neighborhood of the
identity and is generated by a CB subset. Then the identity map is a quasi-isometry between
G endowed with any two word metrics associated to symmetric, CB generating sets. We then
say G is a CB-generated group.

In [MR23], Mann and Rafi gave descriptions of stable surfaces ¥ where Map(X) has a CB
neighborhood of the identity and surfaces where Map(X) is generated by a CB subset. We
recall/summarize these statements here (see Proposition 5.5 and Theorem 5.7 in [MR23]).

Since the topology of Map(X) comes from the compact-open topology on Homeo™ (X),
a neighborhood of the identity in Map(X) can be described as the stabilizer of a compact
subsurface K. Following [MR23], we define

@ Vi = {6 € Map(£) | (K) = K and g[xc = id}.

Then every end of ¥ is an end of some component of ¥ — K, that is, K partitions End(X) into
finitely many disjoint subsets. We say a component S of ¥ — K contains an end x € End(X)
if z € End(95).

For Vi to be CB, K has to be large enough. This can be made precise by examining
the way K decomposes End(Y). Essentially, we need each component of ¥ — K to contain
ends of at most one maximal type. Also, if z € M(End(X)) and E(y) accumulates to z,
we need E(y) also to have an accumulation point in some component of ¥ — K other than
the one containing z. In particular, for z € M(End(X)), if E(z) is a Cantor set, since E(x)
accumulates to itself, we need there to be at least two components of ¥ — K that contain
points of E(z). (This is to ensure part (iii) of Theorem 5.7 in [MR23] holds).

In more detail, there has to exist a surface of finite type K such that the connected
components of ¥ — K partition End(X) as

End(T)=| |Au || P
AeA PeP
such that the following holds:

(i) Each connected component of ¥ — K has one or infinitely many ends and zero or
infinite genus.

(ii) For A € A, the set of maximal points M(A) is either a single point or a Cantor
set; points in M(A) are all of the same type and they are maximal in End(X).
Furthermore,

M(End(%)) = | | M(A).
AcA
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(iii) For each P € P, there exists some A € A such that P is homeomorphic to a clopen
subset of A.

(iv) For y € End(X), if E(y) has an accumulation point in A, it also has an accumulation
point outside of A.

We refer to a subsurface K with the above properties as an anchor surface. In fact, we fix
a minimal anchor surface K, meaning an anchor surface where the genus and the number of
connected components of ¥ — Ky are minimal.

Let us examine how this minimality can be achieved. If 3 has finite genus, then the genus
of Ky has to equal the genus of 3 because, in this case, every component of ¥ — K has to
be genus zero. Otherwise (meaning if the genus of ¥ is zero or infinite), K has genus zero
since all the genus can be pushed near some non-planar end of X.

Furthermore, as mentioned before, the set M(End(X)) has finitely many types; some of
them are isolated in M(End(X)) and some are Cantor types. In the minimal case, each set
of Cantor type maximal ends should appear in exactly two sets in A and each isolated point
is contained in its own component. Hence, the minimum value for | A| is

(2) | Al =2 (#of Cantor types in M(End(X))) + (# of isolated points in M(End(X))).

If E(y) accumulates to x € M(End(X)) where E(z) is a Cantor set, then E(y) accumulates
to every point in E(x). Hence E(y) has accumulation points in at least two sets in 4. But
it is possible that y is not maximal and F(y) accumulates to a single isolated maximal point
x which is contained in A € A. The set E(y) has to have an accumulation point outside of
A, but it may not have an accumulation point in any other A’ # A. This could happen, for
example, if E(y) (the closure of E(y)) is a Cantor set and

E(y) = E(y) U {z}.

Then E(y) accumulates to itself. Or E(z) could accumulate to points in E(y), where E(y)
is as above. In this case, E(y) has to appear in some P € P. In this case, we say y uniquely
accumulates to the maximal end x or we say x is the unique maximal accumulation point of
y.

Assume z € A is the unique maximal accumulation point of E(y) and the other (non-
maximal) accumulation point of E(y) is in P, and that 2/ € A’ is the unique maximal
accumulation point of E(y’) and the other accumulation point of E(y') is in P’. Then

E@y)nA =0, and  E(y)NnA=0.

Also,

E(y)n P =10, and  E@)NP=0,
because if P intersects both E(y) and E(y’) then it cannot be contained in any A” € A. This
means, in the minimal case,

(3)  |P| = #(isolated maximal ends that are unique maximal accumulation points).

To summarize, for every maximal end of Cantor type z, we divide E(z) between sets Al
and A2 such that Al LU A2 contains a stable neighborhood of every point in E(x). If x €
M(End(X)) is isolated, we choose a stable neighborhood A, of x. We let A be the collection
of these sets. For every isolated maximal end x € A, that is a unique maximal accumulation
point, we form a set P, containing representatives of all accumulation points of sets E(y)
where E(y) uniquely accumulates to the maximal end x. Then P is the collection of such
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sets P,. Every other remaining point is not maximal and can be added to some A € A or
PeP.

Definition 2.3. The end-complexity ((X) of an infinite type surface ¥ is the minimum
number of boundary components of an anchor surface. That is,

((¥) =2-#(E(z) where E(z) C M(End(X)) is a Cantor set)+
+ #(of isolated points in M(End(X)))+
+ #(isolated maximal ends that are unique maximal accumulation points).

Example 2.4. We now examine this definition in a specific example. Let ¥ be the surface
depicted in Figure |1l The set of maximal ends M (X) consists of two isolated points x4 and
z¢ and a Cantor set of non-planar points. The point z 4 is an accumulation of point of two
different Cantor types, E(y’) that are accumulated by punctures and E(y) that are not. Since
the points E(y) and E(y') uniquely accumulate to x4 (they do not accumulate to any other
maximal end) the anchor surface Ky has to separate some of E(y) and E(y’) from A and
place them in a set P. Also, Ky has to separate the Cantor set of non-planar points into two
sets B B'. Since z¢ is isolated in End(X) and the set C' = {x¢} contains only one point.

A

rc
FIGURE 1. A surface ¥ with ((X) = 5.

That is, M(X) contans two isolated maximal ends and a cantor set of maximal end and
one of the isolated maximal ends is unique accumulation point. Hence ((X) = 5.

So far, we have produced a CB neighborhood of the identity Vg, in Map(X). To find a
CB set that generates Map(X), we need further assumptions.

Theorem 2.5 ([MR23], Theorem 1.6). (Classification of CB generated mapping class groups).
For a stable surface ¥ with locally (but not globally) CB mapping class group, Map(X) is CB
generated if and only if End(X) is finite rank and not of limit type.
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The definition of terms in the above theorem is not relevant to us and we refer the reader
to [MR23]. Instead, we give a description of a CB generating set assuming End(X) is finite
rank and not of limit type.

Lemma 2.6 ([MR23], Lemma 6.10). Assume that Map(X) is locally CB and that End(X)
does not have limit type. Then:

o For every A € A, there is a point x4 € M(A) and a neighborhood N(xa) C A
containing x4 such that A—N(x 4) contains a representative of every type in A—{x4}.

e For every pair A,B € A, there is a clopen set Wy p C A — N(za) with the property
that E(z) "N Wa g # 0 if and only if

E(z)N(A—{xa})#0 and  E(z)N (B —{xp}) #0.

e For every A € A, there is a clopen set Wa C (A — N(xz4)) with the property that if
E(z)YNA—{xa} #0 and, for all B# A, E(z)NB =0, then E(z) N Wy4 # (.

o The sets Wa p and Wy give a decomposition of A — N(za):

A—N(mA): |_| WA,B |_|<|_| WA>.

Be(A—{A}) AcA

These sets W4 p will allow us to define some shift maps between A and B. It follows from
[MR23, Section 6.4] that the self-similarity of stable neighborhoods allows us to extend these
sets into infinite sequences. Since A is stable and x4 € A, the space A — {x4} consists of
infinitely many disjoint copies of the fundamental domain A — N(z4). Similarly, if P € P is
associated to A, then P is homeomorphic to a clopen subset of A — N(x4) (by property (iii)
of the anchor surface).

We can therefore decompose the entire end space (excluding the maximal ends z4) into
disjoint orbits (see also [BDR25, Proposition 3.2]).

Lemma 2.7 (Decomposition of Ends). There ezists a decomposition of the space of ends

End(X) —{za | A€ A} = |_| |_| Oa,B |—|<|_|OA>,

AeABeA-{A} AcA
where the sets Oa g and O are unions of disjoint clopen sets indexed by integers:
o For every pair of distinct A, B € A, the set O4 p is a disjoint union
Ouap = |_| Wﬁ,Ba
kEZ

where each WZB is homeomorphic to the set Wa p defined in Lemma 6.10. Fur-
thermore, we can index these sets such that for k < 0, WQ,B C A, and for k > 0,

Wk 5 C B.
o For every A € A, the set O4 is a disjoint union
Oa=| | W},
keZ

where each Wﬁ is homeomorphic to Wa. Furthermore, for k <0, Wﬁ C A, and for
k > 0, the sets Wf{ cover the ends in the sets P € P associated with A.
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With this decomposition fixed, we can now define the elements of our generating set.

2.6. The generating set. We define a finite set of mapping classes G consisting of shift
maps, maximal end permutations, and local generators.

Shift maps. The decomposition above provides natural tracks along which we can shift the
ends of the surface.

e Inter-region shifts (f4 p): For every distinct pair A, B € A, let f4 g be a homeo-
morphism supported on a subsurface containing O4 p that satisfies:

fas(W§ ) =Whty forall k € Z,

and is the identity everywhere else. This map effectively shifts a copy of the shared
types W4 g from the region A into the region B.

e Unique accumulation shifts (f4): For every A € A such that Wy is non-empty
(i.e., there are P sets associated with A), let f4 be a homeomorphism supported on
a subsurface containing O 4 that satisfies:

Fa(Wh) = WhTL for all k € Z,

and is the identity everywhere else. This map shifts ends from A into the correspond-
ing sets P € P.

Mazimal end permutations. Let Sym(.A) be the group of permutations of the set A. We
consider the subgroup of permutations ¢ such that for all A € A, the maximal end x4 is of
the same topological type as x,(4). For each such o, we fix a homeomorphism h, such that:

he(A) =0(A) and he(ra) = To(a)-
We include a finite set of such maps generating this subgroup.

Local generators. Finally, we need to generate the mapping class group of the anchor surface.
Let K O Kg be a compact subsurface of finite type large enough to contain the boundaries of
the shift maps’ supports restricted to the ”0-level” (specifically, the boundaries separating W°
and W! for all shift maps). Let £ be a standard finite generating set for Map(K), consisting
of:

e Dehn twists along a finite set of simple closed curves in K.
e If K has boundary components that are permutable, half-twists braiding these bound-
ary components.

Theorem 2.8. Let ¥ be a stable surface of infinite type and let Ky be the minimal anchor
surface we fized above. Then the set

G={fap|ABecAA#BYU{fa|Ac A} U{hs} ULUVk,
is a coarsely bounded (CB) generating set for Map(X).

3. NON-PERIPHERAL SUBSURFACES AND THE COARSE RANK OF THE MAPPING CLASS
GROUP

In this section we introduce the notion of non-peripheral compact subsurfaces of an infinite-
type surface ¥, and use them to produce quasi-flats in Map(3) when Map(X) is CB-generated
(see Section[2.5). The main result is Theorem [3.18] which states that, when ((X) > 4, Map(X)
has infinite coarse rank.
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3.1. Peripheral and non-peripheral subsurfaces. For finite-type surfaces, a curve is
called peripheral if it bounds a once-punctured disk (or equivalently, if it can be pushed into
a cusp). For infinite-type surfaces there is no canonical finite set of cusps. Our definition is
a direct analogue: a compact subsurface is peripheral if it can be pushed away from every
compact region.

Definition 3.1 (Peripheral and non-peripheral subsurfaces). A compact subsurface R C 3
is peripheral if for every compact subsurface K C ¥ there exists g € Map(X) such that

g(R)NK = .
Otherwise, R is non-peripheral.

Recall that in Section we fixed a minimal anchor surface K (a compact subsurface
of finite type) with the properties described there. The next lemma shows that to test
peripheralness it suffices to test disjointness from Kj.

Lemma 3.2. A compact subsurface R C X is peripheral if and only if there exists g € Map(X)
such that
g(R)N Ky = 0.

Proof. If R is peripheral, apply Definition with K = K to obtain some g € Map(X) with
g(R)NKy=0.

Conversely, suppose there exists gy € Map(X) such that go(R) N Ko = (). Let K C X be
any compact subsurface. We will find h € Map(X) such that h(R) N K = (.

Since Ky is an anchor surface (Section , the components of ¥ — K correspond to the

clopen sets in the partition
End(X)= | |Au || P
AcA Pep
from Section Let ¥4 be the component of 3 — K{ containing go(R), where A € A is
the corresponding end space. By Lemma (Section and the definition of the shift
maps, there exists a mapping class s € Map(X) which is a word in the shift maps {f4} and

{fa,B} and has the following property: for a fixed stable neighborhood N(z4) C A (as in
Lemma 6.10 of [MR23] recalled in Section [2.5)), we have

End (s™(24)) C N(za) for all sufficiently large m,
and hence s (X 4) eventually leaves every compact subset of ¥. In particular, there exists m
such that s™(X4) N K = (.

Set h = ™ o go. Then h(R) C s™(X4), so h(R) N K = (. Since K was arbitrary,
Definition [3.1] implies that R is peripheral. O

Thus we obtain a convenient equivalent characterization.

Definition 3.3 (Non-peripheral subsurfaces). A compact subsurface R C ¥ is non-peripheral
if and only if for every g € Map(X) we have

9(R) N Ko # 0.
Remark 3.4. Recall from [MR23] that a compact subsurface R is non-displaceable if RNg(R) #
() for every g € Map(X) (see also Section. Non-displaceable subsurfaces are a basic source
of unbounded coarse geometry for big mapping class groups (e.g. [MR23, Proposition 2.8]).

Every non-displaceable subsurface is non-peripheral, but non-peripheral subsurfaces form a
larger class and will be more flexible for producing quasi-flats.
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3.2. Coarse rank and quasi-flats. As discussed in Section a CB-generated Polish
group admits a well-defined quasi-isometry type of word metrics coming from symmetric CB
generating sets [Ros21]. Following [GRV], we use this to define a rank notion for big mapping
class groups.

Definition 3.5 (Coarse rank [GRV]). Assume Map(X) is CB-generated (Section [2.5)). Equip
Map(X) with a word metric dg associated to any symmetric CB generating set G (e.g. the set
from Theorem . The coarse rank of Map(X) is the largest n > 0 for which there exists a
quasi-isometric embedding Z" < (Map(X), dg). If such n is unbounded, we say Map(X) has
infinite coarse rank.

3.3. Length functions and subsurface projection distances. A convenient way to ob-
tain lower bounds on word metrics is via length functions.

Definition 3.6. Let G be a topological group. A length function on G is a function ¢: G —
[0, 00) such that

e /(id) = 0;

o ((g) =L(g7!) for all g € G;

o ((gh) <{l(g)+ L(h) for all g, h € G.

Remark 3.7. By [Ros21l Proposition 2.7(5)], every length function on a Polish group is
bounded on every coarsely bounded (CB) subset (see Section [2.5). In particular, if G is
a CB generating set for G, then sup,cg £(s) < oo and / gives a uniform lower bound for the
word metric.

We now recall subsurface projections and the associated projection distances in curve
graphs. These constructions go back to Masur-Minsky and are standard; we follow [MMOOD].
Curve graphs and their metrics were defined in Section [2.5

Subsurface projections and projection distances. In this subsection we recall the coarse
definition of the projection mg to a non-annular subsurface S and the induced projection
distance.

Let S be a finite-type subsurface of ¥ (possibly an annulus). For a curve o on ¥ (Sec-
tion , the subsurface projection wg(«) is defined whenever « intersects S essentially.

Definition 3.8 (Subsurface projection for non-annular subsurfaces). Assume S is a finite-
type subsurface which is not an annulus. If a curve o has a representative intersecting S
essentially, put @ and 0S in minimal position and consider the collection of essential arcs
of N S. For each such arc, perform surgery with 05 (equivalently: take the boundary
components of a regular neighborhood of the arc together with 05) to obtain a finite set of
essential curves in S. Define mg(a) C C(S) to be the union of these curves. If « is disjoint
from S (or &N S has no essential arc component), we set mg(a) = 0.
If P is a multicurve (e.g. P = dR for some subsurface R), define

ms(P) = | J ms(a),
aeP
and if p is a marking on a finite-type surface (Section , define
ms(p) = |Jms(7),
YEM
where the union is over all base curves and transversals of pu.
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Remark 3.9. Different choices of representatives and surgeries change mg(«) only by a uni-
formly bounded amount in C(S); in particular diame (g (7s(a)) is uniformly bounded (depend-
ing only on the topological type of S). Thus subsurface projections are coarsely well-defined.
See [IMMOOD] for details.

Definition 3.10 (Projection distance). Let S be a finite-type subsurface which is not an
annulus, and let X, Y be curves, multicurves, or markings. If mg(X) # 0 and 7g(Y) # 0,
define

(4) ds(X,)Y) := diamgg) (m5(X) Ums(Y)) = sup {ds(z,y) | = € 75(X), y € ms(Y)}.
If 75(X) =0 or mg(Y) = 0, then the distance is not defined.

Annular projections and twisting. In this subsection we recall annular projections and
the associated twisting distance.

When S is an annulus with core curve -y, subsurface projection is taken to the annular arc
graph C(7), whose vertices are isotopy classes (rel. endpoints) of essential arcs in the annular
cover §W corresponding to ~, with endpoints on 8§W, and whose edges join disjoint arcs. For
a curve « intersecting +y, the projection 7, () is the set of lifts of a to gﬂ, that are arcs
connecting the two components of 857. For a multicurve P and a marking p, define 7 (P)
and 7 (u) by taking unions over constituent curves as in Definition Again, see [MMOOD]
for details.

Remark 3.11. As in the non-annular case, 7 () is coarsely well-defined and has uniformly
bounded diameter in C(7y). In particular, the distance between two projections is well-defined
up to a bounded additive error.

Definition 3.12 (Relative twisting / annular distance). Let v be a curve and let C(y) be
the annular arc graph. For curves, multicurves, or markings X,Y with 7 (X), 7, (Y) # 0,
define the relative twisting (annular projection distance) about v by

tw(X,Y) = dy(my(X), my(Y)) := diam, (my(X) Uy (Y)).
If either projection is empty, we set tw,(X,Y) = 0.

Remark 3.13. The main fact we will use about relative twisting is that a Dehn twist T, acts
by a translation on C(v), and hence tw., (X, (X )) grows coarsely linearly in |n| for any X
with 7, (X) # 0.

3.4. A subsurface-projection length function. We now package the above projection
distances into a length function on Map(X).

Let R = {R1,...,R,} be a collection of pairwise disjoint non-peripheral compact subsur-
faces of 3. By Lemma and Definition every translate g(R;) intersects K\ essentially.

Definition 3.14. Let R = {Ry,..., R,} be disjoint non-peripheral compact subsurfaces of
Y. Fix a marking p on K (Section . Define L%, : Map(X) — [0, 00) by

5 L% = dgry (1, ;
(5) e (f) o Z; o (1 £ (1)

when f is not the identity. For the identity element we let L’ (id) = 0. We suppress p from
the notation and write Li when u is fixed.



THE NON-PERIPHERAL CURVE GRAPH AND DIVERGENCE IN BIG MAPPING CLASS GROUPS 15

Lemma 3.15. Ly is a length function in the sense of Definition 3.6

Proof. Nonnegativity and Ly (id) = 0 are immediate from the definition. For symmetry, we
use Map(X)—equivariance of projections (and of annular projections) to observe that for any
finite-type subsurface Y and any f € Map(X),

dy (s 1) = dyevy (s f(1)-

Therefore

Lr(fh) = Stglpz dy(ry) (s f 1 (R) = Stglpz drgo(riy (1 f(12))

= sgpz di(ry) (1 f(1) = Lr(f),

where we reparametrized h = fg.
For subadditivity, fix f, h € Map(X) and apply the triangle inequality in each C(g(R;)) (or
annular arc graph):

Summing over ¢ and taking suprema gives

Lr(fh) < sup ) dyiry (i1 (1) + SUp > dyirey (£ Fh(1).

Using equivariance again, dy(g,)(f(1), fh(1)) = dg-14r,) (11, (1)), and since g ranges over
all of Map(X) so does f~1g. Since the subsurfaces R; are non-peripheral, all the distances
exist. Thus the second supremum equals Lz (h), proving

Lr(fh) < Lr(f)+ Lr(h). O

3.5. Quasi-isometrically embedded abelian subgroups. We now use L to build quasi-
isometric embeddings of ZF from families of disjoint non-peripheral subsurfaces.

Proposition 3.16. Assume that Map(X) is CB-generated. If R = {R1,..., R} is a family
of k pairwise disjoint non-peripheral compact subsurfaces of ¥, then Map(X) contains a quasi-
isometrically embedded copy of ZF.

Proof. Fix a marking p on Ky and consider the length function Lig = L% from Deﬁnition
Let d 4 be the word metric coming from any symmetric CB generating set A; for instance one
may take the CB generating set G from Theorem ﬁ (Section . By Remark there
exists M < oo such that Lgr(a) < M for all a € A. Hence for all g € Map(X) we have

() dale.g) 2 57 Lro)

For each 4, choose a mapping class g; supported on R; such that g; acts loxodromically on
C(R;). Concretely: if ((R;) > 2, take g; pseudo-Anosov on R;; if R; is an annulus with core
curve oy, take g; = T,,. Since R; is non-peripheral,

dR, (M,gi(u)) > 0.

Replacing g; by a power if necessary, we may assume

(7) dg, (1,97 (n)) > |n|  foralln € Z,
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using positive translation length for pseudo-Anosov elements and the translation action of
Dehn twists on annular arc graphs (see, e.g., [MMOOD]).

Since the R; are pairwise disjoint, the mapping classes g; commute and generate a subgroup
isomorphic to ZF. Define

®: ZF = Map(®),  (a1,...,ax) = g™ - go*.

The map @ is Lipschitz (with respect to the ¢! metric on Z¥) since da(e, g*) < |n|da(e, g;).
For the lower bound, apply @ and then evaluate Li using g = id in the supremum:

d1(®(a), 2(b)) = dale, d(a—b)) > %LR@(a—b))

k k
1 a;—b; 1
> i ;21 dr, <M792‘ (,U)) 2 i ;:1 a; — bil,

where the last inequality is . Hence @ is a quasi-isometric embedding of Z* into Map(X).
O

3.6. Infinite coarse rank. We now show that, under a mild hypothesis on the end-complexity,
> contains arbitrarily large families of pairwise disjoint non-peripheral curves.

Lemma 3.17. Assume ((X) > 4. Then there exists an essential separating curve v C Ky
such that v is non-peripheral. More precisely, one may choose v so that each component of
Y —~ contains ends from at least two distinct members of AUP (in the sense of Section .

Proof. Since ((X) > 4, the minimal anchor surface Ky has at least four boundary components
(Section . As K is finite type, there exists an essential separating curve v C Ky so that
each component of Ky — 7 contains at least two boundary components of Ky. Equivalently,
each component of 3 — + contains ends coming from at least two distinct complementary
components of 3 — Ky, hence from at least two distinct sets in AUP. Denote the components
of ¥ —~ by ¥ and X".

We claim that such a = is non-peripheral. Suppose for contradiction that ~ is peripheral.
Then by Lemma [3.2] there exists g € Map(X) such that g(v) N Ko = 0, hence g(7) is contained
in a single component Y of ¥ — Ky, where C € AU P and End(X¢) = C (notation as in
Section . That means the ends in one component of ¥ — v (say ') are entirely mapped
into C'. We show this contradicts the minimality of Kj.

We start by recalling the structure of AU P for a minimal K. The maximal ends M(X)
are distributed among sets in A, with each maximal end of Cantor type appearing in exactly
two such sets and each isolated maximal end appearing in a separate set. Also, for every
P € P, there is a point y € P and A € A such that M(A) = x4 is an isolated point and x 4 is
the only maximal end that is an accumulation point of E(y) (i.e., E(y) uniquely accumulates
to z4). In particular E(y) C AU P. Also, recall that for any z € End(X) and g € Map(Y),
we have

We argue in several cases.

Assume there are A, B € A such that ALIB C End(X’) and hence g(AUB) C C. From the
above discussion, we see that g(A L B) C C' is possible only if M(A) and M(B) are both of
the same Cantor type E(x) and E(z) = M(A)UM(B). This means C must be either A or B
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(say A). But then g(End(X")) contains B, which is a contradiction since E(z) NEnd(X") = ()
(recall that A and B are the only components containing E(z)).

Next assume there is A € A and P € P such that AU P C End(¥’). Then C has to
be homeomorphic to A. After composing g with some finite order element h, € G, we can
assume C' = A. Let y € P be the end such that E(y) uniquely accumulates to some maximal
end zp. Since P can be mapped inside A, we must have B = A. Which means

E(y) NEnd(X") = 0.
This is a contradiction since g(A U P) C A implies
g9(End(2")) > P2 E(y) = g(E(y)).

Finally assume there are P;, P, € P such that P, U P, C End(X’). Then, for i = 1,2, there
is a point y; € P; such that E(y;) uniquely accumulates to x4, for A; € A. By minimality
of Ky, y1 and yy are different types, otherwise, we could replace them with P = P, U P» and
reduce the number of elements in P. Therefore, there does not exist a set in A U P that
intersects both E(y;1) and E(y2). Hence, g(P; U P») C C' is not possible.

Since we arrived at a contradiction in all 3 cases, no such g exists, and -y is non-peripheral.
O

Theorem 3.18. Assume X is a stable infinite-type surface such that Map(X) is CB-generated
and ((X) > 4. Then for every integer k > 1 there exist k pairwise disjoint non-peripheral
curves Vi, ..., n X. Consequently, Map(X) has infinite coarse rank.

Proof. Let Ky be the fixed minimal anchor surface from Section and let G be the CB
generating set from Theorem ﬂ (Section . Since Y has infinite type, the end space
contains infinitely many ends, which implies (by the self-similarity structure of stable surfaces)
that at least one of the sets W4 p or W4 in the decomposition from Lemma@ is non-empty.
Hence, at least one of the shift maps in G is nontrivial. Fix such a shift map f (either
f = fap for some A # B or f = fs for some A and P as in Section .

By Lemma [3.17], choose a non-peripheral essential separating curve v C K that separates
A from B in the first case and separates A from P in the second case. The curve ~ intersects
the support of f so that v and f(v) are distinct. More precisely, there is a connected subsur-
face X C X supporting f and a bi-infinite family of pairwise disjoint finite-type subsurfaces
{X7}ez C X with f(X7) = X7TL; choosing 7 to separate X=C from X=! inside X, we have
that f(v) is disjoint from ~y, and hence the curves

Vo= ) UEeZ)
are pairwise disjoint.

Finally, non-peripheralness is invariant under the action of Map(X); therefore, the ~;
are pairwise disjoint non-peripheral curves. Applying Proposition to the family R =
{Ry,..., R} (viewing each R; as an annular subsurface with core curve ~;) yields a quasi-
isometric embedding Z* < Map(X). Since k is arbitrary, the coarse rank is infinite. O

Example 3.19. The surface ¥ depicted in Figure [2] has two types of maximal ends, both
are cantor types. Hence ((X) = 4. The curve « is non-peripheral, but it intersects any other
non-peripheral curve (curves disjoint from « can always be pushed away from every compact
set. Hence, Cpp, is not connected. The curve 3 is another example of a non-peripheral curve.
There is a shift map between A and A’ that shifts some part of the cantor set of ends in A to
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FIGURE 2. When ((X) = 4 the graph C,,, may not be connected. But we can
still find arbitrarily large number of disjoint non-peripheral curves.

A’. The support of this shift map intersects 8 and send it to a curve that is disjoint from 3.
Therefore, X still infinity many disjoint non-peripheral curves and thus it has infinite coarse
rank.

4. THE NON-PERIPHERAL CURVE GRAPH

In this section, we restrict our attention to a non-peripheral curves and we define a curve
graph built only from non-peripheral curves. We will prove a basic connectivity result when
{(x) > 5.

4.1. Definition and first examples. Recall that a curve on ¥ means an essential simple
closed curve, i.e. it does not bound a disk or once-punctured disk (Section [2.5). A curve is
non-peripheral if its annular neighborhood is non-peripheral in the sense of Definition

Definition 4.1 (Non-peripheral curve graph). The non-peripheral curve graph Cp,(X) is the
graph whose vertex set is the set of isotopy classes of non-peripheral curves in ¥, and with an
edge between distinct vertices if they admit disjoint representatives. We equip C,(X) with
the path metric in which each edge has length 1.

For small values of ((X) the graph Cy,(X) can be empty or highly disconnected. For
instance, if 3 is the latter surface (a two ended infinite genus surface) then ((¥) = 2 and
there are no non-peripheral curves and Chp(X) = 0.

(Add some examples with ¢ = 4 here).

4.2. Connectivity when ((3) > 5. We now prove that Cy,,(X) is connected provided ¢(X)
is large enough.

Theorem 4.2. Assume X is stable, Map(X) is CB-generated, and ((X) > 5. Then the graph
Chp(X) is connected.

We first proceed to charaterized non-peripheral curves by the following technical lemma.

Definition 4.3. We say a clopen subset X C End(X) is small if there exist A € A and
g € Map(X) such that g(X) C A. Note that, since every P € P fits inside some A € A.
Hence, if g(X) C P then X is also small.
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Lemma 4.4. Let ¥ be a connected, orientable surface of infinite type.

(1) If o is a separating peripheral curve then for some component X' of ¥ — « the clopen
set End(X') C End(X) is small (in the sense of Definition[{.5).
(2) If v is non-separating, then « is peripheral if and only if ¥ has infinite genus.

Proof. If « is separating and peripheral then there is ¢ € Map(X) with g(a) N Ky = 0.
Then g(a) lies in a single component ¢ of ¥ — Kj, where C' = End(3¢) € AU P. Since
g(a) is separating, one complementary component of ¥ — g(a) is contained in . Hence,
g(End(%;)) C C for some i € {1,2}, and thus End(X;) is small.

To see the second assertion, assume Y has infinite genus. Then there is sequence «; of
non-separating curves exiting a non-planar end. For any other non-separating «, ¥ — « is
homeomorphic to ¥ — «; since the two surfaces have the same genus, the end space and the
same number of boundary component. Hence, o can be mapped to a; and hence it can be
moved away from Kj.

If ¥ has finite genus, then K| carries all the genus. Any curve disjoint from K lies in a
planar neighborhood of the ends, hence is separating. Therefore, a non-separating curve can
never be mapped to a curve disjoint from Ky. This finishes the proof. O

Lemma 4.5. Assume ((X) > 5 and let
End(Z) = X1 UXoUX3UXy

be a decomposition of the space of ends into four clopen subsets such that (X7 U X3) is not
small and (X3 U Xy) is not small. Then there is 1 < i < 4 such that both

X; and End(¥) — X;
are not small.

Proof. Define the end-complexity ((X) of a clopen set X C End(X) as follows.

e Add 1 for every isolated maximal end x4 € X.
e Add 1 if X contains a point in E(x) where x is a Cantor-type maximal end, but add
2 if F(x) is entirely contained in X.
e Add 1 for every A € A such that there exists y € End(X) with E(y) uniquely
accumulating to x4 and E(y) N X # (.
Note that if ((X) > 2, then X is not small. We claim that, for disjoint clopen sets X, X’ C
End(X), we have
((X) < ((XUX') < ((X)+¢(X).
The first inequality is immediate. To see the second one, note that any contribution to
¢(X U X') is also a contribution to {(X) or to {(X’).
To finish the proof, we notice that

4
ST > ¢(D) > 5.
=1

Hence, for some i, ((X;) > 2. Also, (End(X) — X;) contains either (X; Ll X5) or (X3 U X4)
and hence it is not small. This finishes the proof. U

Proof of Theorem[{.2 Choose a curve v € Cpp(X). We show that for every a € Cpp(X), there
is a path in Cy,p(X) obtained from surgery between o and vy connecting o to 7 in Cpp(2).
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The argument is similar to [Schl Section 4] and it proceeds by induction on the intersection
number between o and . As a base case, assume i(a, ) = 1. Then the curve § obtained from
surgery between a and -y bounds a once-punctured torus 7" with one boundary component
that contains . If 8 can be moved out of every compact set, so can T" and hence -, which is
not possible (since v is non-peripheral). Hence 8 € Cyp(X) and therefore dc,, (o, ) = 2.

If the intersection number between « and + is larger than 1, we follow « starting from an
intersection point with + until it hits v again. If a comes back to v on the same side of v as
when we started, we continue following o until we have one more intersection point. That is,
we find a sub-arc w of « that starts on one side of 7, ends on the other side of v, and whose
interior is either disjoint from - or intersects v once.

If the interior of w is disjoint from <, then w together with a sub-arc of v forms a curve
5 that intersects v once. This means v and 8 are both non-separating and hence (5 is non-
peripheral (by Lemma if one non-separating curve is non-peripheral, then they are all
non-peripheral). The curve 3 intersects a fewer times than v does and dc,,(v,8) = 2.
Therefore, by induction, there is a path connecting 5 to o and thus to ~.

Assume the interior of w intersects v once. Then ~ U w fill a four—punctured sphere R.
We argue in two cases. If v is non-separating, then some boundary component S of R is also
non-separating and hence non-peripheral, and g intersects « less than v does. Similarly, if «
is non-separating we argue the same way, switching the roles of a and ~.

Finally assume that the interior of w intersects v once and that both o and ~ are separating.
Then wU~ decomposes the ends of 3 into four clopen sets Xy, ..., X4. We choose the indices
such that v gives the decomposition

End(X) = (X1 U X5)| |(XsUXy).

Since -~y is separating and non-peripheral, by Lemma the sets (X7 U X2) and (X3 U Xy)
are not small, and the hypotheses of Lemma hold. Now Lemma implies that one of
the curves /3 obtained by surgery between v and w also decomposes End(X) into two clopen
pieces that are not small, and hence £ is non-peripheral by Lemma Then dc,,(8,7) =1
and [ intersects o fewer times than v does. Again, we are done by induction. O

5. HYPERBOLICITY OF THE NON-PERIPHERAL CURVE GRAPH

In this section we prove that, when ((X) > 5, the non-peripheral curve graph Cyp(X) is
Gromov hyperbolic. The argument compares Cyp(X) to the grand arc graph(constructed in
[BNV23]) and uses a general “coning-off/electrification” criterion (Proposition 2.6 of [KR14]).

5.1. Grand arcs and their graph. Recall that M(X) denotes the space of maximal ends
of ¥, and that the grand splitting partitions M(X) into finitely many mazimal types — self-
similar equivalence classes of maximal ends. In this case, self-smilar equivalence classes of
maximal ends means that singletons in M(X) are each considered their own separate maximal
type. In particular, M(X) is the disjoint union of these maximal types (see [BNV23]).

A grand arc is a properly embedded essential arc in ¥ whose two ideal endpoints lie in
distinct mazimal types, taken up to isotopy rel. endpoints. The grand arc graph GA(X) is
the graph whose vertices are grand arcs and whose edges join grand arcs that can be realized
disjointly.

Lemma 5.1. Assume ((X) > 5. Then there are at least three distinct maximal types, hence
GA(Y) is nonempty. Moreover, GA(X) is Gromov hyperbolic.
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Proof. By the definition of ((X) (Section and stability, ((X) > 5 forces M(X) to contain
at least three distinct maximal types. In particular, grand arcs exist.

Since X is stable, there are only finitely many maximal types. Hence the hypotheses of
[BNV23, Theorem 1.1] apply, and G.A(X) is Gromov hyperbolic. O

5.2. From grand arcs to non-peripheral curves. Fix ((X) > 5 for the rest of this
section. Given a grand arc w with endpoints in two distinct maximal types, choose disjoint
stable neighborhoods U4, Up of its endpoints in the sense of Section (so U4 U IUpR is a
multicurve and Uy, Up are sufficiently small in the end space). Let o = a(w;Ux,Up) be any
essential simple closed curve obtained as follows: take a regular neighborhood of wUOU 4U0UR
and let a be a boundary component which separates Uy UUp from the complement. We call
such an « a small neighborhood curve of w.

Lemma 5.2. For Uy, Up chosen sufficiently small (depending on w), every small neighbor-
hood curve a(w;Ua,Up) is non-peripheral.

Proof. Let a = a(w;Ua,Up) be as above and write ¥\ o = Y] U Y, with Uy UUp C V7. By
construction, Y7 contains ends from two distinct maximal types, so for Uy, Up sufficiently
small the end set End(Y7) is not small in the sense of Definition Since there are at
least three maximal types (Lemma , the complementary region Ys contains a maximal
end of a third type, and hence End(Y2) is also not small. Therefore neither complementary
component of ¥ \ a has small end space, so a cannot be pushed off of every compact set.
Equivalently, « is non-peripheral. O

Although the curve a(w;Uy,Up) depends on the auxiliary choices, its ambiguity is uni-
formly bounded in Cyp(2).

Lemma 5.3. For every grand arc w, the set of all small neighborhood curves of w has diameter
at most 2 in Chp(X).

Proof. Let o« = a(w;Ux,Up) and o = a(w; U/, Uy) be two such curves. Choose smaller
stable neighborhoods U} C Us NU/y and Uj; C Up NUp and let § = a(w; U}, Uf). By
construction, 8 can be realized disjointly from both « and o’ (it is supported in a thinner
regular neighborhood of w). Hence in Cyp(X),

dcnp(a,a’) <dgc,,(a,B) +dc,, (83, o) <2. O

5.3. A hybrid graph and quasi-isometry to Cy,,(X). Let Y be the graph with vertex set
V(Y) = V(Cup(2)) UV(GA(D)),

and with edges defined by disjointness: two vertices are joined by an edge if the corresponding
curve/arc representatives can be realized disjointly (in particular, Cyp(X) appears as an
induced subgraph of ).
Lemma 5.4. The inclusion Cynp(X) — Y is a quasi-isometry. More precisely:

o cvery vertex of Y lies at distance < 1 from Cyp(X); and

o there exists A > 1 such that for all o, f € V(Crp(X)),

anp(a7IB) < Ady(aaﬁ) + A.
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Proof. Letw € V(GA(X)). By Lemmal5.2] choose a small neighborhood curve o € V(Chyp (X))
disjoint from w, so dy(w, ) = 1. Thus Cyp(X) is 1-dense in Y.

For the distance comparison, let v = (vy,...,v,) be a Y—path from a = vy to 8 = vy,
with v; € V()). Whenever v; is a grand arc, replace it by a choice of small neighborhood
curve v; € V(Cyp(X)). Using Lemma we can choose v; so that v; is disjoint from
both neighbors v;—; and v;4; (after replacing them if necessary), hence the replacement
increases path length by at most a uniform additive constant per arc vertex. In particular,
we obtain a path in Cyp(X) from o to § of length < Am + A for some uniform A. Therefore
do,,(a, B) < Ady(a, B) + A. O

Consequently, to prove hyperbolicity of Cp,(3) it is enough to prove hyperbolicity of ).

5.4. Electrifying the grand arc graph. For each a € V(Cyp(X)), let GA, C GA(X)
denote the induced subgraph spanned by all grand arcs disjoint from «a.

Lemma 5.5. There exists C > 0 such that for every o € V(Cyp(X)), the subgraph GA, is
C'—quasiconvez in GA(X).

Proof. Let wy,ws € V(GA,). In [BNV23], unicorn paths between grand arcs are constructed
and shown to be uniform (unparameterized) quasi-geodesics in GA(X). Moreover, a unicorn
surgery between two arcs disjoint from « can be performed so that every intermediate arc
remains disjoint from « (since the surgery is supported in a regular neighborhood of wy Uws,
and « is disjoint from both endpoints). Hence the entire unicorn path from w; to we lies in
GA,.

Since GA(X) is hyperbolic (Lemma [5.1)), uniform quasi-geodesics fellow travel geodesics
with uniform constants. Therefore any geodesic [wy,ws| in GA(X) lies in a uniform neigh-
borhood of the unicorn path, hence in a uniform neighborhood of GA,. This proves uniform
quasiconvexity. [l

Let EZ(E) be the graph obtained from GA(X) by electrifying the family {GAa }aev (Cop ()
i.e. by adding an edge between any two vertices of GA, for each «.

Lemma 5.6. The graph 571(2) is Gromov hyperbolic.

Proof. By Lemma GA(X) is hyperbolic. By Lemma [5.5] the family {G.A} is uniformly
quasiconvex. Therefore, [KR14, Proposition 2.6] implies that the electrified graph GA(X) is
hyperbolic. ]

Now consider the coned-off version ), defined as follows: its vertex set is V(GA(X)) U
V(Cup(X)), it contains all edges of GA(Y), and for each o € V(Cpp(X)) and each grand arc
w € V(GA,) we add an edge between o and w (thus )y is obtained from G.A(X) by coning
off each GA, with a cone vertex labelled by «).

Lemma 5.7. The inclusion GA(X) < Yy is a quasi-isometry, and Yy is Gromouv hyperbolic.

Proof. In 5.71(2), if w,w’ € GAq then dg7(w,w') =1 (by an added electrifying edge), while
in Vp we have dy,(w,w’) < 2 via the path w — @ — w’. Conversely, any path in }y between

arc vertices can be pushed into GA(X) by replacing each length-2 subpath w — a — w’ by the
electrifying edge between w and w’. Hence the identity on arc vertices is a quasi-isometry
between GA(X) and the arc-vertex subgraph of ).
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Finally, every cone vertex a € V(Cyp(X)) is adjacent to some grand arc: since « is compact,
we can choose maximal ends in distinct maximal types far from « and connect them by a
grand arc disjoint from «, so GA, # . Thus V(GA(X)) is 1-dense in Vy. It follows that the
inclusion GA(X) — ) is a quasi-isometry.

Since ﬁ(E) is hyperbolic (Lemma and hyperbolicity is a quasi-isometry invariant,
Yo is hyperbolic. O

5.5. Hyperbolicity of  and of Cy,,(X). Recall that ) has the same vertex set as ) but,
in addition, it also contains the curve—curve disjointness edges of Cpp(X).

Lemma 5.8. The identity map on vertices induces a quasi-isometry Yo — Y. In particular,
Y is Gromov hyperbolic.

Proof. The map Yy — Y is 1-Lipschitz (we only add edges). It suffices to show that every
edge between disjoint curves in ) is realized by a uniformly bounded path in ).

Let o, B € V(Cpnp(X)) be disjoint. Since o and 3 are compact and disjoint, we can choose
maximal ends in distinct maximal types so that one lies in a complementary component
of ¥\ (U ) on one side and the other lies in a complementary component on the other
side. Then there is a grand arc w connecting these ends which is disjoint from « U . Hence
w € GAL, N GAg, so in Yy we have a path a —w — 3 of length 2. Therefore, for curve—curve
edges in Y we have dy,(«, 8) < 2. This proves the quasi-isometry claim.

Since ) is hyperbolic (Lemma7 so is V. O

We can now state the main theorem of this section.

Theorem 5.9. Assume ((X) > 5. Then the non-peripheral curve graph Cpnp(X) s Gromov
hyperbolic.

Proof. By Lemma the hybrid graph ) is hyperbolic. By Lemma Chnp(X) is quasi-
isometric to ). Since hyperbolicity is a quasi-isometry invariant, Cnp(2) is hyperbolic. O

Remark 5.10. The grand arc graph and C,,(X) need not be quasi-isometric. For example,
when |P| = 2 and |A| > 3 (in the notation of Section [2.5]), we have a non-peripheral curve
a C K which separates sets in P from sets in .A. Let W be the component of Ky \ « that is
on the side of a containing sets in A. That is, the boundary of W is the union of o and the
boundaries of surfaces ¥4, A € A. Note that W is a witness for the grand arc graph, since
any arc from x4 to xp has to intersect 0% 4 and hence W. Therefore, the pseudo-Anosov on
W acts loxodromically on GA(X). Hence, the set GA, of grand arcs that are disjoint from «
has an infinite diameter in GA(X). This phenomenon is compatible with the argument above:
the electrification step uses quasi-convexity of the subgraphs GA,, not bounded diameter.

6. DIVERGENCE OF BIG MAPPING CLASS GROUPS

In this section we give a quadratic bound for the divergence of big mapping class groups.
Divergence is a quasi-isometry invariant of geodesic metric spaces which measures the length
of the shortest detours avoiding large balls. Although divergence is most often studied for
finitely generated groups, the definition applies in the present setting because Map(>) is CB-
generated and hence admits a well-defined quasi-isometry type of word metrics (Section .
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6.1. Divergence. We recall the definition from [DMS09]. (In [DMS09] this is stated for
proper geodesic spaces; the definition below makes sense for any geodesic metric space, and
this is the level at which we use it.)

Definition 6.1 (Divergence). Let (X, dx) be a geodesic metric space. Fix constants 0 < p <
1 and T' > 0. For a pair of points a,b € X and a point ¢ € X — {a, b}, define the divergence
of (a,b) relative to ¢ to be the length of the shortest path from a to b in X avoiding the open
ball B(c,r) of radius

r=p-min (dx(c,a),dx(c,b)) — T.
If no such path exists, define this divergence to be co. The divergence of the pair (a,b) is the
supremum of these quantities over all ¢ € X — {a,b}. Finally, define

Divx(R;p,T) = sup { Divx(a,b;p,T) | dx(a,b) < R},

where Divy(a,b; p,T) denotes the divergence of the pair (a,b) (i.e. the supremum over c).
As usual, we consider divergence functions up to the equivalence relation

f=g < 3C>1YR>0: f(R)<Cg(CR)+CR+C,
and
f=9g < f=Xg and g¢g=f

6.2. Quadratic upper bound. Our goal is to prove that if ((X) > 5 then Map(X) has at
most quadratic divergence.

Theorem 6.2. Assume X is stable, Map(X) is CB-generated, and ((¥X) > 5. Equip Map(X)
with the word metric ds associated to any CB generating set. Then for every 0 < p < 1 and
T>0

Div (ap(s).ds) (B; 0, T) = R?.
In other words, the divergence of Map(X) is at most quadratic.

Remark 6.3. By [DMS09,, Section 3|, divergence is a quasi-isometry invariant, and for CB-
generated Polish groups the quasi-isometry type of a word metric does not depend on the
particular symmetric CB generating set (Section [Ros21]). Thus it is enough to work
with ds for the specific generating set S from Theorem [2.8, Also, the equivalence class of
divergence does not depend on p and 7' ([DMS09) Section 3]). Hence we keep can use any
pair (p,T).

The left translation is an isometry of dg, so any triple (a,b,c¢) can be moved so that
¢ = id. Since we are taking supremum over all triples (a,b,c), we can as well take the
supremum over all triples where ¢ = id. Also, following [DMS09) Section 3], we can assume
ds(id,a) < ds(id,b) < ds(a,b) < R. Therefore, Theorem follows from Theorem

below:

Theorem 6.4. Assume ((X) > 5. There exist constants My > 0 and Ty > 0 (depending only
on X) such that the following holds for all R > 0. If g1, g2 € Map(X) satisfy

R<|gills <2R  (i=1,2),
then there exists a path in (Map(X),ds) from g1 to go which is disjoint from the ball
B(id, R/2 — Tp)
about the identity and has a length at most My R2.
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6.3. Step 1: a twist length function. We use the annular specialization of the length

functions from Section (Definition (3.14]).
Fix once and for all a marking u on Ky (Section . For a non-peripheral curve «, let

A, denote the annulus with core «, and define

(8) La(g):= sup  twpa (1, 9(1)),
heMap(X)

where twy, () is the annular distance from Definition (Section . This is the special
case of Lg with R = {A,}.

Lemma 6.5. For every non-peripheral curve «, the function Lo is a length function on
Map(X). Moreover, there exists M, < oo such that

1
(9) lglls > A Lo(g)  for all g € Map(X).

Proof. The fact that L, is a length function is exactly Lemma applied to R = {A,}
(Section [3.4)). Since S is CB, by [Ros21], Proposition 2.7(5)] and Remark L, is bounded
on S: set

M, :=sup Ly (s) < oo.
seS

Then @ follows from subadditivity: if g = s1---s, with s; € S, then

hence ||g|ls =n > La(g)/ M. O

Lemma 6.6. Let o be a non-peripheral curve and let D, be the Dehn twist about .. There
exists co > 0 such that for alln € Z,

Lo (D) > cq |n|.

Proof. Since « is non-peripheral, every translate h(a) intersects Ky essentially (Deﬁnition,
hence 7,4 (1) # () and the twisting distance twp,q) (1, Dp (i) is defined. Taking h = id in
gives

La(Dg) = twa (1, D (1),
and by Remark the right-hand side grows coarsely linearly in |n|. O

6.4. Step 2: a projection to Cp,(X). Assume throughout this subsection that {(X) > 5
so that Cyp(X) is connected (Theorem in Section [.2)). Fix a base vertex ag € Cpp(X)
and define

(10) T Map(Z) - Cnp(2)7 7r(g) = g<a0)'
Remark 6.7. If of is another base curve in Cyp(X), then for every g,

dc,, (9(a0), g(ap)) = day, (o, )

because Map(X) acts by graph automorphisms on Cyp(X). Thus changing the base curve
changes 7 by a uniformly bounded amount.
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6.5. Step 3: 7 is Lipschitz.

Lemma 6.8. There exists L > 1 such that for every generator s € S,
dc,, (ao, s(ao)) < L.

Consequently, for all g,h € Map(X),

de,, (m(g), m(h)) < Lds(g, h).

Proof. The second statement follows from the first by writing h = gs1 - - - s, with n = ds(g, h)
and using the triangle inequality in Cyp(X):

dc,, (g(ao), h(ao)) < Z dc,, (g81 o 8i—1(0), gs1 - - si(ao)) = Z dc,, (ao, si(ao)) < nL.
i=1 i=1

Thus it remains to prove the existence of L.

Fix ap C Ky once and for all. For each of the finitely many types of generators in
Theorem (Section one checks that the geometric intersection number i(ayg, s(ag)) is
uniformly bounded independent of s € S:

e elements of Vi, fix K¢ pointwise, hence fix ag;

e local generators in £ are supported in a fixed finite-type subsurface, so they change
o by a uniformly bounded amount; and

e the shift maps and the finitely many maximal-end permutations have supports and
boundary data contained in a fixed finite-type subsurface (as in the definition of £),
so their effect on «g is controlled as well.

Given a uniform bound on i(ayg, s(agp)), the surgery argument from Section produces a
uniformly bounded path in Cyp(X) from aq to s(ag). This yields the desired L. O

6.6. Step 4: commuting Dehn twists for generators.

Lemma 6.9. There exists a constant K > 1 with the following property. For every s € S
there exists a curve ag € Cyp(X) such that:

e dc,, (a0, ) < K; and
e the Dehn twist D,, commutes with s.

Proof. We choose a; by a case-by-case inspection of the generators in Theorem (Sec-
tion .

If s € Vg,, take as = ap, so s fixes ap and hence commutes with D,,. If s € L is
supported in the fixed finite-type region used to define L, take as to be a non-peripheral
curve disjoint from that region; such a curve exists in the five-holed sphere guaranteed by
¢(X) > 5 (Section . For the finitely many maximal-end permutations and shift maps in
S, choose oy among finitely many curves in the fixed finite-type region where these maps
meet K, so that oy is preserved by s. In all cases, s(as) = as and hence s commutes with
D,,.

Since there are only finitely many types of generators, we may take K to be the maximum
of the (finite) distances dc,, (a0, as) arising from the choices above. O
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6.7. Step 5: a “linked” word decomposition.

Proposition 6.10. There exists Cy > 1 with the following property. For every gi,g2 €
Map(X) there exist an integer n > 1, a sequence of curves

ai,a,. .., 0, € Chp(X),

and a sequence of generators si,...,S, € SU{id} such that:

o D,, commutes with s; for every i;
—1
® S1S2°: Sy =gy g2; and
-1
>~ L0 1 2 .
o n<Collgr g2lls

Moreover, the curves oy can be chosen from a finite subset F C Cyp(X) depending only on X
and S.

Proof. Write g7 19y as a word of minimal length in S:

91 g2 = tita - - b, t;eS, m=|g " gls.

For each t;, apply Lemma to obtain a curve f8; € Cyp(X) such that Dg; commutes with
tj.

By construction in Lemma the set of possible curves ; is finite: each generator ¢t € &
falls into one of finitely many types, and in each type we choose a; from a fixed finite list.
Let B C Cyp(X) denote the (finite) set of all such curves.

For each ordered pair (53, ’) € B x B, fix once and for all an edge path P(8, ") in Cyp(X)
from S to B’. Let F be the union of the vertex sets of these paths. Since B is finite and each
P(j, ') is finite, the set F is finite.

We now build the required word decomposition by concatenating, for each j, the fixed
path P(f;, 8j+1) (inserting identity generators along that path), and then inserting the gen-
erator ¢; at the vertex ;. Identity commutes with all twists, and Dg, commutes with ¢; by
construction. The resulting word s1---s, equals t1---t,, = gflgg, and the total number n
of letters is bounded by n < Cym where Cy is the maximum, over (3, 3’) € B2, of the length
of P(B,(") plus 1. Finally, every curve label a; is a vertex of some P(/3, '), hence lies in the
finite set F. [

Remark 6.11. In Proposition [6.10] all twist curves belong to the fixed finite set F. Conse-
quently, any constants attached to these curves can be chosen uniformly.

For each o € F let M, be as in Lemma m and let ¢, be the constant from Lemma
In addition, fix an additive constant B, > 0 so that for every m € Z,

tWOc (/1’7 D(Tl(,u)) 2 ‘m’ - Ba7

and so that 7, (p) has diameter at most By, in the annular curve graph of . (Any such choice
works, and we only use that these constants exist and are uniform on F.) Define

M = max M, ¢ :=minc B :=maxB A :=max{2B,1}.
acF Y acF Y acF Y 28,1}

Finally, for each o € F let (o, Qa) be the quasi-geodesic constants from Lemma for
the twist line m — gD7'. Set

= = D = D .
q glea}(qa, Q Ianea}(Qa, 0 rgeagH alls
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Fix a constant k£ > max(3, M) so that

14+2¢2 1 4DgM
R I P e
k 2 c

All subsequent estimates will use the constants M, ¢, B, A, k (and implicitly ¢, Q).

6.8. Step 6: detours using commuting Dehn twists. We now complete the proof of
Theorem [6.4] using the standard detour construction (compare [DR09) Section 4]).

Lemma 6.12. Let a € Cyp(X) and let Dy, be the Dehn twist about . The map
Z — (Map(X),ds),  m— gD
s a quasi-isometric embedding, with constants depending only on a and S.

Proof. Since right-multiplication by g is an isometry, it suffices to treat the map m — D'
The upper bound is immediate from subadditivity:

ds(Dg', D) = |1D5 " ls < [m = nl[| Dal|s-
For the lower bound, apply Lemma [6.5] and Lemma

_ 1 _ 1
ds(Dg', Dg) = |DS"lls 2 37~ La(Da™") 2 a7 lm =l

[0

This gives the desired quasi-isometric embedding. (I

Lemma 6.13 (Extending branch and uniform twist escape). Let F C Cpp(X) and the con-
stants Mk, A, c,q,Q, B be as in Remark|06.11 There exists a constant Ty > 0 (depending
only on ¥ and S) such that the following hold.

(1) (Extending branch) For every o € F and every g € Map(X), there exists a sign
e € {£1} such that

1
(11) lgDg"||s > % lglls —T1 for all m > 0.

(2) (Uniform linear lower bound: one twist) For every o € F, every g € Map(X), and
every m € 7,
im| — M |jg|ls — A
’ .
In particular, for the sign € from (1) and every m > 0,
m— M |glls — A
. .
(3) (Uniform linear lower bound: two disjoint twists) If o, 5 € F are disjoint, then for
every g € Map(X) and every m,n € Z,
max{|m|, |n[} — M ||g|ls — A
’ .

(12) l9Da’lls =

lgDg"ls >

(13) l9Da' Dlls >
Proof. We begin with (1). Set

Dy = D < Ai=—>0.
0= &l Dells < 0. M
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Fix o € F and g € Map(X), and write R := ||g||s. Assume for contradiction that both rays
{9D}' }m>0 and {gD_™ }m>0 meet the ball B(id, R/k). Then there exist integers m4,m_ >0

such that

m R —m R
lgDz+ls <5 and  gDa" s < o

By the triangle inequality,

|’Da+||3 = ds(gngaJr) > R- E’ HDCM7HS = ds(gagDa 7) > R— E
Since ||[D'||s < |m|||Dalls < |m|Do, we obtain
1-1/k)R 1-1/k)R
my > (D({) and m_ > (D({)'

On the other hand, using left-invariance and Lemmas and
1
ds(gD5"™ g DL) = [ DR s > - Lo(DE ) > Ay +m_).
But since both points lie in B(id, R/k) we also have

ds(gD,",9Dy'") <

=5

Combining the last three displays yields
2 201 —-1/k
k Dy

For k large enough (as fixed in Remark , this is impossible once R is large. Enlarging
Ty if necessary makes valid for all R, and the desired sign ¢ is the direction of the ray
that avoids B(id, R/k).

We now prove (2). Fix a € F and g € Map(X), and set 8 = g(a) so that gDg’ = Djf'g.
Taking h = g in the definition of L, gives

La(gD3) > twg (1, DF'g(p)).
Since Dg acts on the annular curve graph of 5 by translation, and the projection sets mz(1)
and 74 (g(p)) have diameter bounded by the uniform constant B (Remark |6.11)), we have
tws (9(n), D5'g(n)) > |m| — B.
By the triangle inequality in the annular graph,

twg (1, DF'g(p)) > |m| — B — twg (1, g(11)).

Again taking h = ¢ in shows twg(p, g(1t)) < La(g), and Remark gives Ly(g) <
M ||g|ls. Therefore
La(gDy) = Im| — Mlg|ls — B.
Finally, Lemma [6.5] and k& > M imply
m| = Miglls =B _ |m| = Mlglls — A
M - k ’

1
lgDa'lls > MLa(gDZ‘) >

which is .
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For (3), assume «, 8 € F are disjoint and write § = g(8). Then gD’ Djj = Dyt Dy g and
the curves g(a) and ¢ are disjoint, so the twists commute. Taking h = g in the definition of
Lg gives

Lp(9Dy' D) > tws (1, Dyioy Dig())-
Since g(«) is disjoint from §, the twist D’;Ea) is supported away from the annulus As. Hence it

moves the projection to the annular curve graph of § by at most a uniform constant (absorbed
into B), and we obtain

tws (1, DityDig()) > tws (u, Dig(p)) — B.

Applying the estimate from (2) (with § in place of o and using the same uniform constants)
yields
tws (1, Dyg(u)) = In| — M |lg|ls — B,
and therefore
Lp(gDg' D) = [n| — M |[glls — 2B.
As above, k > M and A > 2B give
nl = M lglls — A

lgD& Dills > :
Swapping the roles of @ and f gives the same lower bound with |m| in place of |n|, and
combining the two yields . ]

Proof of Theorem([6.4 Fix R > 0 and let g1,g92 € Map(X) satisfy R < |[|gi[ls < 2R. Set
h = gy 'g2 so that ||h|s < 4R.
Apply Proposition to obtain curves aq,...,a, € Cyp(X) and elements sq,...,s, €
SuU{id} with s;---s, = h, D,, commuting with s;, and
n < C() ||h||$ < 4COR.
By construction in Proposition (inserting identity steps along fixed edge paths in Cyp (X)),
we may assume that consecutive curves are either equal or adjacent in Cyp(X); in particular,
whenever o; # ;11 the curves o; and ;11 are disjoint and hence the twists D,, and D
commute.
Let Kiw > 1 be a constant (to be fixed below) and set
N := [KwR].

Choose €1,¢, € {£1} as in Lemma [6.13(1) applied to the pairs (a1, g1) and (o, g2), and
define

Q41

e e1N - enN
vi=g1Dg",  wi= gDy

By Lemma (1), the path from g; to v along the twist ray is disjoint from B(id, R/k—T1),
and similarly the path from go to w is disjoint from B(id, R/k — T1). Thus it remains to
connect v to w by a path outside the same ball.

Set up =id and u; = s1---s; for 1 <¢ < n, so u, = h and g1u, = g2. For 0 <7 < n set

Di = g1uy.

Then py = g1 and p, = g2, and for each ¢ we have p; = p;_1s;. Since ||u;||ls < ||h|ls < 4R, we
have

Ipills = llgruills < llgills + l[uills < 6R.
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FiGURE 3. Chain of flats form alternating product region

We now build a detour path from v = poDallN to w = ang;N by induction. For 1 <1 <
n — 1, we connect
pi-1DSN to piDa N
by the following sequence of moves:
(1) move from pi_ngiiN to pinjiN by right-multiplying by s; (using that s; commutes
with Dy, );
2) add the new large twist, moving along the ra
g g g Y

eiN eiN PEi+1V,
piDaZi _>piDaZi Dal,bqu )

(3) remove the previous large twist after the new twist is present, moving along the ray

; 1N 1N
piDgziNDgiill — piDg;fl .
If a; = aj+1, we interpret steps (2)—(3) as the obvious cancellation.
This produces a path from v to w whose length is bounded by

n+2nN < 4CyR + 8CoRN < R?,

since N < R.

It remains to verify that all vertices on the constructed path stay outside a ball of radius
pR — Ty. Fix i, and consider the vertices occurring in the three steps above. Step (1) only
right-multiplies by a generator, and step (2) and step (3) only move along twist rays. At
every point in steps (2) and (3), there is at least one twist factor of exponent at least N
present. Therefore, by Lemma (2)7(3), applied with ¢ = p; and with either one twist or
a pair of disjoint twists, we obtain a uniform lower bound of the form

N~ Mlplls— A _ KR —6MR A
k

>
s = > -

for every vertex z that lies in steps (2) or (3). Choosing Ky, large enough compared to
M.k, A, we can ensure that the right-hand side is at least pR — Tp. Since the steps (1)
contribute only a uniformly bounded backtracking, increasing Tj if needed yields that the
entire path is disjoint from B(id, pR — Tp).

Finally, concatenating the twist-ray path from g; to v, the O(R?) detour path from v to
w, and the reverse of the twist-ray path from go to w gives a path from g; to go disjoint from
B(id, pR — Ty) and of length at most MyR? for a uniform My. This completes the proof of
Theorem O



THE NON-PERIPHERAL CURVE GRAPH AND DIVERGENCE IN BIG MAPPING CLASS GROUPS 32

6.9. End space of big mapping class groups. It is a classical quest to investigate the
end space of groups. If end space is not empty, the trichotomy of 1,2 or infinity ends is
established by the theorem of Freudenthal-Hopf. Such a tricotomy has been established
further for countably and compactly generated groups by [Corl9] and for all non-locally finite
graphs by [OP22]. In the case of CB-generated big mapping class groups, end space can be
defined as the inverse limit of connected components of the associated Cayley graph under
exhaustion by bounded balls. This question has been largely open until recently. [OQW25]
showed that for avenue surface the associated group is one-ended. Now we offer an answer
for all surfaces satisfying the assumptions of Theorem [C}

Corollary 6.14. Suppose ¥ is a stable surface and Map(X) is CB-generated. Suppose in
additionally that ((X) > 5, then with respect to any CB-generating set Map(X) is one-ended.

REFERENCES

[ACGH17] G. Arzhantseva, C. Cashen, D. Gruber, and D. Hume, Characterizations of Morse quasi-geodesics
via superlinear divergence and sublinear contraction, Documenta Math. 22 (2017), 1193-1224.

[BC12] J. Behrstock and R. Charney, Divergence and quasimorphisms of right-angled Artin groups, Math.
Ann. 352 (2012), 339-356.

[BK02] N. Benakli and I. Kapovich, Boundaries of hyperbolic groups, in Combinatorial and Geometric Group
Theory (R. Gilman et al., eds.), Contemp. Math. 296 (2002), 39-94.

[BMMO8] M. Bestvina, B. Kleiner, and M. Sageev, Quasi-flats in CAT(0) (0) complezes, Geom. Topol. 12
(2008), 1653-1699.

[Bou98] N. Bourbaki, General Topology. Chapters 1—4, Elements of Mathematics (Berlin), Springer-Verlag,
Berlin, 1998.

[Bow12] B. H. Bowditch, Relatively hyperbolic groups, Int. J. Algebra Comput. 22 (2012), no. 3, 1250016.

[BNV23] A. Bar-Natan and Y. Verberne, The grand arc graph, Math. Z. 305 (2023), no. 20.

[Beh06] J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmiiller space, Geom.
Topol. 10 (2006), 1523-1578.

[BDR25] M. Bestvina, G. Domat, and K. Rafi, Classification of stable surfaces with respect to automatic
continuity, Preprint, arXiv:2411.12927.

[BH99] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss.
319, Springer-Verlag, Berlin, 1999.

[BMO08] J. Behrstock and Y. Minsky, Dimension and rank for mapping class groups, Ann. of Math. (2) 167
(2008), 1055-1077.

[Cas16] C. Cashen, Quasi-isometries need not induce homeomorphisms of contracting boundaries with the
Gromov product topology, Anal. Geom. Metr. Spaces 4 (2016), no. 1, 278-281.

[CM19] C. Cashen and J. Mackay, A metrizable topology on the contracting boundary of a group, Trans.
Amer. Math. Soc. 372 (2019), no. 3, 1555-1600.

[Cha07] R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007), no. 1, 141—

158.

[Cor19] Y. Cornulier, On the space of ends of infinitely generated groups, Topology Appl. 263 (2019), 279—
208.

[CS15] R. Charney and H. Sultan, Contracting boundaries of CAT(0) (0) spaces, J. Topol. 8 (2015), no. 1,
93-117.

[CPO1] J. Crisp and L. Paris, The solution to a conjecture of Tits on the subgroup generated by the squares
of the generators of an Artin group, Invent. Math. 145 (2001), 19-36.

[CWO04] J. Crisp and B. Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups
and braid groups, Algebr. Geom. Topol. 4 (2004), 439-472.

[CKO00] C. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39
(2000), no. 3, 549-556.

[DFV18] M. Durham, F. Fanoni, and N. Vlamis, Graphs of curves on infinite-type surfaces with mapping class
group actions, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2581-2612.



THE NON-PERIPHERAL CURVE GRAPH AND DIVERGENCE IN BIG MAPPING CLASS GROUPS 33

[DMS09]
[Dru09]
[DROY]
[DS05]
[FLM]
[Fri37]
[Ger94A]

[Ger94B]
[Gro87]

[Gro91]
[GQR]

[GRV]
[Hag14]

[Har81]

[HKO5]
[HPW15]
[HQR22]
[Hru05]
[HKS22]
[HWO08]
[Kai96]
[KKL98]
[KR14]
[KM99]
[KR18]
[KS25]
[Mah12]

[MMO00a]

C. Drutu, S. Mozes, and M. Sapir, Divergence in lattices in semisimple Lie groups and graphs of
groups, Trans. Amer. Math. Soc. 362 (2010), no. 5, 2451-2505.

C. Drutu, Relatively hyperbolic groups: geometry and quasi-isometric invariance, Comment. Math.
Helv. 84 (2009), no. 3, 503-546.

M. Duchin and K. Rafi, Divergence rate of geodesics in Teichmiiller space and mapping class groups,
Geom. Funct. Anal. 19 (2009), no. 3, 722-742.

C. Drutu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005),
959-1058.

T. Fernds, J. Lécureux, and F. Mathéus, Random walks and boundaries of CAT(0) cubical complezes,
Comm. Math. Helv. 93 (2018), no. 2, 291-333.

A. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2,
133-142.

S. M. Gersten, Quadratic divergence of geodesics in CAT(0) spaces, Geom. Funct. Anal. 4 (1994),
37-51.

S. M. Gersten, Divergence in 3-manifold groups, Geom. Funct. Anal. 4 (1994), 633-647.

M. Gromov, Hyperbolic groups, in Essays in Group Theory (S. M. Gersten, ed.), MSRI Publ. 8,
Springer, New York, 1987, 75—263.

M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, Vol. 2 (Sussex,
1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge, 1993, 1-295.
I. Gekhtman, Y. Qing, and K. Rafi, QI-invariant model of Poisson boundaries of CAT(0) (0) groups,
Preprint.

C. Grant, K. Rafi, and Y. Verberne, Asymptotic dimension of big mapping class groups, Preprint.
M. Hagen, Weak hyperbolicity of cube complezes and quasi-arboreal groups, J. Topol. 7 (2014), no. 2,
385-418.

W. J. Harvey, Boundary structure of the modular group, in Riemann Surfaces and Related Topics:
Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97, Princeton Univ. Press,
Princeton, NJ, 1981, 245-251.

C. Hruska and B. Kleiner, with an appendix by M. Hindawi, C. Hruska, and B. Kleiner, Hadamard
spaces with isolated special subsets, Geom. Topol. 9 (2005), 1501-1538.

S. Hensel, P. Przytycki, and R. C. H. Webb, 1-slim triangles and uniform hyperbolicity for arc graphs
and curve graphs, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 755-762.

C. Horbez, Y. Qing, and K. Rafi, Big mapping class groups with hyperbolic actions: classification
and applications, J. Inst. Math. Jussieu (2022).

C. Hruska, Geometric invariants of spaces with isolated special subsets, Topology 44 (2005), no. 2,
441-458.

J. Huang, B. Kleiner, and S. Stadler, Morse quasi-flats I, J. Reine Angew. Math. 784 (2022), 53-129.
F. Haglund and D. Wise, Special cube complezes, Geom. Funct. Anal. 17 (2008), no. 5, 1551-1620.
V. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, in Ergodic
Theory and Z¢ Actions (M. Pollicott and K. Schmidt, eds.), London Math. Soc. Lecture Note Ser.,
Cambridge Univ. Press, Cambridge, 1996, 127-176.

M. Kapovich, B. Kleiner, and B. Leeb, Quasi-isometries and the de Rham decomposition, Topology
37 (1998), no. 6, 1193-1211.

I. Kapovich and K. Rafi, On hyperbolicity of free splitting and free factor complezes, Groups Geom.
Dyn. 8 (2014), no. 2, 391-414.

A. Karlsson and G. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces,
Comm. Math. Phys. 208 (1999), 107-123.

C. Kent and R. Ricks, Asymptotic cones and boundaries of CAT(0) (0) groups, Indiana Univ. Math.
J. (2018).

M. C. Kopreski and G. Shaji, Geometric models and asymptotic dimension for infinite-type surface
mapping class groups, preprint, arXiv:2508.06679.

J. Maher, Exponential decay in the mapping class group, J. Lond. Math. Soc. (2) 86 (2012), no. 2,
366—-386.

H. Masur and Y. Minsky, Geometry of the complex of curves I: hyperbolicity, Invent. Math. 138
(1999), 103-149.



THE NON-PERIPHERAL CURVE GRAPH AND DIVERGENCE IN BIG MAPPING CLASS GROUPS 34

[MMOOb] H. Masur and Y. Minsky, Geometry of the complez of curves II: hierarchical structure, Geom. Funct.
Anal. 10 (2000), 902-974.

[MS13] H. Masur and S. Schleimer, The geometry of the disk complez, J. Amer. Math. Soc. 26 (2013), no. 1,
1-62.

[MR23] K. Mann and K. Rafi, Large scale geometry of big mapping class groups, Geom. Topol. 27 (2023),
2237-2296.

[NS13] A. Nevo and M. Sageev, The Poisson boundary of CAT(0) (0) cube complex groups, Groups Geom.
Dyn. 7 (2013), no. 3, 653-695.

[OP22] J. Oh and M. Pengitore, Geometry of nontransitive graphs, Pacific J. Math. 317 (2022), no. 2,
423-440.

[OQW25] J. Oh, Y. Qing, and X. Wu, Avenue surfaces are one-ended, Preprint.

[Qinl6] Y. Qing, Geometry of right-angled Cozeter groups on the Croke—Kleiner spaces, Geom. Dedicata 183
(2016), no. 1, 113-122.

[QT25] Y. Qing and A. Thomas, The non-peripheral curve graph is uniformly hyperbolic, Preprint.

[QT18] Y. Qing and G. Tiozzo, Excursions of generic geodesics in right-angled Artin groups and graph
products, IMRN (2018).

[QRT23] Y. Qing, K. Rafi, and G. Tiozzo, Sublinearly Morse boundary II: proper geodesic spaces,
arXiv:2011.03481.

[QRT22] Y. Qing, K. Rafi, and G. Tiozzo, Sublinearly Morse boundary I: CAT(0) (0) spaces, To appear in
Adv. Math.

[Ric63] 1. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963),
259-269.

[Ros21] C. Rosendal, Coarse Geometry of Topological Groups, Cambridge Tracts in Mathematics 223, Cam-
bridge Univ. Press, 2021.

[Sch] S. Schleimer, Notes on the complex of curves, available at https://sschleimer.warwick.ac.uk/
Maths/notes2.pdf.

[Sis12]  A. Sisto, Separable and tree-like asymptotic cones of groups, Mimnster J. Math. 5 (2012), 233-248.

[Sis13a] A. Sisto, Projections and relative hyperbolicity, Enseign. Math. (2) 59 (2013), no. 1-2, 165-181.

[Sis13b] A. Sisto, Tree-graded asymptotic cones, Groups Geom. Dyn. 7 (2013), 697-735.

[Xie05] X. Xie, The Tits boundary of a CAT(0) (0) 2-complez, Trans. Amer. Math. Soc. 357 (2005), no. 4,
1627-1661.

Email address: assaf .barnatan@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE
Email address: yqing@utk.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO
Email address: rafi@math.toronto.edu


https://sschleimer.warwick.ac.uk/Maths/notes2.pdf
https://sschleimer.warwick.ac.uk/Maths/notes2.pdf

	1. Introduction
	2. Preliminaries
	3. Non-peripheral subsurfaces and the coarse rank of the mapping class group
	4. The non-peripheral curve graph
	5. Hyperbolicity of the non-peripheral curve graph
	6. Divergence of big mapping class groups
	References

