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Abstract. Sublinearly Morse boundaries of proper geodesic spaces are intro-
duced by Qing, Rafi and Tiozzo. Expanding on this work, Qing and Rafi recently
developed the quasi-redirecting boundary, to include all directions of metric spaces
at infinity. Both boundaries are topological spaces that consist of equivalence
classes of quasi-geodesic rays and are quasi-isometrically invariant. In this paper,
we study these boundaries when the space is equipped with a geometric group
action. In particular, we show that G acts minimally on ∂κG and that contracting
elements of G induces a weak north-south dynamic on ∂κG. We also prove that,
suppose ∂G exists, then when |∂κG| ≥ 3, G acts minimally on ∂G and in addition,
∂G is a second countable topological space. The last section concerns the restric-
tion to proper CAT(0) spaces and finite dimensional CAT(0) cube complexes. We
show that when G acts geometrically on a finite dimensional CAT(0) cube complex
(whose QR boundary is assumed to exist), then nontrivial QR boundary implies
there exists a Morse element in G. Lastly, we show that if X is a proper cocompact
CAT(0) space, then P (X) is a visibility space.
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1. Introduction

Gromov introduced gromov hyperbolicity and hyperbolic groups in [Gro87]. He
also introduced a compactification of gromov hyperbolic spaces call the Gromov
boundary. A central fact connecting these concepts is that Gromov hyperbolicity
is a quasi-isometry invariant: quasi-isometries extend equivariantly to homeomor-
phisms on the Gromov boundary. In the years after, the Gromov boundary has
proven to be of central importance in understanding hyperbolic groups and hyper-
bolic manifolds, see [KB02] for a survey of these results. In recent decades, various
boundaries have been constructed for non-hyperbolic groups to extend the program
started by Gromov. In particular, Rafi-Qing and Tiozzo ([QRT22], [QRT23]) de-
fined the sublinearly Morse boundary, including geodesic rays whose Morse-ness can
decay sublinearly with distance from the base point. These boundaries are the first
metrizable topological spaces for all finitely generated groups. Their hyperbolic fea-
tures are discussed in works such as [IZ24], [MQZ22], [QZ24]. These studies center
around CAT(0) spaces and CAT(0) cube complexes. In the first part of this paper,
we continue to study their hyperbolic-like features in the more general setting of
proper geodesic spaces.

1.1. Minimality of the group action. A group is said to act minimally on a
topological space if every orbit is a dense subset of the space. We show that this
property is enjoyed by κ-boundaries. In contrast with the identifications with Pois-
son boundaries in various settings, the minimality result is evidence to the fact that
the boundary is not too large in excess of the orbit of a point under the group ac-
tion. The first result fully generalizes the same property shown in CAT(0) spaces in
[QZ24, Theorem 3.3].

Theorem A. Every finitely generated group G acts minimally on ∂κG. That is, if
a ∈ ∂κG is any element in ∂κG, we have that G · a is a dense subset of ∂κG.

Aiming to understand all directions up to quasi-isometry, and to compactify the
sublinearly Morse boundary, Rafi-Qing recently introduced a new boundary for
metric spaces called the quasi-redirecting boundary, or the QR boundary for short
[QR24]. The QR boundary expands the sublinearly Morse boundary topologically
and is often compact, which is one of its key advantages.

Here is the main idea of the QR boundary: let α, β : [0,∞) → X be two quasi-
geodesic rays in a metric space X. We say α can be quasi-redirected to β (and write
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α ⪯ β) if there exists a pair of constant (q,Q) such that for every r > 0, there exists
a (q,Q)–quasi-geodesic ray γ that is identical to α up to distance r, and eventually
γ becomes identical to β. We say α ≃ β if α ⪯ β and β ⪯ α. The resulting set of
equivalence classes forms a poset, denoted by P (X). The post P (X) equipped with
a “cone-like topology” is called quasi-redirecting boundary (QR boundary) of X and
denoted by ∂X.

β

α

r

γ

Figure 1. The ray α can be quasi-redirected to β at radius r.

Theorem B. The sublinearly Morse boundary is a dense subset of the QR boundary.
Assume that ∂κG exists and |∂κG| ≥ 3. Let b be any element of ∂G, then there exists
an infinite sequence {ai} ∈ ∂κG such that the sequence converges to b in the topology
of ∂G.

Aside from its usual topological significance, a surprising consequence of The-
orem B is that we obtain second countability for all quasi-redirecting boundaries
when exists:

Corollary C. Assume that ∂G exists. If |∂κG| ≥ 3, then ∂G is second countable.

However, the group G does not act minimally on ∂QRG as discussed in Section 4.1,
there exists points in ∂QRG whose orbit is not dense in ∂QRG.

1.2. Morse elements and visibility. Question 4.4 in [QR24] asks that if G does
not have an Morse element, is P (G) a single point. In this paper we answer the
question in the affirmative for the setting of finite dimensional CAT(0) cube com-
plexes.

Theorem D. If G acts geometrically on a finite dimensional CAT(0) cube complex
and |P (G)| ≥ 2, then G contains a Morse element.

As a middle step of establishing this result we also obtain visibility of P (X).
Roughly speaking, a set of directions is a visibility space if there is a bi-infinite geo-
desic line connecting every pair of directions. The Gromov boundary is a visibility
space and this property helps to understand the connection between quasiconformal
maps on the boundary and quasi-isometries on the space. Furthermore, the visibility
property is not only true for hyperbolic groups. A. Karlsson [Kar03] proved that it is
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true on the Floyd boundary. Visibility also holds for Morse Boundary[CCM19], sub-
linearly Morse boundaries of proper CAT(0) spaces [Zal22], as well as the Bowditch
boundary for relatively hyperbolic groups and Floyd compacitification. Visibility
finds applications in studying with random walk on countable groups [Tio15] and
connecting Floyd boundary with Bowditch boundary [Ger12]. It is conceivable that
some of these applications can be extended to quasi-redirecting boundary when ∂X
exists.

Corollary E. Let X be a proper CAT(0) metric space with a cocompact action.
Then P (X) is a visibility space.

History. Minimality of group actions is among the basic topological and dynamical
properties established for the Gromov boundaries in [Gro87]. Meanwhile, in the
classical setting, elements which have actions on the circle having a single attracting
point and a single repelling point are known as having north-south dynamics. These
actions play important roles in the dynamics of actions on the circle, see for example
Thurston [Thu88]. These features persists in the non-hyperbolic group setting and
has contributed to the study of Out(Fn) [CC20], and Thompsons group [CT21], to
name a few.

In settings where the group is not hyperbolic but it has some weaker hyperbolic-
like properties, the sublinearly Morse boundaries and the quasi-redirecting bound-
aries are preceded by geometric constructions aiming to generalize the Gromov
boundary. In 2013, the contracting boundary of CAT(0) spaces was constructed by
Charney and Sultan [CS15], and is shown to be a first quasi-isometrically invariant
geometric boundary in non-hyperbolic settings. The construction was generalized
the Morse boundary, which can be constructed on any proper geodesic space, by
Cordes in [Cor18]. Morse boundaries are equipped with a direct limit topology and
are invariant under quasi-isometries. However, the Morse boundary is frequently not
second countable, and in general, sample paths of simple random walks on groups
do not converge to points in the Morse boundary.

In comparison, the sublinearly Morse boundary is frequently a topological model
(and hence a group invariant topological model) for suitable randoms walks on the
associated group. These groups include right-angled Artin groups, [QRT22] mapping
class group can be identified with the Poisson boundary of the associated random
walks. Meanwhile, genericity of a more geometric flavor is also exhibited for sub-
linearly Morse boundaries. In [GQR22], genericity of sublinearly Morse directions
under Patterson Sullivan measure was shown to hold in the more general context of
actions which admit a strongly contracting element. In fact, the results in [GQR22]
concerning stationary measures were recently claimed in a different setting by In-
hyeok Choi [Choi22], who in place of ergodic theoretic and boundary techniques uses
a pivoting technique developed by Gouëzel[Gou22]. Meanwhile, following [Yan22],
genericity of sublinearly Morse directions on the horofunction boundary was recently
shown for all proper statistically convex-cocompact actions on proper metric spaces
[QY24].
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2. Preliminaries in boundary constructions

2.1. Quasi-geodesic metric space and surgeries. In this section, we establish
some basic definitions and notations and recall some surgery lemmas between quasi-
geodesics.

Definition 2.1 (Quasi-Isometric embedding). Let (X, dX) and (Y, dY ) be metric
spaces. For constants q ≥ 1 and Q ≥ 0, we say a map Φ: X → Y is a (q,Q)–quasi-
isometric embedding if, for all x1, x2 ∈ X,

1

q
dX(x1, x2)−Q ≤ dY

(
Φ(x1),Φ(x2)

)
≤ q dX(x1, x2) +Q.

If, in addition, every point in Y lies in the Q–neighbourhood of the image of Φ,
then Φ is called a (q,Q)–quasi-isometry. This is equivalent to saying that Φ has a
quasi-inverse. That is, there exists constants q′, Q′ > 0 and a (q′, Q′)–quasi-isometric
embedding Ψ: Y → X such that,

∀x ∈ X dX
(
x,ΨΦ(x)

)
≤ Q′ and ∀y ∈ Y dY

(
y,ΦΨ(y)

)
≤ Q′.

When such a map Φ exists, we say (X, dX) and (Y, dY ) are quasi-isometric.

Definition 2.2 (Quasi-Geodesics). A quasi-geodesic in a metric space X is a quasi-
isometric embedding α : I → X where I ⊂ R is an (possibly infinite) interval. That
is, α : I → X is a (q,Q)–quasi-geodesic if, for all s, t ∈ I, we have

|t− s|
q

−Q ≤ dX
(
α(s), α(t)

)
≤ q · |s− t|+Q.

Furthermore, in this paper we always assume α is (2q + 2Q)–Lipschitz, and hence,
α is continuous. By [QR24, Lemma 2.3] the Lipschitz assumption can be made
without loss of generality.

Notation 2.3. To simplify notation, we use q = (q,Q) ∈ [1,∞)× [0,∞) to indicate
a pair of constants. That is, we say Φ: X → Y is a q–quasi-isometry, and α is a
q-quasi-geodesic. We fix a base point o in the metric space X. By a q–ray we mean
a q–quasi-geodesic α : [0,∞) → X such that α(0) = o. We shall often refer to the
image of α simply as α, e.g. x ∈ α as opposed to x ∈ im(α).

For r > 0, letBr ⊂ X is the open ball of radius r centered at o and letBc
r = X−Br,

the complement of Br in X. For a q–ray α and r > 0, we let tr ≥ 0 denote the first
time when α first intersects Bc

r. We denote α(tr) by αr ∈ X. Also, let

α|r = α[0, tr]
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be the restriction α to the interval [0, tr], that is, the quasi geodesic segment of α
from o to αr. In general, for an interval I ⊂ [0,∞), α|I denotes the restriction of α
to I. In addition, we use α|r,∞ to denote the tail of α from the point when α last
exit the ball of radius r. Given two points x, y ∈ α, we denote the restriction of α
between these points as [x, y]α.

We also use d(�, �) instead of dX(�, �) when the metric space X is fixed. For x ∈ X,
∥x∥ denotes d(o, x).

Assumption 0. (No dead ends) The metric space X is always assumed to be a
proper, geodesic metric space. Furthermore, there exist a pair of constants q0 such
that every point x ∈ X lies on an infinite q0-quasi-geodesic ray.

Recall that every proper quasi-geodesic metric space is quasi-isometric to a proper
geodesic metric space (see for example [Löh18, Proposition 5.3.9]). So the first
condition in the Assumption 0 is not a strong assumption. Furthermore, Cayley
graphs of all finitely generated groups satisfies Assumption 0, [QR24, Lemma 2.5].

Surgery between quasi-geodesics. In this section we present several methods to
produce a quasi-geodesic as a concatenation of other geodesics or quasi-geodesics.
The statements are intuitively clear and the proofs are elementary. So, this section
should probably be skipped on the first reading of the paper. First, we recall a few
surgery lemmas from [QRT22] and [QRT23].

Lemma 2.4. Let X be a metric space satisfying Assumption 0. The following
statements are found in [QRT22, Lemma 2.5] and [QRT23, Lemma 3.8].

• Consider a point x ∈ X and a (q,Q)–quasi-geodesic segment β connecting a
point z ∈ X to a point w ∈ X. Let y be a closest point in β to x. Then

γ = [x, y] ∪ [y, z]β

is a (3q,Q)–quasi-geodesic.

z w

x

y

β

Figure 2. The concatenation of the geodesic segment [x, y] and the
quasi-geodesic segment [y, z]β is a quasi-geodesic.

• Let β be a geodesic ray and γ be a (q,Q)–ray. For r > 0, assume that
d(βr, γ) ≤ r/2. Then, there exists a (9q,Q)–quasi-geodesic γ′ where γ′(t) =
β(t) for large values of t and

γ|r/2 = γ′|r/2.
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• Consider a (q,Q)–quasi-geodesic ray α : [0,∞) → X and a finite (q,Q)–
quasi-geodesic segment β : [a, b] → X. Then there is s0 ∈ [0,∞) such that
the following holds: for s ∈ [s0,∞) let sγ ∈ [s,∞) and tγ ∈ [a, b] be such
that [β(tγ), α(sγ)] is a geodesic segment that realizes the set distance between
α[s,∞) and β. Then

γ = β[a, tγ] ∪ [β(tγ), α(sγ)] ∪ α[sγ,∞)

is a (4q, 3Q)–quasi-geodesic.

o
α(s0) α(s)

α
xγ = α(sγ)

yγ = β(tγ)

β(b) β(a)

Figure 3. Surgery III

2.2. Sublinearly Morse boundary. We now introduce the definition of κ-Morse
quasi-geodesic, which will be fundamental for our construction. Recall that a func-

tion κ : [0,∞) → [1,∞) is sublinear if limt→∞
κ(t)
t

= 0. As shown in [QRT22,
Remark 3.1], we may assume that κ is monotone increasing and concave. To set the
notation, we say a quantity D is small compared to a radius r > 0 if

(1) D ≤ r

2κ(r)
.

Given a quasi-geodesic ray α and a constant m, we define

Nκ(α,m) :=
{
x ∈ X : d(x, α) ≤ m · κ(∥x∥)

}
.

The following observation will be useful.

Definition 2.5. Let Z ⊆ X be a closed set, and let κ be a sublinear function. We
say that Z is κ-Morse if there exists a proper function mZ : R2 → R such that
for any sublinear function κ′ and for any r > 0, there exists R such that for any
(q,Q)-quasi-geodesic ray β with mZ(q,Q) small compared to r, if

dX(βR, Z) ≤ κ′(R) then β|r ⊂ Nκ

(
Z,mZ(q,Q)

)
.

The function mZ will be called a Morse gauge of Z.

Note that we can always assume without loss of generality that max{q,Q} ≤
mZ(q,Q), and we will assume this in the following.
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o Z

mZ(q,Q) · κ(r)

Rr

κ′(R)

βR
β

Figure 4. Definition of κ-Morse set Z: Every quasi-geodesic ray
β has the property that there exists R(Z, r, q,Q, κ′), such that
if βR is distance κ′(R) from Z, then β|r is in the neighborhood
Nκ(Z,mZ(q,Q)).

2.2.1. Boundary definition.

Definition 2.6. Given two quasi-geodesic rays α, β based at o, we say that β ∼ α
if they sublinearly track each other: i.e. if

lim
r→∞

d(αr, βr)

r
= 0.

We denote the equivalence class of α as a, and the sublinearly Morse boundary,
denoted ∂κX, is the set of all such equivalence classes.

By the triangle inequality, ∼ is an equivalence relation on the space of quasi-
geodesic rays based at o, hence also on the space of κ-Morse quasi-geodesic rays.

2.2.2. κ-weakly Morse rays. As in [QRT22], we also define a different notion of
sublinearly Morse which more closely matches the usual definition of Morse.

Definition 2.7. Let Z ⊆ X be a closed set, and let κ be a concave sublinear
function. We say Z is κ-weakly Morse if there exists a proper function mZ : R2 → R
such that for any (q,Q)-quasi-geodesic γ : [s, t] → X with endpoints on Z,

γ([s, t]) ⊂ Nκ

(
Z,mZ(q,Q)

)
.

The function mZ will be called a κ-weakly Morse gauge of Z.

We note that κ-weakly Morse and κ-Morse are equivalent for proper, geodesic
metric spaces, see [QRT23, Remark 3.1].

2.2.3. Topology on the sublinearly Morse boundary.

Definition 2.8. Let X be a proper, geodesic metric space, and let κ be a sublinear
function. Let a be a (quasi-)geodesic ray representative of a ∈ ∂κX, and let ma be
a Morse gauge for a. We define U(a, r) as follows:
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An equivalence class b ∈ ∂κX is an element of U(a, r) if, for any (q,Q)-quasi-
geodesic φ : [0,∞) → X with φ ∈ b and with ma(q,Q) small compared to r, we
have

φ([0, tr]) ⊆ Nκ(a,ma(q,Q)).

For a proper, geodesic metric space X, the collection of sets U(a, r) form a neigh-
borhood basis for a, and in particular a ∈ U(a, r) [QRT23, Lemma 4.2].

2.3. Quasi-redirecting boundary. Here we collect all facts following the set-up
of [QR24]. Please refer to [QR24] for a complete treatment.

2.3.1. Equivalence classes of rays up to quasi-redirection. Recall that, for quasi-
geodesic rays α and β, we say that α ⪯ β if α can be quasi-redirected to β, that is,
if there is a family of quasi-geodesic rays with uniform constants that coincide with
α in the beginning for an arbitrarily long time but eventually coincide with β. We
now formalize this definition.

Definition 2.9. Let α, β and γ be quasi-geodesic rays. We say β eventually coincide
with γ (and write γ ∼ β) if there are times tβ, tγ > 0 such that, for t ≥ tγ, we have

γ(t) = β(t+ tβ).

For r > 0, we say γ quasi-redirects α to β at radius r if

γ|r = α|r and β ∼ γ.

If γ is a q–ray, we say α can be q–redirected to β at radius r. We refer to tγ as the
landing time. We say α ⪯ β, if there is q ∈ [1,∞) × [0,∞) such that, for every
r > 0, α can be q–redirected to β at radius r.

β

α

r

γ

Figure 5. The ray α can be quasi-redirected to β at radius r.

Definition 2.10. Define α ≃ β if and only if α ⪯ β and β ⪯ α. Then ≃ is
an equivalence relation on the space of all quasi-geodesic rays in X. Let P (X)
denote the set of all equivalence classes of quasi-geodesic rays under ≃. For a quasi-
geodesic ray α, let [α] ∈ P (X) denote the equivalence class containing α. We extend
⪯ to P (X) by defining [α] ⪯ [β] if α ⪯ β. Note that this does not depend on the
representative chosen in the given class. The relation ⪯ is a partial order on elements
of P (X).
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Proposition 2.11. [QR24, Lemma 2.5, Lemma 3.2, Proposition 3.4]

• Let G be a finitely generated group, then Cay(G) satisfies Assumption 0.
• Quasi-redirecting is transitive:

α ⪯ β and β ⪯ γ =⇒ α ⪯ γ.

In particular, Let α, β, γ be quasi-geodesic rays. If α can be (q1, Q1)–redirected
to β at every radius r > 0 and β can be (q2, Q2)–redirected to γ at every ra-
dius r > 0, then α can be (q3, Q3)–redirects to γ at every radius r > 0 where

q3 = max
{
q2 + 1, q1

}
, and Q3 = max

{
Q1, Q2

}
.

• Quasi-isometry of X induces a an automorphism on P (X).

There are two further technical assumptions made to rule out the wild spaces and
to ensure that there exists a sensible topology.

Assumption 1. (Quasi-geodesic representative) There is q0 (by making it larger,
we can assume it is the same at q0 in Assumption 0) such that every equivalence
class a ∈ P (X) contains a q0–ray. We fix such a q0–ray, denote it by α0 ∈ a and
refer to it as the central element of the class a.

Assumption 2. (Uniform redirecting function) For every a ∈ P (X), there is a
function

fa : [1,∞)× [0,∞) → [1,∞)× [0,∞),

called the redirecting function of the class a, such that if b ≺ a then any q–ray β ∈ b
can be fa(q)–redirected to α0.

Note that the function fa may depend on the choice of the central element. But
such functions exist for every quasi-geodesic ray, as we show in the following:

The topology on X∪P (X) is defined via a system of neighbourhoods. Recall that
points in P (X) are equivalence classes of quasi-geodesic rays. To unify the treatment
of point in X and P (X), for every x ∈ X, we consider the set of quasi-geodesic rays
that pass through x. Abusing the notation, we denote this set again by x, that is

x =
{
quasi-geodesics rays passing through x

}
.

We use the gothic letters a, b, c to denote elements of P (X)∪X, that is, either a set
of quasi-geodesic rays passing through a point x ∈ X or an equivalence class of quasi-
geodesic rays in P (X). For a ∈ P (X), define Fa : [1,∞)× [0,∞) → [1,∞)× [0,∞)
by

Fa(q) = fa(q) + (1, q), for q ∈ [1,∞)× [0,∞).

Definition 2.12. For a ∈ P (X) and r > 0, define

U(a, r) :=
{
b ∈ P (X) ∪X

∣∣∣ every q–ray in b can be Fa(q)–redirected to a0 at r
}
.
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In most arguments about a class of quasi-geodesic rays a, it is enough to consider
q–rays where q is not too big. We now make this precise. For q = (q,Q) and
q′ = (q′, Q′) we say q ≤ q′ if q ≤ q′ and Q ≤ Q′.

Lemma 2.13. For every r > 0 there is a pair of constants qmax ∈ [1,∞) × [0,∞)
such that if q ̸≤ qmax then, for every a ∈ P (X), any q–ray β can be Fa(q)–redirected
to a0 at radius r.

A system of neighbourhoods. For each a ∈ P (X), define

B(a) =
{
V ⊂ X ∪ P (X)

∣∣∣ U(a, r) ⊂ V for some r > 0
}

and for every x ∈ X, define

B(x) =
{
V ⊂ X ∪ P (X)

∣∣∣B(x, r) ⊂ V for some r > 0
}
.

Theorem 2.14. [QR24, Theorem 5.9] The space X ∪ ∂X is a bordification of the
space X and ∂X is QI-invariant.

3. Dynamics on sublinearly Morse boundaries

In this section, we prove Theorem A, i.e., the G orbit of every element a ∈ ∂κG
is dense in ∂κG. We do this by showing a slightly weaker statement: the G action
on ∂κX is minimal as long as G ↷ X is cobounded. In this section, we will assume
that X satisfies assumption 0.

3.1. Minimality of the sublinearly Morse boundary. We begin by proving a
fact on ∂X. This fact is very straightforward: for any b ∈ ∂X, there exists a ∈ ∂X
so that a can be translated away from o along b, and vice versa. Let b ∈ b ∈ ∂X.
Recall that a sequence of group elements {gi} tracks b if, for every T ≥ 0, there
exists M ≥ 0 so that, for every i ≥ M , there exists t ≥ T with d(gio, β(t)) ≤ K.

Lemma 3.1. Let K ≥ 0 be the cobounded constant of G ↷ X and assume |∂X| ≥ 3.
For any b ∈ ∂X, choose a geodesic ray b ∈ b and let {gi} be any sequence in G that
tracks b. Then, there exists a ∈ ∂X such that for any a ∈ a and R > 0, there exists
j ∈ N such that gia ∩ BR(o) = ∅ for all i ≥ j. In addition, for any sequence {hi}
that tracks a, and for any R > 0 there exists j ∈ N such that hib ∩ BR(o) = ∅ for
all i ≥ j.

Proof. Since (gi)i tracks β, d(gi · o) → ∞ as i → ∞. Let a, c ∈ ∂κX so that
a ̸= c ̸= b. Let a ∈ a and c ∈ c be geodesic representatives. For each i, let
pi ∈ πgia(o) and qi ∈ πgic(o). For the sake of contradiction, assume that both
sequences {||pi||} and {||qi||} have a subsequence bounded above by some R > 0.
By passing to a subsequence, we may assume both sequences {||pi||} and {||qi||} are
bounded above by R. Note that this implies d(gio, pi) → ∞ and d(gio, qi) → ∞,
so we get that {g−1

i pi} and {g−1
i qi} are unbounded sequences. For each i, we have

d(pi, qi) < 2R. Thus, d(g−1
i pi, g

−1
i qi) < 2R. This gives two unbounded sequences
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{g−1
i pi} and {g−1

i qi} such that d(g−1
i pi, g

−1
i qi) < 2R. This implies a and c fellow

travel which gives a ≃ c, a contradiction to a ̸= c.
Without loss of generality we may assume {||pi||} is unbounded. Now assume,

for contradiction, that there exists an infinite sequence {xi} with xi ∈ hib ∩ BR(o)
for some R > 0. Let kio ∈ BK(xi). Then {ki} is a sequence in G that tracks b, but
d(kio, o) ≤ K +R for all i, a contradiction. □

Remark 3.2. As discussed in [QR24, Section 6], sublinearly Morse elements are
minimal in ∂X. In particular, one may replace ∂X with ∂κX in Lemma 3.1.

We now introduce a lemma which, given a geodesic representative a of a and
group element g, constructs a uniform quality quasi-geodesic from ga to b. As in
Remark 3.2, the following lemma equally applies to ∂κX.

Lemma 3.3. Let G be a group that acts cocompactly on X with cocompact constant
K and |∂X| ≥ 3. For any b ∈ ∂X, choose a geodesic b ∈ b and sequence {gi}
that tracks b. Let a ∈ a be as in Lemma 3.1. For any pi ∈ πgi·a(o), there exists a
(27, 3K)-quasi-geodesic ray that contains [o, pi] whose tail end is b.

Proof. There exists an r ≥ 0 such that d(gi·o, br) < K by definition of the cocompact
action. Thus, by Lemma 2.4 γi = [o, pi] ∗ [pi, gi · o]gi·a ∗ [gi · o, br] is a (3, K)-quasi-
geodesic. Let R > 0 be such that Bo(R) contains γi. Denote qi = πγi(bR). We
have,

||qi|| = d(o, qi) ≥ d(o, bR)− d(bR, qi)

≥ R− d(br, bR)

= R− (R− r)

= r.

Also, we see that d(o, pi) ≤ r + K because d(o, gi · o) ≤ r + K and pi is a closest
point projection. We now break into cases,

CASE 1: Suppose qi /∈ [o, pi], then choosing η = [o, qi]γi ∗ [qi, bR] is a (9, K)-quasi-
geodesic. Furthermore, as ||qi|| ≤ R = ||bR||, we get that for any x ∈ b[R,∞),
πη(x) = bR, via an argument from [QRT22, Lemma 4.3]. Hence η ∗ b[R,∞) is an
(27, K)-quasi geodesic that fellow travels b. See Figure 6.
CASE 2: In the case that qi ∈ [o, pi]γi , then qi is within K of pi. Indeed, since

||qi|| ≥ r and ||pi|| ≤ r+K, the fact that both qi and pi are on the geodesic [o, pi]γi
emanating from o implies d(qi, pi) ≤ K. Thus,

η′ = [o, qi]γi ∗ [qi, pi]γi ∗ [pi, qi] ∗ [qi, bR]
is a (9, 3K)-quasi-geodesic. Similar to CASE 1, we find a (27, 3K)-quasi-geodesic
that fellow travels b. □

Corollary 3.4. Given the conditions of Lemma 3.3, if b is κ-Morse, then the
(27, 3K)-quasi-geodesic ray found in Lemma 3.3 is κ-Morse with Morse gauge de-
pending only on K and the Morse gauge of b.
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γi = [o, pi] ∗ [pi, gi · o]gi·a ∗ [gi · o, br]
η = [o, q′i]γi ∗ [q′i, bR]

a

gi · a

gi · o

bo

pi = πgi·a(o)

br bR

qi = πγi(bR)

Figure 6. A picture of CASE 1. We have η will be a (9,K) quasi-
geodesic that contains the geodesic segment [o, pi].

Proof. This is immediate from Lemma 3.3 and [QRT23, Corollary 3.5]. □

Remark 3.5. Notice that Lemma 3.1 gives symmetric results: translating the base-
point of a along b leaves every ball of radius R, and vice-versa. Therefore, by just
changing letters in the proof of Lemma 3.3, we can prove that there exists a (27, 3K)-
quasi-geodesic which first projects to an orbit of b, then eventually fellow travels a.
This observation will be important point in proving Theorem 3.11.

To summarize the above lemma, we have found a quasi-geodesic which first
nearest-point projects to gia and then, eventually, fellow travels b. In this next
lemma, we find a quasi-geodesic λi which closest point projects to gia and then
fellow travels gia. Corollary 3.4 then gives us control over the Morse gauge for λi in
terms of only K and the Morse gauge of b.

Lemma 3.6. Let G be a group that acts cocompactly on X with cocompact constant
K and |∂κX| ≥ 3. For any b ∈ ∂κX, choose a geodesic b ∈ b and sequence {gi}
that tracks b. Let a ∈ a be as in Lemma 3.1. For any pi ∈ πgi·a(o), we have
λi = [o, pi]∗ [pi, gi ·a(∞)] is a (3, 0)-quasi-geodesic that is κ-Morse with Morse gauge
depending only on a, b and K.

Proof. See Figure 7. Consider any ξ ∈ [λi]. Let qi ∈ πξ(pi). Then, [o, qi]ξ ∗ [qi, pi] is
a (3q,Q)-quasi-geodesic with endpoints on [o, pi] which is contained in the η found
in Lemma 3.3. By the weakly κ-Morse condition,

[o, qi]ξ ∗ [qi, pi] ⊂ Nκ

(
η,mη(3q,Q)

)
,
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and by Corollary 3.4, mη depends only on b and K. Similarly, [o, qi] ∗ [qi, ξ(∞)]ξ is
a (3q,Q)-quasi-geodesic that fellow travels gi · a. Thus

[o, qi] ∗ [qi, ξ(∞)]ξ ⊂ Nκ

(
a,ma(3q,Q)

)
.

Hence, we conclude

ξ ⊂ Nκ

(
gi · a,mη(3q,Q) +ma(3q,Q)

)
.

□

λi = [o, pi] ∗ [pi, gi · a(∞)]

a

gi · a

gi · o

bo

pi = πgi·a(o)

ξ

πξ(pi) = qi

Figure 7. A figure of Lemma 3.6. We subdivide ξ into two parts.
The initial segment can be leveraged by using the κ-Morseness of η
in Lemma 3.3. The remaining part of ξ fellow travels gi · a, so we
leverage the κ-Morseness of gi · a.

Remark 3.7. Notably, the Morse gauge for λi does not depend on i.

Notice that the construction of each λi begins by projecting to a point on gia.
Since we are choosing the sequence gi so that gi stays close to b and gets farther
and farther from o, it is not surprising for us to find that the λi end up staying
sublinearly close to β, as we show in the next proposition.

Proposition 3.8. Let G be a group that acts cocompactly on X with cocompact
constant K and |∂κX| ≥ 3. For any b ∈ ∂κX, choose a geodesic b ∈ b and sequence
{gi} that tracks b. Let a ∈ a be as in Lemma 3.1. For pi ∈ πgi·a(o), denote λi =
[o, pi] ∗ [pi, gi · a(∞)]. For any r > 0 there exists an i such that

λi|r ⊂ Nκ

(
b,mb(9, 0)

)
.
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Proof. Set κ′ = mb(9, 0)κ. Since b is κ-Morse, there exists an R = R(3, 0, r, κ′) such
that the conditions of the κ-Morse property holds. By Lemma 3.1, There exists
an i such that for λi = [o, pi] ∗ [pi, gi · a(∞)], we have ||pi|| ≥ R. By Lemma 3.3,
d(λi(R), b) ≤ mb(9, 0)κ(λi(R)) = mb(9, 0)κ(R). Hence, as b is κ-Morse,

λi|r ⊂ Nκ

(
b,mb(9, 0)

)
.

□

Notice that, referring to Definition 2.8, we have just shown that for every r > 0,
there exists i so that λi ∈ U(β, r). However, in order to satisfy the full conditions of
Definition 2.8, we need to show that the entire equivalence class of λi is contained in
U(β, r). This fact is straightforward: If ξ is in the same equivalence class as λi, then
ξ and λi sublinearly fellow travel in the sense of Definition 2.6. Since λi sublinearly
follows β up to distance r, and ξ sublinearly follows λi for all time, ξ must also
sublinearly travel β up to some distance r′. We formalize this argument in the next
proposition.

Proposition 3.9. Let G be a group that acts cocompactly on X with cocompact
constant K and |∂κX| ≥ 3. For any b ∈ ∂κX, choose a geodesic b ∈ b and sequence
{gi} that tracks b. Let a ∈ a be as in Lemma 3.1. For pi ∈ πgi·a(o), denote λi =
[o, pi] ∗ [pi, gi · a(∞)]. For any r > 0, there exists an i such that any (q,Q)-quasi-
geodesic ξ such that ξ ∼ λi has ξ|r ⊂ Nκ

(
b,mb(q,Q)

)
.

Proof. Choose R > 0 to be sufficiently large and i such that

λi|R ⊂ Nκ

(
b,mb(9, 0)

)
.

Specifically, we can choose R to be larger than the R(3, 0, r, κ′) in Proposition 3.8
and also larger than 2r. Pick any (q,Q)-quasi-geodesic ξ such that ξ ∼ λi. By being
in the same equivalence class,

ξ|r ⊆ Nκ

(
λi,mλi

(q,Q)
)
.

Since mλi
is independent of i by Remark 3.7, we denote mλi

by mλ. For any
x ∈ [o, ξr]ξ, by [QRT23, Lemma 2.2],

||πλi
(x)|| ≤ 2||x|| ≤ 2r.

Since R > 2r,

d

(
πb

(
πλi

(x)
)
, πλi

(x)

)
≤ mb(9, 0)κ(πλi

(x)) ≤ 2mb(9, 0)κ(x).

That is, for any r > 0, we can find an i such that all ξ ∼ λi have

ξ|r ⊂ Nκ

(
b, 2mb(9, 0) +mλ(q,Q)

)
.
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λi = [o, pi] ∗ [pi, gi · a(∞)]

a

gi · a

gi · o

bo

pi = πgi·a(o)

ξ

ξr

x

πλi
(x)

πb

(
πλi

(x)
)

λi R

Figure 8. A visual for Proposition 3.9. We choose R large enough
for any ξ and any x ∈ [o, ξr]ξ, its projection to λi will be within [o, pi]λi

.
This bounds the distance of all x ∈ [o, ξr]ξ to b in terms of mb and
mλ.

See Figure 8. Note that by Lemma 3.6, 2mb(9, 0)+mλ(q,Q) is also a Morse gauge
for b. By [QRT23, Lemma 4.2] and its proof, there will also exist an i such that any
ξ with ξ ∼ λi will also have ξ|r ⊂ Nκ

(
b,mb(q,Q)

)
. □

Corollary 3.10. Let K ≥ 0 be the cobounded constant of G ↷ X and assume
|∂κX| ≥ 3. For any b ∈ ∂κX, choose a geodesic b ∈ b and a sequence (gi)i that
tracks b. Let a be as in Lemma 3.1. Then for any r > 0, there exists i so that
gia ∈ U(b, r).

Proof. This is Proposition 3.9 rewritten using the definition of U(b, r). □

We now prove the main result of this section, minimality of the sublinearly Morse
boundary. Notice that, by Lemma 3.1, for any b ∈ ∂κX, there exists some element
a ̸= b so that b ∈ Ga. However, we need to show that any element of ∂κX has a
dense orbit. For this, Remark 3.5 will be a helpful observation.

Theorem 3.11 (Minimality of ∂κG). Let K ≥ 0 be the cobounded constant of
G ↷ X and assume |∂κX| ≥ 3. For every c ∈ ∂κX, the orbit Gc is dense in ∂κX.

Proof. Let b, c ∈ ∂κX. If b = c, we are done. Otherwise, let a ̸= b ̸= c. Let a ∈ a
b ∈ b, and c ∈ c be geodesic ray representatives all with domain [0,∞). Let {gi}
be a sequence in G that tracks b and let {hj} be a sequence in G that tracks a as
in Lemma 3.1. Let r > 0 be arbitrary. By Corollary 3.10 there exists i so that
gia ∈ U(b, r). It is clear that, since the group action of G ↷ X is by isometries,
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a ∈ U(g−1
i b, r). By [QRT23, Claim 4.6], there exists r′ > 0 and a′ ∈ a so that

U(a′, r′) ⊆ U(g−1
i b, r). Again by Corollary 3.10 (and keeping in mind Remark 3.5)

there exists j so that hjc ∈ U(a′, r′), and so hjc ∈ U(g−1
i b, r), i.e., gihjc ∈ U(b, r). □

We note that Theorem A adds an additional assumption that the group action
G ↷ X is also proper, and in fact is the special case where X is a Cayley Graph for
G. Therefore, Theorem A is a special case of Theorem 3.11.

3.2. North-South Dynamics on ∂KX. Similar to the idea of rank-one isometry
we can also define κ-Morse isometry as the an element g ∈ G whose axis is a kappa-
Morse geodesic ray from some point onward. Also pertain to the analogy with rank-
one isometry we produce the result with the rank-rigidity flavor in Proposition 3.13.

Definition 3.12 (κ-Morse isometry). Let X be a geodesic metric space and let
o ∈ X be a basepoint. For an isometry g : X → X, denote on = gn (o) , ηji =
[oi, oi+1] ∪ . . . ∪ [oj−1, oj], where i, j ∈ Z. For convenience, we allow that i = −∞
or j = ∞. We say the action of g on X is κ-Morse or the isometry g is κ-Morse
if there exist a κ-Morse gauge m(q,Q) and a geodesic [oi, oi+1] for each i such that
the bi-infinite concatenation of geodesics η∞−∞ is an κ-Morse quasi-geodesic.

Note that, when κ ≡ 1, this is the definition of a Morse isometry given in [Liu19].
Using the properties of κ-Morse quasi-geodesics, it is easy to see that the notion
does not depend on the choice of basepoint or choices of geodesics. In particular,
we can choose a geodesic [o, o1] and take [oi, oi+1] = gi [o, o1] for all i. This will be
our construction in the following Proposition.

Proposition 3.13. If g ∈ G is a sublinear Morse isometry, then g is a Morse
isometry.

Proof. Let g be a sublinear Morse isometry. Then there exists a concatenation of
geodesics γ = η∞−∞ as in Definition 3.12. We define

N(q,Q) = sup

{
d(γ, x) : x ∈ Nκ

(
γ,mγ(q,Q)

)
and ∃xγ ∈ πγ(x) with xγ ∈ [o, o1]

}
.

We see that since the points in Nκ

(
γ,mγ(q,Q)

)
that closest point project to [o, o1]

are bounded, we get that N(q,Q) will be finite for all (q,Q).
Now, choose any quasi-geodesic ξ with endpoints on γ. Pick any point x ∈ ξ, and

let xγ ∈ πγ(x). We have xγ ∈ gi[o, o1] for some i. So, g−ixγ ∈ [o, o1]. Since g is an
isometry, g−i ·ξ is still a (q,Q)-quasi geodesic with endpoints on γ and g−ixγ ∈ g−i ·ξ
with g−ixγ ∈ πγ(g

−i · x). Thus, by how N(q,Q) is defined,

d(g−ix, γ) ≤ N(q,Q).

Since g is an isometry that preserves γ,

d(x, γ) ≤ N(q,Q).

Because this is true for all x ∈ ξ , we conclude that γ is N -Morse. See Figure 9. □
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γ o o1 oi oi+1

· · ·
ξ xg−iξ g−ix

Figure 9. A picture of the argument in 3.13. Note that N(q,Q) is
largest distance to γ among points in the blue region.

As an immediate corollary, we recover weak north-south dynamics on the sublin-
early Morse boundary. This is a direct analogue to the statement of weak north-
south dynamics in the Morse boundary, see [Liu19, Corollary 6.8].

Corollary 3.14 (Weak North-South Dynamics for sublinearly Morse Boundaries).
Let X be a proper geodesic space and o be a basepoint. Let g be a Sublinearly Morse
isometry of X. Given any open neighborhood U of g∞in ∂κX and any compact set
K ⊂ ∂κX with g−∞ /∈ K. There exists an integer n such that gn(K) ⊂ U .

Proof. This is immediate from Proposition 3.13, Theorem 3.11, and the proof of
[QZ24, Theorem 3.6]. □

4. topological properties of the quasi-redirecting boundary

We now turn our attention to quasi-redirecting boundaries. As discussed in
[QR24], a main motivator for the QR boundary is to be a bordification which is
as large as possible. In this next theorem, we show that QR boundaries are not too
large compared to the sublinearly Morse boundary. In particular, we show that when
the QR boundary of G is defined (as a topological space), as long as the sublinearly
Morse boundary is sufficiently large, (i.e., contains at least three elements,) then
it is dense in the QR boundary. We assume in this section that the QR boundary
exists for the groups in equestion.

Theorem 4.1. Assume that ∂G exists. If |∂κG| ≥ 3, then ∂κG is a dense subset
of the QR boundary. In particular, if b is any element of ∂G, then there exists an
infinite sequence {ai} ∈ ∂κG such that the sequence converges to b in the topology
of ∂G.

Proof. Let X be a Cayley graph of G (with respect to a finite generating set) once
and for all. Consider a geodesic representative b ∈ b ∈ ∂X. By Lemma 3.3, there
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exists a ∈ a so that for any radius R there exists an element g so that [o, p] ∪
[p, g · a(∞)] quasi-redirects to b at radius R via an (27, 3K) quasi-geodesic, where
p = πgα(o).

Let r > 0. Then by Lemma 2.13, there exists qmax such that q ≰ qmax implies
any q-ray α quasi-redirects the b at radius r. Denote ma as the κ-Morse gauge for a
(we can assume that ma(100qmax) is also small compared to r). Let {gi} be a group
sequence that tracks b and let ai = gi · a. By Lemma 3.1, there exists an n so that,
for some κ-Morse geodesic a ∈ a, gn · a∩B10ma(qmax)+r+2K(o) = ∅. Note that, by the
first paragraph, [o, p] ∪ [p, g · a(∞)] quasi-redirects to b at radius r.
Let α ∈ an ∈ ∂κX be a q = (q,Q) quasi geodesic so that q ≤ qmax. Consider on =

gn · o and πα(on). Because [on, πα(on)] ∪ [πα(on), α(∞)]α is a (3q,Q)-quasi-geodesic
that fellow travels gn · a, we must have that πα(on) is within ma(qmax) of gn · a. In
particular, πα(on) is not contained in α|r. This means that [o, πα(on)]α∪ [πα(on), on]
is a (3q,Q) quasi geodesic that contains α|r and has on within K of bR′ for some R′.

Using some sufficiently large s > 0 one can now perform a segment to geodesic
ray surgery (Lemma 2.4) on [o, πα(on)]α ∪ [πα(on), on] and [bs, b(∞)]b. Also, since
on is within K of bR′ , it must be that the point on [o, πα(o)]α ∪ [πα(o), on] that
realizes the set distance to [bs, b(∞)]b is not contained in α|r. Thus, We have found
a (12q, 3Q)-quasi-geodesic that redirects α to b at radius r. See Figure 10.

Therefore by Definition 2.12, for every r > 0 there exists gn ∈ G so that g · a =
an ∈ U(b, r), and so b is in the closure of Ga, i.e. b ∈ Ga.

□

As an immediate corollary of this theorem, we can show that the QR-boundary
of G, when exists, is second countable, if the sublinearly Morse boundary contains 3
or more points. Second countability of ∂X is shown for asymptotically tree-graded
spaces by Rafi and Qing in [QR24, Proposition 8.16]. Thus the corollary greatly
expand the set of groups whose QR boundary (if exists) is second countable.

Corollary 4.2 (Second countability). Assume that ∂G exists. If |∂κG| ≥ 3, then
∂G is second countable.

Proof. Choose a ∈ ∂κX so that Ga is dense in ∂X. Since G is finitely generated, Ga
is countable. Then take all open sets U(ga, r) as in Definition 2.12 with r ∈ Q+. □

4.1. The G action is not minimal. On the other hand, Section 11 of [QR24]
exhibit an example where the action of G on ∂X is not minimal. We briefly describe
the example here and refer to [QR24, Section 10] for a complete treatment. Let G
be the following irreducible right-angled Artin group:

G =
〈
a, b, c, d | [a, b], [b, c], [c, d]

〉
.

A block in X is a convex infinite subset of X that is a lift of either S1 ∪ S2, or
S2 ∪ S3. Thus a block is isometric to the universal cover of the Salvetti complex of
either of the following groups

G1 =
〈
a, b, c | [a, b], [b, c]

〉
or G2 =

〈
b, c, d | [b, c], [c, d]

〉
.
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a

gn · a

on

bo bR′ bs

πα(on)

α

αr

Figure 10. A visual for the proof of Theorem 4.1. We choose gn so
that gn · a is sufficiently far away from o. Then we use the segment
to geodesic ray surgery lemma to create a (12q, 3Q)-quasi-geodesic (in
red) comprised of connecting [o, πα(on)]α ∪ [πα(on), on] and [bs, b(∞)].

In other words, each blocks comes with a co-compact action of a conjugate copy of
either G1 of G2. A flat in X is a lift of S1, S2 or S3. Given a pair of blocks, their
intersection in X is either empty or a flat (in fact, always a lift of S2). That is, a
flat comes with a compact action of a conjugate of the group

〈
b, c | [b, c]

〉
= Z2. We

refer to these as bc–flats.
One can construct a graph where vertices are blocks and two vertices are con-

nected by an edge if and only if two blocks intersect in a flat. The resulting graph,
which we denote by T , is the Bass-Serre tree associated with amalgamated product
decomposition of G:

G = G1 ∗⟨ b,c | [b,c] ⟩ G2.

The quasi-redirecting boundary of G consists of the following classes. We say a
quasi-geodesic ray is transient if its projection to T departs every ball of bounded
radius in T . To every transient quasi-geodesic ray α, we can associate an itinerary
Ai, which is an infinite embedded path in T exiting an end ξ. Given such ξ, there
is a preferred quasi-geodesic α1 exiting ξ that passes through the points xk. We set
wk = xk+1 ·x−1

k and refer to |wk| as the excursion of α1 in the block Ai. Then [α1] is
different from z if and only if the excursion of α1 is sub-exponential with respect to
the distance in T . That is, every class in P (X) is either z or [α1] for such α1. Lastly,
by [QR24, Corollary 11.11], two quasi-geodesic rays with sub-exponential excursion,
and with different itineraries, are in different, unrelated classes.
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Proposition 4.3. Let G be the group specified above. The set G · z is not a dense
subset of ∂G.

Proof. Note that z is the only element in ∂G that contains a geodesic ray that
bounds a flat. Any g ∈ G acts by isometry on G and thus g · z also bounds a flat.
But z is the only element with such property thus g · z = z for any g ∈ G. Thus
if there exists a sequence {gi · z} that converges to a for each a ∈ ∂G, then z is in
every neighborhood of a and thus bfz ⪯ a. Choose a to be a Morse element and by
[QR24, Proposition 6.5], z ∼ a and z is also a Morse element, contradicting choice
of z. □

Remark 4.4. In this example, even though the cardinality of sublinearly Morse ele-
ment is uncountable, the cardinality of

P (G)∖∂κG

is also uncountable. That is to say, the quasi-redirecting boundary is much larger
as a set than the sublinearly Morse boundary.

5. Existence of Morse elements

Question 4.4 in [QR24] asks if G does not have an Morse element, is P (G) a single
point. In this section we answer the question in the affirmative for finite dimensional
CAT(0) cube complexes.

5.1. CAT(0) cube complexes and rank rigidity theorem. A CAT(0) cube com-
plex is a simply connected cell complex where all of the cells are Euclidean cubes
with edge length one, and such that the link of each vertex is a flag complex. A the-
orem of M. Gromov (see e.g. Theorem II.5.20 from [BH09] for the finite-dimensional
case and Theorem 40 from [Lea13] for the general case) states that X, endowed with
the induced length metric, is a CAT(0) space. Moreover X is complete if and only
if X does not contain an infinite, ascending chain of cells (see [Lea13, Theorem
31]); in particular, this is the case if X is locally finite-dimensional, in the sense
that the supremum of the dimensions of cubes containing any given vertex is finite.
In this section we are only concerned with finial dimensional, proper, CAT(0) cube
complexes. The space X is locally compact if and only if it is locally finite, in the
sense that every vertex has finitely many neighbours.

An open conjecture due to Ballmann and Buyalo [BB08] classify CAT(0) spaces
by means of their rank. In particular, a complete geodesic is said to have rank 1 if
it does not bound a flat half-plane. Accordingly, a CAT(0) space is called rank-one
if it contains a rank 1 geodesic, otherwise we say it has higher rank.

Conjecture 5.1. Let X be a locally compact CAT(0) space and let G acts geomet-
rically on X. If X contains a geodesic of rank 1, then it also contains a G–periodic
geodesic of rank 1.

There are various results addressing the conjecture by adding extra conditions
that support the conclusion, among the most famous is the following:
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Theorem 5.2 (Rank Rigidity for finite-dimensional CAT(0) cube complexes). [CS11]
Let X be a finite-dimensional CAT(0) cube complex and G ≤ Aut(X) be a group
acting geometrically on X. Then there is a convex G-invariant subcomplex Y ⊆ X
such that either Y is a product of two unbounded cube subcomplexes or G contains
an element acting on γ as a rank-one isometry.

In this section, we will use the rank-rigidity theorem to obtain rank-one isomoetry
in the existance of nontrivial QR-boundary. We first present a lemma that helps
to establish when two geodesic rays are QR-equivalent. Assume for the rest of the
this section that the QR boundary is well defined for the CAT(0) cube complex in
question.

Lemma 5.3. Let X be a finite dimensional CAT(0) cube complex and let α, β be
two geodesic rays emanating from the basepoint o. Suppose there exists a C > 0
such that the geodesic segments [α(n), β(n)] are such that there are infinitely many
n ∈ N where

d(o, [α(n), β(n)]) ≥ C · n,
Then α ∼ β.

Proof. By the convexity of CAT(0) geometry there exists a point p ∈ [o, α(n)] and
a point q ∈ [α(n), β(n)] such that

d(p, o) =
1

2
n and d(p, q) = d(p, [α(n), β(n)]) ≤ 1

2
C · n.

By Lemma 2.4, surgery I, the concatenation [p, q] ∪ [q, β(n)] is a (3, 0)–geodesic
segment. Furthermore, let D = d(p, q) = d(p, [α(n), β(n)]. There exists a point
p′ ∈ [o, α(n)] and a point q′ ∈ [p, q] such that

d(p′, q′) = d(p′, [α(n), β(n)]) =
1

2
D = d(p′, [q′, q] ∪ [q, β(n)].

Therefore again by Lemma 2.4, surgery I, the concatenation

ℓ := [p′, q′] ∪ [[q′, q]] ∪ [q, β(n)]

is a (9, 0)-quasi-geodesic segment. Lastly, apply Lemma 2.4, surgery III, to the
segment ℓ and the ray β(n∞), we get a (36, 0)-quasi-geodesic ray that redirects
[o, α(n

2
] to the tail of β. Since this holds for n we have that α ⪯ β. The symmetric

argument shows that β ⪯ α and thus α ∼ β. □

Theorem 5.4. Let G be a finitely generated group acting geometrically on X where
X is a CAT(0) cube complex. If ∂X exists and |∂X| ≥ 2, then there exists a Morse
element in G.

Proof. Let a ̸= b ∈ P (X) be two equivalence classes in ∂X. Let α0 ∈ a, β0 ∈ b be
geodesic representatives. Consider the geodesic segments connecting pairs of points
[α0(i), β0(i)], i = 1, 2, 3.... If an infinite sub-sequence of {[α0(i), β0(i)]} intersect a
ball of bounded radius, then by Arzelà-Ascoli Theorem, the sequence {[α0(i), β0(i)]}
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o

α0

β0

α0(n)

β0(n)

p

q

p′

q′

converges to a bi-infinite geodesic ray γ0. If γ0 is not rank-one, than it bounds a
flat and thus the two half lines of γ0 are equivalent to each other. However, the
two halves of γ0 each converges to the α0 and β0, thus α0 ∼ β0 contradicting to our
assumption. Thus γ0 is necessarily rank-one. By the Rank-rigidity Theorem, there
exists a rank-one element in G, which is necessarily Morse. Otherwise, let us assume
that there exists a C > 0 such that

d(o, [α0(i), β0(i)] ≥ C · i.

Lemma 5.3 shows that α0 ∼ β0, contradicting our assumption.
Therefore the only remaining possibility is that α0 ≁ β0 implies for all subse-

quences of {[α0(i), β0(i)]}, the distances d(o, [α0(i), β0(i)] grow at most sublinearly
with respect to i. In fact, for any x ∈ X, consider the distances d(o, [x, β0(i)]. If
for any infinite sequence of xj such that ∥xj∥ → ∞, we get d(o, [xj, β0(i)] is at least
linear in i, j, then the points xi lies on a ray that is in the same QR-class as β0. Thus
for all points x not on a ray that is in a same QR-class as β0, suppose d(o, [xj, β0(i)]
grows at most sublinearly, then by κ-slim condition, β is κ-Morse. Since κ-Morse
rays are rank-one and by Rank-rigidity Theorem again there exists a Morse element
in G. □

Lastly recall we say P (X) is a visibility space for any two points a,b ∈ P (X),
then there exists a geodesic γ with γ(∞) ∈ a and γ(−∞) ∈ b.

Corollary 5.5. Let X be a proper CAT(0) metric space with a cocompact action.
Then P (X) is a visibility space.

Proof. Let X be a proper CAT(0) metric space and let a ≁ b be two equivalence
classes in P (X). As argued in Theorem 5.4, there are three possible cases to the
limit of geodesic lines [α0(n), β0(n)]:

(1) an infinite subsequence of them do not exceed a bounded ball, in this case
there exists a bi-infinite geodesic line;
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(2) all subsequences move away from o at most sublinearly in n as n → ∞. In
this case β0 is a sublinearly Morse ray and by [Zal22] there exists a bi-infinite
geodesic.

Note that Definition 2.9 does not require quasi-geodesic rays to start at the same
point of origin. Thus it follows from construction that γ(∞) ∈ a and γ(−∞) ∈ b.
Therefore P (X) is a visibility space. □
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