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Abstract. The quasi-redirecting (QR) boundary is a close generalization of the Gromov
boundary to all finitely generated groups. In this paper, we establish that the QR
boundary exists as a topological space for several well-studied classes of groups. These
include fundamental groups of irreducible non-geometric 3-manifolds, groups that are
hyperbolic relative to subgroups with well-defined QR boundaries, right-angled Artin
groups whose defining graphs are trees, and right-angled Coxeter groups whose defining
flag complexes are planar. This result significantly broadens the known existence of QR
boundaries.

Additionally, we give a complete characterization of the QR boundaries of Croke–Kleiner
admissible groups that act geometrically on CAT(0) spaces. We show that these boundaries
are non-Hausdorff and can be understood as one-point compactifications of the Morse-like
directions.

Finally, we prove that if G is hyperbolic relative to subgroups with well-defined QR
boundaries, then the QR boundary of G maps surjectively onto its Bowditch boundary.

Contents

1. Introduction 1
2. Preliminaries 7
3. QR boundary of relatively hyperbolic groups 12
4. Quasi-geodesics in templates 18
5. QR boundary of Croke-Kleiner admissible groups 31
6. Application to 3-manifold groups and certain right-angled coxeter groups 43
References 44

1. Introduction

Boundaries play a fundamental role in geometric group theory, encoding asymptotic
information about groups and their associated spaces. For hyperbolic groups in the sense of
Gromov [Gro87], the Gromov boundary provides a canonical quasi-isometry invariant, with
deep connections to dynamics, rigidity, and probability. However, not all non-positively
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curved groups admit such well-behaved boundaries. A striking example is provided by
Croke–Kleiner groups [CK00], which act geometrically on CAT(0) spaces yet fail to have well-
defined visual boundaries. This highlights the need for alternative boundary constructions
that capture meaningful asymptotic properties. Extending this perspective to non-hyperbolic
groups has been a central challenge in the field, motivating various boundary constructions
that capture “hyperbolic-like” directions, including the Morse boundary [CS15], [Cor17]
and the sublinearly Morse boundary [QRT22], [QRT24].

Despite these advances, existing boundaries often fail to encode the full range of asymp-
totic behaviors found in non-hyperbolic settings. The Morse boundary, for instance, is
typically non-compact and negligible from the viewpoint of random walks [CDG22], while
sublinearly Morse boundaries, though larger, still omit substantial asymptotic data. To
address this, Qing–Rafi [QR24] introduced the quasi-redirecting (QR) boundary, a new
quasi-isometry invariant boundary that is often compact and contains sublinearly Morse
boundaries as topological subspaces. Unlike previous constructions, the QR boundary
captures a richer spectrum of hyperbolic-like behaviors, making it a promising new tool in
geometric group theory. The QR boundary is also shown to serve as a topological model
for suitable random walks. When the QR boundary contains at least 3 points, sublinearly
Morse boundaries are dense subsets of the QR boundary [GQV24]. It is also established
in [GQV24] that when X is a rank-one CAT(0) space, the QR boundary, when it exists, is a
visibility space. Moreover, it is shown that when G acts geometrically on a finite-dimensional
CAT(0) cube complex, the QR boundary of G, when it exists and contains at least three
points, is not mono-directional and G contains a Morse element. These properties provide
evidence that the QR boundary closely resembles the Gromov boundary of hyperbolic
groups.

The QR boundary is defined as follows:

Definition 1.1. Let α, β : [0,∞) → X be two quasi-geodesic rays in a metric space X. We
say α can be quasi-redirected to β (and write α ⪯ β) if there exists a pair of constants
(q,Q) such that for every r > 0, there exists a (q,Q)–quasi-geodesic ray γ that is identical
to α inside the ball B(α(0), r) and eventually γ becomes identical to β. We say α ∼ β if
α ⪯ β and β ⪯ α. The resulting set of equivalence classes forms a poset, denoted by P (X).
This poset P (X), when equipped with a “cone-like topology”, is called the quasi-redirecting
boundary (QR boundary) of X and denoted by ∂X.

In order to define a “cone-like topology” on P (X) [QR24], X needs to satisfy three
assumptions which we call the QR-assumptions; see Section 2.1. Despite its potential,
a major open problem in the theory of QR boundaries is to determine for which groups
it is well-defined. It is unknown which groups satisfy all three QR-Assumptions, and
consequently, on which groups the QR boundary is defined. In [QR24, Question D], it
is asked whether all finitely generated groups satisfy the QR-Assumptions. On the one
hand, there are no known examples of finitely generated groups that do not satisfy the
QR-Assumptions. On the other, there are relatively few classes of non-hyperbolic groups
that have been verified to satisfy the QR-Assumptions. In this paper, we answer [QR24,
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Figure 1. The ray α can be quasi-redirected to β at radius r.

Question D] in the affirmative for several classes of groups, significantly extending the
known scope of this construction. These class of groups include:

(1) Croke-Kleiner admissible groups that act geometrically on CAT(0) spaces.
(2) Relatively hyperbolic groups whose peripherals satisfy the QR-assumptions.
(3) Fundamental groups of non-geometric 3-manifolds.
(4) Right-angled Coxeter groups whose flag complexes are planar.

Therefore, we provide evidence that the theory of QR-boundaries applies in a variety of
concrete contexts. Moreover, our study of 3-manifold groups suggests intriguing connections
between the algebraic structure of a group and the height of its QR poset, raising new
questions about the relationship between divergence functions and boundary structure.
Finally, our results for relatively hyperbolic groups establish a clear link between QR
boundaries and Bowditch boundaries, suggesting further potential connections to random
walks and the Poisson boundary.

1.1. 3-manifold groups. Let M be an irreducible non-geometric 3-manifold. The torus
decomposition of M yields a nonempty minimal union T ⊂ M of disjoint essential tori,
unique up to isotopy, such that each component Mv of M\T , called a piece, is either Seifert
fibered or hyperbolic. If all pieces of M are Seifert fibered spaces, then M is called a graph
manifold. Otherwise, it is called a mixed manifold.

We obtain the following result.

Theorem A. Let M be an irreducible non-geometric 3-manifold. Then G = π1(M) satisfies
the QR-Assumptions and hence ∂G is well-defined. Furthermore,

(1) if M is a mixed 3-manifold then ∂G surjects onto the Bowditch boundary of G.
(2) If M is a graph manifold then the poset P (G) has the largest element and the other

minimal elements are not comparable (see Figure 2). The action of G on ∂G is not
minimal.

One interesting point here is that Theorem A shows that the height of P (G) is 2. It
is widely known from the results of Kapovich-Leeb [KL98] and Gersten [Ger94] that the
fundamental group of graph manifolds has quadratic divergence. So far, for groups with
linear divergence, their P (G) has height 1. It would be interesting to understand the
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Figure 2. The picture provides a complete description of the poset P (G).
The largest element, [ζ∗], is positioned at the top, while the minimal elements
are at the bottom. Both the set of sublinearly Morse elements and the set
of non-sublinearly Morse elements have uncountable cardinality.

relationship between a group’s divergence being a polynomial of degree d and the height of
P (G).

To prove Theorem A, we establish the existence of the quasi-redirecting boundary for
Croke-Kleiner admissible groups and relatively hyperbolic groups. These results encompass
but extend far beyond the fundamental groups of graph manifolds and mixed manifolds.

1.2. Croke-Kleiner admissible groups. When M is an irreducible non-geometric 3-
manifold, there is an induced graph of groups decomposition G of π1(M) with underlying
graph Γ as follows. For each piece Mv, there is a vertex v of Γ with vertex group π1(Mv).
For each torus Te ∈ T contained in the closure of pieces Mv and Mw, there is an edge e
of Γ between vertices v and w. The associated edge group is π1(Te) ∼= Z2 and the edge
monomorphisms are the maps induced by inclusion.

Croke–Kleiner [CK02] defined the class of admissible groups, which have a graph of
groups decomposition generalizing that of graph manifolds [CK02]. Roughly speaking,
a Croke-Kleiner admissible group G is a graph of groups (Γ, {Gv̂}, {Gê}, {τê}) with a
nontrivial underlying graph Γ where each edge group is Z2 and each vertex group Gv̂ of
G has infinite cyclic center Zv̂ with quotient Gv̂/Zv̂ a non-elementary hyperbolic group.
Additionally, the various edge groups need to be pairwise non-commensurable inside each
vertex group. For the precise definition of Croke-Kleiner admissible groups, we refer the
reader to Definition 5.2.

Croke–Kleiner admissible groups are among the simplest non-hyperbolic groups built
algebraically from a finite collection of hyperbolic groups. Their study from various
perspectives has recently gained attention, and ongoing research continues to explore their
properties (see [ANR23], [HRSS24], [Tao25], [SZ24], [HNY23], [NY23], [MN24], [NQ24],
among others).

In [Wis00], Wise introduces the concept of an omnipotent group which has been widely
used in subgroup separability.

Definition 1.2. A set of group elements h1, · · · , hr in a group H is called independent if
whenever hi and hj have conjugate powers then i = j. A group H is omnipotent if whenever
{h1, · · · , hr} (r ≥ 1) is an independent set of group elements, then there is a positive integer
p ≥ 1 such that for every choice of positive integers {n1, · · · , nr}, there is a finite quotient

φ : H → Ĥ such that φ(ĥi) has order nip in Ĥ for each i.



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 5

It is worth mentioning that free groups [Wis00], surface groups [Baj07], Fuchsian groups
[Wil10] and virtually special hyperbolic groups [Wis00] all belong to the omnipotent group
category. However, it is a longstanding open question whether every hyperbolic group is
residually finite. Wise suggested that if every hyperbolic group is residually finite, then any
hyperbolic group would be considered an omnipotent group [Wis00, Remark 3.4]).

Theorem B. Let G be a Croke-Kleiner admissible group such that each vertex group Gv

of G is a CAT(0) group and its quotient Qv̂ = Gv̂/Zv̂ is omnipotent. Then:

(1) G satisfies all three QR-Assumptions, ensuring ∂G is defined and is a quasi-isometry
invariant.

(2) The poset P (G) has the largest element while the minimal elements are pairwise
incomparable (the picture is simarlar as Figure 2). The action of G on ∂G is not
minimal.

The proof follows from a careful analysis of quasi-geodesic behavior in the group, par-
ticularly through the construction of backward spiral paths and forward spiral paths in
Section 4.

The following corollary is an immediate consequence of Theorem B.

Corollary C. Let Γ be a finite tree, then the associated right-angled Artin group AΓ

satisfies all three QR-Assumptions and hence ∂AΓ is well-defined.

Proof. If Γ is a simplicial graph, let AΓ denote the associated right-angled Artin group. We
study the QR-boundary of AΓ when Γ is a finite tree. If Γ consists of a single edge, then AΓ

is isomorphic to Z2, and the QR-boundary of AΓ consists of a single point. If Γ contains at
least one vertex of degree ≥ 2 then it is a well-known fact that the associated right-angled
Artin group AΓ is the fundamental group of a nonpositively curved graph manifold M . In
particular, AΓ is a Croke-Kleiner admissible group such that each vertex group Gv of AΓ

is a direct product of Z with a free group. As free groups are omnipotent, the conclusion
follows from Theorem B. □

1.3. Relatively hyperbolic groups. Relatively hyperbolic groups form a broad and
important class of groups that generalize hyperbolic groups. A finitely generated group G
is hyperbolic relative to a finite collection of subgroups P if its coned-off Cayley graph is a
hyperbolic and fine graph [Bow12]. This notion captures groups that exhibit hyperbolic
behavior outside of specific peripheral subgroups. The Bowditch boundary ∂BG is defined
as the boundary of this coned-off graph, providing a compactification that encodes the
group’s geometric finiteness properties. Establishing the existence of the QR boundary in
this setting is crucial for understanding how it interacts with the Bowditch boundary and
other geometric structures.

Theorem D. Let G be a group that is hyperbolic relative to P. If the quasi-redirecting
boundaries exist for each group P ∈ P, then the quasi-redirecting boundary of G exists and
∂G surjects onto the Bowditch boundary ∂BG of (G,P).

In [QR24], the authors show that if (G,P) is a relatively hyperbolic group where the
QR-boundaries of each P is a mono-directional set, i.e. ∂P is a point for each P ∈ P, then
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∂G exists and is homeomorphic to the Bowditch boundary of (G,P). In Theorem D, we
drop the assumption that the P ’s are mono-directional.

1.4. Right-angled Coxeter groups. A simplicial complex ∆ is called flag if any complete
subgraph of the 1-skeleton of ∆ is the 1-skeleton of a simplex of ∆. Let Γ be a finite
simplicial graph. The flag complex of Γ is the flag complex with 1-skeleton Γ. A simplicial
subcomplex B of a simplicial complex ∆ is called full if every simplex in ∆ whose vertices
all belong to B is itself in B.

The flag complex of ∆ is planar if it can be embedded into the 2-dimensional sphere
S2. From now on every time we consider a flag complex it will be as a subspace of the
2-dimensional sphere S2.

Definition 1.3. Given a finite simplicial graph Γ, the associated right-angled Coxeter group
WΓ is generated by the set S of vertices of Γ and has relations s2 = 1 for all s in S and
st = ts whenever s and t are adjacent vertices. The graph Γ is the defining graph of a
right-angled Coxeter group WΓ and its flag complex ∆ = ∆(Γ) is the defining nerve of the
group. Therefore, sometimes we also denote the right-angled Coxeter group WΓ by W∆

where ∆ is the flag complex of Γ.
Let S1 be a subset of S. The subgroup of WΓ generated by S1 is a right-angled Coxeter

group WΓ1 , where Γ1 is the induced subgraph of Γ with vertex set S1 (i.e. Γ1 is the union
of all edges of Γ with both endpoints in S1). The subgroup WΓ1 is called a special subgroup
of WΓ.

Corollary E (Theorem 6.3). Let Γ be a graph whose flag complex ∆ is planar. Then the
right-angled Coxeter group WΓ satisfies all three QR-Assumptions.

1.5. Open questions and future directions. The quasi-redirecting boundary (QR
boundary) introduced in [QR24] provides a new perspective on boundaries of groups. We
have established its well-definedness for several important classes of groups.

However, many questions remain open. Below, we outline several directions for future
research.

(1) Does QR boundary exist for weakly hyperbolic groups, acylindrically hyperbolic
groups, or hierarchically hyperbolic groups? Alternatively, we ask does QR boundary
exist for all finitely generated groups?

(2) What is the QR boundary of CB-generated but not CB groups such as big mapping
class groups of suitable surfaces?

(3) In what cases is the Martin boundary a subset of the QR boundary?
(4) How does the QR boundary of a free-by-cyclic group reflect the algebraic or dynami-

cal properties of the monodromy? For instance, when the monodromy is hyperbolic,
can QR boundaries provide new insights into Cannon–Thurston maps?

We hope that the techniques and results in this paper will inspire further developments
in the study of QR boundaries and their applications in geometric group theory.

Overview. In Section 2, we review the preliminaries on quasi-redirecting boundaries and
the necessary background on quasi-geodesics. Section 3 establishes the existence of QR
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boundaries for relatively hyperbolic groups and proves their surjectivity onto the Bowditch
boundary (Theorem D). Section 4 explores quasi-geodesics in templates, a key step in
understanding QR boundaries of Croke-Kleiner admissible groups, which we address in
Section 5. Finally, the proofs of Theorem A and Corollary E are presented in Sections 6
and 6.2, respectively.

6.2, respectively.

Acknowledgments. The authors are very grateful to Alex Margolis for several critical
readings of earlier drafts and especially for his help in proving Proposition 4.8.

2. Preliminaries

In this section, we recall the construction of quasi-redirecting boundary as presented
in [QR24]. We refer to [QR24] for a complete treatment.

Let X and Y be metric spaces and f be a map from X to Y . Let q = (q,Q) ∈
[1,∞)× [0,∞) be a pair of constants.

(1) We say that f is a q–quasi-isometric embedding if for all x, y ∈ X,

1

q
d(x, x′)−Q ≤ d(f(x), f(x′)) ≤ qd(x, x′) +Q.

(2) We say that f is a (q,Q)–quasi-isometry if it is a q–quasi-isometric embedding such
that Y = NQ(f(X)).

2.1. Quasi-redirecting boundary. Let X be a proper geodesic metric space.

Definition 2.1 (Quasi-Geodesics). A quasi-geodesic in a metric space X is a Lipschitz
quasi-isometric embedding α : I → X where I ⊂ R is a (possibly infinite) interval. We
use q = (q,Q) to indicate the constants, so that α : I → X is a q–quasi-geodesic if for all
s, t ∈ I, we have

|t− s|
q

−Q ≤ dX
(
α(s), α(t)

)
≤ q|s− t|.

The assumption that α is Lipschitz is needed so we can apply the Arzelà–Ascoli theorem to
a sequence of quasi-geodesics and obtain a limiting quasi-geodesic. However, the assumption
that a quasi-isometric embedding α : I → X is Lipschitz can be achieved after replacing α
with a quasi-geodesic fellow-traveling α ([QR24, Lemma 2.3]).

2.2. Notation. Let o be a fixed base-point in X. We use q = (q,Q) ∈ [1,∞)× [0,∞) to
indicate a pair of constants. For instance, one can say Φ: X → Y is a q–quasi-isometry
and α is a q–quasi-geodesic ray or segment.

By a q–ray we mean a q–quasi-geodesic ray α : [0,∞) → X such that α(0) = o. For an
interval [s, t] ⊂ [0,∞), we denote the restriction of α to the time interval [s, t] by α[s, t].
However, if points x, y ∈ X on the image of α are given, we denote the sub-segment of α
connecting x to y by [x, y]α. That is, if α(s) = x and α(t) = y for s ≤ t, then [x, y]α = α[s, t].
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Let α : [s1, s2] → X and β : [t1, t2] → X be two quasi-geodesics such that α (s2) = β (t1).
In this paper we denote the concatenation of α and β by α ∪ β by which we mean the
following:

α ∪ β :
[
s1, t

′]→ X, (α ∪ β)(t) =

{
α(t) for t ∈ [s1, s2]

β (t+ t1 − s2) for t ∈ [s2, t
′]

where t′ := t2 − t1 + s2.
For r > 0, let B◦

r ⊂ X be the open ball of radius r centered at o, let Br be the closed
ball centered at o and let Bc

r = X −B◦
r .

For a q–ray α and r > 0, we let tr ≥ 0 denote the first time when α first intersects Bc
r

and Tr ≥ tr be the last time α intersects Br. We denote α (tr) by αr ∈ X. Also, let

α|r := α [0, tr] and α|≥r := α[Tr,∞)

be the restrictions α to the intervals [0, tr] and [Tr,∞) respectively. That is, α|r is the
subsegment of α connecting o to αr, and α|≥r is the portion of α that starts at radius r
and never returns to Br.

Lastly, if p is a point on a q–ray α, we use α[p,∞) to denote the tail of α starting from
the point p. Note such a point always exists as a quasi-geodesic is always assumed to be
a ray without loss of generality. This is because, as discussed in [QRT22, Definition 2.2],
one can adjust the quasi-isometric embedding of an interval slightly to make it continuous
(see [BH99, Lemma III.1.11]).

We also use d(·, ·) instead of dX(·, ·) when the metric space X is fixed. For x ∈ X, ∥x∥
denotes d(o, x). Now we recall the first of the three QR-Assumptions.

QR-Assumption 0. (No dead ends) The metric space X is proper and geodesic. Further-
more, there exists a pair of constants q0 such that every point x ∈ X lies on an infinite
q0–quasi-geodesic ray.

Remark 2.2. QR-Assumption 0 is satisfied by the Cayley graph of an infinite finitely
generated group with respect to a finite generating set [QR24, Lemma 2.5].

Definition 2.3. Let X be a geodesic metric space. Let α, β and γ be quasi-geodesic rays
in X. We say

(1) γ eventually coincides with β if there are times tβ, tγ > 0 such that, for t ≥ tγ , we
have γ(t) = β(t+ tβ).

(2) For r > 0, we say γ quasi-redirects α to β at radius r if γ|r = α|r and β eventually
coincides with γ. If γ is a q–ray, we say α can be q–quasi-redirected to β at radius r
or α can be q–quasi-redirected to β by γ at radius r. We refer to tγ as the landing
time.

(3) We say α is quasi-redirected to β, denoted by α ⪯ β, if there is q ∈ [1,∞)× [0,∞)
such that for every r > 0, α can be q–quasi-redirected to β at radius r.

Definition 2.4. Define α ≃ β if and only if α ⪯ β and β ⪯ α. Then ≃ is an equivalence
relation on the space of all quasi-geodesic rays in X. Let P (X) denote the set of all
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Figure 3. Two instances in which α can be quasi-redirected to β by γ.
Here, α and β are shown as dashed lines, and γ is shown as a solid blue line.

equivalence classes of quasi-geodesic rays under ≃. For a quasi-geodesic ray α, let [α] ∈ P (X)
denote the equivalence class containing α. We extend ⪯ to P (X) by defining [α] ⪯ [β] if
α ⪯ β. Note that this does not depend on the chosen representative in the given class. The
relation ⪯ is a partial order on elements of P (X).

Lemma 2.5 ([QR24, Lemma 3.2]). Let α, β, γ be quasi-geodesic rays. Suppose that α can
be (q1, Q1)–quasi-redirected to β at radius r, and that β can be (q2, Q2)–quasi-redirected
to γ at every radius. Then α can be (q3, Q3)–quasi-redirected to γ at radius r, where
q3 = max{q1, q2 + 1} and Q3 = max{Q1, Q2}.

QR-Assumption 1. (Quasi-geodesic representative) For q0 as in QR-Assumption 0, every
equivalence class of quasi-geodesics a ∈ P (X) contains a q0–ray. We fix such a q0–ray,
denote it by a ∈ a, and call it a central element of a.

QR-Assumption 2. (Uniform redirecting function) For every a ∈ P (X), there is a
function

fa : [1,∞)× [0,∞) → [1,∞)× [0,∞),

called the redirecting function of the class a, such that if b ≺ a then any q–ray β ∈ b can
be fa(q)–quasi-redirected to a.

Proposition 2.6 ([QR24, Proposition 4.3]). Let X = A× B where A and B are proper
metric spaces satisfying QR-Assumption 0, equipped with L∞–metric. Then P (X) is a
point.

Note that since P (X) is invariant under quasi-isometries, Proposition 2.6 also holds if
we equip X with the Lp–metric with p > 0.

2.3. Topology on X ∪ P (X). The topology on X ∪ P (X) is defined as follows. Recall
that points in P (X) are equivalence classes of quasi-geodesic rays. For each point x ∈ X,
we define

x =
{
quasi-geodesics rays passing through x

}
.
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We let a, b, c denote elements of P (X) ∪ X, that is, either a set of quasi-geodesic rays
passing through a point x ∈ X or an equivalence class of quasi-geodesic rays in P (X). For
a ∈ P (X), define Fa : [1,∞)× [0,∞) → [1,∞)× [0,∞) by

(1) Fa(q) = max{fa(q) + (1, 0), (4q + 3Q)} for q ∈ [1,∞)× [0,∞).

Definition 2.7. For a ∈ P (X) and r > 0, define

U(a, r) :=
{
b ∈ P (X) ∪X

∣∣∣ every q–ray in b can be Fa(q)–quasi-redirected to a at radius r
}
.

A system of neighborhoods. For each a ∈ P (X), recall that

B(a) =
{
V ⊂ X ∪ P (X)

∣∣∣U(a, r) ⊂ V for some r > 0
}

and for every x ∈ X, define

B(x) =
{
V ⊂ X ∪ P (X)

∣∣∣B(x, r) ⊂ V for some r > 0
}
.

We thus define the topology onX∪P (X) so that B(a) and B(x) are a system of neighborhoods
for each a ∈ P (X) and x ∈ X respectively. We collect some important facts from [QR24]
about the QR boundary and the poset P (X).

Theorem 2.1 ([QR24, Theorem B]). Let X,Y be proper geodesic metric spaces satisfying
all three QR-Assumptions.

(1) Suppose that Φ : X → Y is a quasi-isometry sending the base point oX ∈ X to the
base point oY ∈ Y . Then there is a well-defined induced map

Φ∗ : P (X) → P (Y ) where Φ∗([α]) = [Φ ◦ α].
Furthermore, Φ∗ preserves the partial order on P (X) and P (Y ).

(2) ∂X and X ∪ ∂X are QI-invariant as topological spaces.
(3) Sublinearly Morse boundaries are topological subspaces of ∂X.

2.4. Surgery on quasi-geodesics. We recall a few surgeries related to quasi-geodesics
that will often be used in the subsequent arguments.

Lemma 2.8 ([QR24, Lemma 2.6]). Let X be a metric space that satisfies QR-Assumption
0.

(1) (Nearest-point projection surgery) Consider a point x ∈ X and a (q,Q)–quasi-
geodesic segment β connecting a point z ∈ X to a point w ∈ X. Let y be a closest
point in β to x. Then

γ = [x, y] ∪ [y, z]β
is a (3q,Q)–quasi-geodesic.

(2) (Quasi-geodesic ray to geodesic ray surgery) Let β be a geodesic ray and γ be a
(q,Q)–ray. For r > 0, assume that dX(βr, γ) ≤ r/2. Then there exists a (9q,Q)–
quasi-geodesic γ′ where γ′(t) = β(t) for large values of t and

γ|r/2 = γ′|r/2.
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z w
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y

β

Figure 4. The concatenation of the geodesic segment [x, y] and the quasi-
geodesic segment [y, z]β is a quasi-geodesic.

(3) (Segment to quasi-geodesic ray surgery) Consider a (q,Q)-quasi-geodesic ray α : [0,∞) →
X and a finite (q,Q)–quasi-geodesic segment β : [a, b] → X. Then there is s0 ∈ [0,∞)
such that the following holds: for s ∈ [s0,∞) let sγ ∈ [s,∞) and tγ ∈ [a, b] be such
that [β(tγ), α(sγ)] is a geodesic segment that realizes the set distance between α[s,∞)
and β. Then

γ = β[a, tγ ] ∪ [β(tγ), α(sγ)] ∪ α[sγ ,∞)

is a (4q, 3Q)–quasi-geodesic.

o
α(s0) α(s)

α
xγ = α(sγ)

yγ = β(tγ)

β(b) β(a)

Figure 5. Segment-to-geodesic-ray surgery.

(4) (Fellow-traveling surgery) Let q-rays α, β and t0 > 0 be such that, for all t ≤ t0, we
have d(α(t), β(t)) ≤ 1. Then there exists a (q,Q+1)-quasi-geodesic ray β′ such that

β′∣∣
t0
= β|t0 and β′|(t0+1,∞) = α|(t0,∞) .

Lemma 2.9. Let α, β be quasi-geodesic rays. Suppose there exists constants q and a
sequence of points {xn} on α such that ∥xn∥ → ∞ and the following holds. For every n,
there exists a q-ray γn such that γn eventually coincides with β, and γn and α are identical
on the subsegment [o, xn]α. Then α can be q-quasi-redirected to β.

Proof. Let sn be the first time in [0,∞) such that α(sn) = xn. Consider the ball Brn , where
rn := ∥xn∥. Let tn be the first time α intersects Bc

rn . It follows that tn ≤ sn. According
to the assumption, (γn)|rn = α|rn and γn eventually coincides with β. Fix r > 0. As
rn → ∞, there exists n such that rn ≥ r, and so α|r = γn|r. This guarantees that α is
q-quasi-redirected to β at radius r via γn. Consequently, α ⪯ β. □



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 12

3. QR boundary of relatively hyperbolic groups

In this section, we analyze the case when X is a Cayley graph of a finitely generated
relatively hyperbolic group pair (G,P), where G is a group and P is a collection of infinite
finitely generated subgroups. In [QR24], the authors show that if (G,P) is a relatively
hyperbolic group where the QR-boundaries of each P is a mono-directional set, i.e. ∂P is
a point for each P ∈ P, then ∂G exists and is homeomorphic to the Bowditch boundary
of (G,P). In this section, we drop the assumption that the P ’s are mono-directional.
We show that if ∂P exists for all P ∈ P, the quasi-redirecting boundary of (G,P) exists.
Furthermore, we show in Theorem 3.2 that when it exists, ∂G maps surjectively onto the
Bowditch boundary of (G,P).

3.1. Redirecting in relatively hyperbolic groups. We present definitions and relevant
facts regarding the coarse geometry of relatively hyperbolic groups, which can be found
in [QR24, DS05, Hru10] and [Sis12].

Definition 3.1. Fix a finite generating set S once and for all, and let Cay(G) denote the
Cayley graph of G with respect to this generating set. We refer to the subgroups P ∈ P
as peripheral subgroups. Let A be the set of subgraphs of Cay(G) associated to cosets of
subgroups in P. Namely, for P ∈ P and g ∈ G, AP,g is the induced subgraph of Cay(G)
with vertex set gP . We form the coned-off Cayley graph, denoted K(G) or simply K, by
adding a vertex ∗pA for each A ∈ A, and adding edges of length 1

2 from ∗pA to each vertex
of A. Since Cay(G) is a subgraph of K, for any two vertices v, w ∈ Cay(G), we have

(2) dK(v, w) ≤ dCay(G)(v, w).

Definition 3.2. A graph is fine if for each integer n, every edge belongs to only finitely
many simple cycles of length n. If the coned-off Cayley graph K is both hyperbolic and
fine, then G is hyperbolic relative to P.

Definition 3.3 (Bounded Coset Penetration). A key property of a relatively hyperbolic
group is Bounded Coset Penetration [Far98], which we now state. An oriented path ℓ ∈ K
is said to penetrate A ∈ A if it passes through the cone point ∗pA of A; its entering
and exiting vertices are the vertices immediately before and after ∗pA on ℓ. The path is
without backtracking if once it penetrates A ∈ A, it does not penetrate A again. If for each
q ≥ 1, there is a constant a = a(q) such that if ζ, ζ ′ ⊂ K are (q, 0)–quasi-geodesics without
backtracking in K and with the same pair of endpoints, then

(1) if ζ penetrates some A ∈ A, but ζ ′ does not, then the distance between the entering
and exiting vertices of ζ in A is at most a(q); and

(2) if ζ and ζ ′ both penetrate A ∈ A, then the distance between the entering vertices
of ζ and ζ ′ in A is at most a(q), and similarly for the exiting vertices.

We note that if (G,P) is relatively hyperbolic, then there are only finitely many peripheral
subgroups in P.

For the rest of this section, let X = Cay(G) denote the Cayley graph of (G,P).
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Definition 3.4. [Sis12, Definition 3.9] Let α be a path in X. For M, c > 0, define
deepM,c(α) to be the set of points x ∈ α such that there exists a subpath of α containing x
with endpoints x1, x2 and A ∈ A where

x1, x2 ∈ NM (A) and d(x, xi) ≥ c for i = 1, 2.

Thinking of α as a subset of X, define

transM,c(α) = α− deepM,c(α)

to be the set of (M, c)–transition points of α.

Proposition 3.5 ([Sis12, DS05]). Let X = Cay(G). For every q there exist constants
M = M(q), c = c(q), D = D(q) and ρ(q) such that the followings hold. Let α : [a, b] → X
be a q–quasi-geodesic segment.

(1) The set deepM,c(α) is a disjoint union of subpaths, each of which is contained in
NρM (A) for distinct sets A ∈ A.

(2) For any pair of q–quasi-geodesic segments α, β with the same endpoints, we have

dHaus

(
transM,c(α), transM,c(β)

)
≤ D.

(3) Moreover, for every A ∈ A there are times s, t ∈ [a, b] such that:
• During the interval [a, s], α approaches A at a linear speed.
• During the interval [t, b], α moves away from A at a linear speed.
• α[s, t] ⊂ NρM (A).

The same also holds for quasi-geodesic rays.

The statements of (1) and (2) are contained [Sis12, Proposition 5.7]. The statement (3)
follows from [DS05, Lemma 4.17].

Definition 3.6. Let α be a q–ray or q–segment in X. The saturation of α, denoted by
Sat(α), is the union of α and all A ∈ A with NM(q)(A) ∩ α ̸= ∅, where M(q) is as in
Proposition 3.5.

Saturations are quasi-convex (see [DS05, Lemma 4.25]):

Lemma 3.7 (Uniform quasi-convexity of saturations). For every q, there exists τ(q) > 0
such that for every L > 1 and every q–ray or q–segment α, Sat(α) has the property that,
for every q–segment γ with endpoints in NL(Sat(α)), we have

γ ⊂ Nτ(q)·L(Sat(α)).

Quasi-convexity of saturations allows us to understand quasi-geodesic rays by considering
the parabolic sets near which they pass. The subsequent definitions and results make this
concrete.

Definition 3.8. Let α be a q–quasi-geodesic segment or q–ray in X. We say a point α(t)
is a q–transition point of α if

α(t) ∈ transM(q),c(q)(α),

where M(q), c(q) are as in Proposition 3.5.



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 14

Definition 3.9. Let α be a q–ray. We say α is a q–transient ray if, there is a sequence of
times ti → ∞ such that α(ti) is a q–transition point of α.

Note that if q′ ≥ q and α is a q–ray, then α is also a q′–ray. But, the set of q–transition
points is not necessarily a subset or a superset of the set of q′–transition points because to
ensure

deepM1,c1(α) ⊆ deepM2,c2(α),

we require c1 ≥ c2 and M1 ≤ M2. However, as we shall see, the property of being a transient
ray is independent of the choice of q. We summarize here that there are exactly two disjoint
scenarios of redirecting based on whether a ray is transient or not.

Lemma 3.10 ([QR24, Lemma 8.7, Proposition 8.12]). Let α be a q–ray, and let M, c and
ρ be as in Proposition 3.5. Then either:

• α is a q–transient ray, then all quasi-geodesic rays in a = [α] are transient. The
class a has a geodesic representative α0, and every q′-ray in a can be fa(q

′)-quasi-
redirected to α0, where

fa(q,Q) = (9q,Q).

• Otherwise, α is not transient, then α is eventually contained in NρM (A) for some
A ∈ A. Likewise all quasi-geodesic rays in [α] are non-transient, and all q′-rays in
[α] are eventually contained in Nρ(q′)M(q′)(A) for the same A.

Furthermore, if α is a q–transient ray and q′ ≥ q, then α is also a q′–transient ray.

We remark that K = K(G) is a proper hyperbolic space on which G acts properly
discontinuously, and this action is geometrically finite. Every limit point of ∂K is either a
conical limit point or a bounded parabolic point [Bow12]. In particular, a limit point is a
conical limit point if the associated geodesic ray is a (1, 0)-transient ray.

3.2. Bowditch boundary. Now we define the Bowditch boundary for relatively hyperbolic
groups. Recall let K be the coned-off Cayley graph introduced in the definition of relatively
hyperbolic groups. Let ∂K denote the Gromov boundary of K. Let V (K) denote the vertex
set of K, let V∞K = {∗pA | A ∈ A} and let △K = V∞(K) ∪ ∂K.

Definition 3.11. For v, w ∈ V (K)∪∂K, let [v, w]K denote a geodesic segment (or a geodesic
ray) in K connecting v to w. Given any v ∈ V (K) ∪ ∂K and a finite set W ⊆ V (K), we
write

m(v,W ) =
{
w ∈ △K

∣∣∣W ∩ [v, w]K ⊆ {v} for every geodesic [v, w]K

}
.

The Bowditch boundary ∂BG of the relatively hyperbolic group G is the set △K equipped
with a topology generated by the neighborhoods of the form m(v,W ).

Every geodesic ray or segment in K can be associated to some quasi-geodesic in X =
Cay(G) as follows. Let ℓ be a path in K, a lift of ℓ, denoted ℓ, is a path formed from ℓ by
replacing edges incident to vertices in V∞(K) with a geodesic in Cay(G).



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 15

Lemma 3.12 ([QR24, Lemma 9.4]). There exists a uniform bound D such that the following
holds. Let ℓ be a geodesic line or segment in K such that |ℓ| ≥ 3. Then there exists a geodesic
line ℓ0 in Cay(G) such that the projection of ℓ0 to K is contained in the D-neighborhood of
ℓ in K.

We also recall the relative thin triangle property geodesic triangles in Cay(G) [Sis12,
Theorem 1.1]:

Proposition 3.13 ([Sis12, Definition 3.11]). There exists a constant δ1 such that the
following holds. For points x, y, z ∈ Cay(G) consider a geodesic triangle (x, y, z) and let w
be a (1, 0)–transition point along [x, y]. Then there exists w′ ∈ [x, z] ∪ [z, y] such that

dCay(G)(w,w
′) ≤ δ1.

We now show that (G,P) satisfies the assumptions associated to QR boundaries if the
parabolic subgroups do. We first define the shadow of a non-transient quasi-geodesic into a
parabolic subset A.

Definition 3.14. Let α be a (q,Q)-quasi-geodesic ray emanating from o, such that α is
non-transient. By Lemma 3.10, all but a finite segment α|[0,t0] of α is contained in NρM (A).
Define ShA(α) by composing α|[t0,∞) with the closest-point projection to A, and by [QR24,
Lemma 2.3] the resulting map can be tamed to be a (q′, Q′)-quasi-geodesic that is also
2(q +Q)–Lipschitz and fellow travels α. We call this (q′, Q′)-quasi-geodesic the shadow of
α in A, and we write it as ShA(α).

Theorem 3.1. If the QR boundaries exist for each subgroup P ∈ P, then the QR boundary
of (G,P) exists.

Proof. By [QR24, Lemma 2.5], any metric space quasi-isometric to an infinite finitely
generated group satisfies QR-Assumption 0. For QR-Assumption 1, it was shown in
Lemma 3.10 that all transient classes have a geodesic ray with a redirecting function

fa(q,Q) = (9q,Q).

Now we address the case where a quasi-redirecting equivalence class [α] is non-transient.
Since there are only finitely many elements of P and every such subgroup satisfies

QR-Assumption 1, there exists a q0 such that for every A ∈ A, every element of ∂A can be
represented by a central q0-ray β0. We first claim is that for every such β0, there is a q1-ray
in X, starting at the basepoint o, which eventually coincides with β0, where q1 = q1(q0).
Indeed, let β0 be a central element in A for some A ∈ A, and consider a nearest point
projection from o to β0. Surgery Lemma 2.8(1) implies that there exists a q1-ray that starts
from o and eventually coincides with β0, where q1 = q1(q0).

Now consider any non-transient q-ray α in X. By Lemma 3.10, α is eventually in the
bounded neighborhood of some A ∈ A. By Definition 3.14, ShA(α) is a q′-ray in A for some
q′ = q′(q), and α ∼ ShA(α). Since A satisfies QR-Assumption 1, there is a central q0-ray α0

in [ShA(α)] and a redirecting function f[α0] such that ShA(α) can be f[α0](q
′)-quasi-redirected

to α0. By the previous paragraph, there is a q1-ray emanating from o, denoted (α0)o, which
eventually coincides with α0. Therefore, Sh(α) can be f[α0](q

′)-quasi-redirected to (α0)o.
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Since α ∼ Sh(α), there is a redirecting function f[α] such that every non-transient q-ray α
in X can be f[α](q)-quasi-redirected to (α0)o, where f[α] depends on f[α0] and the constants
in Definition 3.14, the Transitivity Lemma (Lemma 2.5) and the Surgery Lemma 2.8. Thus
QR-Assumptions 1 and 2 are satisfied for non-transient rays. Combining both cases, we see
that all three assumptions are always satisfied. □

Definition 3.15. We define a map

ξ : ∂G → ∂BG

as follows. Let a ∈ ∂G and α0 ∈ a be the central element of a. If α0 is not transient, then
by Lemma 3.10, there exists some A ∈ A such that a tail of α0 is in a bounded neighborhood
of A. In this case we define

ξ(a) := ∗pA.
Otherwise, α0 is transient. By the construction and hyperbolicity of K, α0 is an

unbounded unparameterized quasi-geodesic in K and hence converges to a point α̂0 in ∂K.
We define

ξ(a) := α̂0.

Lemma 3.16. The map ξ : ∂G → ∂BG is surjective.

Proof. Let v ∈ V∞(K) be a point in the Bowditch boundary and let A be the associated
set in A. Let α be a quasi-geodesic ray that connects [o, oA] with a geodesic ray starting at
oA and lie entirely in A. By [DS05, Lemma 4.19] α is a bounded constant quasi-geodesic
ray in the class of ∂A. It follows that ξ([α]) = v.

Otherwise, let v be a point in ∂K. Since K is hyperbolic, there exists an equivalence class
of quasi-geodesic rays associated with v and in fact there exists a geodesic representative
in this class (for instance by the Arzelá–Ascoli Theorem), which we refer to as α. Since
α is a geodesic ray in K, by [Sis13, Proposition 1.14], there exists a bounded constant
quasi-geodesic ray α′ in Cay(G) that is a lift of α. We claim that, for a = [α′], we have

ξ(a) = v.

Indeed, the central element α0 of a is a geodesic in Cay(G), and an unparameterized
quasi-geodesic in K. Thus it stays in a bounded neighborhood of α and hence converges to
v. This finishes the proof. □

We now show that ξ and ξ−1 are both continuous. First we show that for every v ∈ ∆(K)
and every finite subset W ⊂ V (K), m(v,W ) is open in ∂G. It suffices to verify this when
W has one element as a finite intersection of open sets is open.

Lemma 3.17. For every b ∈ ∂G and p ∈ V (K) there exists r > 0 such that

ξ(U(b, r)) ⊂ m(ξ(b), p).

Therefore, ξ is continuous.
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p

πξ(b)(p)

ξ(b)(β0)r

q′

α ∈ ξ(a)

ℓ

Figure 6. A transition point (β0)r separates the point p and any geodesic
line that connects ξ(b) and ξ(a).

Proof. Let β0 be the central element of b.
Case I: We first assume that b is transient. Consider β0 as a subset of K and let πξ(b)(p) be
the closest point projection of p to β0 in K (see Figure 6). Since K is hyperbolic, πξ(b)(p)
has bounded diameter in K. As b is transient, β0 has transition points that are arbitrarily
far from o. Choose r > 0 such that, (β0)r is a (1, 0)–transition point of β0 and

(3) dK(o, (β0)r) ≫ dK(o, πξ(b)(p)) +D(9, 0) + 2δ,

where δ is the hyperbolicity constant of K, D(9, 0) is as in [QY24, Corollary 8.8], and
dK(o, πξ(b)(p)) is the maximum distance in K between any point in πξ(b)(p) to o.

Let a ∈ U(b, r) and let α0 be the central element in a. Since (β0)r is a transition point,
there exists a point q ∈ α0 such that

d(q, (β0)r) < D(9, 0).

Thus ∥q∥ ≥ r −D(9, 0). As K is hyperbolic, there exists a geodesic ℓ in K connecting ξ(a)
to ξ(b). The line ℓ is an edge in the ideal quadrilateral ((β0)r, ξ(b), ξ(a), q) hence it stays
in a bounded neighborhood of

β0|≥r ∪ α0|≥r ∪ [(β0)r, q].

Thus ℓ is far from p in K, and hence does not pass through p. Therefore, ξ(a) ∈ m(ξ(b), p).
Case II: Suppose that b is not transient. By Lemma 3.10, there exists a unique set A ∈ A
such that ξ(b) = ∗pA. Let β0 be the central element of b. Let

r ≫ 2
(
∥oA∥+ ∥p∥

)
.

Let a ∈ U(b, r) and let α0 be the central element of a. Then α0 can be fb(1, 0)–quasi-
redirected to β0 at radius r. Let e ∈ A be the point where α0 leaves the M0–neighborhood
of A, where M0 := M(1, 0) is as in Proposition 3.5.

Consider any geodesic segment or ray ℓ in K connecting ξ(a) to ∗pA. By [Hru10,
Proposition 8.13], ℓ enters Nτ(fb(1,0))(A) at a point that is boundedly close to e. Since ∗pA
is an endpoint of ℓ, ∗pA does not appear in interior of ℓ and hence, for any other vertex
x in ℓ, we have ∥x∥ ≥ ∥e∥ −D(1, 0). This implies ∥x∥ ≫ ∥p∥ and hence ℓ does not pass
through p. Therefore,

a ∈ m(ξ(b), p)

and hence U(b, r) ⊂ m(ξ(b), p). □
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Now we are ready to conclude:

Theorem 3.2. Let G be a relatively hyperbolic group with respect to subgroups P1, P2, . . . , Pk.
Assume that ∂P exists for each Cayley graph of the subgroups P ∈ P, then the quasi-
redirecting boundary ∂G exists and ∂G surjects onto ∂BG.

Proof. Since the map ξ : ∂X → ∂BX is onto and ξ is continuous, we conclude that
ξ : ∂G → ∂BG is a surjective homomorphism. □

Corollary 3.18. Let G be a relatively hyperbolic group with respect to subgroups P1, P2, . . . , Pk.
Then the conical limit points of K are embedded as a subset in P (G).

Proof. Case I of Lemma 3.17 shows that if b has a transient geodesic ray representative
then it maps to exactly one point in ∂K. Therefore there is a 1-1 map between the set of
conical limit points of G and the set of transient classes in P (G). □

4. Quasi-geodesics in templates

4.1. Templates. In this section, we will revisit the concept of templates introduced in
[CK02] and study its quasi-redirecting boundary. Roughly speaking, templates are essentially
piecewise Euclidean Hadamard spaces that can be embedded in R3. They approximate
certain subspaces of the spaces we are studying and contain a great deal of information about
the spaces at infinity. Our analysis of quasi-redirecting for quasi-geodesics in templates
will serve as a foundation for studying quasi-redirecting in quasi-geodesics of Croke-Kleiner
admissible groups in the subsequence section.

Definition 4.1. A template is a connected Hadamard space T (indeed piecewise Euclidean)
obtained from the disjoint collection of Euclidean planes {F}F∈WallT (called walls) and
Euclidean strips {S ≃ I × R}S∈StripT (where I is a closed interval of R) by isometric gluing
subject to the following conditions.

(1) The boundary geodesics of each S ∈ StripT , which we will refer to as singular
geodesics, are glued isometrically to distinct walls in WallT .

(2) Each wall F ∈ WallT is glued to at most two strips, and the gluing lines are not
parallel.

A template T can be visualized in R3 with its walls as parallel planes and its strips
meeting the walls orthogonally.

• Two walls F1, F2 ∈ WallT are adjacent if there is a strip S ∈ StripT such that
S ∩ F1 ̸= ∅ and S ∩ F2 ̸= ∅.

• A wall is an interior wall if it is incident to two strips, and a strip is an interior
strip if it is incident to two interior walls. The sets of interior walls and strips are
denoted Wall0T and Strip0T respectively.

• There is an associated angle function

θ : Wall0T → (0, π)

that assigns to each interior wall the angle between the oriented singular geodesics
F ∩ S1, F ∩ S2 where S1 and S2 are the two strips incident to F .
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4.2. Backward spiral paths in templates. In this subsection, let

T := F0 ∪ S01 ∪ F1 ∪ S12 ∪ · · · ∪ Fn

be a template in R3 as defined in Definition 4.1, with a constant angle function θ ≡ π/2.
That is, every pair of singular geodesics in the same wall meet at a right angle. We refer to
such a template as a right-angled template throughout this paper.

For notation, we set:

(1) A fixed basepoint o ∈ F0.
(2) The intersection of two adjacent strips:

pi := S(i−1)i ∩ Si(i+1).

(3) For each i ≥ 1, the two singular geodesics in the wall Fi:

f−
i := Fi ∩ S(i−1)i, f+

i := Fi ∩ Si(i+1).

To understand how quasi-geodesics behave in templates, we introduce two fundamental
types of paths: L–paths, which stay inside a wall, and Z–paths, which cross between strips
and walls. These paths will be key building blocks in our construction of backward spiral
paths.

Definition 4.2. For each i ≥ 1, an L-path in a wall Fi of T is a concatenation of two
geodesics l and l′ in Fi, where l is parallel to the singular geodesic f−

i and l′ is parallel to

f+
i .
A Z-path in T consists of an L-path in Fi followed by a geodesic segment in a strip

adjacent to Fi, perpendicular to the singular geodesic f−
i .

Remark 4.3. Since an L-path consists of two perpendicular segments in the Euclidean plane
E2, it is a (

√
2, 0)-quasi-geodesic. By the geometry of the template T and Lemma 2.8(1), a

Z-path is a (3
√
2, 0)-quasi-geodesic.

Construction of backward spiral path. We construct a backward spiral path by con-
catenating a sequence of L–paths and Z–paths, ensuring that each step moves deeper into
the template in a controlled way. For a path γ, we denote its initial and terminal points by
γ− and γ+, respectively.

Given q ≥ 1, Q ≥ 0, δ ∈ (0, 1], and a constant ρ > q
δ + Q, we construct the following

paths:

(1) Given xn in the last wall Fn, we attach a Z-path

Zn := vn · hn · ηn−1,

where
• ηn−1 is a geodesic in the strip S(n−1)n perpendicular to the singular geodesic

f−
n .

• vn is a geodesic segment based at xn and parallel to the singular geodesic f−
n

such that Length(vn) ≥ 2qQ.
• hn is a geodesic segment in Fn parallel to f+

n with terminal point (hn)+ ∈ f−
n .

Note that Length(hn) is the distance from xn to f−
n .
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(2) Repeat the process for each wall Fn−1, Fn−2, . . . , F1. At each step i, we attach a
Z-path

Zn−1 := vn−1 · hn−1 · ηn−2,

to the terminal point (Zi)+ where
• vi−1 is a geodesic segment in Fi−1 based at (Zi)+ and parallel to the singular
geodesic f−

i−1;

• hi−1 is a geodesic segment in Fi−1 parallel to f+
i−1;

• ηn−2 is a geodesic in the strip S(n−2)(n−1) perpendicular to f−
n−1. Additionally,

we require

vn−1 > ρ ·max {d((Zn)+, (Zn)−), hn−1} .
(3) We continue this pattern to define extended L-paths:

Zn−2, Zn−3, . . . , Zi, . . . , Z1.

(4) Terminate the sequence by attaching a final geodesic ray Z0 in F0. Unlike previous
steps, this final segment is a straight geodesic without an additional L–path.

The resulting concatenation:

Zq,Q,δ,ρ,xn := Zn · Zn−1 · · ·Z1

is called a backward spiral path (see Figure 7).

F0

F1

F2

F3

S01

S12

S23

Figure 7. The figure illustrates a portion of a backward spiral path in a
right-angled template

Remark 4.4. For each i, since vi · hi is a concatenation of two perpendicular segments in a
plane, it is a (

√
2, 1)-quasi-geodesic. Since ηi−1 lies in the strip S(i−1)i and is perpendicular

to the singular geodesic f−
i , it follows that (hi)+ is the closest point on Fi to (ηi−1)+.
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Hence, Zi is a (3
√
2, 1)-quasi-geodesic by Lemma 2.8(1). Similarly, from the geometry of

the template T , (ηi−1)+ is the closest point on S(i−1)i ∪ Fi to vi−1, and therefore Zi · vi−1

is a (9
√
2, 1)-quasi-geodesic by Lemma 2.8(1).

According to the geometry of T , we have d((hi−1)+, x) > Length(vi−1) for all x ∈ Zi.
Recall that

Length(vi−1) > ρmax{d((Zi)+, (Zi)−), hi−1}.

Thus, we have d((hi−1)+, x) > Length(hi−1). As a result, (vi−1)+ is the closest point on
Zi ·vi−1 to (hi−1)+. By Lemma 2.8(1), Zi ·vi−1 ·hi−1 is a (27

√
2, 1)-quasi-geodesic. Similarly,

Zi · Zi−1 = Zi · vi−1 · hi−1 · ηi−2 is a (81
√
2, 1)-quasi-geodesic.

For each point u ∈ Zi, we have d(u, Zi−1) ≥ Length(vi−1). Since Length(vi−1) >
ρmax{d((Zi)+, (Zi)−), hi−1}, it follows that

d(u, Zi−1) > ρd((Zi)+, (Zi)−)

for all points u in Zi.

Backward spiral paths are uniform quasi-geodesics. We will now show that backward
spiral paths are quasi-geodesics with uniform quasi-geodesic constants. To do so, we need
the following result.

Proposition 4.5. Let X be a metric space. Given constants q ≥ 1, Q ≥ 0, and δ ∈ (0, 1],
and for every positive constant ρ > q/δ +Q, there exist uniform constants L = L(ρ, q,Q, δ)
and C = C(ρ, q,Q) such that the following property holds:

Let

γ := γ1 · γ2 · · · γn
be a concatenation of (q,Q)-quasi-geodesics γi, such that the following conditions are
satisfied:

(1) d((γ1)−, (γ1)+) ≥ 2qQ.
(2) (γi)+ = (γi+1)− for 1 ≤ i ≤ n− 1.
(3) The concatenation γi · γi+1 is a (q,Q)-quasi-geodesic for each 1 ≤ i ≤ n− 1.
(4) d((γi)−, (γi)+) ≥ ρd((γi−1)−, (γi−1)+) for 2 ≤ i ≤ n.
(5) For any point u ∈ γi+1, we have d(u, (γi)−) ≥ δ d((γi)−, (γi)+).

Then γ is a (L,C)-quasi-geodesic.

Proof. Let 0 = a0 < a1 < a2 < · · · < an such that γi = γ|[ai−1,ai]
. Now, let t1 and t2 be

distinct points in [a0, an]. To simplify the notation, we define:

|γi| := d (γ(ai−1), γ(ai))

for i = 1, 2, 3, . . . , n. Claim 1:

d (γ (t1) , γ (t2)) ≤ L(t2 − t1) + C

where L and C defined explicitly in the proof.
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We consider the case where t1 ∈ [ak, ak+1] and t2 ∈ [aj , aj+1] with j − k ≥ 1. We have:

t2 − t1 ≥ aj − ak+1 =

j∑
s=k+2

(as − as−1)

By (4), we know |γs| ≥ ρ|γ1| > Q+ 1, so we obtain:

|as − as−1| ≥
ρ|γ1| −Q

q
>

1

q

Thus:

t2 − t1 ≥
j∑

s=k+2

(as − as−1) ≥
j − k − 1

q

Next, by the triangle inequality and since ak+1 − aj ≤ 0, we have:

d(γ(t1), γ(t2)) ≤ d(γ(t1), γ(ak+1)) +

j∑
s=k+2

d(γ(as), γ(as−1)) + d(γ(aj), γ(t2))

≤ q(t2 − t1) + q

j∑
s=k+2

(as − as−1) + (j − k − 1)Q+ 2Q

≤ q(t2 − t1) + q(t2 − t1) + qQ(t2 − t1) + 2Q

= (2q + qQ)(t2 − t1) + 2Q

Claim 2:

d (γ (t1) , γ (t2)) ≥ (1/L)(t2 − t1)− C

By (3), γi · γi+1 is a (q,Q)–quasi-geodesic for every i, we only need to consider the case
where t1 ∈ [ak, ak+1] and t2 ∈ [aj , aj+1] with j ≥ k + 2. By the triangle inequality,

(♢) d (γ (t2) , γ (t1)) ≥ d (γ (t2) , γ (aj−1))− d (γ (aj−1) , γ (t1))

By (4), we have

(♣)

j−1∑
i=1

|γi| ≤
1

ρ− 1
|γj | ≤

2

ρ
|γj |
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From the triangle inequality, we have:

d (γ (t1) , γ (aj−1)) ≤ d (γ (t1) , γ (ak+1)) +

j−1∑
i=k+2

|γi|

≤ q(ak+1 − ak) +Q+

j−1∑
i=k+2

|γi|

≤ q

(
j−1∑

i=k+1

|γi|

)
+ qQ+Q

This expresses the upper bound on the distance d(γ(t1), γ(aj−1)) in terms of the lengths
of the segments γi.

By applying (5), we have:

d(γ(t2), γ(aj−1)) ≥ δ d(γ(aj), γ(aj−1)) = δ |γj |

Then, using inequality (♣), we get:

d(γ(t1), γ(aj−1)) ≤ q

(
j−1∑

i=k+1

|γi|

)
+ qQ+Q

≤ 2q

ρ
|γj |+ qQ+Q

≤ 2q

δρ
d(γ(t2), γ(aj−1)) + qQ+Q

This provides an upper bound for d(γ(t1), γ(aj−1)) in terms of d(γ(t2), γ(aj−1)).
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By substituting the previous result into inequality (♢) and applying the fact from (3)
that γs · γs+1 is a (q,Q)-quasi-geodesic, we obtain:

d (γ(t2), γ(t1)) ≥ d (γ(t2), γ(aj−1))− d (γ(aj−1), γ(t1))

≥ (1− 2q

δρ
)d(γ(t2), γ(aj−1))− qQ−Q

≥ δρ− 2q

δρ

(
1

q
|t2 − aj−1| −Q

)
− qQ−Q

=
δρ− 2q

δρ

1

q
|t2 − aj−1| −

(δρ− 2q)Q

δρ
− qQ−Q

≥ c1 |t2 − aj−1| − c2

where c1 = c1(ρ, q) and c2 = c2(ρ, q,Q). We note that c1 > 0 because ρ > 2q
δ .

Recall that

as − as−1 ≥
ρ|γ1| −Q

q
≥ 2qQ,

which implies

|γs| ≥
1

q
|as − as−1| −Q ≥ 1

2q
|as − as−1|.

From inequality (♣) and the fact that γj is a (q,Q)-quasi-geodesic, we obtain:

2

ρ
(q|aj − aj−1|+Q) ≥ 2

ρ
|γj | ≥

j−1∑
i=1

|γi| ≥
1

2q

j−1∑
i=1

|ai − ai−1|.

This simplifies to
1

2q
aj−1 ≥

1

2q
(aj−1 − t1),

which gives the bound

aj−1 − t1 ≤ c3(aj − aj−1),

for some constant c3 = c3(ρ, q,Q).
Next, we have:

(t2 − t1) = (t2 − aj) + (aj − aj−1) + (aj−1 − t1),

which is bounded by

(t2 − aj−1) (2 + c3) ,

leading to

(t2 − aj−1) ≥
1

2 + c3
(t2 − t1).
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Thus,

d(γ(t2), γ(t1)) ≥
1

L
(t2 − t1)− C,

where L = 2+c3
c1

and C = c3.

By adjusting L and C if necessary, we conclude that γ is an (L,C)-quasi-geodesic, as
shown in Claim 1 and Claim 2.

□

Corollary 4.6. Let q = 81
√
2, Q = 1, δ ∈ (0, 1], and ρ > q

δ + Q. For xn ∈ Fn, the
backward spiral path Zq,Q,δ,ρ,xn is an (L,C)-quasi-geodesic, where L = L(q,Q, δ, ρ) and
C = C(q,Q, δ, ρ).

Proof. By Remark 4.4, the backward spiral path Zq,Q,δ,ρ,xn satisfies conditions (1), (2), (3),
(4), and (5) in Proposition 4.5. Hence, Zq,Q,δ,ρ,xn is an (L,C)-quasi-geodesic, with constants
L and C given by Proposition 4.5. □

4.3. Forward spiral paths in templates: Type I. In this section, we construct forward
spiral paths of Type I, which play a crucial role in understanding the quasi-geodesic structure
in right-angled templates. These paths exhibit a controlled growth pattern, ensuring that
they satisfy the quasi-geodesic property.

Let
T := F0 ∪ S01 ∪ F1 ∪ S12 ∪ . . . ∪ Fn

be a right-angled template in R3, as defined in Definition 4.1. Recall for each 1 ≤ i ≤ n− 1,
we define pi as the intersection point of the two singular geodesics f−

i and f+
i in Fi.

Lemma 4.7. [NY23, Lemma 3.3] There exists a uniform constant µ ≥ 1 such that for
each n ≥ 2, let T := F0 ∪ S01 ∪ F1 ∪ S12 ∪ . . . ∪ Fn be a right-angled template. Then the
concatenation [p1, p2] · · · [pn−2, pn−1] is a (µ, µ)-quasi-geodesic.

Construction of forward spiral paths in templates: Type I. Given a sufficiently
small ρ0 ∈ (0, 1/4), suppose there exists C > 0 such that for all i,

wi := d(pi, pi+1) ≤ C(1 + ρ0)
i.

(1) (Choosing geodesic rays). For each i, we define two geodesic rays:
• ℓ+i ⊂ f+

i based at pi.

• ℓ−i+1 ⊂ f−
i+1 based at pi+1.

We ensure that the projection of pi+1 onto f+
i lies on ℓ+i . Additionally, we require

that ℓ+i and ℓ−i+1 fellow-travel (see Figure 8).
(2) (Defining the forward spiral segments) For every r > C we define

κi := r(1 + ρ0)
i

On ℓ+i , choose zi so that d(zi, pi) = κi. Let the width of the strip Si(i+1) be denoted
by δi.

Let yi be the projection of zi onto f−
i+1. Since wi < κi, we have

• yi ∈ ℓ−i+1,
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• d(yi, zi) = δi,
• d(yi, pi+1) ≤ κi.

(3) (Concatenating the path) The forward spiral path of Type I to Fk, with k < n,
denoted by Lr,k, is the path obtained by concatenating the following segments:

Lr,k(α) := ζ|[0,r] ∪ [ζ(r), z1] ∪ [z1, y1] ∪ [y1, z2] ∪ · · · ∪ [zk−1, yk−1]

where
• ζ is the given main flat ray.
• {zi}, {yi} represent the intermediate points in the construction of the path (see
Figure 9) as in the prervious step.

pi

pi+1

zi

yi

κi

< κi

ℓ+i

ℓ−i+1

δi

Fi

Fi+1

Si(i+1)

Figure 8. The figure illustrates how we choose geodesic rays ℓ+i and ℓ−i+1

on the strip. Our choice of constant κi > wi = d(pi, pi+1) ensures that the
projection point yi of zi into f−

i+1 will lie in ℓ−i+1 and d(yi, pi+1) ≤ κi.

Forward spiral paths are uniform quasi-geodesics. We note that if i < j < n then
Lr,i is a subpath of Lr,j .

Since r > C we have

k−1∑
i=1

wi < r

k−1∑
i=1

(1 + ρ0)
i = r

1 + ρ0
ρ0

(
(1 + ρ0)

k−1 − 1
)
,

and
k∑

i=1

κi =

k∑
i=1

r(1 + ρ0)
i = r

1 + ρ0
ρ0

(
(1 + ρ0)

k − 1
)
≤ r(1 + ρ0)

k+1

ρ0
.
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pi

pi+1

zi+1

yizi

yi−1

zi−1 pi−1

κi

κi+1

κi−1

Figure 9. The figure illustrates a portion of Lr,k which is a concatenation
of dashed segments. The sum of all dashed segments is bounded above by
an exponential function (1 + ρ0)

k up to some multiplicative constant.

From our construction, we have d(zi, yi) = δi ≤ wi and d(yi, zi+1) ≤ d(yi, pi+1) +
d(pi+1, zi+1) ≤ κi + κi+1.

For i < j, let us denote the subpath of Lr,k from yi−1 to zj by Lr,k|[yi−1,zj ]. We then
have:

Length
(
Lr,k|[yi−1,zj ]

)
≤ d(yi−1, zi) + d(zi, yi) + · · ·+ d(zj−1, yj−1) + d(yj−1, zj).

This simplifies to:

Length
(
Lr,k|[yi−1,zj ]

)
≤ 2

j∑
m=i−1

κm + 2

j−1∑
m=i−1

wm

≤ 4r

j∑
m=i−1

(1 + ρ0)
m ≤ 4r

ρ0
(1 + ρ0)

j+1.

By [NY23, Proposition 3.8], the subpath [pi, pi+1] · · · [pj−1, pj ] is a (µ, µ)-quasi-geodesic.
By Lemma 2.8(1), the concatenation

σ := [yi−1, pi] · [pi, pi+1] · · · [pj−1, pj ] · [pj , zj ]
is a (9µ, 9µ)-quasi-geodesic. Specifically, pi is the closest point on [pi, pi+1] · · · [pj−1, pj ],

and thus [yi−1, pi] · [pi, pi+1] · · · [pj−1, pj ] is a (3µ, 3µ)-quasi-geodesic by Lemma 2.8(1).
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Similarly, as pj is the closest point on [yi−1, pi] · [pi, pi+1] · · · [pj−1, pj ] to zj , it follows from
Lemma 2.8(1) that σ is a (9µ, 9µ)-quasi-geodesic.

We then have

d(yi−1, zj) ≥
Length(σ)

9µ
− 9µ ≥ d(pj , zj)

9µ
− 9µ ≥ κj

9µ
− 9µ =

r(1 + ρ0)
j

9µ
− 9µ.

Since 81µ2 < r
2 < r

2(1 + ρ0)
j , it follows that

r(1 + ρ0)
j

9µ
− 9µ ≥ r(1 + ρ0)

j

18µ
.

We thus can control the upper bound of the ratio:

Length
(
Lr,k|[yi−1,zj ]

)
d(yi−1, zj)

≤ 72µ

ρ0
(1 + ρ0)

A similar argument shows that there is an uniform constant ∆ = ∆(µ, ρ0) such that for
any points x, y in Lr,k, we have

Length
(
Lr,k|[x,y]

)
d(x, y)

≤ ∆

In other words, Lr,k is a (∆,∆)–quasi-geodesic for every k < n.

Growths of forward spiral paths of Type I. The collection of forward spiral paths
Lr,k with k < n has the following property:

Length(Lr,k+1)− Length(Lr,k) ≤ d(yk−1, pk) + d(pk, zk) + d(zk, yk)

≤ κk−1 + κk + δk

< 2r(1 + ρ0)
k + δk.

Claim: There exists a constant ρ = ρ(ρ0), which tends to 0 as ρ0 → 0, such that:

2r(1 + ρ0)
k < ρLength(Lr,k)

for sufficiently large k.
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Indeed, we have:

Length(Lr,k) = r + d(ζ(r), z1) + d(z1, y1) + · · ·+ d(zk−1, yk−1)

≥ r +
k−1∑
i=1

κi

= r + r
k−1∑
i=1

(1 + ρ0)
i

≥ r + r
(1 + ρ0)

ρ0

(
(1 + ρ0)

k−1 − 1
)

= r

(
(1 + ρ0)

k

ρ0
− 1

ρ0

)
.

Thus,

2r(1 + ρ0)
k

Length(Lr,k)
≤ 2ρ0(1 + ρ0)

k

(1 + ρ0)k − 1
→ 2ρ0

as k → ∞. Therefore, there exists n0 ∈ N such that for all k ≥ n0, we have:

2r(1 + ρ0)
k

Length(Lr,k)
< 3ρ0 =: ρ.

This confirms the claim. We then conclude:

Length(Lr,k+1) < (1 + ρ) Length(Lr,k) + δk

for sufficiently large k.
We summarize the above discussion in the next proposition.

Proposition 4.8 (N-Qing-Margolis). Let α be a q–ray of Type II of sub-exponential
excursion. Let ρ > 0 be an arbitrary sufficiently small constant. Then there exists a
sufficiently large k0 = k0(ρ) and a constant C > 0 such that for every r > C and for every
k ≥ k0, the collection of forward spiral path of Type I {Lr,i}i<k constructed as above satisfies
the following properties:

(1) It is a (L,A)–quasi-geodesic with some constants L,A are independent of r, k.
(2)

Length(Lr,k+1) < (1 + ρ) Length(Lr,k) + δk

4.4. Forward spiral paths: Type II. In this section, we define and analyze forward spiral
paths of Type II, which differ from Type I in their geometric construction and quasi-geodesic
properties. These paths exhibit controlled sub-exponential growth, ensuring their use in
the study of QR boundaries.
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Given a sufficiently small constant ρ0 ∈ (0, 1/16), r > 0. Let t1, t2, . . . tk be positive
numbers so that {

tk − tk−1 ≥ r(1 + ρ0)
k

ti − ti−1 < r(1 + ρ0)
i ∀1 ≤ i ≤ k − 1

We define

κi := rρ0(1 + ρ0)
i for each 1 ≤ i ≤ k

We have

κk = rρ0(1 + ρ0)
k < ρ0(tk − tk−1)

and hence it implies that
κk
ρ0

< tk − tk−1

pi

pi+1

zi

yi

κi

≤ κi + 2wi

ℓ+i

ℓ−i+1

δi
wi

Figure 10. The figure illustrates how we choose geodesic rays ℓ+i and ℓ+i+1
on the strip which is slightly different from Figure 8 as the constant κi is
chosen to be smaller than wi.

(1) (Choosing geodesic rays) For each i, we define two geodesic rays:
• ℓ+i ⊂ f+

i based at pi.

• ℓ−i+1 ⊂ f−
i+1 based at pi+1.

We ensure that the projection point of pi into f−
i+1 will belong to ℓ−i+1 (see Figure 10).

(2) (Defining the forward spiral segments) On ℓ+i choose zi such that

d(pi, zi) = κi

Let yi be the projection of zi on ℓ−i+1. We have
• d(zi, yi) = δi
• d(yi, pi+1) ≤ κi + 2wi.

(3) (Concatenating the path) Define the forward spiral path of Type II Jr,k as the
concatenation:

Jr,k := ζ|[0,r] · [ζ(r), z1] · [z1, y1] · [y1, z2] · · · [yk−1, zk−1]

where ζ is the given main flat ray.
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Using similar arguments as forward spiral paths of Type I, we can verify that Jr,k is a
(L,A)–quasi-geodesic for some constantS L = L(ρ0, q), A = A(ρ0, q).

Lemma 4.9. There are constants L = L(ρ0, q), A = A(ρ0, q) such that every spiral path of
Type II Jr,l is a (L,A)–quasi-geodesic.

In this section, we have constructed backward spiral paths and forward spiral paths in
templates and established that they are quasi-geodesics. This provides a crucial tool for
proving that QR boundaries exist in Croke-Kleiner admissible groups. In the next section,
we apply these results to show that the QR boundary of these groups is well-defined and
contains important structural information.

5. QR boundary of Croke-Kleiner admissible groups

CAT(0) Croke-Kleiner admissible groups were introduced by Croke–Kleiner in [CK02].
They are a particular class of graph of groups that includes fundamental groups of 3-
dimensional graph manifolds. The QR-boundary of a specific case of CAT(0) admissible
group is computed in [QR24]. In this section we follow the arguments in [QR24, Section
11] closely but adapt and expand them to suit all CAT(0) Croke-Kleiner admissible groups.
We remark here that Croke-Kleiner admissible groups are not relatively hyperbolic groups
(see [MN24, Lemma 4.7]).

Definition 5.1. A graph of groups G = (Γ, {Gv}, {Ge}, {τe}) consists of the following data:

(1) a graph Γ, called the underlying graph,
(2) a group Gv for each vertex v ∈ V Γ, called a vertex group,
(3) a subgroup Ge ≤ Ge− for each edge e ∈ EΓ, called an edge group,
(4) an isomorphism τe : Ge → Ge for each e ∈ EΓ such that τ−1

e = τe, called an edge
map.

The fundamental group π1(G) of a graph of groups G is as defined in [SW79].

Definition 5.2. A graph of groups G is admissible if

(1) G is a finite graph with at least one edge.
(2) Each vertex group Gv has center Z(Gv) ∼= Z, Qv := Gv/Z(Gv) is a non-elementary

hyperbolic group, and every incident edge subgroup Ge is isomorphic to Z2.
(3) Let e1 and e2 be distinct directed edges entering a vertex v, and for i = 1, 2, let

Ki ⊂ Gv be the image of the edge homomorphism Gei → Gv. Then for every
g ∈ Gv, gK1g

−1 is not commensurable with K2, and for every g ∈ Gv −Ki, gKig
−1

is not commensurable with Ki.
(4) For every edge group Ge, if αi : Ge → Gvi is the edge monomorphism, then the

subgroup generated by α−1
1 (Z(Gv1)) and α−1

2 (Z(Gv1)) has finite index in Ge.

Definition 5.3. A group G is admissible if it is the fundamental group of an admissible
graph of groups. We say that a Croke-Kleiner admissible group G is a CAT(0) Croke-Kleiner
admissible group if there is a complete proper CAT(0) space X such that G acts on X
isometrically, properly discontinuously and cocompactly. Such an action G ↷ X is called a
CKA action and the space X is called a CAT(0) admissible space of G.
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Below are some examples of CAT(0) Croke-Kleiner admissible groups.

Example 5.4.

(1) (Tori complexes) Let n ≥ 3 be an integer. Let T1, T2, . . . , Tn be a family of flat
two-dimensional tori. For each i, we choose a pair of simple closed geodesics ai
and bi such that length(bi) = length(ai+1), identifying bi and ai+1 and denote
the resulting space by X. The space X is a graph of spaces with n − 1 vertex
spaces Vi := Ti ∪ Ti+1/{bi = ai+1} (with i ∈ {1, . . . , n− 1}) and n− 2 edge spaces
Ei := Vi ∩ Vi+1.

The fundamental group G = π1(X) has a graph of groups structure where each
vertex group is the fundamental group of the product of a figure eight and S1. Vertex
groups are isomorphic to F2 × Z and edge groups are isomorphic to π1(Ei) ∼= Z2.
The generators [ai], [bi] of the edge group π1(Ei) each map to a generator of either a
Z or F2 factor of F2 × Z. It is clear that with this graph of groups structure, π1(X)
is a Croke-Kleiner admissible group.

(2) (Graph manifolds) Let M be a non-geometric graph manifold that admits a non-

positively curved metric. Lift this metric to the universal cover M̃ of M , and we
denote this metric by d. Then the action π1(M) ↷ (M̃, d) is a CKA action.

(3) One may build CAT(0) Croke-Kleiner admissible groups algebraically from any finite
number of hyperbolic CAT(0) groups. The following example is for n = 2 but the
same principle works for any n ≥ 2. Let H1 and H2 be two torsion-free hyperbolic
groups that act geometrically on CAT(0) spaces X1 and X2 respectively. Then
Gi = Hi × ⟨ti⟩ (with i = 1, 2) acts geometrically on the CAT(0) space Yi = Xi × R.
Any primitive hyperbolic element hi in Hi gives rise to a totally geodesic torus Ti in
the quotient space Yi/Gi with basis ([hi], [ti]). We re-scale Yi so that the translation
length of hi is equal to that of ti for each i. Let f : T1 → T2 be a flip isometry
respecting these lengths, that is, an orientation-reversing isometry mapping [h1]
to [t2] and [t1] to [h2]. Let M be the space obtained by gluing Y1 to Y2 by the
isometry f . There is a metric on the space M that gives rise to a locally CAT(0)
space (see e.g. [BH99, Proposition II.11.6]). By the Cartan–Hadamard Theorem,

the universal cover M̃ with the induced length metric from M is a CAT(0) space.

Let G be the fundamental group of M . Then the action G ↷ M̃ is geometric, and
G is an example of a Croke–Kleiner admissible group.

5.1. Vertex and edge spaces in CAT(0) admissible spaces. Let G be a Croke-Kleiner
admissible group that acts properly discontinuously, cocompactly, and by isometries on
a complete proper CAT(0) space X. Let G ↷ T be the action of G on the associated
Bass–Serre tree T of the graph of group G (we refer the reader to [CK02, Section 2.5] for a
brief discussion).

Let V (T ) and E(T ) be the vertex and edge sets of T . For each σ ∈ V (T ) ∪ E(T ), we let
Gσ ≤ G be the stabilizer of σ. We review facts from [CK02, Section 3.2] that will be used
thoroughly in this paper, and refer the reader to [CK02] for further explanation. From the
given actions G ↷ X and G ↷ T we have
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(1) for every vertex v ∈ V (T ), the set Xv := ∩g∈Z(Gv)Minset(g) splits as metric product

Xv = Hv × R

where Z(Gv) acts by translation on the R–factor and the quotient Qv := Gv/Z(Gv)
acts geometrically on the CAT(0) space Hv.

(2) for every edge e ∈ E(T ), the minimal set Xe := ∩g∈Ge Minset(g) splits as

Xe = Xe × R2 ⊂ Xv,

where Xe is a compact CAT(0) space and Ge = Z2 acts co-compactly on the
Euclidean plane R2.

Definition 5.5. For every vertex v ∈ V (T ) and edge e ∈ E(T ), the spaces Xv and Xe are
called the vertex space and edge space of X respectively.

Remark 5.6. For each vertex space Xv, since the quotient Qv := Gv/Z(Gv) is a non-
elementary hyperbolic group and acts geometrically on Hv, it follows that Hv is a hyperbolic
space.

In the sequel, it will be useful to make the following specific choices.

Definition 5.7. There exists a G-equivariant coarse L–Lipschitz map i : X → T 0 such
that x ∈ Xi(x) for all x ∈ X. The map i is called an index map. We refer the reader to
Section 3.3 in [CK02] for the existence of such a map i.

5.2. Admissible strips and admissible planes in CAT(0) admissible spaces. [CK02,
Section 4.2] We note that the assignments v → Xv and e → Xe are G-equivariant in the
sense that gXv = Xgv and gXe = Xge for any g ∈ G.

Definition 5.8 (admissible planes and admissible strips). We first choose, in a G-equivariant
way, a plane F ∗

e ⊂ Xe which we will call the admissible plane for each edge e ∈ E(T ).
For every pair of adjacent edges e, e′, we choose, again equivariantly, a minimal geodesic

from F ∗
e to F ∗

e′ ; by the convexity of Xv = Hv ×R where v := e∩ e′, this geodesic determines
an admissible strip in the CAT(0) admissible space X:

S∗
ee′ := hee′ × R ⊂ Xv

(possibly of width zero) for some geodesic segment hee′ ⊂ Hv.

Remark 5.9.

(1) Note that lines S∗
ee′ ∩ F ∗

e and S∗
ee′ ∩ F ∗

e′ are axes of Z(Gv). Hence if e, e′, e′′ ∈ E(T )
are three consecutive edges, then the angle between the geodesics S∗

ee′ ∩ F ∗
e′ and

S∗
e′e′′ ∩ F ∗

e′ is bounded away from zero.
(2) Suppose e is adjacent to incident to vertices v1, v2 ∈ V (T ). If ⟨f1⟩ = Z(Gv1), ⟨f2⟩ =

Z(Gv2), then ⟨f1, f2⟩ generates a finite index subgroup of Ge. Thus if e1, e, e2 are
three consecutive edges, the intersection of the two admissible strips S∗

e1e and S∗
e2e

is a point. Indeed, we have

S∗
e1e ∩ S∗

e2e = (S∗
e1e ∩ F ∗

e ) ∩ (S∗
e2e ∩ F ∗

e ).
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As two lines S∗
e1e ∩ F ∗

e and S∗
e2e ∩ F ∗

e in the wall F ∗
e are axes of ⟨fv1⟩ = Z(Gv1),

⟨fv1⟩ = Z(Gv2) respectively and ⟨f1, f2⟩ generates a finite index subgroup of Ge, it
follows that these two lines are non-parallel, and hence their intersection must be a
single point.

Recall that each Xv decomposes as a metric product of a hyperbolic Hadamard space Hv

with the real line R such that Hv admits a geometric action of Qv. Recall that we choose a
G–equivariant family of Euclidean planes {F ∗

e : F ∗
e ⊂ Xe}e∈E(T ).

Definition 5.10. The space X is called a flip admissible space if for each edge e := [v, w] ∈
E(T ), the boundary line ℓ := Hv ∩ F ∗

e is parallel to the R–line in Xw = Hw × R. We also
call the group G a flip admissible group.

Example 5.11. Examples (1) and (3) in Example 5.4 are instances of flip-admissible
groups. The flip graph manifolds introduced by Kapovich–Leeb [KL98] are also typical
examples of flip-admissible spaces. A flip manifold is a graph manifold constructed as
follows: Take a finite collection of products of S1 with compact orientable hyperbolic
surfaces and glue them along boundary tori using maps that interchange the base and fiber
directions. Kapovich–Leeb proved that for any graph manifold M , there exists a flip graph
manifold N whose fundamental group is quasi-isometric to that of M .

5.3. Embedded templates into admissible spaces. Let X be a CAT(0) admissible
space. We are going to recall a template associated with a geodesic in the Bass-Serre tree
in [CK02, Section 4.2] as the following.

Definition 5.12. Let γ be a geodesic segment or ray in the Bass-Serre tree T . We may
write γ = e1 · e2 · · · ek (or γ = e1 · e2 · · · ek · · · in case γ is a geodesic ray).

We begin with a collection of walls Fe and an isometry ϕe : Fe → F ∗
e for each edge e ⊂ γ.

For every pair ei, ei+1 of adjacent edges of γ, we let Si(i+1) be a strip which is isometric
to S∗

eiei+1
if the width of S∗

eiei+1
is at least 1, and isometric to [0, 1]× R otherwise; we let

ϕeiei+1 : Si(i+1) → S∗
eiei+1

be an affine map which respects product structure (ϕeiei+1 is an
isometry if the width of S∗

eiei+1
is greater than or equal to 1 and compresses the interval

otherwise).
The standard template T associated with γ ⊂ T is the template obtained by gluing the

strips Si(i+1) and walls Fe so that the maps ϕei and ϕeiei+1 descend to continuous maps on
the quotient, we denote the map from Tγ → X by ϕγ .

The following lemma is cited from [CK02, Lemma 4.5] and [CK02, Proposition 4.6] which
basically say each template associated with a geodesic segment/ ray in the Bass-Serre tree
T is quasi-isometrically embedded in X with uniform quasi-isometric constants.

Lemma 5.13. Let G ↷ X be a CKA action. Then

(1) There exists β = β(X) > 0 such that the following holds. For any geodesic segment
γ ∈ T , the angle function αγ : WallTγ → (0, π) satisfies 0 < β ≤ αγ ≤ π − β < π.

(2) There are universal constants L,A > 0 such that the following holds. Let γ
be a geodesic segment in T , and let ϕγ : Tγ → X be the map given by Defini-
tion 5.12. Then ϕγ is a (L,A)–quasi-isometric embedding. Moreover, for any



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 35

x, y ∈ [∪e⊂γXe] ∪ [∪ee′⊂γS∗
ee′ ], there exists a continuous map α : [x, y] → Tγ such

that d(ϕγ ◦ α, id|[x,y]) ≤ L.

5.4. Main flat rays. This section assumes that X is a flip admissible space. Let i : X → T
be the index map given by Definition 5.7, and fix a admissible plane F ∗ in X. We also
assume that the basepoint o ∈ F ∗ and F ∗ ⊂ Xv0 where v0 := i(o). Recall that Xv0 splits as
a metric product Hv0 × R. In the rest of this paper, we fix a geodesic ray ζ∗ based at o
that follows the line R in the R factor of Xv0 , and call it the admissible main flat ray.

We remark that the choice of ζ∗ is arbitrary since any quasi-geodesic ray in Xv0 is in the
same equivalent class as ζ∗ by Proposition 2.6.

We first show that every q–ray α∗ can be quasi-redirected to the admissible main flat ray
ζ∗ at every radius r > 0, via a quasi-geodesic γ∗r with uniform quasi-geodesic constants; see
Proposition 5.14.

Proposition 5.14 (Quasi-redirecting to the main flat ray). Let α∗ be a q–ray in the flip
admissible space X. Then α∗ can be quasi-redirected to the admissible main flat ray ζ∗

at every radius r > 0 via a quasi-geodesic γ∗r with uniform quasi-geodesic constants, In
particular, we have α∗ ⪯ ζ∗.

Proof. If α∗ does not intersect any admissible plane, then α∗ necessarily lies in a neighbor-
hood of same vertex space as the basepoint o. By Proposition 2.6, α∗ and ζ∗ redirect to
each other. Otherwise, α∗ intersects a non-empty (finite or infinite) collection of admissible
planes.

Given q = 81
√
2, Q = 1, δ ∈ (0, 1], and ρ > q/δ +Q.

Choose a sequence {t∗n > 0} so that t∗n → ∞. For each n, choose a admissible plane,
denoted by F ∗

en , that is that is sufficiently far from α∗(t∗n) so that if w∗
n is a point in α∗|[0,t∗n]

such that

d(w∗
n, F

∗
en) = inf

{
d(x, F ∗

en)
∣∣ x ∈ α∗|[0,t∗n]

}
then d(o, w∗

n) → ∞ when n → ∞ and rn := d(w∗
n, F

∗
en) > ρ sup0≤s≤t∗n

d(o, α∗(s))

Let x∗n be a point in F ∗
n that realizes d(w∗

n, F
∗
en), and denote d(x∗n, w

∗
n) by rn. By

Lemma 2.8(1), we have that the concatenation [o, w∗
n]α∗ ∪ [w∗

n, x
∗
n] is a (3q,Q)–quasi-

geodesic. Also, if ℓ is a (q,Q)–quasi-geodesic starting at x∗n and contained in F ∗
en , then the

concatenation [w∗
n, x

∗
n] ∪ ℓ is also a (3q,Q)–quasi-geodesic by Lemma 2.8(1).

Let γ ⊂ T be the geodesic segment in the tree T starting at v0 and ending at (en)+
(where en is the last edge of γ). Define T as the standard template in R3 associated with γ,
as per Definition 5.12. Since X is a flip-admissible space, this template is right-angled. We
write

T := F0 ∪ S01 ∪ F1 ∪ S12 ∪ . . . ∪ Fn

By Lemma 5.13, there exists an (A1, A2)–quasi-isometric embedding Φ: T → X, where A1

and A2 are uniform constants depending only on the geometry of X. Choose xn ∈ Fn such
that Φ(xn) = x∗n.

Given that q = 81
√
2, Q = 1, δ ∈ (0, 1], and ρ > q/δ +Q, the backward spiral path

Zq,Q,δ,ρ,xn = Zn · Zn−1 · · ·Z1
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as constructed in Section 4.2, is a (L,C)–quasi-geodesic by Corollary 4.6. Moreover, the part
vn in Zn, introduced in part (1) of the construction in Section 4.2, can be chosen arbitrarily
large. Hence, we can select vn so that the ratio Length(vn)/d(w

∗
n, x

∗
n) is sufficiently large.

We define

Z∗ := Φ(Zq,Q,δ,ρ,xn) = Z∗
n · Z∗

n−1 · · ·Z∗
1

where Z∗
i = Φ(Zi).

It is straightforward to verify that [o, w∗
n]α∗ , [w∗

n, x
∗
n], Z

∗
n, ..., Z

∗
1 satisfy conditions (1),

(2), (3), (4), (5) in Proposition 4.5 for some q∗ ≥ 1, Q∗ ≥ 0, δ∗ ∈ (0, 1] and ρ∗. Consequently,
the path

γ∗ := [o, w∗
n]α∗ · [w∗

n, x
∗
n] · Z∗

is a (L∗, C∗)–quasi-geodesic where L∗ and C∗ are constants given by Proposition 4.5.
Thus, we have shown that α∗ can be quasi-redirected to ζ∗ at w∗

n via γ∗, which is
an (L∗, C∗)–quasi-geodesic. Since d(o, w∗

n) → ∞, Lemma 2.9 implies that α∗ can be
(q′, Q′)–quasi-redirected to ζ∗. □

5.5. Type I and Type II quasi-geodesics.

Definition 5.15. Let α∗ be an arbitrary q–ray in the CKA space X emanating from o.
Recall that q–rays are always assumed to be continuous.

• Let u1 > 0 be the supremum of times t such that α∗(t) lies in the vertex space Xv0 .
If u1 = ∞ we stop here.

• If u1 is finite, we then let Xv ̸= Xv0 be the vertex space α∗ enters immediately after
it exists Xv0 and define u2 to be the supremum of times t such that α∗(t) lies in Xv.

• Repeat this process to define a sequence u1 < u2 < . . . as long as ui is finite.

We classify α∗ into two types

(1) Type I: If there exists an index i such that ui = ∞, then α∗ remains in a finite set
of vertex spaces.

(2) Type II: If ui is finite for all i, then the radii of vi (i.e, dT (v0, vi)) in T tends to
infinity monotonically. Since T is a tree, there is exactly one geodesic ray whose
vertex set is contained in i(α∗). Denote this geodesic ray γ∗. Relabel again such
that γ∗ traverses vertices v0, v1, v2, . . . etc. In this case, we say the q–ray α∗ is of
Type II.

In the case α∗ is of Type II, since γ∗ as above is uniquely determined by α∗, we denote it
by γα∗ . We call γα∗ and the associated ordered, infinite sequence of vertices v0, v1, v2, . . . ,
the simplified itinerary associated to α∗.

We define ei := [vi−1, vi] and let v0 := i(o). Let he0e1 be the geodesic in Hv0 realizing the
shortest geodesic between πv0(o) and πv0(F

∗
e1), where πv0 : Xv0 = Hv0 × R → Hv0 is the

projection. Let S∗
e0e1

:= he0e1 × R be the corresponding admissible strip. For the rest of
this paper, we adopt the following notation:

(1) We denote the intersection point of two adjacent admissible strips by

p∗i := S∗
ei−1ei ∩ S∗

eiei+1
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v0

v1

v2

v3

Figure 11. The figure illustrates a portion of vertices i(α∗) visits. With
respect to i(α∗), there is the unique geodesic ray γα∗ := [v0, v1] · [v1, v2] ·
[v2, v3] · · · associated to α∗.

(2) For each i ≥ 2, denote the two singular geodesics in the admissible plane F ∗
ei by

(f∗
i )

− := F ∗
ei ∩ S∗

ei−1ei and (f∗
i )

+ = F ∗
ei ∩ S∗

eiei+1

In Section 5.4, we constructed backward spiral paths that redirect any q-ray (Type I or
Type II) to ζ∗ (see Proposition 5.14. The proof can be adapted to show that if α∗ is of
Type I, then ζ∗ can be quasi-redirected to α∗

Lemma 5.16. Let α∗ be an arbitrary q–ray of Type I in the flip admissible space X. Then
α∗ ∼ ζ∗.

In the rest of this section, we address the case when α∗ is of Type II.

Excursion. Following Definition 5.15, we introduce further refinements to the classification
of q–rays of Type II and their behavior in admissible spaces

We first establish notation that will be used for the remainder of this section. Let α∗ be
a q–ray of Type II. Let ei = [vi−1, vi], where v0, v1, . . . is a simplified itinerary of α∗. Let
t∗i be the first time α∗ intersects F ∗

ei .

Definition 5.17 (Sub-exponential Excursion). We say that α∗ has sub-exponential excursion
with respect to the distance in T if

lim
i→∞

log |t∗i − t∗i−1|
i

= 0

Let γ∗ := γ∗α∗ be the geodesic ray in the Bass–Serre tree T associated to α∗. Recall that
p∗i = (f∗

i )
− ∩ (f∗

i )
+ and p∗i+1 = (f∗

i+1)
− ∩ (f∗

i+1)
+, where (f∗

i )
+ and (f∗

i+1)
− are the two

singular geodesics of the admissible strip S∗
eiei+1

. Also recall that p∗0 := o

Lemma 5.18. Assume that the excursion of α∗ is sub-exponential. Given a constant
0 < ρ0 < 1/4. Then there exists a constant C > 0 such that ∆∗

i := d(p∗i , p
∗
i+1) ≤ C(1 + ρ0)

i.

Proof. Since the excursion of α∗ is sub-exponential, it follows that there exists a constant
C ′ such that

d(α∗(t∗i ), α(t
∗
i+1)) < C ′(1 + ρ0)

i
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We define

X ∗ := Xvj ∪ S∗
ejej+1

∪ F ∗
ej+1

∪ S∗
ej+1ej+2

∪ F ∗
ej+2

∪ S∗
ej+2ej+3

∪ F ∗
ej+3

∪ S∗
ej+3ej+4

∪Xvj+4

We recall from [CK02, Lemma 4.3] that the subspace X ∗ is a A1–quasiconvex for some
uniform constant A1 depending only on the geometry of X.

Let β∗ be the shortest geodesic joining Xvj to Xvj+4 . It follows that β∗ ⊂ NA1(X )
because of quasi-convexity. The length of β∗ is necessarily greater than d(p∗j+2, p

∗
j+3) up to

some uniform multiplicative and additive constants, that is

Length(β∗) >
1

A2
d(p∗j+2, p

∗
j+3)−A2

for some uniform constant A2 > 0.
Since β∗ is a shortest geodesic connecting Xvj to Xvj+4 , we have

d(α∗(t∗j ), α
∗(t∗j+4)) > Length(β∗)

We thus obtain

∆∗
j+2 = d(p∗j+2, p

∗
j+3) ≤ A2(A2 + Length(β∗))

≤ A2
2 +A2d(α(t

∗
j ), α(t

∗
j+4))

≤ A2
2 +A2C

′
j+4∑
s=j

(1 + ρ0)
s ≤ C(1 + ρ)j+2

for some constant C = C(ρ0, A2, C
′). The claim is confirmed. □

Lemma 5.19. Let α∗ be a q–ray of Type II. If the excursion of α∗ is sub-exponential then
ζ∗ can not be quasi-redirected to α∗

Proof. By way of contradiction, suppose that at every radius r, there is always a uniform
quasi-geodesic ξ∗ (say ξ∗ is a q–ray for some q = (q,Q)) that quasi-redirects ζ∗ to α∗ at the
radius r. Let t∗k be the first time ξ∗ visits F ∗

ek
and denote

ℓ∗k := d(p∗k, γ(t
∗
k))

Since ξ∗ is a q–ray, there exists a constant ρ0 = ρ0(q,Q) > 0 such that

(4) t∗0 = r and t∗k+1 − t∗k ≥ ρ0ℓ
∗
k

Another way to travel from o = p∗0 to ξ
∗(t∗k) is to go along the path [p∗0, p

∗
1], [p

∗
1, p

∗
2], . . . , [p

∗
k−1, p

∗
k]

which is a (µ, µ)–quasi-geodesic where µ is an uniform constant (see [NY23, Proposition 3.8]
and then go up or down a distance of ℓ∗k to reach ξ∗(t∗k).

Recall that ∆∗
i := d(p∗i , p

∗
i+1). Again since ξ∗ is a q–ray we have that

(5) ℓ∗k +
k−1∑
i=0

∆∗
i ≥ ρ0t

∗
k

Define

ρ1 = ρ20/2



QUASI-REDIRECTING BOUNDARIES OF NON-POSITIVELY CURVED GROUPS 39

and pick an arbitrary 0 < ρ < ρ1.
Since the excursion of α∗ is sub-exponential, it follows from Lemma 5.18 that there exists

a constant C = C(α∗) > 0 such that for every i ≥ 0 then ∆∗
i = d(p∗i , p

∗
i+1) ≤ C(1 + ρ)i and

hence
k∑

i=0

∆∗
i ≤ C

k∑
i=0

(1 + ρ)i ≤ C

ρ
(ρ+ 1)k

Claim:

(6) ∀r > 2C/(ρρ0) =⇒ t∗k+1 ≥ r(1 + ρ1)
k+1 and ℓ∗k ≥ rρ0

2
(1 + ρ1)

k+1

Indeed, we prove the above claim by induction. The base case is obvious, so we assume the
claim is true for all i ≤ k. We have

t∗k+1 ≥ t∗k + ρ0ℓ
∗
k

≥ r(1 + ρ1)
k +

rρ20
2

(1 + ρ1)
k ≥ r(1 + ρ1)

k(1 +
ρ20
2
)

≥ r(1 + ρ1)
k+1

Using this and (5), we have

ℓ∗k+1 ≥ ρ0t
∗
k+1 −

k∑
i=0

∆∗
i ≥ ρ0t

∗
k+1 −

C

ρ0
(1 + ρ0)

k+1

≥ rρ0(1 + ρ1)
k+1 − C

ρ0
(1 + ρ1)

k+1

= (1 + ρ1)
k+1(rρ0 −

C

ρ
) ≥ rρ0

2
(1 + ρ1)

k+1

On the other hand, we have

k+1∑
i=0

d(α∗(ti), α
∗(ti−1)) ≤

C

ρ
(1 + ρ)k+1 <

C

ρ

t∗k+1

r

for r sufficiently large.
In other words, ξ∗ arrives in F ∗

ek
long after α∗ has left F ∗

ek
. It is a routine computation

to shown that for a sufficiently large r, we have d(ξ∗(t∗k+1), α
∗(tk+1)) → ∞. Therefore it is

impossible for ξ∗ to eventually coincide with α∗.
In conclusion, we have shown that for every q = (q,Q), there exists a sufficiently large

constant r > 0 such that there is no q–ray ξ∗ with ξ∗|r = ζ∗|r and ξ∗ is eventually equal to
α∗. Therefore ζ∗ can not be quasi-redirected to α∗. □

The following lemma is extracted from the proof of [QR24, Proposition 4.2].

Lemma 5.20. Let X = A× B be a product of two proper geodesic metric spaces. Then
there exists a pair of constants q = (q,Q) ∈ [1,∞)× [0,∞) such that the following holds.
For every four points x, y, z, t ∈ X. Suppose that d(z, t) > 8d(x, y) then there exists a
(q,Q)–quasi-geodesic γ in X such that γ|r = [x, y] where r := d(x, y) and γ+ ∈ {z, t}.
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Proof. Since d(z, t) > 8d(x, y) = 8r, it follows that either d(x, z) > 4d(x, y) = 4r or d(x, t) >
4d(x, y) = 4r. The proof follows line by line from that of [QR24, Proposition 4.2]. □

Proposition 5.21. Let α∗ be an arbitrary q–ray of Type II in X. If the excursion of α∗ is
not sub-exponential then α∗ ∼ ζ∗.

Proof. Let t∗i be the first time α∗ intersects the admissible plane F ∗
ei . Since α∗ does not

exhibit sub-exponential excursions, there exists a sufficiently small constant ρ0 ∈ (0, 1/16)
such that for every r > 0, there exists k ∈ Z+ satisfying

t∗k − t∗k−1 ≥ r(1 + ρ0)
k.

Define k ∈ Z+ to be the smallest integer such that{
t∗k − t∗k−1 ≥ r(1 + ρ0)

k,

t∗i − t∗i−1 < r(1 + ρ0)
i, ∀1 ≤ i ≤ k − 1.

Consider the geodesic path e1 ·e2 · · · ek+1 in the Bass-Serre tree T . Let T be the standard
template associated with this geodesic segment, as defined in Definition 5.12. Denote

ϕ : T → X

be the (L,A)–quasi-isometric embedding given by Lemma 5.13. Define x∗k = α(t∗k) and
x∗k−1 = α(t∗k−1), and let xk, xk−1 ∈ T such that ϕ(xk) = x∗k and ϕ(xk−1) = x∗k−1.

We recall that ϕ maps planes Fi and strips Si(i+1) of T to the K–neighborhood (where K
depends only on the geometry of X) of the admissible planes F ∗

ei and the admissible strips
S∗
eiei+1

in X. Consequently, ϕ maps pi to a K–neighborhood of p∗i . Thus, up to uniform
errors, we assume xk ∈ Fk and xk−1 ∈ Fk−1.

Within the template T , and with respect to the sequence t1, t2, . . . , tk, we define a
forward spiral path of Type II, denoted by Jr,k, as introduced in Section 4.4. As discussed
in Section 4.4, this path satisfies the following properties:

(1) It is a (ν, ν)–quasi-geodesic for some ν independent of r.
(2) d(zk−1, pk−1)/ρ0 < tk − tk−1 ∼ d(xk, xk−1).

Applying Lemma 5.20 to the four points pk−1, zk−1, xk, xk−1 in the product space Fk−1 ∪
Sk−1,k∪Fk = (lk−1∪wk−1,k∪lk)×R which is a subspace of the template T , we obtain a (q,Q)–
quasi-geodesic γ in Fk−1∪Sk−1,k ∪Fk such that γ|s = [zk−1, qk−1], where s := d(zk−1, qk−1),
and γ+ ∈ {xk, xk−1}.

Since [yk−1, zk−1] is the shortest segment realizing the distance between the two sets
Jr,k\[yk−1, zk−1] and γ, it follows that Jr,k ∪ γ is a (q′, Q′)–quasi-geodesic for some q′ =
q′(q,Q) and Q′ = Q′(q,Q).

Defining L∗ := ϕ(Jr,k ∪ γ) ⊂ X, we conclude that it is a (q′′, Q′′)–quasi-geodesic for
some q′′ = q′′(q,Q,L,A) and Q′′ = Q′′(q,Q, L,A). Moreover, this quasi-geodesic satisfies
L∗|r = ζ∗|r and (L∗)+ ∈ {x∗k, x∗k−1} ⊂ α∗.

Applying the Segment-to-quasi-geodesic ray Surgery (see Lemma 2.8(3)), we conclude
that ζ∗ can be quasi-redirected to α∗ at radius r. Since this holds for every r > 0, it follows
that ζ∗ ⪯ α∗. By Proposition 5.14, we obtain α∗ ⪯ ζ∗. Therefore, ζ∗ ∼ α∗. □
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Remark 5.22. The idea of the above proof is that we can transition from Jr,k to α∗|≥R

for sufficiently large R, provided that a buffer region exists between them. This buffer must
have a product structure and a thickness that grows linearly with r, ensuring sufficient
space for a smooth transition or “landing” between the two paths.

Proposition 5.23. Let α∗ and α′∗ be two q–rays of Type II in X with different simplified
itineraries and with sub-exponential excursions. Then α∗ can not be quasi-redirected to α′∗

and vice versa.

Proof. By way of contradiction, suppose that [α∗] = [α′∗]. In particular, we have α′∗ ⪯ α∗.
Claim: ζ∗ ⪯ α∗.
Indeed, by Lemma 5.18, for a sufficiently small constant ρ0, there exists C > 0 such that

∆∗
i := d(p∗i , p

∗
i+1) ≤ C(1 + ρ0)

i

Let γα∗ = e1 · e2 · · · be the simplified itinerary associated to α∗ as defined in Definition 5.15.
Let T be the standard template associated with this geodesic segment, as defined in
Definition 5.12. Denote by ϕ : T → X the (L,A)–quasi-isometric embedding given by
Lemma 5.13. We recall that ϕ maps planes and strips of T to the K–neighborhood (where
K depends only on the geometry of X) of the planes F ∗

ei and the strips S∗
eiei+1

in X.
Consequently, ϕ maps pi to a K–neighborhood of p∗i , and hence

wi := d(pi, pi+1) ≤ C ′(1 + ρ0)
i

for some C ′ = C ′(C,L,A).
Let r > 0 be a sufficiently large constant. With respect to the above data, let γ := Lr,k

be the forward spiral path of Type I in the template T constructed in Section 4.3 such that
γ|r = ζ|r. We then define

γ∗ := ϕ(γ)

Let t∗k be the first time γ∗ (t∗k) ∈ F ∗
ek

and denote

ℓ∗k := d (γ∗ (t∗k) , p
∗
k)

Now choose R ≫ ℓk we consider a quasi-geodesic β∗ quasi-redirecting α∗ to α′∗ at radius R.
Such a β∗ exists since α∗ ⪯ α′∗. Recall that α∗ and α′∗ have different simplified itineraries.
Then β∗ arrives at and leaves F ∗

ek
much later than γ∗. Hence, similar arguments as in the

proof of Proposition 5.21, we can redirect γ∗ to β∗, that is, construct a quasi-geodesic ray
γ′∗ where γ∗[0, t∗k] = γ′∗ [0, t∗k], and γ′∗ is eventually equal to β∗.

Since β∗ is eventually equal to α∗ it implies that γ′∗ is eventually equal to α∗, and thus
γ′∗ quasi-redirects ζ∗ to α∗ at radius r. This can be done for every r with uniform constants.
Hence ζ∗ ⪯ α∗. This would contradict Lemma 5.19. □

Proposition 5.24. Let α∗ be a q-ray that is of Type II and is sub-exponential. Then
there exists a geodesic ray α∗

0 in X whose simplified itinerary is the sequence γ∗α∗ such that
α∗ ∼ α∗

0.
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Proof. Choose a sequence ri → ∞ and let xi be starting point of the quasi-geodesic α∗|≥ri .
Then xi is also the closest point in α∗|≥ri to o. Let

α∗
i = [o, xi] ∪ α∗|≥ri .

By Lemma 2.8(1), α∗
i is a (3q,Q)–quasi-geodesic ray. Up to taking a subsequence, the

geodesic segments [o, xi] converge to a geodesic ray α∗
0. It is shown in [QR24, Lemma 3.5]

that α∗
0 ⪯ α∗ with quasi-redirecting constants (3q,Q+ 1). We thus only need to show that

α∗ ⪯ α∗
0.

Let t∗i be the first time α∗ visits F ∗
ei and let q∗i be the first time α∗

0 visits F ∗
ei .

Suppose that

d(α∗
0(q

∗
i ), α

∗(t∗i )) >
d(o, q∗i )

2
for every i. Since α∗ is a (q,Q)–quasi-geodesic, there exists a constant ρ0 > 0, q∗ > 0
depending on q so that for k large enough then

t∗k+1 − t∗k > ρ0t
∗
k + qδk

Let T be the standard template associated with γ∗α∗
0
, as defined in Definition 5.12. Denote

by ϕ : T → X the (L,A)–quasi-isometric embedding given by Lemma 5.13.
Pick a constant ρ > 0 sufficiently small. According to Proposition 4.8, we can construct

a quasi-geodesic Lr,k+2 in the standard template T with

lk+1 − lk < ρlk + δk

where li := Length(Lr,i).
As usual, we define L∗

r,k+2 = ϕ(Lr,k+2) is a path in X.

Since the sequence {lk} grows more slowly than {t∗k}. That is to say for sufficiently large
k, α∗ arrives at and leaves F ∗

ek
much later than L∗

r,k. Hence, similar arguments as in the
proof of Proposition 5.21, we can redirect ζ∗ to α∗ at radius r as ζ∗ is identical with L∗

r,k

up to radius r. Therefore ζ∗ ⪯ α∗. But this would contradict Lemma 5.19.
Therefore there must be a sequence of i → ∞ such that

d(α∗
0(q

∗
i ), α

∗(t∗i )) ≤
d(o, q∗i )

2

By Surgery Lemma 2.8(2) we obtain that α∗ ⪯ α∗
0 with redirecting constant (9q,Q).

Therefore α∗ ∼ α∗
0. □

Now we have enough ingredients to claim the existence of the QR-boundary of X.

Theorem 5.25. The quasi-redirecting boundary ∂X exists and is non-Hausdorff.

Proof. By [QR24, Lemma 2.3], all finitely generated groups satisfy QR Assumption 0. Here
we check QR-Assumptions 1 and 2. That is, for every a ∈ P (X), there is a geodesic
representative, and there is a function

fa : [1,∞)× [0,∞) → [1,∞)× [0,∞),

any q–ray α∗ ∈ a can be fa(q)–quasi-redirected to the representative of a.
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If α∗ is of Type I or of Type II, but it does not have sub-exponential excursion, then
by Proposition 5.14 α∗ ⪯ ζ∗ with constants q′(q). If otherwise, Proposition 5.21 show that
ζ∗ ⪯ α∗ with uniform constants. Thus ζ∗ is a suitable geodesic representative of [α∗] and
f[α∗] = q′(q). Otherwise, α∗ is of Type II and sub-exponential, then Proposition 5.24 shows
that α∗

0 is a geodesic representative of [α∗] and the redirecting function is f[α∗] = (9q,Q).
Thus X satisfies all three QR-Assumption 0, 1, 2, and ∂X is well-defined and QI-invariant.

□

5.6. Proof of Theorem B. Kapovich and Leeb demonstrate that for every graph manifold
M , there exists a flip graph manifold N whose fundamental groups are quasi-isometric
[KL98]. This result is further extended to Croke-Kleiner admissible groups in [Ngu25,
Theorem 1.6], which specifically establishes the existence of a flip admissible group G′

(that is a Croke-Kleiner admissible group acts geometrically on a flip admissible space)
such that G and G′ are quasi-isometric. Noting that the quasi-redirecting boundary is a
quasi-isometric invariant, the conclusion then follows from Theorem 5.25.

6. Application to 3-manifold groups and certain right-angled coxeter
groups

6.1. QR boundary of 3-manifold groups. Now we are ready to prove Theorem A.

Proof of Theorem A . Let M be a non-geometric 3-manifold. Then M is either a graph
manifold or a mixed 3-manifold.

Case 1: M is a graph manifold. At first, by passing to a finite cover M ′ of M , we can
assume that each Seifert piece Mv of M is a product Sv×S1 where Sv is a hyperbolic surface
with nonempty boundary [KL98]. This is allowable since quasi-redirecting boundary is a
quasi-isometric invariant. The fundamental group π1(Sv) is free, and hence it is omnipotent.
Therefore π1(M) is a Croke-Kleiner admissible group where each vertex group π1(Mv) is
a CAT(0) group and its quotient π1(Sv) is omnipotent. Theorem B implies that π1(M)
satisfies all three QR-Assumptions and ∂π1(M) is well-defined.

Case 2: M is a mixed 3-manifold. Let M1, . . . ,Mk be the maximal graph manifold
components and Seifert fibered pieces of the torus decomposition of M . Let S1, . . . , Sℓ be
the tori in the boundary of M that bound a hyperbolic piece, and let T1, . . . , Tm be the
tori in the torus decomposition of M that separate two hyperbolic components. According
to [Dah03] (see also [BW13]), π1(M) is hyperbolic relative to

P = {π1(Mp)}kp=1 ∪ {π1(Sq)}ℓq=1 ∪ {π1(Tr)}mr=1.

We note that the quasi-redirecting boundaries of π1(Sq), π1(Tr) exist since they are isomor-
phic to Z2. Case 1 implies the existence of the quasi-redirecting boundary of π1(Mp). Thus,
we apply Theorem D to conclude that the quasi-redirecting boundary of π1(M) exists. □

6.2. QR boundary of certain right-angled Coxeter groups. Given a graph Γ, define
Γ4 as the graph whose vertices are induced 4–cycles of Γ. Two vertices in Γ4 are adjacent
if and only if the corresponding induced 4-cycles in Γ have two nonadjacent vertices in
common.
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Definition 6.1 (Constructed from squares). A graph Γ is CFS if Γ is the join Ω ∗K where
K is a (possibly empty) clique and Ω is a non-empty subgraph such that Ω4 has a connected
component T such that every vertex of Ω is contained in a 4–cycle that is a vertex of T . If
Γ is CFS, then we will say that the right-angled Coxeter group WΓ is CFS.

Standing Assumptions. The planar flag complex ∆ ⊂ S2:

(1) is connected with no separating vertices and no separating edges (W∆ is one-ended);
(2) contains at least one induced 4-cycle (W∆ is not hyperbolic);
(3) is not a 4-cycle and not a cone of a 4-cycle (G∆ is not virtually Z2).

Proposition 6.2. Let ∆ ⊂ S2 be a flag complex satisfying Standing Assumptions. Assume
that either ∆ = S2 or the boundary of each region in S2 − ∆ is a 4–cycle. Then the
quasi-redirecting boundary of the right-angled Coxeter groups WΓ exists.

Proof. It is shown in [NT19, Theorem 1.1] and [HNT20] that there are mutually exclusive
cases as bellow:
(1): If ∆ is a suspension of some n-cycle (n ≥ 4) or some broken line (i.e. a finite disjoint

union of vertices and finite trees with vertex degrees 1 or 2), then G contains a finite index
subgroup G′ which is isomorphic to π1(M) with M is a Seifert manifold. In this case, there
is a finite cover M ′ → M such that M ′ = F × S1 where F is a hyperbolic surface with a
nonempty boundary, and thus ∂(π1(M

′)) consists only one point by Proposition 2.6. Since
G is quasi-isometric to π1(M

′), it follows from Theorem 2.1 that ∂G consists only one point.
(2): If the 1-skeleton of ∆ is CFS and does not satisfy (1) then G contains a finite index

subgroup G′ which is isomorphic to π1(M) with M is a graph manifold. If the 1-skeleton of
∆ contains a separating induced 4-cycle and is not CFS, then M is a mixed manifold. In
these two cases, it follows from Theorem A that the quasi-redirecting boundary of π1(M)
exists, and so does G.
(3): If the 1-skeleton of ∆ has no separating induced 4-cycle and is not CFS, then G

contains a finite index subgroup G′ which is isomorphic to π1(M) with M is a hyperbolic 3-
manifold with tori boundary. In this case, π1(M) is hyperbolic relative to a finite collection
of Z2 which have trivial QR-boundaries, and Theorem D implies the existence of the
quasi-redirecting boundary of π1(M), and so does G. □

Theorem 6.3. Let Γ be a graph whose flag complex ∆ is planar. Then the quasi-redirecting
boundary of the right-angled Coxeter group WΓ exists.

Proof. According to [HNT20, Theorem 1.2], there is a collection J of CFS subgraphs of Γ
such that the right-angled Coxeter group GΓ is relatively hyperbolic with respect to the
collection P = {GJ | J ∈ J }. By Proposition 6.2, the quasi-redirecting of each peripheral
subgroup GJ ∈ P. We now apply Theorem D to obtain the conclusion. □
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